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Seven different refinements of trapped surfaces are proposed, each intended as potential stability

conditions. This article concerns spherical symmetry, but each condition can be generalized. Involute

trapped spheres satisfy a similar condition to minimal trapped spheres, which are strictly minimal with

respect to the Kodama vector. There is also a weaker version of involute trapped spheres. Outer trapped

spheres have positive surface gravity. Increasingly (future, respectively, past) trapped spheres generate

spheres which are more trapped in a (future, respectively, past) causal direction, with three types: in any

such causal direction, along the dual Kodama vector, and in some such causal direction. Assuming the null

energy condition, the seven conditions form a strict hierarchy, in the above order. In static space-times,

they reduce to three inequivalent definitions, namely, minimal, outer, and increasingly trapped spheres.

For a widely considered class of so-called nice (or nondirty) black holes, minimal trapped and outer

trapped become equivalent. Reissner-Nordström black holes provide examples of this, and that the

increasingly trapped differs. Examples where all three refinements differ are provided by a simple family

of dirty black holes parametrized by mass and singularity area.
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I. INTRODUCTION

Trapped surfaces, as originally defined by Penrose [1],
play an important role in gravitational physics, both for
black holes and in cosmology. Such surfaces were crucial
in the singularity theorems of Penrose and Hawking [1–3].
More recent years have seen the development of a local,
dynamical theory of black holes in terms of marginal
surfaces, a limit of trapped surfaces, including laws of
black hole dynamics involving physical quantities such
as mass and surface gravity [4–8].

However, a problem has become clear recently, as fol-
lows. Suppose one has a spherically symmetric space-time
such as Vaidya, and considers the region covered by all
trapped surfaces, not necessarily spherically symmetric.
One might expect the boundary of this trapped region to
consist of marginal surfaces, i.e., to be a trapping horizon.
However, this is not so: trapped surfaces can poke through
the trapping horizon [9–11]. The boundary must be spheri-
cally symmetric, but can be outside the trapping horizon.
On the other hand, this boundary does not have the special
physical properties that trapping horizons have, such as a
first law involving surface gravity [12] and a local Hawking
temperature [13]. There is thus a conflict between the
mathematics and physics, which is something of a crisis
for anyone hoping to understand black holes in a practical
way.

In the author’s view, the physics is clear and so the
mathematics must yield. That is, trapped surfaces as sim-
ply defined need to be refined in some way to forbid the
above behavior. Of course, the condition or conditions
should be geometrically natural, and preferably with
some physical content. The situation appears to be similar
to that which used to hold for marginal surfaces, which are

too general to characterize black holes and needed to be
refined, such as by the outer condition expressing positive
surface gravity [8,12], or other stability conditions [14–
17]. Such stability conditions are inequalities of one dif-
ferential level higher than trapped or marginal itself.
This article proposes seven such refinements, of essen-

tially three types with some variations, each of which holds
for any trapped sphere in a Schwarzschild space-time.
They are of some interest in themselves and turn out to
be related, assuming the Einstein equation, or more exactly
just the null energy condition (NEC). A companion article
will deal with general cases [18], while this article will be
restricted to spherical symmetry, with everything respect-
ing spherical symmetry. One reason for making this special
study is that the physical meaning of all terms which will
appear is clear, while in general one must use the available
geometrical quantities, which are one step removed from
familiar physical quantities, such as mass m, surface grav-
ity �, and energy flux c . Thus while the companion article
[18] is intended to be of more interest to mathematicians,
this article is intended for those interested in more physical
issues related to black holes which can be adequately
addressed in spherical symmetry.
The article is organized as follows. Section II explains

how any sphere is extremal in some normal direction, and
defines minimal trapped spheres. Section III defines outer
trapped spheres and shows that the condition is implied by
minimal trapped spheres. Section IV defines increasingly
trapped spheres of three kinds and shows that the condi-
tions are implied by outer trapped spheres. Section V
defines involute trapped spheres of two kinds and shows
that they are outer trapped. Section VI turns to static cases
and shows that the conditions reduce to only three inequi-
valent ones, namely, minimal, outer, and increasingly
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trapped. Section VII studies so-called nice black holes, as
opposed to so-called dirty black holes [19], and shows that
minimal trapped spheres and outer trapped spheres become
equivalent in such cases. Section VIII studies Reissner-
Nordström black holes, finding the boundaries of the re-
gions of the refined trapped spheres. Section IX does the
same for a class of dirty black holes for which all three
refinements differ. Section X concludes with hierarchy
diagrams and remarks.

