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The rate of eþe� pair creation by external electric field in the presence of an incident photon beam is

calculated for the photon energy far below the threshold,! � m, and the field strength small as compared

to the critical one, eE � m2. We find the pair production rate using a recently developed method based on

calculation of the process in a thermal bath with subsequent identification of the contribution of single-

photon states. We demonstrate that a nontrivial dependence on the ratio of the small parameters,

!m=ðeEÞ, emerges in this approach from an essentially (semi)classical calculation.

DOI: 10.1103/PhysRevD.81.025001 PACS numbers: 12.20.Ds, 11.10.Wx, 11.15.Kc

I. INTRODUCTION

It has been theoretically understood since long ago [1]
that a static electric field E can spontaneously produce
electron-positron pairs due to quantum tunneling. The
probability of this phenomenon, usually called the
Schwinger process, can be found from the imaginary part
of the one-loop effective action in an external field [2,3],
and the pair production rate per unit volume in a constant
field is given by the well-known formula

� ¼ ðeEÞ2
4�3

Xþ1

n¼1

1

n2
exp

�
��m2

eE
n

�
; (1)

with e and m being, respectively, the charge and the mass
of the electron. The generalizations of this formula to
varying external field include the special cases of a spa-
tially constant field with the time dependence E�
1=cosh2ð�tÞ [4] and of the field pointing along the z axis
and arbitrarily depending on the light cone variable Ezðt�
xÞ [5]. A complete review of the topic can be found in
Refs. [6,7].

Being thoroughly investigated theoretically, the
Schwinger process has no experimental evidence so far.
The reason is that any practically available strength of the
electric field is much smaller than the critical value Ec ¼
m2=e� 1016 V=cm at which the probability described by
Eq. (1) would not be exponentially suppressed.

It has been suggested recently [8] that the pair creation
can be significantly stimulated by superimposing a rela-
tively weak photon beam with a (quasi)static electric field.
It was shown [9] that in the presence of an external photon
the barrier for the tunneling is effectively lowered and the
negative exponential power in the pair production rate is
decreased in absolute value. In particular, for a photon with
energy ! propagating perpendicularly to the field E the
negative exponential power in the pair production rate at
the threshold ! ¼ 2m is modified from ��m2=ðeEÞ to

�ð�� 2Þm2=ðeEÞ, leading to a large exponential enhance-
ment of the rate.1

In the present paper we consider the photon-induced pair
creation in an external electric field in the realistic limit
E � Ec and at lower photon energies ! � m for which
higher beam intensity can be practical. Under this condi-
tion the leading effects are described by the so-called
Keldysh parameter �� ¼ m! sin�=ðeEÞ, with � being the
angle between the photon momentum and the electric field
E. We do not assume the Keldysh parameter to be small
and find the exact in this parameter expression for the
attenuation rate � for the photon beam intensity due to
the pair production in the form

�kð ~kÞ ¼ 2
�m2

!
e�ðð�m2Þ=ðeEÞÞ½I1ð��Þ�2; (2)

with I1ðxÞ being the standard notation for the modified
Bessel function. Our consideration here is restricted to
the lowest order in the ratio ! sin�=m, and in this order
we find that only the photons whose polarization is parallel

to ~E stimulate the pair production (hence the notation �k),
while the effect for the orthogonal polarization, �?, arises
only in a higher order in this ratio. The exponential behav-
ior of the Bessel function in Eq. (2) at large argument
matches the low ! limit of the exponential expression
found in Ref. [9], so that our result describes both the
exponential and the preexponential factors in this limit.
The photon-induced pair creation can be calculated in a

standard way in terms of the imaginary part of the electro-
magnetic vacuum polarization function� in external field:

1Recently a more complex arrangement has also been consid-
ered [10], where in addition to a strong low-frequency laser field
and a weak high-frequency photon beam there is a field of a
heavy nucleus.
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� ¼ � 1

!
=� (3)

starting from the known [7] general formulas for�. In fact
the expression (2) is very recently found [9] in this way by
considering a small ! expansion of the contour integral
representation of the imaginary part of the polarization
tensor for photons in a constant E field. In this paper we
do not use this approach but rather find the result (2) by
considering the Schwinger pair creation as a semiclassical
tunneling process,2 and using the Euclidean-space descrip-
tion of the tunneling trajectory [11–13]. In such a semi-
classical approach, instead of summing the loop graphs for
the vacuum-to-vacuum transition amplitude, one uses the
so-called bounce [14] trajectory in the Euclidean space
time similarly to the methods used in treatment of false
vacuum decay [14,15]. In order to find the pair creation rate
stimulated by photons we use the recently developed
[16,17] extension of this approach using a thermal calcu-
lation of the tunneling rate. An appropriate interpretation
of the result for the probability of the process at finite
temperature in a thermal bath allows to extract the behavior
of the rate induced by individual particles present in the
bath. (In fact the technique allows to find the probability of
pair production induced by arbitrary number of particles).

