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A null line is a complete achronal null geodesic. It is proven that for any quantum fields minimally

coupled to semiclassical Einstein gravity, the averaged null energy condition (ANEC) on null lines is a

consequence of the generalized second law of thermodynamics for causal horizons. This result is shown to

leading order in Planck’s constant for perturbations to classical backgrounds satisfying the null energy

condition. Auxiliary assumptions include CPT and the existence of a suitable renormalization scheme for

the generalized entropy. Although the ANEC can be violated on general geodesics in curved spacetimes,

as long as the ANEC holds on null lines there exist theorems showing that semiclassical gravity should

satisfy positivity of energy, topological censorship, and should not admit closed timelike curves. It is

pointed out that these theorems fail once the linearized graviton field is quantized, because then the

renormalized shear-squared term in the Raychaudhuri equation can be negative. A ‘‘shear-inclusive’’

generalization of the ANEC is proposed to remedy this, and is proven under an additional assumption

about perturbations to horizons in classical general relativity.
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I. INTRODUCTION

The generalized second law (GSL) of black hole ther-
modynamics states that a certain sum of the area of a black
hole’s event horizon and the entropy outside of it cannot
decrease over time [1]:

d

dt

�
A

4G@
þ Sout

�
� 0: (1)

This law is an analogue of the ordinary second law of
thermodynamics. However, there is a crucial difference
between the two. The ordinary second law holds trivially
for purely information theoretical reasons in any quantum
field theory (QFT), whereas the generalized second law
seems to also require some restriction on the stress-energy
tensor of the quantum fields. For if it were possible to send
a sustained flux of negative energy into a black hole, the
area of the black hole would shrink, without necessarily
being accompanied by any corresponding increase in the
outside entropy Sout, violating the GSL. This threat to the
GSL is made more credible by the fact that there are many
ways to create local negative energy fluxes in QFT [2]. In
fact, a black hole could not evaporate in the first place
without some negative energy flux. Thus, the truth of the
GSL depends on the existence of some sort of constraint on
the stress-energy tensor. One such proposed constraint is
the averaged null energy condition (ANEC) [3,4].

The ANEC states that along a given infinite null geode-
sic N, the integral of the null component of the stress-
energy is nonnegative:

Z 1

�1
Tabk

akbd� � 0; (2)

where Tab is the expectation value of the renormalized
stress-energy tensor, � is an affine parameter along the
null geodesic which goes from�1 to1, and ka is a vector
pointing along the direction of the null geodesic and sat-
isfying �;ak

a ¼ 1. Matter violating the ANEC might be

used to create traversable wormholes, which could in turn
produce closed timelike curves and hence causality prob-
lems [5,6]. In Minkowski space, the ANEC has been
proven for free scalar fields in any dimension [7], free
electromagnetic fields in four dimensions [8], and for any
QFTwith a mass gap in two-dimensions [9]. The ANEC is
also closely related to ‘‘quantum inequalities,’’ which are
bounds on the severity and duration of negative energy
fluxes which have been proven for several specific quan-
tum field theories [10].
However, exceptions to the ANEC do occur on curved

spacetime backgrounds. For example, if one dimension of
space is compactified into a circle, the Casimir effect can
produce a negative energy density, in which case a null
geodesic which goes round and round the compactified
dimension violates the ANEC [7]. Counterexamples can
also be found for null geodesics on a Schwarzschild back-
ground in some field states [11]. What these examples have
in common is that the null geodesic N is chronal (i.e. it
contains points which are connected by a timelike curve).
So it is still possible that the ANEC holds semiclassically
on complete achronal null curves (known as ‘‘null lines’’1).
This version of ANEC has been proven by Wald and
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1An null line is always a geodesic. This can be seen by
choosing locally inertial coordinates near any point X at which
the curve fails to obey the geodesic equation. In these coordi-
nates, the light ray’s 3-velocity is changing with time, meaning
that it cannot outrun all possible timelike curves in the neighbor-
hood of X.
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Yurtsever [12] in the case of minimally coupled free scalar
fields, either on a curved two-dimensional spacetime, or on
a four-dimensional spacetime with a bifurcate Killing
horizon.

Graham and Olum [13] have proposed that the ANEC is
true for all null lines on semiclassically ‘‘self-consistent’’
spacetimes, meaning that the semiclassical Einstein equa-
tion is satisfied. They show that this weaker version of the
ANEC is sufficient to prove both a topological censorship
theorem that rules out traversable wormholes, as well as a
couple of theorems that rule out the creation of closed
timelike curves (cf. Ref. [14]). It is also sufficient to prove
a positive energy theorem for general relativity [15]. These
theorems provide some evidence that the achronal semi-
classical ANEC is in certain respects a substitute for the
(quantum-mechanically violated) null energy condition.
However, all of these theorems rely on a focusing theorem
by Borde [3], which in turn depends on the assumption that
the shear �ab of any null congruence satisfies

�ab�
ab � 0: (3)

Although Eq. (3) is trivial at the classical level, once
fluctuations in the metric are quantized, �ab has to be
promoted to an operator. �ab�

ab then becomes divergent,
and requires the subtraction of an infinite quantity to be
well defined. The resulting finite term can be negative, e.g.
in the case of a black hole which Hawking radiates grav-
itons [16]. So a proof of the results in Refs. [13,15] would
seem to require a generalization of the ANEC which also
places bounds on the degree to which Eq. (3) can be
violated. A possibly sufficient generalization will be ar-
gued for in Sec. VII.