II. MINIMALTRAPPED SPHERES

In terms of the area radius r, the area of the spheres of
symmetry is

A ¼ 4�r2: (1)

The dual Kodama vector is

k� ¼ g�1ðdrÞ (2)

where g is the space-time metric. A sphere is said to be
untrapped, marginal or trapped if k� is, respectively, spa-
tial, null or temporal [12,20,21]. If the space-time is time
orientable and k� is future (respectively, past) causal, then
the sphere is said to be future (respectively, past) trapped or
marginal.

There is a duality operation on normal vectors �, cor-
responding to the Hodge dual on 1-forms, defined by

gð��; �Þ ¼ 0; gð��; ��Þ ¼ �gð�;�Þ: (3)

Then k is the Kodama vector [12,20,22], defined up to sign,
which can be locally fixed so that k is future causal in
untrapped regions. Then a sphere is trapped, marginal, or
untrapped if k is, respectively, spatial, null or temporal.

Now

k � dr ¼ 0 (4)

which expresses that any sphere is extremal in the k
direction. In the special case k ¼ 0, the sphere is extremal
in any normal direction, but otherwise k gives the unique
such direction. Thus a trapped sphere is equivalently de-
fined as a sphere which is extremal in a unique spatial
normal direction. Then it is natural to ask whether the
sphere is not merely extremal but minimal, as is the case
for any trapped sphere in a Schwarzschild space-time.

Definition 1. A (strictly) minimal trapped sphere is a
trapped sphere for which

kakbrarbr > 0 (5)

where r is the covariant derivative operator of g. Note that
minimality itself requires only a nonstrict inequality, but
the strict sign will turn out to be convenient. This definition
has effectively been given by Maeda et al. in the context of
cosmological wormholes [23].

III. OUTER TRAPPED SPHERES

Surface gravity was defined as [12,13,21]

� ¼ 1
2 � d � dr (6)

where d is the exterior derivative and � the Hodge dual in
the normal space, i.e., �d � d is the normal wave operator,
fixing the sign convention. Then a trapping horizon was
said to be outer, degenerate, or inner if, respectively, � >
0, � ¼ 0, or � < 0. Examples of all types are provided by
Reissner-Nordström solutions, where they correctly label
the types of Killing horizon. This suggests extending the
terminology to trapped spheres.
Definition 2. An outer trapped sphere is a trapped sphere

for which

� > 0: (7)

Therefore spheres sufficiently close to an outer trapping
horizon will be outer trapped, while those sufficiently close
to an inner trapping horizon will not, for instance in a
nondegenerate Reissner-Nordström solution. A trapped
sphere with � < 0 may similarly be called inner trapped.
Lemma 1. Assuming the Einstein equation with units

G ¼ 1,

kakbrarbr ¼
�
2m

r
� 1

�
�� 4�rk� � c (8)

where m is the mass [12,20,21,24],

2m

r
� 1 ¼ gðk; kÞ (9)

and c is an energy flux defined by [12,21]

c ¼ T � k� þ wdr (10)

where T is the energy tensor and w is an energy density:

w ¼ �1
2 trT (11)

where the trace is in the normal space.
Proof. In dual-null coordinates x�, the metric has the

form

ds2 ¼ r2d�2 � 2e2’dxþdx� (12)

where d�2 refers to the unit sphere and ðr; ’Þ are functions
of ðxþ; x�Þ. In these coordinates, trapped spheres are
equivalently defined by @þr@�r > 0, with @�r < 0 (re-
spectively, >0) for future (respectively, past) trapped
spheres, assuming that @� are future pointing. Then one
finds the explicit expressions

dr ¼ @þrdxþ þ @�rdx� (13)

k� ¼ �e�2’ð@þr@� þ @�r@þÞ (14)

k ¼ e�2’ð@þr@� � @�r@þÞ (15)
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2m=r� 1 ¼ 2e�2’@þr@�r (16)