In what follows we provide the actual calculation lead-
ing to the expression (2). In Sec. II we briefly recapitulate
the quasiclassical method of calculating the probability
rate, and in Sec. III derive the expression for the rate at
nonzero temperature T in terms of expansion in powers of
mT=ðeEÞ. In Sec. IV we relate the thermal result to the
contribution of the one-photon-induced process and thus
we find the probability described by Eq. (2). Finally,
Sec. IV contains the discussion and concluding remarks.

II. EUCLIDEAN SPACE TUNNELING

The Euclidean space approach [14] to tunneling is based
on constructing a localized solution to the classical equa-
tions of motion, which solution is called a bounce, and the
exponential factor in the rate is determined by the
Euclidean action on the bounce SB as � / expð�SBÞ, while
the preexponential factor is derived [18] from a calculation
of the Euclidean path integral around the bounce trajectory.
It can be also mentioned that if in the problem there is a
separation of scales such that some degrees of freedom can
be considered as soft on the scale of the size of the bounce,
both the exponential factor [14] and the preexponential one
[19] can be treated within an effective theory of those soft
variables.

In order for an electron-positron pair to be created, the
electric field E has to produce the work equal to 2m. This
requires the length ‘ ¼ 2m=ðeEÞ, and at a field weaker
than the critical, E � m2=ðeEÞ the length scale ‘ greatly

exceeds the electron Compton wave length, ‘ � m�1. In
this situation the tunneling bounce configuration in the
problem of pair creation can be treated within an effective
low-energy theory with essentially classical action for the
electrons in external electromagnetic field

S ¼ m
Z

dl� e
Z

A�dx
�; (4)

with x� being the coordinate of the particle and dl is the

element of the length of the particle trajectory. In a con-
stant electric field in the x direction, E ¼ Ex, one can write
the potential as A0 ¼ Aext ¼ Ex and thus rewrite the action
(4) for a closed trajectory in terms of its length L and the
area A that it encircles:

S ¼ mL� eEA: (5)

Thus the trajectory extremizing the action, the bounce, is a
circle in the ðt; xÞ plane with the radius

R ¼ m

eE
(6)

as shown in Fig. 1. (The diameter of the circle is such that
the work produced by the constant electric field on that
distance is equal to the total mass of the pair produced 2m.)

The value of the action on this trajectory is SB ¼ �m2

eE , in a

complete agreement with the leading exponent in the exact
expression (1) under the condition E � Ec, which ensures
applicability of the semiclassical treatment.

III. PAIR CREATION IN ELECTRIC FIELD IN A
THERMAL BATH

As mentioned, we eventually find the photon-induced
pair production rate by extracting the corresponding one-
particle contribution from an expression for the Schwinger
process at a finite temperature. Therefore we start with
calculating the probability rate per unit volume at nonzero
temperature. For a sufficiently small temperature, namely,
T � m, one can still employ the same effective Euclidean
one-particle action (4), except that now the system lives on
a cylinder with a periodic Euclidean time with the period
equal to the inverse temperature � ¼ 1=T. Equivalently
one can consider the system on the ðt; xÞ plane with peri-
odic in t boundary conditions (see Fig. 2). Moreover for the
purpose of the present calculation it is sufficient to consider
arbitrarily low but nonvanishing temperature, and we thus
also impose the condition T < ð2RÞ�1 ¼ eE=ð2mÞ which
even more justifies the applicability of the effective action

FIG. 1. The bounce configuration for eþe� pair creation.

2This treatment in fact goes back to the original idea [1].
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and also ensures that the circular bounce fully fits within
one period.