The goal of this article is to show that if the GSL holds,
not only for global black hole horizons but on general
‘‘causal horizons,’’ then for any null line on a curved
background spacetime satisfying certain appropriate prop-
erties, any quantum fields on this background must also
satisfy the ANEC on that null line. More precisely, con-
sider a manifold M equipped with a Lorentzian metric g
satisfying the Einstein equation, the null energy condition,
and the ‘‘slightly weaker extra strong’’ [17] version of
cosmic censorship. Given a null line N on M, Galloway’s
‘‘null splitting theorem’’ [18] shows that the null line lies
on both a past and a future causal horizon H. Now intro-
duce quantum fields on M whose stress-energy causes a
small gravitational perturbation to the expectation value of
the metric g via the Einstein equation. Assuming that the
horizons persist under this perturbation,2 there will then
exist a perturbed past horizonHpast and future horizonHfut.

Then, provided there exists a suitable renormalization
procedure to define a finite generalized entropy due to

the quantum fields, if Hfut obeys the GSL, and Hpast obeys

the time reverse of the GSL, then it follows that the
quantum fields on M must satisfy the ANEC over N.
Note that no assumption has been made about either the
spins of the quantum (nonmetric) fields or their interac-
tions with one another.3

The ANEC result proven here is similar in scope to the
‘‘self-consistent achronal ANEC’’ conjectured by Graham
and Olum [13]. The present result is weaker insofar as it is
restricted to the case in which the gravitational perturba-
tion to the background metric is small, but it is stronger
insofar as it only requires the existence of a null line on the
background spacetime, not on the perturbed spacetime.
This is a significant extension, because Graham and
Olum have shown that there are no generic spacetimes
which satisfy their condition except trivially (by having
no null lines at all).
To control the size of the gravitational perturbation, I

will use an expansion in Planck’s constant @. The content
of the ANEC can be defined using only QFT on the fixed
classical background, while the content of the GSL will be
defined using only the first-order gravitational correction to
the background metric and the nongravitationally cor-
rected quantum field entropy.4 This approximation should
only be valid when the characteristic wavelengths of the
matter fields are small compared to the Planck length, as
discussed in Sec. IV.
The plan of this paper is as follows: Section II describes

the meaning of causal horizons and the GSL. Section III
discusses the classical background metric M and uses the
null splitting theorem to place important restrictions on the
spacetime. Section IV provides the details of the perturba-
tion expansion of the metric in @ required for the proof.
Section V proves the ANEC at leading order (@1) from the
GSL together with the other assumptions listed above, but
does not address the renormalization of the generalized
entropy needed to make the proof rigorous, nor does it
address situations in which gravitational fluctuations are
important. Section VI discusses what properties a renor-
malization procedure must have in order for the proof to be
valid, and argues that it is likely, though not certain, that
such renormalization procedures exist. Section VII consid-
ers the case in which gravitational fluctuations are non-

2Cf. Sec. IV for a comment on how the proof might be
extended to cases in which the perturbation removes the horizon
altogether.

3However, the argument as presented here does not apply to
the case of fields which are nonminimally coupled to the metric,
because in that case there are usually extra terms modifying the
Einstein equation, the GSL [19], and possibly the ANEC as well.
In cases where one could remove the nonminimal coupling by
means of a field redefinition, the argument would then apply to
the new metric and stress-energy tensor. Extension of this result
to the case of nonminimal coupling would therefore be desirable.

4This approach differs from the perturbation expansion used
by Flanagan and Wald [20], who expand in the difference
between the quantum state and the vacuum rather than in @,
and assume that all the curvature of the spacetime comes from
the quantum matter fields.
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negligible. In this case there is a plausible generalization of
the ANEC which includes an additional shear-squared
term. This proof is then extended to this ‘‘shear-inlcusive’’
ANEC if an additional assumption is made about the way
past and future horizons respond to gravity waves in clas-
sical general relativity. Under the additional assumption
that the GSL applies regardless of the number of particle
species in nature, the usual ANEC is also proven for null
lines in this case.

II. THE GSL AND ITS TIME REVERSE

The GSL appears likely to hold for a wide variety of
horizons, including not only black hole horizons but also
de Sitter and Rindler horizons. Although the GSL is usu-
ally phrased as a statement about global horizons, there is
good evidence for a more general formulation [21], sug-
gesting that one should try to formulate the GSL for as
general a definition of ‘‘horizon’’ as possible. And in order
to prove the ANEC for all null lines, I need a version of the
GSL which can be applied to any spacetime containing a
null line.

Following Jacobson and Parentani [21], I will consider
the GSL to state that the generalized entropy is nondecreas-
ing for all ‘‘future causal horizons.’’ A future causal hori-
zon Hfut is defined as @I�ðWfutÞ, i.e. the boundary of the
past of any future-infinite timelike worldline Wfut. If this
horizon is cut by some complete time slice T, the general-
ized entropy is the quantity:

S ¼ A

4G@
þ Sout; (4)

where Boltzmann’s constant k is set to unity, A is the
expectation value5 of the area of Hfut \ T, and Sout is the
fine-grained entropy stored in I�ðWfutÞ \ T, the region
outside the horizon. The only form of coarse graining
used to define Sout is the restriction of the system to the
region outside the horizon. (A naive calculation of Sout is ill
defined due to divergences in the entanglement entropy
near the horizon. This divergence will be ignored until
Sec. VI, in which I argue that the renormalization of Sout
should not affect the validity of the proof given in Sec. V.)
Because of the ‘‘many-fingered’’ nature of time in general
relativity, there are many different ways to push a time
slice T1 forwards in time to a new complete slice T2 which
is nowhere to the past of T1. The GSL states that there must
be at least as much generalized entropy at T2 as there was
at T1.