� ¼ �e�2’@þ@�r (17)

w ¼ e�2’Tþ� (18)

c ¼ �e�2’ðTþþ@�rdxþ þ T��@þrdx�Þ (19)

which implies

k� � c ¼ e�4’ðT��ð@þrÞ2 þ Tþþð@�rÞ2Þ: (20)

The only relevant nonzero connection coefficients are
���� ¼ 2@�’. Then

kakbrarbr ¼ kakbð@a@br� �c
ab@crÞ

¼ e�4’ðð@�rÞ2ð@þ@þr� 2@þ’@þrÞ
þ ð@þrÞ2ð@�@�r� 2@�’@�rÞ
� 2@þr@�r@þ@�rÞ: (21)

The null-null components of the Einstein equation are

@�@�r� 2@�’@�r ¼ �4�rT��: (22)

Then straightforward calculation using (16), (17), and (20).
Proposition 1. NEC and minimal trapped implies outer

trapped.
Proof. NEC ) k� � c � 0, as is most easily seen from

T�� � 0 and (20). For a trapped sphere, r < 2m, then
inspect signs in (5), (7), and (8).

IV. INCREASINGLY TRAPPED SPHERES

Noting that gðk; kÞ ¼ 2m=r� 1 (9) vanishes for mar-
ginal spheres and is positive for trapped spheres, it can be
taken as a measure of how trapped a sphere is. The idea
then is to ask whether it is increasing to the future (re-
spectively, past) for a future (respectively, past) trapped
sphere. Consideration of general cases [18] suggests in-
stead the measure ð2m=r� 1Þ=r2, which yields stricter
conditions. Three different definitions can be given, as
follows.

Definition 3. An increasingly trapped sphere is a trapped
sphere for which

k� � d
�
1

r2

�
2m

r
� 1

��
> 0: (23)

Definition 4. An anyhow increasingly trapped sphere is a
future (respectively, past) trapped sphere for which, for all
future (respectively, past) causal normal vectors � ,

� � d
�
1

r2

�
2m

r
� 1

��
> 0: (24)

Definition 5. A somehow increasingly trapped sphere is a
future (respectively, past) trapped sphere for which, for
some future (respectively, past) causal normal vector � ,

� � d
�
1

r2

�
2m

r
� 1

��
> 0: (25)

Clearly anyhow increasingly trapped implies increas-
ingly trapped, which implies somehow increasingly
trapped.
Lemma 2. Assuming the Einstein equation,

r2� � d
�
1

r2

�
2m

r
� 1

��
¼ 8�r� � c � 2

�
�þ 1

r

�
2m

r
� 1

��

� � � dr: (26)

Proof. The last term above comes from the 1=r2 term, so
it suffices to calculate

� � dðm=rÞ ¼ ð�þ@þ þ ��@�Þðe�2’@þr@�rÞ
¼ e�2’ð�þ@�rð@þ@þr� 2@þ’@þrÞ

� ��@þrð@�@�r� 2@�’@�rÞ
þ ð�þ@þrþ ��@�rÞ@þ@�rÞ

¼ 4�r� � c � �� � dr (27)

using the Einstein equations (22) as before and expres-
sions (17) and (19).
Proposition 2. NEC and outer trapped implies anyhow

increasingly trapped.
Proof. r < 2m, � � dr < 0 for � in the given causal

quadrant, and NEC ) � � c � 0, then inspect signs in
(7) and (26).
If one wished to show directly that the sphere was

merely increasingly trapped, the corresponding expression
would be

k� � d
�
m

r

�
¼ 4�rk� � c þ

�
2m

r
� 1

�
�: (28)

This result will survive in general cases, while the above
result will require a stricter definition of outer trapped [18],
which in turn suggests a stricter condition than minimal
trapped, described below.

