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We show that the averaged null energy condition can be violated by a conformally coupled scalar field

in a conformally flat spacetime in 3þ 1 dimensions. The violation is dependent on the quantum state and

can be made as large as desired. It does not arise from the presence of anomalies, although anomalous

violations are also possible. Since all geodesics in conformally flat spacetimes are achronal, the achronal

averaged null energy condition is likewise violated.
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I. INTRODUCTION

Without any restriction on the states of matter that can
act as sources, general relativity allows arbitrary space-
times, which may contain closed timelike curves, worm-
holes, and other such exotic phenomena. To prevent their
occurrence requires restrictions on the stress-energy tensor
of matter, which are called energy conditions. For example,
the usual classical fields obey the weak energy condition:
the energy density seen by any (timelike) observer can
never be negative.1 From this condition, wormholes, super-
luminal travel, and construction of time machines can be
ruled out [4–7].

Unfortunately, quantum fields can violate any restriction
on the value of the stress-energy tensor Tab at a point, so
the above argument does not hold in semiclassical gravity.
For example, a superposition of the vacuum and a two-
photon state gives negative energy density at certain loca-
tions. To make progress in this case, one can go to averaged
energy conditions which restrict only certain averages of
Tab. In particular, the exotic situations mentioned above
could be ruled out by the averaged null energy condition
(ANEC), which states that the projection of Tab onto the
tangent vector of a null geodesic cannot give a negative
integral,

Z
�
Tabl

alb � 0; (1)

where la is the tangent vector to the geodesic �.
In Minkowski space, ANEC always holds [8,9]. It can-

not be violated even if one allows arbitrary boundaries
(generalizing the parallel plates of the Casimir effect), as
long as these do not approach arbitrarily close to the
geodesic [10]. The result of [10] applies also to spacetimes

that are flat near the geodesic but have curvature in distant
places, as long as that curvature does not change the causal
structure near the geodesic. However, this result does not
apply for null geodesics that are chronal, that is to say some
of whose points are in the chronological future of others.
A simple example of ANEC violation for chronal geo-

desics is given by the Casimir-like system produced by
compactifying one spatial dimension in Minkowski space.
In this case both the energy density and the pressure in the
compactified direction are negative everywhere, and
ANEC is violated by geodesics going in the compact
direction. Because of the compactification, all geodesics
are chronal.
ANEC can also be violated in 3þ 1 dimensional curved

space. An example is given by the Schwarzschild space-
time in the Boulware vacuum state [11]. All complete
geodesics (i.e., those that avoid the singularity) violate
ANEC, but all those geodesics are chronal.
In 1þ 1 dimensions, on the other hand, either all geo-

desics are chronal (if the spatial dimension is compactified)
or all geodesics are achronal. In the latter case ANEC
always holds [9].
The above considerations might lead one to guess that

quantum fields always obey ‘‘achronal ANEC,’’ i.e., they
obey ANEC on any achronal geodesic. This condition is
sufficient to rule out many exotic situations [12], but even it
is violated. Visser [13] showed that in general spacetimes,
one can always violate ANEC by rescaling (which does not
change the chronality of a geodesic) However, his violation
results from the anomalous transformation of the stress
tensor. It involves the logarithm of the rescaling factor
multiplied by a tiny number such as 1=ð2880�2Þ. Thus,
any realistic rescaling will have negligible effect.
Reference [12] conjectured that a principle of self-
consistency could rule out this violation. If one requires
the spacetime to be generated self-consistently by the state
of the quantum fields (perhaps with the addition of some
classical matter), Visser’s anomalous violation would be
too small to lead to the curvature necessary to produce the
violation.
In the next section, we exhibit a new curved-space

ANEC violation. We study the conformally coupled scalar
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1Non-minimally coupled scalar fields are an exception [1–3].

In this case the classical field can easily violate all pointwise
energy conditions. However, classical violations of ANEC [1,2]
are possible only if the field takes on Planck-scale values, which
lead the effective Newton’s constant to first diverge and then
assume negative values. This may mean that such states are not
physically realizable.
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field in conformally flat spacetimes and find a state-
dependent violation which can be made arbitrarily large.
The basic idea is to start with a Minkowski-space quantum
state which obeys ANEC (as it must), but which violates
the null energy condition (NEC), which requires that
Tabl

alb � 0 for every point and every null vector la. We
then choose a conformal transformation which enhances
the NEC-violating regions in the ANEC integral, so that in
the conformally related spacetime ANEC is violated. By
choosing appropriate quantum states, ANEC can be vio-
lated to any desired degree.