I will also need to use the time reversal of the GSL. This
anti-GSL states that the generalized entropy of a past
causal horizon Hpast � @IþðWpastÞ is non-increasing with

time, where Wpast is a past-infinite timelike worldline. The

anti-GSL can be deduced from the GSL together with CPT
symmetry (the GSL is only affected by the time-reversal
operation T because it makes no reference to either spatial
orientation or particle charges). However, there is no need
to assume CPT for the result below, as long as both the
GSL and anti-GSL hold.
Assuming the anti-GSL may seem very strange. Is not

the entire point of the second law that it favors one direc-
tion of time over the other? This objection presumes that
the generalized second law holds for the same reason as the
ordinary second law. For the ordinary second law, entropy
increases with time as the result of the time-asymmetric
assumption of low entropy initial conditions, together with
some nontrivial coarse-graining procedure. But for the
GSL the time-asymmetric condition is simply that it holds
on future horizons, whereas the anti-GSL holds on past
horizons. Furthermore, in order for the entropy to increase
it is not necessary to use any other coarse-graining proce-
dure besides restricting to outside of the horizon [22].
Because of these two differences from the ordinary second
law, it is reasonable to hope that the GSL can be proven
without needing special time-asymmetric restrictions on
the state. (Note that in the absence of any past or future
horizons, the fine-grained entropy is constant with time, so
both the GSL and the anti-GSL are satisfied.)
In currently accepted cosmology there appear to be no

true past horizons, since all worldlines are finite to the past
because of the big bang singularity. Nor are there any white
holes, but there are approximate past Rindler-like horizons
cutting through isolated astrophysical objects such as stars
whenever the surrounding spacetime can be treated as
asymptotically flat.

III. THE STRUCTURE OF THE CLASSICAL
BACKGROUND

By a ‘‘classical background,’’ I mean a Lorentzian
manifold M which satisfies the Einstein equation

8�GTab ¼ Gab (5)

with respect to the stress-energy tensor Tab of any classical
matter fields which may happen to be on M. These classi-
cal matter fields are required to obey the null energy
condition

Tabk
akb � 0 (6)

for every null vector ka on M. This is a natural restriction
because classical theories which satisfy the Einstein equa-
tion but violate the null energy condition typically also
violate the GSL, because of the possibility of sending
negative energy fluxes into black holes.
Furthermore, there must be at least one null line N

contained inM (or else the statement that the ANEC holds
on all null lines is trivially true). By the ‘‘null splitting
theorem’’ of Galloway [18], the existence of even a single
null line N in such a spacetime implies that N is contained

5Taking the expectation value of the area is necessary to make
the generalized entropy a c-number. See Ref. [22] for discussion
of this point.
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in a smooth, closed, achronal horizon H � @I�ðNÞ \
@IþðNÞ which is unchanging with time (i.e., the zeroth
order expansion parameter � and shear tensor �ab both
vanish everywhere on H).6 Since there exist accelerating
timelike worldlines Wfut and Wpast which get closer and

closer to N in either the asymptotic future or the asymp-
totic past, H is a connected component of both a past and a
future causal horizon.

Because H is achronal, the remainder of the spacetime
M�H is the union of three disjoint regions: the open
region P � I�ðHÞ to the chronological past of H, the
open region F � IþðHÞ to the chronological future of H,
and possibly a third ‘‘other’’ closed region O � M� ðP [
F [HÞ which is spacelike separated from all points on H.

One might worry that because Galloway’s result is so
strict, the implication is that very few spacetimes have null
lines and thus the proof of the ANEC here applies only to
special states, e.g. Kerr-Newman-(anti-)de Sitter spacetime
or pp-wave spacetimes. However, it is important to note
that these restrictions only apply to the classical back-
ground spacetime. There is no requirement that the gravita-
tionally perturbed spacetime contain any null lines or
possess any symmetries. Thus there is a large class of
generic quantum states which are required by this proof
to satisfy the ANEC. This extends the proof of Wald and
Yurtsever [12] to arbitrary interacting fields (using the
extra assumption that the GSL holds).

On the classical background metric, both the ANEC and
the GSL inequalities are saturated. Using the fact that � and
�ab vanish, the Raychaudhuri equation

� d�

d�
¼ 1

2
�2 þ �ab�

ab þ 8�GTabk
akb (7)

shows that Tabk
akb ¼ 0 onH. Furthermore, if one assumes

that any flux of outside entropy due to the classical matter
fields must be supported by at least a little energy flux, then
no matter entropy can cross the horizon either.
Furthermore, since � ¼ ð1=AÞðdA=d�Þ, the area of the
horizon is constant. So the generalized entropy on the
background is a constant classically; i.e., its time derivative
has no component of order @�1. Because the GSL is an
inequality, this exact saturation on the classical back-
ground is needed for the GSL to be a nontrivial constraint
at the next order of perturbation theory, which takes the
effects of the quantum fields into account.