V. INVOLUTE TRAPPED SPHERES

The minimality condition (5) can be rewritten as

ka�kbrbka < 0 (29)

due to orthogonality of k� and k. This form is useful for
general calculations, and suggests further definitions.
Definition 6. An involute trapped sphere is a future

(respectively, past) trapped sphere for which, for all future
(respectively, past) causal normal vectors � ,

�akbrbka < 0: (30)

Definition 7. A somehow involute trapped sphere is a
future (respectively, past) trapped sphere for which, for
some future (respectively, past) causal normal vector � ,
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�akbrbka < 0: (31)

Clearly involute trapped implies minimal trapped, which
implies somehow involute trapped.

Lemma 3. Assuming the Einstein equation,

�akbrbka ¼ �� � drþ 4�r� � c : (32)

Proof.

�akbrbka ¼ �akbð@bka � �c
bakcÞ

¼ e�2’ð�þ@�rð@þ@þr� 2@þ’@þrÞ
þ ��@þrð@�@�r� 2@�’@�rÞ
� ð�þ@þrþ ��@�rÞ@þ@�rÞ

¼ 4�r� � c þ �� � dr (33)

using expressions (17) and (19) and the Einstein equa-
tions (22) as before.

Proposition 3. NEC and somehow involute trapped im-
plies outer trapped.

Proof. As before, � � dr < 0 and NEC ) � � c � 0,
then inspect signs in (31) and (32).

VI. STATIC SPACE-TIMES

In static space-times, the static Killing vector @t is
proportional to k. Thus k � df ¼ 0 for any function f.

Proposition 4. In static space-times, the three increas-
ingly trapped conditions 3–5 are equivalent.

Proof. Recall that k and k� are orthogonal, and span the
normal space for a trapped sphere. Any normal vector �
can then be written as a linear combination of k and k�,
with positive component along k� for the appropriate
causal quadrant. Since

k � d
�
1

r2

�
2m

r
� 1

��
¼ 0 (34)

the result follows.
Proposition 5. In static space-times, the minimal trapped

condition 1 and the two involute trapped conditions 6–7
are equivalent.

Proof. As above, since

2kakbrbka ¼ kbrbðkakaÞ ¼ 0: (35)

Thus the seven (or eight in general) conditions reduce to
three, definitions 1–3, which can be seen to be inequivalent
in the examples to follow.

VII. NICE BLACK HOLES

Definition 8. A nice black hole is a static black hole for
which

gð@t; @tÞ ¼ �g�1ðdr; drÞ (36)

for some thereby standard choice of the scaling of the static
Killing vector @t. This includes Schwarzschild, Reissner-

Nordström (de Sitter), and many other black holes which
have been considered in the literature. A non-nice static
black hole is here called a dirty black hole, more or less
consistently with previous usage [19].
For nice black holes, the Kodama and Killing vectors

coincide, k ¼ @t, and the metric may be written, except at
trapping horizons, as

ds2 ¼ r2d�2 þ
�
1� 2m

r

��1
dr2 �

�
1� 2m

r

�
dt2: (37)

Note that this is valid both outside the horizon, r > 2m, and
inside, r < 2m.
Proposition 6. For nice black holes, minimal trapped

spheres and outer trapped spheres are equivalent.
Proof. For a static black hole, one finds the energy

density (11)

w ¼ 1
2ð�� pÞ (38)

where � ¼ �Tt
t is the energy density and p ¼ Tr

r the radial
pressure. The energy flux (10) is

c ¼ 1
2ð�þ pÞdr: (39)

Using (8) one sees that the result will follow if

�þ p ¼ 0: (40)