The violation we discuss here differs from that of Visser
[13] in that it depends on the state, rather than arising from
anomalous terms, which depend only on the spacetime
curvature. Additionally, the conformally flat systems dis-
cussed here are a special case to which Visser’s argument
does not apply, and where the scaling anomaly he discusses
does not occur.

In Sec. III, we construct another kind of ANEC violation
arising only from the anomalous terms in the transforma-
tion of the stress-energy tensor, starting from the
Minkowski-space vacuum. The violation depends on hav-
ing an inhomogeneous conformal transformation, rather
than simply a rescaling, and does not depend the choice
of renormalization scale

In Sec. IV, we review explicitly why these approaches
cannot be used to violate ANEC in 1þ 1 dimensions. In
this case the anomalous contribution is always positive and
cancels the largest effect that can be generated by re-
weighting an NEC-violating Minkowski-space state.

Finally, we conclude in Sec. V with some possibilities
for how one might rule out exotic phenomena even though
ANEC does not always hold.

We work in units where c ¼ 1 and @ ¼ 1. Our sign
conventions are (þþþ ) in the categorization of
Misner, Thorne, and Wheeler [14].

II. NONANOMALOUS VIOLATION

Wewill construct our violation of ANEC as a conformal
transformation of a spacetime that obeys ANEC but vio-
lates NEC, i.e., there is a geodesic � with tangent vector la,
such that Tabl

alb < 0 in certain places but
R
� Tabl

alb � 0.

For simplicity, wewill take the untransformed spacetime to
be Minkowski space. We will show that a conformal trans-
formation can enhance the contribution to the integral in
those places where NEC is violated, so that the overall
integral is negative in the transformed spacetime.

We let our transformed metric be �gab ¼ �2ðxÞ�ab. The
stress-energy tensor then transforms as [15]

�T ab ¼ ��2Tab þ anomaly: (2)

The anomalous contribution depends only on local curva-
ture terms and is finite. A null geodesic remains a null
geodesic under a conformal transformation, but the pa-
rameterization is no longer affine. A new affine parame-

terization is given by d �� ¼ �2d�, and so �la ¼
ðdxa=d ��Þ ¼ ��2la. The ANEC integral then becomes

Z
�Tab

�la �lbd �� ¼
Z

��4Tabl
albd�þ anomaly: (3)

For a given conformal transformation, we will exhibit a
sequence of states in which the nonanomalous term be-
comes arbitrarily negative. Thus, even if the anomalous
term is positive, there are states which overcome it and
make the ANEC integral negative. In fact, it is possible to
arrange the transformation so that the anomalous term also
gives a negative contribution.
Our argument follows closely the work of Fewster and

Roman [16] on null quantum inequalities. A quantum
inequality is a restriction on the amount by which a
weighted average of the stress-energy tensor can be nega-
tive. For example, for a minimally coupled massless scalar
in Minkowski space, we have [17]

Z �0
�ð�2 þ �20Þ

TabV
aVbd� � � 1

32�2�40
; (4)

where the integral is taken over a timelike geodesic with
tangent vector Va, parameterized by proper time �, and �0
is a arbitrary constant.
Fewster and Roman [16] showed that no inequality such

as Eq. (4) can hold for null geodesics. Specifically, for any
affinely parameterized null geodesic �ð�Þ with tangent
vector la and any smooth, bounded, compactly supported
function fð�Þ, Fewster and Roman construct a sequence of
states which make

R
fð�ÞTabl

albd� unboundedly negative.
We will use their construction to produce a Minkowski-
space state which will violate ANEC when conformally
transformed.
Consider a geodesic � as above and a smooth conformal

transformation �ðxÞ, with the properties that

�ð�ð�ÞÞ � 1 everywhere on � (5)

�ð�ð�ÞÞ is bounded from below by some � > 0and (6)

�ð�ð�ÞÞ differs from 1 on a non-empty compact set of �:

(7)