IV. THE PERTURBATION EXPANSION

This section describes the perturbation of the classical
background M due to quantum fields residing on it, which

are in some particular state �. A quantum field with order
unity quanta excited has a stress-energy tensor of order
@��4, where � is the wavelength of the excitations.7 Its
gravitational effect on the curvature is of order G@��4.
Since the curvature is a second derivative of the metric, the
effects on the metric are of order G@��2 ¼ l2P=�

2, a di-
mensionless quantity. Situations in which this is much less
than one can be accurately described using QFT in curved
spacetime, plus small corrections in powers of l2P=�

2. I will
now choose units in which G ¼ 1 and �� 1, so that this
expansion can be regarded as an expansion in Planck’s
constant @.
The metric and the stress-energy tensor may be ex-

panded out as follows:

gab ¼ g0ab þ g1=2ab þ g1ab þOð@3=2Þ; (8)

Tab ¼ T0
ab þ T1

abð�Þ þOð@3=2Þ: (9)

Here and below, superscript numbers indicate the number
of powers of @ contained in any quantity. The Einstein
equation relates the stress-energy tensor to the metric as
follows:

8�T0
ab ¼ G0

abðg0abÞ; (10)

0 ¼ hG1=2
ab ðg0ab; g1=2ab Þi; (11)

8�hT1
abi ¼ hG1

abðg0ab; g1=2ab ; g1abÞi; (12)

whereGn
ab is defined as the Einstein tensor calculated from

the metric using the usual formula, but keeping only terms
which are of the exact order @n. Gn

ab is therefore a function

only of the terms in the metric up to and including gnab.
8

The different order terms in the metric can be explained
physically as follows:
Zeroth order—The zeroth-order metric g0ab is the finite

(i.e. zeroth order in @) background metric, which may be

6This theorem also requires a version of cosmic censorship:
namely, that every future causal horizon is null-geodesically
complete to the future, and every past causal horizon is null-
geodesically complete to the past. This would follow from the
‘‘slightly weaker extra-strong’’ version of cosmic censorship
found in Penrose [17].

7This statement depends on the choice of a reference frame, in
which the size of the stress-energy tensor and the wavelength of
the fields can be evaluated, since a large Lorentz boost can turn
small quantities into large ones and vice versa. Given a choice of
unit timelike vector field ua at every point of spacetime, one can
require that the metric and all other fields be slowly varying with
respect to both the derivatives parallel to ua and perpendicular to
ua. The order of magnitude of a tensor quantity can then be
defined choosing the components of each index to be parallel or
perpendicular to ua. The frame-dependent statements should
then be read as though they were prefaced by: ‘‘There exists at
least one choice of ua such that. . .’’

8Notice that the expectation value has been taken of the first-
order correction to the metric as well as the stress-energy tensor.
This means that I do not need to use the semiclassical Einstein
equation Gab ¼ 8�hTabi, but only take the expectation value of
both sides of the regular Einstein equation hGabi ¼ 8�hTabi.
This can be done because the GSL as formulated in Sec. II refers
only to the expectation value of the area. Another consequence is
that the results are not restricted to the case in which the
fluctuations of the stress-energy tensor are small compared to
the expectation value of the stress-energy tensor.
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sourced by the stress-energy T0
ab of classical fields satisfy-

ing the null energy condition, as described in Sec. III,
subject to the constraint that T0

abk
akb ¼ 0 on H.

Half order—The order @1=2 term in the metric describes
the metric fluctuations due to gravitons. This is because the
total energy of a gravitational wave scales as the metric
perturbation squared, which is equal to @=� for an order
unity number of gravitons. (Since gravitons do not contrib-
ute to the local stress-energy tensor, there is no correspond-

ing @
1=2 term in Tab.) There is some gauge freedom

available in choosing the metric perturbation term g1=2ab

due to diffeomorphism symmetry.
First order—The first-order term in the stress-energy is

due to the introduction of the quantum fields, which de-
pends on the state � of these fields. This causes a small
gravitational perturbation g1ab which is also of order @.

Given a particular stress-energy profile, there are multiple
first-order metric perturbations g1ab which are consistent

with Eq. (12). This is partly due to the fact that general
relativity admits gravitational wave solutions, and partly
due to the diffeomorphism freedom of the perturbed met-
ric, since specifying g1ab requires a somewhat arbitrary

identification of the spacetime points of the perturbed
and unperturbed spacetimes. However, any choice of g1ab
is permissible for purposes of the proof of the ANEC, so
long as it is first order in @ (if it is of larger magnitude than
this, it must be included in the background metric g0ab). The
reason the ambiguity does not matter is that the only
dependence of the generalized entropy on g1ab is the ex-

pectation value of the first-order correction to the area A1,
which will be related to the stress-energy tensor by means
of the Raychaudhuri Eq. (7).

Higher orders—Terms of @3=2 order and higher will be
neglected. These terms exist for two reasons: First, the
nonlinearity of the Einstein tensor in the metric makes
terms nonlinear in the quantum stress-energy appear,
which are of order @2 or higher. Second, the small pertur-
bations to the metric at half and first order affect the
dynamics of the quantum fields, modifying their stress-
energy tensor.