The action for the bounce and thus the probability of pair
creation does not change in this limit if the electromagnetic
field is considered as an external object without dynamics
of its own. We, however, are interested in the effects
produced by the photons in the thermal bath and we should
thus consider the dynamics of the electromagnetic field by
adding to the low-energy action the kinetic term for the
field A�. In order to exclude the contribution of the energy

of the external field to the action one can make the shift in
the definition of the electromagnetic potential: A� !
Aext
� þ A� and write the effective action as

S½x; A� ¼ m
Z

dl� eEA� e
Z

A�dx
� � 1

4

Z
d4xF2

��;

(7)

where A� is the shifted potential with the corresponding

field strength F�� ¼ @�A� � @�A�.

Generally, the rate is found [6,11,14,19] by calculating
the partition function around the one bounce configuration

� ¼ 2

VT
Im

Z
Dx�DA� exp�S½x; A�: (8)

with effective one-particle Euclidean action S½x; A� given
by the expression (7), and VT being the space-time volume
of the system.

The zero temperature result corresponds to the limit
� ! 1, and, without any corrections from exchange of
the photons, yields the well-known expression for the rate

�

V
¼ ðeEÞ2

4�3
exp

�
��m2

eE

�
; (9)

which corresponds to the first term in the sum (1). The self-
interaction of the particle [one-loop correction: the correc-
tion of the type (a) in Fig. 2] was taken into account in
paper [11]. It amounts to a finite additive term in the
exponent, e2=4 ¼ ��. The thermal effect that eventually
leads to the result in the present paper can in fact be viewed

as a thermal distortion of this self-interaction term due to
the modification of the photon propagator on the cylinder
as compared to an infinite space time. In the equivalent
periodic picture of Fig. 2 this modification can be consid-
ered as an interaction between the periodic copies of the
current loops with the photon propagator being that in an
infinite space time [the corrections of type (b)].
Before proceeding to a calculation of this latter effect we

note that the corrections due to the thermal fluctuations of
the shape of the bounce, i.e. deviations from the circle, are
of a higher order in eE=m2 and are entirely neglected in the
present treatment.
The contribution to the action due to such interaction has

the following form:

�Stot ¼ �
Z

d4x

�
1

4
F2
�� þ A�j�

�
¼ � 1

2

Z
d4xA�j�:

(10)

with j� being the total current in the circles

j� ¼ X
n

enðnÞ� 	ðrn � RÞ	ðyÞ	ðzÞ; (11)

and nðnÞ� is the tangential unit vector to the nth circle:

nðnÞ� ¼ ð� sin�n; cos�nÞ; (12)

where ðrn; �nÞ are the polar coordinates with the origin at
the center of the nth copy of the circle located at ðx; tÞ ¼
ð0; n�Þ. A� is the field produced by all those circles

A� ¼ X
n

AðnÞ
� ; (13)

where all AðnÞ
� in turn are the solutions of the Laplace

equation

�AðnÞ
� ¼ jðnÞ� ; (14)

AðnÞ
� ðrn; �n; y ¼ 0; z ¼ 0Þ ¼ eR2

2�

nðnÞ�

rnðr2n � R2Þ : (15)

Omitting the contribution from Að0Þ
� , which corresponds

to self-interaction, we get the correction to the action per
one period �

�S ¼ � Xþ1

n¼1

Z
d4xAðnÞ

� jð0Þ�

¼ � e2

2

Xþ1

n¼1

�
1� 2ðRT=nÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2RT=nÞ2p � 1

�

¼ � e2

2

X1
p¼2

22p�1ðRTÞ2p ðp� 1Þ�ðp� 1=2Þffiffiffiffi
�

p
�ðpþ 1Þ 
ð2pÞ;

(16)

where the sum runs over only positive n and it is taken into
account that the contribution of the terms with negative n is

FIG. 2 (color online). The periodic plane with two types of
correction: (a) is the correction due to the self-interaction of the
particle on a circle and (b) is the correction due to the interaction
of the circles separated in Euclidean time.

PHOTON-STIMULATED PRODUCTION OF ELECTRON- . . . PHYSICAL REVIEW D 81, 025001 (2010)

025001-3



the same as that from n > 0. Finally, 
 is the standard
Riemann zeta function


ðqÞ ¼ X1
n¼1

n�q:

A remark is in order concerning the apparent ‘‘extra’’
factor of one half in Eq. (16). In the treatment in ‘‘flat’’
space time with periodic copies this factor arises for the

following reason. Each term �AðnÞ
� jð0Þ� in the sum corre-

sponds to the additional action within the pair of the nth
and 0th current loops. Thus the additional action per one
loop, i.e. per one period �, is one half of that. In the picture
of a current loop on the cylinder the equivalent explanation
of this factor is that the self-interaction of the loop through
n windings of the photon propagator around the cylinder
does not contain any notion of the sign of n. Therefore
summing over the positive and negative values of n would
be double counting.