The conformal transformation shrinks the spacetime by
some bounded amount over some limited range of the
geodesic. We can then define gð�Þ ¼ �ð�ð�ÞÞ�4 and
fð�Þ ¼ gð�Þ � 1, and f will then be smooth, bounded,
and of compact support.
The ANEC integral in the conformally flat spacetime is

Z
�Tab

�la �lbd �� ¼ E½g� þ anomaly; (8)

where E½g� is defined as the flat-spacetime integral with
sampling function g,
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E ½g� ¼
Z
�
gð�ÞTabl

albd�: (9)

Following [16], we will now exhibit a sequence of states
c � that will make the ANEC integral arbitrarily negative.
Since we are concerned only with a counterexample to
ANEC, wewill not attempt to be general but opt instead for
simplicity. Our procedure differs from that of [16] in that
our field is conformally rather than minimally coupled, and
our sampling function g is not compactly supported but
rather goes to 1 at large distances.

A massless field � is defined by

�ðxÞ ¼
Z d3k

ð2�Þ3ð2!Þ1=2 ðaðkÞe
�ikax

a þ ayðkÞeikaxaÞ: (10)

We define a class of vacuum plus two particle state vectors,
which depend on a parameter � 2 ð0; 1Þ. First, given the
function f, we will define a momentum parameter �0 by a
procedure to be described later. Then we define our states

c � ¼ N�

�
j0i þ ��1=4

�4

Z
�

d3kd3k0

ð2�Þ3ð2�Þ3
ffiffiffiffiffiffiffi
kk0

p
jk; k0i

�
;

(11)

where � ¼ �0=� is a momentum cutoff, N� is a normal-
ization constant,

N� ¼
�
1þ �3=2

128�4

��1=2
; (12)

and

Z
�
d3k denotes

Z �

0
k2dk

Z 1

1��
d cos	

Z 2�

0
d� (13)

where k is the magnitude of the vector k, 	 is the angle
between k and the tangent vector l, and � is the azimuthal
angle. These states excite only particles with momentum
less than �, and directed inside an angle cos�1ð1� �Þ
from the null ray, which puts the four-momentum inside
a tightening and lengthening cone as � ! 0. Note that as �
falls to zero, N� ! 1, and the excitation term in Eq. (11)
goes to zero. Thus, the state approaches the vacuum, but we
shall see that its stress-energy tensor does not.

In order to find the stress tensor, we need the normal
ordered two point function [16]

hc �j:�ðxÞ�ðx0Þ:jc �i

¼ 2N2
�

�4

Z
�

d3kd3k0

ð2�Þ6

�
�
��1=4e�iðk�xþk0�x0Þ þ �1=2

8�2
eið�k�xþk0�x0Þ

�
: (14)

The first term arises from the coupling of the two-particle
states to the vacuum. The second arises from the coupling
between the two-particle states. In the limit � ! 0, the first

term is dominant because the admixture of two-particle
states becomes very small.
The stress tensor for a conformally coupled scalar field

is

Tab ¼ 2
3�;a�;b � 1

3�;ab�� 1
6gabg


��;
�;� þ 1
12gab�h�

� 1
6½Rab � 1

4Rgab��2: (15)

In flat space the curvature terms vanish, and terms involv-
ing gab vanish in the null projection, so

lalbTab ¼ 2
3l
alb�;a�;b � 1

3l
alb�;ab�: (16)

We take the expectation value in the state c � and renor-
malize by subtracting the vacuum contribution (which is
equivalent to normal ordering), then set x0 ¼ x. The first
term becomes

2

3
h:�;a�;bl

alb:i� ¼ 4N2
�

3�4

Z
�

d3kd3k0

ð2�Þ6 lakal
bk0b

�
�
���1=4e�ix�ðkþk0Þ þ�1=2

8�2
eix�ðk�k0Þ

�
:

(17)

The other term is

�1

3
h:�;ab�lalb:i� ¼ 2N2

�

3�4

Z
�

d3kd3k0

ð2�Þ6 ðlakaÞ2

�
�
��1=4e�ix�ðkþk0Þ þ�1=2

8�2
eix�ðk�k0Þ

�
:

(18)

We now specify a Fourier transform by

f̂ðuÞ ¼
Z

dte�iutfðtÞ: (19)

Since gðtÞ ¼ fðtÞ þ 1, ĝðuÞ ¼ f̂ðuÞ þ 2��ðuÞ. From the
properties of �, we see that f is bounded and has a well-

defined, positive integral. Thus, f̂ is continuous and f̂ð0Þ>
0.
For any fixed 4-vector K,