In order to write down the GSL and anti-GSL on the
spacetime manifold, it is necessary to determine the loca-
tion of the past and future horizons. Assume that the
horizon is stable in the sense that it is not removed from
the spacetime entirely in the perturbed spacetime.9 In order

to be able to identify the past and future horizons on the
perturbed manifold, it is also necessary to assume that the
flux of null energy Tabk

akb and gravitational wave energy
�ab�

ab falling across the horizon falls off sufficiently
quickly to the asymptotic past and future of H that the
horizon may be taken as stationary in the asymptotic past
and future. That is, there must exist at least one identifica-
tion of points between the perturbed and background
spacetimes, such that at zeroth order all the fields are
identical, while up to first order in @,

�jHþ ¼ 0; �jH� ¼ 0 (13)

where Hþ is the asymptotic future of H, and H� the
asymptotic past of H. (If there is more than one identifi-
cation satisfying this property any of them may be selected
in order to prove the ANEC.) This identification can be
used to define the future horizon Hfut as that connected
component of @I�ðHþÞ which coincides with H at zeroth
order, and Hpast as that connected component of @IþðH�Þ
which coincides with H to zeroth order. At zeroth order
Hfut ¼ Hpast, but at first order Hfut and Hpast usually sepa-

rate into two distinct surfaces, one of which obeys the GSL
while the other obeys the anti-GSL.
Do Hfut and Hpast also separate at half order, or can they

be taken to coincide until first-order effects are considered?
This question will become important when gravitational
fluctuations are considered in Sec. VII, in which I will
argue that the horizons cannot separate for nonextremal
black holes or pp-wave spacetimes, and will prove a gen-
eralization of the ANEC under the assumption that they do
not separate.

V. PROOF OF THE ANEC

Having finished laying out the framework, I will now
proceed to the core result of this paper: a proof of the

FIG. 1. A Penrose diagram of the unperturbed classical space-
time. H is the horizon, shown here as a segment reaching from a
past timelike infinite point H� to a future timelike infinite point
Hþ. P ¼ I�ðHÞ is the open region to the chronological past of
H, and F ¼ IþðHÞ is the open region to the chronological future
of H. There may also be a closed region O which is spacelike to
H. The slices T1 and T2, which coincide in O, are also shown.
�T is the spacetime region between the two slices. Some specific
intersections of regions important to the proof are also shown.
The boundary of the spacetime is not shown, except for the past
and future of the horizon H.

9This is usually true, but in some cases the global horizon may
be removed by even a slight perturbation. For example, if M
contains compact extra dimensions, even a small perturbation
can sometimes result in some extra dimensions collapsing to a
singularity after a finite though arbitrarily long time [23], thus
negating any horizons. In such cases, the proof of the ANEC
given below does not apply. It might still be possible to prove the
ANEC in such cases if one could place a bound on the maximum
GSL violation possible for causal surfaces which are in some
sense ‘‘very close’’ to being horizons.
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ANEC for the null lineN. I will begin by ignoring the order

@
1=2 graviton fluctuations and the need to renormalize the

generalized entropy, though neither of these can really be
ignored in general. I will discuss how to remedy these
issues in the Secs. VI and VII.

Let T1 represent a complete time slice ofM, T2 represent
another complete time slice nowhere to the past of T1, and
let �T represent the spacetime region between the two
slices. Let T2 coincide with T1 in the O region so that
during the interval�T, any information which exitsPmust
flow into F rather than into O (see Fig. 1).

The @
0 order contribution to the generalized entropy of

the future horizon at a time slice T depends on the zeroth
order outside entropy and the first-order contribution to the
expected area:

S0fut ¼ S0out½��ðP \ TÞ þ A1

4@
½g0ab; g1ab�ðHfut \ TÞ: (14)

Here square brackets represent the dependence of an ex-
tensive quantity on fields, while round parentheses repre-
sent the dependence of the extensive quantity on regions of
spacetime.10

Since the @
�1 order contribution to the generalized

entropy is unchanging (cf. Sec. III), the GSL requires
that the next highest order @0 contribution be nondecreas-
ing:

�

�
S0outðP \ TÞ þ A1

4@
ðHfut \ TÞ

�
� 0; (15)

where �fðTÞ � fðT2Þ � fðT1Þ. By the time reverse of the
above, the anti-GSL requires that

�

�
S0outðF \ TÞ þ A1

4@
ðHpast \ TÞ

�
� 0: (16)

Subtracting Eq. (16) from Eq. (15),

�½S0outðP \ TÞ � S0outðF \ TÞ� (17)

þ �

�
A1

4@
ðHfut \ TÞ � A1

4@
ðHpast \ TÞ

�
� 0: (18)

The next step is to invoke the property of ‘‘weak mono-
tonicity,’’ which states that for any three regions A, B, and
C which are disjoint subsystems (i.e. they are mutually
achronal and noncoincident), the entropy evaluated inside
these regions must satisfy

SA[C þ SB[C � SA þ SB: (19)

Intuitively speaking, this property expresses that if the
quantum system C is more strongly entangled with A
than is allowed for by classical mechanics, this entangle-
ment is ‘‘private,’’ limiting the amount by which C can be
entangled with a third system B (and in the extreme case
where C and A are maximally entangled systems, B cannot
be entangled with C at all). Weak monotonicity is equiva-
lent to the strong subadditivity property [24], and is there-
fore true for general QFT states, modulo caveats about the
divergence of the entanglement entropy, which will be
addressed in Sec. VI.11 In the present instance, if one takes
the three regions to be