This is a known property of nice black holes, e.g., [25], one
derivation going as follows. Any spherically symmetric
metric can locally be written in the Regge-Wheeler form

ds2 ¼ r2d�2 þ e2’ðdr2� � dt2Þ (41)

where ðr; ’Þ are functions of ðt; r�Þ and ’ reduces to the
Newtonian potential in the Newtonian limit, if t reduces to
Newtonian time. In static cases, the metric can also be
written as

ds2 ¼ r2d�2 þ
�
1� 2m

r

��1
dr2 � e2’dt2 (42)

for ’ðrÞ, mðrÞ, where

1� 2m

r
¼ ðe�’r0Þ2 (43)

and the prime denotes differentiation with respect to r�. A
nice black hole is defined by

e2’ ¼ 1� 2m

r
(44)

which gives

r0 ¼ e2’: (45)

One component of the Einstein equations is

4�rð�þ pÞ ¼ �ðe�2’r0Þ0 (46)

which gives the result.
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VIII. REISSNER-NORDSTRÖM BLACK HOLES

For a Schwarzschild black hole, all the trapped spheres
satisfy all the refinements. The simplest standard example
where this is not so is provided by nonextreme Reissner-
Nordström black holes, which are nice black holes (37)
with

m ¼ M�Q2

2r
(47)

where M is the mass and Q the charge, being constants
satisfying

M2 >Q2: (48)

As is well known, there are both outer and inner trapping
horizons, located at

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
(49)

with trapped spheres for

r� < r < rþ: (50)

Since there are inner horizons, one knows in advance
that trapped spheres close to them will be inner rather than
outer trapped spheres. Explicitly, one may calculate sur-
face gravity (6) using the general static formula

� ¼ 1

2
ffiffiffiffiffiffiffij�jp @rð

ffiffiffiffiffiffiffi
j�j

q
�rrÞ (51)

where � is the normal metric, to find

� ¼ M

r2
�Q2

r3
(52)

for which the sign switches at

ro ¼ Q2

M
: (53)

Then � > 0 for r > ro to satisfy definition 2, while � < 0
for r < ro. Elementary analysis using (48) shows that

r� < ro < rþ (54)

so that the switch occurs outside the inner horizon as
expected.

Regarding increasingly trapped spheres, one has

d

�
1

r2

�
2m

r
� 1

��
¼ 2

2Q2 � 3Mrþ r2

r5
dr (55)

which switches sign at

R� ¼ 3

2

�
M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 8

9
Q2

s �
: (56)

Since k� � dr ¼ 1� 2m=r < 0 for trapped surfaces, the
desired sign in definition 3 then occurs for R� < r < Rþ.
Elementary analysis using (48) shows that

Rþ > rþ (57)

so that all trapped spheres sufficiently close to the outer
horizon are increasingly trapped, while

r� <R� < ro (58)

so the switch occurs inside the inner trapped region.
In summary, as one starts at the outer horizon r ¼ rþ

and moves inwards, the spheres are both minimal and outer
trapped (by proposition 6) down to r ¼ ro but not beyond,
while still being increasingly trapped down to r ¼ R� but
not beyond, which is still outside the inner horizon r ¼ r�.

IX. DIRTY BLACK HOLES

Simple examples where all three refinements differ are
provided by

ds2 ¼ r2d�2 þ
�
1� 2M

r

��1
dr2 �

�
1� 2M

r

��
1�L

r

�
2
dt2

(59)

where the constants ðM;LÞ are here assumed to satisfy

2M>L> 0: (60)

There is an outer trapping horizon at r ¼ 2M and a spatial
singularity at r ¼ L, with trapped spheres for

L < r < 2M: (61)

So the global structure is similar to that of a Schwarzschild
black hole, except that the singularity has nonzero area.
These are evidently dirty black holes with mass M and
singularity area 4�L2. For M � L, they will look quite
like Schwarzschild black holes from outside.
The analysis is similar to the above. Regarding increas-

ingly trapped spheres, one first finds

m ¼ M (62)

then

d

�
1

r2

�
2m

r
� 1

��
¼ 2

r� 3M

r4
dr (63)

which gives the desired sign for R< 3M, by definition 3.
Thus all the trapped spheres are increasingly trapped.
Regarding outer trapped spheres, one finds using (51)

that

� ¼ ð2Mþ LÞr� 4ML

r2ðr� LÞ (64)

for which the sign switches at

ro ¼ 4ML

2Mþ L
: (65)

Then � > 0 for r > ro to satisfy definition 2, while � < 0
for r < ro, as before. Elementary analysis using (60) shows
that
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L < ro < 2M: (66)

Thus there are inner trapped spheres near the singularity, in
distinction to the Schwarzschild case.