Z
d�gð�Þe�i�ð�ÞaKa ¼ ĝðl � KÞ; (20)

so we can write E½g� ¼ E1½g� þ E2½g�, where

E1½g� ¼ N2
��

1=2

12�2�4

Z
�

d3kd3k0

ð2�Þ6 ½ðl � kÞ2 þ 2ðl � kÞðl � k0Þ�
� ĝðl � ðk� k0ÞÞ; (21)

E2½g� ¼ 2N2
��

�1=4

3�4

Z
�

d3kd3k0

ð2�Þ6 ½ðl � kÞ2 � 2ðl � kÞðl � k0Þ�
� ĝðl � ðkþ k0ÞÞ: (22)
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Wewill first consider E2½f�, following [16]. Since we are
in flat space, the tangent vector l is constant. We can take it
to have unit time component, so that k � l ¼ kð1� cos	Þ.
We do the azimuthal integrations and change variables to
v ¼ k�, u ¼ k � l, and similarly for v0 and u0. We find

E2½f� ¼ 2N2
��

�1=4

3ð2�Þ4�4
0

Z �0

0
dv

Z �0

0
dv0vv0 Z v

0
du

�
Z v0

0
du0½u2 � 2uu0�f̂ðuþ u0Þ: (23)

Now f̂ > 0. Since f̂ is continuous, we can choose �0 > 0

such that f̂ðuÞ is arbitrarily close to f̂ð0Þ. Thus, we can
make the integrals in Eq. (23) arbitrarily close to

f̂ð0Þ
Z �0

0
dv

Z �0

0
dv0vv0 Z v

0
du

Z v0

0
du0½u2 � 2uu0�

¼ � 13

1440
f̂ð0Þ< 0: (24)

As � ! 0, the prefactor in Eq. (23) goes to positive infin-
ity, so we conclude that E2½f� ! �1 in this limit.

The rest of the terms are all finite. Equation (21) gives

E1½f� ¼ N2
��

1=2

12�2�4
0

Z �0

0
dv

Z �0

0
dv0vv0 Z v

0
du

�
Z v0

0
du0½u2 þ 2uu0�f̂ðu� u0Þ: (25)

Since f has compact support, f̂ is bounded and the inte-
grals give some finite number independent of �. Since the
power of � is positive in this case, we find that E1½f� ! 0
as � ! 0.

In addition, we have the delta function in Eqs. (21) and
(22), which gives the flat-spacetime ANEC integral dis-
cussed in Sec. II D of Ref. [16]. Since k is restricted to a
cone around the direction of l, l � k � 0. There is no
contribution to E2½�� except from k ¼ k0 ¼ 0, in which
case the term in brackets vanishes. Thus, E2½�� ¼ 0.

Finally, we have

E1½�� ¼ N2
��

1=2

12�2�4
0

Z �0

0
dv

Z �0

0
dv0vv0 Z v

0
du

�
Z v0

0
du0½u2 þ 2uu0��ðu� u0Þ: (26)

Again the integrals give a finite number, and the prefactor
goes to zero, so E1½f� ! 0 as � ! 0, and finally

lim
�!0

E½g� ! �1: (27)

Thus, for a spacetime given by fixed conformal trans-
formation�, we can find a quantum state such that E½g� is
arbitrarily negative. In particular, any positive anomalous
term can be overcome by large negative E½g�, so that
Eq. (8) is negative and ANEC is violated.

III. ANOMALOUS VIOLATION

The prior example constructs a violation of ANEC over
a class of excited states. The contribution from the trans-
formed T
� dominates the anomalous terms. It is also

possible to construct a spacetime where the anomalous
term is negative, and thus even for the vacuum state, with
T
� ¼ 0, a violation can occur. In addition to the example

found by Visser, we find cases which are conformally flat.
In these, there is no dependence at all on the renormaliza-
tion scale 
, only the geometry of the new space.
Conformal transformation properties are taken from