A ¼ T1 \ F; (20)

B ¼ T2 \ P; (21)

C ¼ H \�T; (22)

and uses the unitary property of QFT, then Eq. (19) be-
comes

SoutðT2 \ FÞ þ SoutðT1 \ PÞ � SoutðT1 \ FÞ þ SoutðT2 \ PÞ:
(23)

By collecting the F and P terms together, one obtains

�½S0outðP \ TÞ � S0outðF \ TÞ� � 0; (24)

which shows that line (17) is nonpositive. Thus line (18) is
nonnegative:

�½A1ðHfut \ TÞ � A1ðHpast \ TÞ� � 0: (25)

Equation (25) says that to first order, the expected area of
the future horizon always increases more over a time
interval �T than the expected area of the past horizon
does. But this can only be true for all intervals �T if the
expansion parameters satisfy

h�1fut � �1pasti � 0 (26)

everywhere. Now let X be any point on the original null
line N. With the help of the linearized Raychaudhuri
equation,

dh�1i
d�

¼ �8�hT1
abikakb; (27)

and the boundary conditions from Eq. (13) appropriate for
matching the perturbed horizon to the background horizon
far from the perturbation,

h�1futij�¼1 ¼ 0; h�1pastij�¼�1 ¼ 0; (28)

one may solve for � in Eq. (26):
10There is a benign ambiguity in Eq. (14) due to the fact that in
the first term the time slice T is defined on the unperturbed
spacetime, while in the second term T must be a time slice on the
perturbed spacetime. This implicitly requires the identification
of points in the perturbed and unperturbed manifolds, which as
discussed in Sec. IV involves an arbitrary gauge dependency.
Fortunately the dependence of A1 on this arbitrary choice is of
order @2 and is therefore negligible.

11Weak monotonicity should still apply even when, as below,
the region C is a null hypersurface. This can be shown by
proving strong subadditivity via the monotonicity of the mutual
information, which holds quite generally due to its relation with
the relative entropy [25].
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Z 1

X
hT1

abikakbd�þ
Z X

�1
hT1

abikakbd� � 0; (29)

thus proving that the ANEC holds to first order in @. This is
the same as saying that the ANEC holds exactly in the
context of QFT on the background spacetime. As a corol-
lary, the ANEC integral can be zero only if the GSL (15),
anti-GSL (16), and weak monotonicity (19) inequalities
are all saturated. Note also that to prove the ANEC, it is
sufficient if the GSL and anti-GSL hold at even a single
point X.12

VI. RENORMALIZATION

In the last section the quantity Sout was treated as a finite
quantity despite the fact that in QFT, the naive
von Neumann entropy diverges due to the entanglement
of ultraviolet quantum field degrees of freedom near the
boundary of the region. For the GSL to have physical
meaning, some way of making Sout finite in the generalized
second lawwill have to be found. In the semiclassical limit,
this could be done in a two step process similar to the way
loop divergences are usually renormalized. First one would
have to regulate the entropy by imposing some sort of
cutoff parametrized by a distance scale �, leading to a
regulated entropy S�. The next step would be to subtract
off the divergent part of S� by absorbing it into the cou-
pling constants of the theory (in this case, various correc-
tions to the Bekenstein-Hawking formula A=4@ for the
horizon entropy). Finally, one would take the � ! 0 limit
of the remaining convergent part of S�, obtaining a finite,

renormalized value ~Sout. Some specific calculations of the
renormalization of the generalized entropy have already
been made [26], but I will not choose a specific approach
here. Instead I want to argue that the proof in Sec. V will
continue to hold for any renormalization scheme with

certain reasonable properties, when the renormalized ~Sout
is used in place of the naive entropy Sout.

The first property needed is that the GSL should hold for

the generalized entropy S ¼ A=4@þ ~Sout. Since the GSL is
not even properly defined without a renormalization
scheme, there has to be at least one renormalization
scheme for which this is true or the GSL itself would be
false or meaningless. Since I am assuming in this proof the

validity of the GSL, the substitution of ~Sout into Eq. (15)
and (16) is valid.13

The only remaining question is whether the renormal-
ized entropy satisfies the weak monotonicity property,
which is needed to derive Eq. (23). Since weak monoto-
nicity is a general feature of every quantum mechanical
system [24], as long as the cutoff replaces the QFT with
another unitary quantum mechanical theory (and as long as
the observables in causally separated regions continue to
commute) the cutoff regulated entropy S� will continue to
satisfy weak monotonicity.