Regarding minimal trapped spheres, one can use the
Regge-Wheeler form (41) with

e2’ ¼
�
1� 2M

r

��
1� L

r

�
2

(67)

where there is no problem with regarding ’ as imaginary
inside the horizon, as it will cancel out in the result. In
static cases, one generally has

kakbrarbr ¼ �ktkt��
tt@�r (68)

in terms of the connection coefficient

��
tt ¼ @�’: (69)

In this case one finds

@�r ¼
�
1� 2M

r

��
1� L

r

�
(70)

and

k ¼
�
1� L

r

��1
@t (71)

so

kakbrarbr ¼ � 1

2

�
1� L

r

��2
�
1� 2M

r

�
@rðe2’Þ (72)

where

@rðe2’Þ ¼ 2
ðMþ LÞr2 � ð4Mþ LÞLrþ 3ML2

r4
(73)

which gives roots

rm ¼ 3ML

Mþ L
; L: (74)

The desired sign in definition 1 occurs for r > rm.
Elementary analysis using (60) shows that

ro < rm < 2M (75)

so the switch occurs in the outer trapped region.
In summary, as one starts at the horizon r ¼ 2M and

moves inwards, the spheres are minimal trapped down to
r ¼ rm but not beyond, outer trapped down to r ¼ ro but
not beyond, while still being increasingly trapped all the
way to the singularity r ¼ L.
For completeness, one may note that the energy density

vanishes,

� ¼ 0 (76)

which is a general property if m is constant, and that the
radial pressure is

p ¼ ðMþ LÞðr� rmÞ
2�r3ðr� LÞ : (77)

The dominant energy condition requires � � p, which is
violated for r > rm. On the other hand, it is satisfied for
r � rm and so the hierarchy of trapped surfaces is the
standard one according to propositions 1–2.
Since p is rapidly vanishing as r ! 1, Oðr�3Þ, but

infinite as r ! L, one can interpret it as coming from
some modification of Einstein gravity at small length
scales. The scale is given by L, which might be the
Planck length or some other theoretical scale.

X. SUMMARY

The hierarchy of trapped spheres is illustrated as fol-
lows:
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where the vertical implications are straightforward, while
the horizontal implications require NEC. In general cases,
the vertical hierarchy will remain, but the horizontal hier-
archy will change and be interwoven [18].

In static cases, the vertical hierarchy collapses to leave
just

and the first two become equivalent for the widely consid-
ered subclass of nice (nondirty) black holes. Examples
have also been given of dirty black holes where all three
refinements differ. The examples show that the refinements
can still hold sufficiently close to the outer horizon of a
black hole, even if it is dirty and violates energy conditions.
On the other hand, the refinements need not hold near an
inner horizon or a singularity. This provides some support
for the idea to restrict trapped surfaces to those which are
regular enough near an outer trapping horizon that the
horizon is indeed the boundary of the region of such refined
trapped surfaces.

Finally, while geometrical ideas play a large part in the
above definitions and results, recall that the original moti-
vation was a physical one, namely, to have a practical
definition of black holes and a comprehensive theory.
One might therefore argue that perhaps the most physically
well motivated refinement is outer trapped, since it ex-
presses positivity of surface gravity �, which appears in a
first law for trapping horizons [12], determines a local
Hawking temperature �=2� [13], and has other physically
relevant properties [12,21]. In any case, the interplay of
geometry and physics remains a fascinating aspect of black
holes, 95 years after the Schwarzschild solution was found.
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