[15,18]. The transformation is �gab ¼ �2gab. In the follow-
ing, derivatives of barred quantities are always meant to be
taken in the new metric, and unbarred quantities in the
original metric. Derivatives of the transformation function
� are also taken in the old coordinates.
The stress tensor is given by Eq. (15). For a conformally

coupled scalar field the transformation properties are
known [19]. We specialize to the case where the initial
spacetime is Minkowski. Thus, curvature quantities in the
untransformed spacetime all vanish, and the Weyl tensor
vanishes even in the transformed spacetime. We have the
particular transformation

�T a
b ¼ ��4Ta

b � 2� �Ha
b �

�

6
�Iab: (28)

The constants are dependent on the spin of the field; for a
real scalar field,

� ¼ � 1

5760�2
; (29)

� ¼ �2�: (30)

The tensors �H and �I are given by

�H ab ¼ � �Rc
a
�Rcb þ 2

3
�R �Rab þ ð12 �Rc

d
�Rd
c � 1

4
�R2Þ �gab: (31)

�I ab ¼ 2 �R;ab � 2 �R �Rab þ ð12 �R2 � 2h �RÞ �gab: (32)

We eliminate those terms which will not contribute due
to the null projection as well as the R;ab in (32) which

appears in ANEC as lbðR;al
aÞ;b and thus vanishes upon

integration. After this, and expressing � in terms of �, we
find

�T ab ¼ ��2Tab þ 2�½ �Rc
a
�Rcb � �R �Rab�: (33)

The curvatures in the new spacetime are given by

�R cb ¼ �2!;cb � gcbh!þ 2!;b!;c � 2gcb!;
!
;
;

(34)

�R ¼ ��2½�6h!� 6!;
!
;
�; (35)

with ! ¼ ln�. Again dropping terms with gab, the stress
tensor is given by
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�T ab ¼ ��2Tab þ 8���2½!;c
a !;cb � 2ðh!þ!;c!;cÞ

� ð!;ab �!;a!;bÞ �!;c!;a!;cb �!;c!;b!;ca�:
(36)

Now we give a specific example of a transformation
which violates ANEC. We take an initial state with T
� ¼
0, so the state does not contribute to �T
�. We will work in

Minkowski space in null coordinates, with u ¼ ðz� tÞ= ffiffiffi
2

p
and v ¼ ðzþ tÞ= ffiffiffi

2
p

. We take our geodesic going in the v
direction along the line u ¼ x ¼ y ¼ 0. We choose the
particular transformation

! ¼ ðaþ bx2r�2Þe�ðu2þv2þx2þy2Þ=r2 : (37)

This gives a localized transformation, so our spacetime is
both conformally and asymptotically flat. We take a and b
both much less than one, so we may ignore terms of order
!3. That leaves us with only

�T vv ¼ 8���2½gcd!;cv!;dv � 2h!!;vv�: (38)

The first term vanishes because!;cv ¼ 0 unless the index c
is v, but gvv ¼ 0. The remaining term is the product of

h! ¼ 2r�2ðb� 2aÞe�v2=r2 (39)

and

!;vv ¼ 2ar�2ð2v2r�2 � 1Þe�v2=r2 : (40)

Now together we have

�T vv ¼ �64�ar�4ð2v2r�2 � 1Þðb� 2aÞe�2v2=r2 (41)

Integrating over the full geodesic gives

Z þ1

�1
�Tvvdv ¼ ðab� 2a2Þ 16�

ffiffiffiffiffiffiffi
2�

p
r3

: (42)

The constant �< 0. We can choose 1 � b > 2a so that
the ANEC integral is negative.

1þ 1 DIMENSIONS

It is interesting to compare the results of previous sec-
tions with the situation in 1þ 1 dimensions. In that case
we know [9] that ANEC cannot be violated, even in curved
space. What happens when we attempt to violate it using
the techniques of previous sections?

First, our construction of a Minkowski-space state that
violates a weighted average of NEC depended on a cone of
momenta surrounding the tangent vector to our null geo-
desic. In 1þ 1 dimensions, there are no transverse direc-
tions, so that technique cannot work. In fact, unlike in
3þ 1 dimensions, there is a 1þ 1-dimensional quantum
inequality derived by Flanagan [20],

E ½g� ¼
Z
�
Tabl

albd� � � 1

48�

Z
�

g0ð�Þ2
gð�Þ d� (43)

for any smooth, non-negative function g.
Nevertheless, Eq. (43) still permits NEC violation, and

we can still enhance that violation. In 1þ 1 dimensions,
Eq. (2) becomes

�T ab ¼ Tab þ anomaly; (44)

and the ANEC integral, Eq. (3), becomes

Z
�Tab

�la �lbd �� ¼
Z
ðTab þ anomalyÞ��2lalbd�: (45)