Finally, since obtaining the renormalized entropy ~Sout
from S� requires subtracting off the divergent part of S�, it
must be shown that this does not invalidate weak monoto-
nicity. To do this I will assume that the divergent terms
subtracted off are (i) the sum of terms which are associated
with connected components of the boundary of the region,
and (ii) the same on both sides of the connected component
of the boundary. Assumption (i) is motivated by the idea
that the divergence of the entanglement entropy is entirely
due to the UV degrees of freedom near the boundary, and
therefore cannot depend on the the existence of another
boundary a finite distance away. Assumption (ii) is moti-
vated by the fact that entropy satisfies the triangle inequal-
ity SA[B � jSA � SBj. If B is the complement of A, SA[B
should be finite, which implies that the divergent parts of
SA and SB must be equal. Given assumptions (i) and (ii),
the divergent parts of Sout cancel out in Eq. (23), because
the boundaries T1 \H, T2 \H, and T1 \ @Oð¼ T2 \ @OÞ
each appear twice, once positively and once negatively.
Therefore, the proof of the ANEC remains just as valid

when renormalization is taken into account, so long as the
renormalization scheme obeys the well-motivated axioms
above. The assumption most likely to be troublesome is the
existence of a unitary regulated theory, since there are
many common regulators that are not unitary (e.g. the
Pauli-Villars regulator used by Demers, Lafrance, and
Myers [26]). However, the other requirements are not
very stringent (in particular there is no need for the regu-
lator to preserve local Lorentz symmetry), so it seems
likely that an acceptable regulator exists.

VII. GRAVITATIONAL FLUCTUATIONS

Can the ANEC be generalized to include gravitational
null energy? Since no local stress-energy tensor can be
assigned to gravity waves, in general there is no well-
defined integrated null energy. However, in the special
case of spacetimes possessing a null line, one can define
the gravitational null energy falling across a horizon as the
shear squared�ab�

ab of the past or future horizonsHpast or

Hfut, which contributes to the Raychaudhuri equation in a
similar way to the stress-energy tensor of matter. Although
naively this term is positive, the infinite subtraction needed
to make it finite permits situations in which �ab�

ab < 0
[16]. Since this has similar effects to a violation of the null
energy condition, in order to rule out traversable worm-
holes, closed timelike curves, and negative energy states, it

12More precisely, the GSL and anti-GSL must hold for varia-
tions of T which are confined to some neighborhood of X.
13In general, one also expects renormalization to produce order
@ corrections to the action, so that the assumption of minimal
coupling to Einstein gravity no longer holds. This would in turn
lead to corrections to the horizon entropy of order @0 [19], which
implies that the correction to the entropy difference of Hpast and
Hfut is of order @

1. So the radiative corrections can be neglected
because their contribution to line (18) cancels out to leading
order.
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is necessary to show some analogue of the ANEC for
gravitational energy.

The first step is to show that at @1=2 order, gravitational
wave perturbations cause no separation between the past
and future horizons Hpast and Hfut. I suspect that this is

always true, but I can only prove it in the cases when the
null line N lies on the horizon of a nonextremal asymptoti-
cally flat black hole, or in a pp-wave spacetime.

Since at this order the graviton is a free field, the linear
field operators satisfy the classical field equation, so to
prove that the horizons do not separate it will be sufficient
to consider classical gravity wave solutions, which must
obey the null energy condition (because they do not con-
tribute to the stress-energy tensor at all). Two different
cases will be briefly sketched:

(1) If N lies on the horizon of a nonextremal asymptoti-
cally flat black hole, the horizon generators ofH are
marginally trapped null lines threading a wormhole
in every such black hole solution of which I am
aware (for vacuum solutions the Kerr case is the
most general). H� therefore lies on the boundary of
I� on one side of the wormhole, and Hþ lies on the
boundary of Iþ on the other side of the wormhole.14

Since the half-order fluctuations obey a linear equa-
tion, if any separation of horizons is possible then by
choosing the sign of the perturbation one could
arrange that Hfut lies inside Hpast somewhere. But

since Hfut lies on the boundary of Iþ and Hpast lies

on the boundary of the I� on the other side of the
wormhole, this would make the Iþ lie to the future
of the I�, thus making the wormhole traversable.
So there can therefore be no separation of horizons
at half order without violating the already estab-
lished classical version of the topological censorship
theorem in Ref. [6], assuming that the half-order @
expansion is a good approximation to the full non-
perturbative classical solution to which the theorem
is applied.

(2) If N lies in a pp-wave spacetime, there are multiple
possible choices of Hfut and Hpast, but the choice of

one determines the choice of the other if one re-
quires Hfut and Hpast to coincide for horizon gener-

ators asymptotically far from the perturbation. Then
a similar argument to case (1) may be used, except
that in this case if Hfut lies inside Hpast, the no

superluminal communication theorem of Ref. [27]
is violated instead. (When the pp-wave spacetime is
the Minkowski vacuum, the no superluminal com-
munication result of Ref. [28] is also violated.)

Because these two cases cover a diverse range of space-

times with null lines, it is reasonable to conjecture that in
general there can be no separation of Hpast and Hfut at half

order.
Assuming this conjecture, it is now possible to show a

generalization of the ANEC valid when there are gravita-
tional fluctuations. Since Hpast ¼ Hfut, it follows that the

shear tensor �ab is also identical at half order on both
horizons. The first-order Raychaudhuri equation states that

� dh�1i
d�

¼ h�ab�
abi1 þ hRabi1kakb; (30)

where the �2 term is omitted since it is second order in @. I
have not specified which renormalization scheme is used to
regulate the divergences in Eq. (30). But since Eq. (30) is a
tautology when both sides are defined in terms of functions
of the metric on the horizon and its derivatives, so long as
the metric variables implicit in the terms of Eq. (30) are
renormalized in the same way in each term, and the same
operator ordering prescription can be used, Eq. (30) should
still be true. One can then use the Einstein equation to
rewrite Eq. (30) in terms of the stress-energy tensor:

� dh�1i
d�

¼ h�ab�
abi1 þ 8�hTabi1kakb: (31)

The proof in Sec. V still works up to the derivation of
Eq. (26):

h�1fut � �1pasti � 0: (32)

But now � is given by the integral along N of Eq. (31)
instead of Eq. (27), and the resulting shear-inclusive ver-
sion of the ANEC states that on the null line N:

Z 1

�1
ðhT1

abikakb þ
1

8�
h�ab�

abi1Þd� � 0; (33)

where again the equality is only possible when the GSL,
anti-GSL, and weak monotonicity integrals are all satu-
rated. Naively this equation appears to be weaker than
Eq. (29) but it is not, since the shear squared can be
negative. Because of its dependence on �ab, Eq. (33) is
not even defined except on null lines, since otherwise the
shear of the past and future horizons are not necessarily the
same. (Perhaps this is related to the fact that the ANEC can
be violated on geodesics that are not null lines.)
In situations where the shear squared may be negative, it

is the shear-inclusive ANEC rather than the regular ANEC
which is better suited to proving theorems about topologi-
cal censorship, positivity of energy, and the absence of
closed timelike curves. For spacetimes which violate any
of these conditions must have null lines [13,15], which by
Eq. (33) must have either a positive or zero shear-inclusive
ANEC integral. Since traversable wormholes, closed time-
like curves, and negative total energies must by continuity
be possible in generic spacetimes if they are possible at all,
the integral can be taken to be positive rather than zero.

14If as the result of nontrivial topology the Iþ and I� lie in the
same asymptotic region, as in the case of the RP3 geon, the
horizon generators will no longer be achronal.
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But if the left-hand side of Eq. (33) is positive along any
null geodesic N lying on a null congruence, then N is
required to eventually either be singular or else have con-
jugate points.15 In that case it cannot be a remain a null line
on the perturbed spacetime, contradicting the initial sup-
position. Therefore traversable wormholes etc. are ruled
out by the shear-inclusive ANEC in perturbative quantum

gravity whenever effects of order @
3=2 and higher are

negligible.
Despite the fact that the regular ANEC is not as con-

ceptually important as the shear-inclusive ANEC when
there are gravitational fluctuations, the former can also
be proven from Eq. (33) on the assumption that the GSL
holds no matter how many species of particles there are.
Copy the matter fields Ns times and put them all in the
same state �. (This is possible if the matter and gravity
sectors are all noninteracting.) Then Eq. (33) implies that

Z 1

�1
ðNshT1

abikakb þ
1

8�
h�ab�

abi1Þd� � 0; (34)

where T1
ab is the stress-energy of a single matter sector. For

Ns ¼ @
p, with �1=2< p< 0, there are enough sectors to

neglect the shear-squared term but not so many that the
gravitational interactions between sectors become large.
Thus each individual matter sector satisfies Eq. (2), the
regular ANEC. Similarly, if Ns ¼ 0 the only thing left is
the shear-squared term, and a purely gravitational form of
the ANEC is obtained.

VIII. CONCLUSION

Any null line N on a classical background lies on both a
past and a future horizon. Assuming that these horizons are
perturbed slightly by quantum fields, the assumption that
the GSL and its time reverse are true near a single point on
N is sufficient to derive the ANEC on N as well. This
conclusion depends on the existence of a suitable regulator
for the generalized entropy, which has not been proven but
was argued for in Sec. VI. According to Graham and Olum
[13], the achronal ANEC is sufficiently strong to obtain
positivity of energy, the absence of closed timelike curves,

and topological censorship, so that these conclusions also
follow from the GSL under the conditions outlined in
Sec. I.
However, these proofs are valid only under the assump-

tion that �ab�
ab � 0, which fails when quantum fluctua-

tions of the metric are taken account. To remedy this flaw
one may include a shear-squared term in the achronal
ANEC integral. In Sec. VII, this shear-inclusive ANEC
was proven from the GSL for null lines lying on nonex-
tremal black hole event horizons or in pp-wave spacetimes.
This result can be extended to all null lines if no gravity
wave perturbation in classical general relativity can cause a
past and future horizon to separate to linear order. If the
shear-inclusive ANEC integral is also generically positive,
then the proofs of positivity of energy etc. are sound.
The situations in which we have a right to expect either

form of the ANEC to hold are limited, since most back-
ground spacetimes do not possess null lines. Since the GSL
implies the ANEC in the situations where the ANEC is
expected to hold, it might be illuminating to try to prove
positivity of energies etc. directly from the GSL. Previous
proofs of the ANEC have mostly relied on the technical
properties of particular field equations, but this work sug-
gests that there is a more general conceptual reason for the
ANEC.
It is a widely held view that the GSL must hold in any

semiclassical approximation to a theory of quantum grav-
ity, as a result of the underlying theory’s statistical me-
chanics. On this view the ANEC should hold for any set of
minimally coupled matter fields capable of being given a
UV completion in a quantum gravity theory. On the other
hand, if there is a general semiclassical proof of the GSL,
this would also prove the ANEC for all matter fields in
QFT without reference to any UV completion of gravity.
But such a proof would have to apply to the case of rapidly
changing quantum fields, which has not yet been done [22].
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