Using the preexponential factor from Eq. (9) and the
expression (16) for �S, one can write the rate of pair
creation at finite temperature in the form

d�T

dV
¼ ðeEÞ2

4�3
exp

�
��m2

eE
� �S

�
; (17)

so that the thermal enhancement factor is expð��SÞ.
In particular, the first temperature dependent term of

expansion at low temperature resulting from Eqs. (16) and
(17),

d�T

dV
¼ ðeEÞ2

4�3
exp

�
��m2

eE

��
1þ �

2�5

45

m4T4

ðeEÞ4

þO

��
mT

eE

�
6
��
; (18)

agrees with the same term resulting from the expansion of
the general two-loop effective QED Lagrangian [20] in
external electromagnetic field at finite temperature.

IV. PAIR PRODUCTION INDUCED BYA PHOTON

In a microscopic description of the thermal effects, the
enhancement of pair creation in a bath at finite temperature
arises through the stimulation of the process by the photons
present in the bath. The dependence of the photon-induced
process on the photon energy ! then translates into the
dependence on the temperature T after averaging over the
thermal distribution of the photons with the standard den-
sity function

nð ~kÞ ¼ 1

e!� � 1
(19)

with ! ¼ j ~kj. The number of photons involved in each of
these microscopic processes can be readily identified by
the power of the factor e2. Since the thermal correction
(16) in the action is proportional to e2, the one-photon

contribution to the thermal rate is given by the linear in �S
term in the expansion of the factor expð��SÞ in the
expression (17). Namely, the one-photon contribution to
the pair creation rate in a thermal state is given by3

�1�=V ¼ ðeEÞ2
4�3

exp

�
��m2

eE

�
ð��SÞ: (20)

On the other hand the same contribution can be found in
terms of the averaged over the photon polarizations proba-
bility �� rate of pair production induced by a photon, which
is the same as the absorption rate for the photons per unit
length. The latter can be expanded in a power series of
! sin�, with yet to be defined coefficients Cn as [9]

��ð ~kÞ ¼ 1

!

X1
p¼2

Cpð! sin�Þ2p�2: (21)

The functional form of � in fact follows from its relation
(3) to the vacuum polarization in electric field and the
dependence of the on-shell imaginary part =� on ! sin�
[7].
The thermal probability is then found in terms of the

coefficients Cp by integrating over the photon momentum

with the weight given by the distribution (19):

�1�

V
¼ 2

Z d3k

ð2�Þ3
��ð ~kÞ

e!=T � 1

¼ X1
p¼2

Cp

2

ð2�Þ2 T
2p�ð2pÞ

ffiffiffiffi
�

p
�ðpÞ

�ðpþ 1=2Þ 
ð2pÞ; (22)

where the factor of 2 accounts for two polarizations of the
photon.
The expression in Eq. (22) can now be compared with

the one resulting from the Eqs. (20) and (16) thus deter-
mining the coefficientsCp and yielding the expansion for ��

in the form

��ð ~kÞ ¼ �m2

4!
exp

�
��m2

eE

� X1
n¼1

22nþ4

�

� �2ðnþ 3=2Þ
ð2nþ 1Þðn� 1Þ!ðnþ 1Þ!ð2nþ 1Þ!�

2n
�

¼ �m2

!
exp

�
��m2

eE

� X1
n¼1

�ðnþ 1=2Þffiffiffiffi
�

p ðn� 1Þ!n!ðnþ 1Þ!�
2n
�

¼ �m2

4!
exp

�
��m2

eE

��
�2
� þ

1

4
�4
� þ

5

192
�6
� þ . . .