Thus, if NEC is violated in certain locations in Minkowski
space, we can choose � � 1 there to enhance their con-
tribution to Eq. (45). However, we cannot make this con-
tribution arbitrarily large by the choice of states, because
the NEC violation is restricted by Eq. (43).
The anomalous term in Eq. (44) (see Eq. (6.134) of [15])

is

1

12�
½��1�;ab � 2��2�;a�;b

þ gabg
cdðð3=2Þ��2�;b�;c�

�1 ��;bcÞ�: (46)

The term proportional to gab does not contribute to NEC so

Z
�Tab

�la �lbd ��¼
Z �

��2Tab

þ 1

12�
ð��3�;ab � 2��4�;a�;bÞ

�
lalbd�:

(47)

We can integrate the anomalous terms by parts. We write

ð��3�;aÞ;b ¼ ��3�;ab � 3��4�;a�;b: (48)

In our situation, � ! 1 as � ! 	1, and thus �;a ! 0 in

that limit. So the total derivative does not contribute, and

Z
�Tab

�la �lbd �� ¼
Z �

��2Tab þ 1

12�
��4�;a�;b

�
lalbd�:

(49)

The anomalous term in Eq. (49) is manifestly positive, so
in 1þ 1 dimensions there is no anomalous violation as in
Sec. III. In fact, when we define gð�Þ ¼ �ð�ð�ÞÞ�2, we
find the anomalous contribution is just

1

48�

Z g0ð�Þ2
gð�Þ d�; (50)

and so by Eq. (43),

Z
�Tab

�la �lbd �� � 0; (51)

ANEC is always obeyed.
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This derivation is essentially the same used by Flanagan
[21] to generalize his quantum inequality, Eq. (43), to
curved spacetimes. We find it remarkable that Eq. (43),
which is a statement entirely about quantum field theory in
flat spacetime somehow ‘‘knows’’ about the anomalous
transformation of Tab in such a way that they together
preserve ANEC in curved spacetime.

V. CONCLUSION

We have given two explicit violations of the achronal
averaged null energy condition, both in spaces which are
conformally and asymptotically flat. First we used a trans-
formation which amplifies the NEC-violating portions of a
sequence of excited states. As the momentum grows in
magnitude and is constrained within a cone which increas-
ingly narrows around the direction of the null geodesic, the
ANEC integral becomes increasingly negative. This effect
can be seen in a broad class of states and transformations;
we gave a specific example for concreteness.

The second violation was constructed purely from the
geometric anomalous terms in the stress tensor. In this way
we find negative average energy in some conformally flat
spaces even in the vacuum state. As the deviation from flat
space becomes more sharply localized, the violation grows.
Both of these violations can become arbitrarily negative.

We now wonder if there is any possibility to exclude
exotic phenomena from general relativity with some
weaker condition that would not be violated by quantum
fields. One option is requiring an additional transverse
average over a congruence of geodesics. Physically this
is a natural requirement, as any nonzero-sized exotic fea-
ture, such as a wormhole or time machine, would require

some certain level of ANEC violation over some nonzero
range of geodesics.
It appears that both of the above violations could be

softened by some transverse averaging. In the example of
Sec. II, the stress-energy tensor oscillates rapidly in the
transverse direction [16]. Likewise, the violation in Sec. III
grows as r ! 0, where r parameterizes the width of the
deviation from flatness. Averaging over a distance greater
than r could cancel this effect. Timelike averages of null
quantities have been considered in [16]; one could also
consider spacetime averages.
Another possibility is the additional requirement of self-

consistency, that is, that the field and geometry be a solu-
tion to the semiclassical Einstein equation G
� ¼
8�hT
�i, where T
� is the stress tensor of some state of

a set of fields in the background whose Einstein tensor is
G
�. In both the above examples we have computed the

stress tensor in a given background without attempting to
impose self-consistency. Progress along this line has been
made in [22] for perturbations of flat space. Ref. [23] finds
state-dependent bounds on averaged energies, which may
also be useful in this context. It is possible that self-
consistency may be enough to enforce the energy condi-
tions in the general case [12].
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