�

¼ �m2

!
exp

�
��m2

eE

�
½I1ð��Þ�2 (23)

3In Refs. [16,17] the contribution of processes with different
number of massless bosons in a thermal bath was separated by
formally introducing a negative chemical potential. In the prob-
lem discussed here this is not necessary, since the power of the
coupling e2 automatically ‘‘tags’’ the number of photons.
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with �� being the Keldysh parameter m! sin�=ðeEÞ. The
latter form of the result in Eq. (23) in terms of the square of
the Bessel function can be verified by squaring the standard
Taylor expansion and collecting terms with the same power
of the argument:

½I1ðxÞ�2¼
�X1
k¼0

ðx=2Þ2kþ1

k!ðkþ1Þ!
�
2

¼X1
n¼1

x2n
�
2�2n

Xn�1

p¼0

1

p!ðpþ1Þ!ðn�p�1Þ!ðn�pÞ!
�

¼X1
n¼1

x2n
�ðnþ1=2Þffiffiffiffi

�
p ðn�1Þ!n!ðnþ1Þ! : (24)

The coefficients in the latter expansion clearly coincide
with those in the second line of Eq. (23).

V. DISCUSSION AND CONCLUSIONS

One can readily notice that the thermal expression (16)
is applicable only at a low temperature T < 1=ð2RÞ.
However the resulting formula (23) for the one-photon
rate is valid at arbitrary values of the Keldysh parameter
�� (as long as the assumed bounds, ! � m and eE � m2

are satisfied). This behavior, where the thermal expression
is singular at the critical temperature, while the rates for
individual processes are smooth functions, is similar to the
one observed in analogous calculations in Refs. [16,17].

It can be also readily argued that the absorption rate in
Eq. (23) is in fact related only to the photon polarization
parallel to the electric field, so that for the photons with that
particular polarization the absorption rate is twice larger
than the average:

�k ¼ 2 ��; (25)

while for the photons with polarization orthogonal to the
external field there is no absorption: �? ¼ 0. Indeed, our
Euclidean-space calculation would not be affected if we
considered the system, including the external electric field
E ¼ Ex, in a flat capacitor with small distance � between
the plates (but still� � R), i.e. if we imposed zero bound-
ary condition on the components Ay and Az of the vector

potential at x ¼ ��=2: Ay;zðx ¼ ��=2Þ ¼ 0. Clearly,

such an arrangement leaves the components Ax and At

intact, so that the potential created by the loop currents
in the ðx; tÞ plane is still given by our Eq. (15), and one
would arrive at the same result for the action per period�S.
On the other hand the boundary conditions at the plates of
the capacitor introduce an energy gap �=� in the spectrum
of the photons with polarization in the y and z direction and
thus their presence in the thermal bath is suppressed. The
absence of dependence of the thermal rate on the boundary
conditions for the transversal to the external field E polar-
izations implies that no absorption rate �? arises for the
perpendicular polarization as long as only the expansion in

the leading parameter �� is concerned. Such absorption
would however arise in the next order of expansion in the
ratio !=m. Within the described here technique the terms
of that order originate from the effects that are left beyond
our essentially classical treatment of the electron
Euclidean trajectory and of the field that it creates. In
particular, the terms of higher order in !=m would arise
if one also includes the magnetic interaction of the current
loops due to the spin of the electron.
Using the asymptotic expression for the Bessel function

I1ðzÞ ¼ ezffiffiffiffiffiffiffiffiffi
2�z

p ; for z � 1; (26)

one can find the exponential behavior of the probability
rate (23)

��� exp

�
�m2

eE

�
�� 2!

m
sin�

��
; (27)

which agrees with the ! � m limit of the exponential
expression recently found in Ref. [9].
In summary, we have calculated the rate of the photon-

induced Schwinger process in the limit ! � m and eE �
m2 for arbitrary value of the Keldysh parameter ��. Our
calculation differs from the one [9] based on the vacuum
polarization operator in external field in that we use an
extension of a semiclassical treatment of the process to
finite temperatures. The thermal rate is calculated in a
standard way by considering the tunneling trajectory on a
cylinder, i.e. periodic in the Euclidean time. The leading
contribution of the photons present in the thermal bath then
arises from the classical self-interaction of the electron
current on the tunneling trajectory with itself on the cylin-
der. The contribution of stimulation of the pair creation by
one photon is then determined from the term with appro-
priate power of the coupling e2 in the thermal expression.
In this way we reproduce the nontrivial behavior in Eq. (2)
of the calculated rate. We believe that the considered
method, which we also recently applied in similar prob-
lems [16,17], is of interest and can be used in other
applications of tunneling processes induced by quantum
particles.
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