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Our Universe contains a great number of extremely compact and massive objects which are generally

accepted to be black holes. Precise observations of orbital motion near candidate black holes have the

potential to determine if they have the spacetime structure that general relativity demands. As a means of

formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced

‘‘bumpy black holes’’: objects that are almost, but not quite, general relativity’s black holes. The

spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing

to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show

how to introduce bumps which are smoother and lead to better behaved orbits than those in the original

presentation. Second, we show how to make bumpy Kerr black holes—objects which reduce to the Kerr

solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy

black holes. Using Hamilton-Jacobi techniques, we show how a spacetime’s bumps are imprinted on

orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase

of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly

as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-

known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many

times greater than would be predicted from a Newtonian analysis, suggesting that this framework will

allow observations to set robust limits on the extent to which a spacetime’s multipoles deviate from the

black hole expectation.
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I. INTRODUCTION

A. Motivation: Precision tests of the black hole
hypothesis

Though observations of gravitational systems agree well
with the predictions of general relativity (GR), the most
detailed and quantitative tests have so far been done in the
weak field. (‘‘Weak field’’ means that the dimensionless
Newtonian potential � � GM=rc2 � 1, where M is a
characteristic mass scale and r a characteristic distance.)
This is largely because many of the most precise tests are
done in our solar system (e.g., [1]). Even the celebrated
tests which use binary neutron stars (e.g., [2]) are
essentially weak field: for those systems, M�
several M�, r ¼ orbital separation� several R�, so ��
a few�GM�=R�c2 � a few� 10�6.

This situation is on the verge of changing. Observational
technology is taking us to a regime where we either are or
soon will be probing motion in strong gravity, with � *
0:1. Examples of measurements being made now include
radio studies of accretion flows near the putative black hole
in our galactic center [3] and x-ray studies that allow
precise measurements of accretion disk geometries [4,5].
Future measurements include the possible discovery of a
black hole–pulsar system, perhaps with the Square
Kilometer Array [6], and gravitational-wave observations
of small bodies spiraling into massive black holes due to
the backreaction of gravitational-wave emission [7].

For weak-field studies, a well-developed paradigm for
testing gravity has been developed. The parametrized post-
Newtonian (PPN) expansion [8,9] quantifies various mea-
surable aspects of relativistic gravity. For example, the
PPN parameter � (whose value is 1 in GR) quantifies the
amount of spatial curvature produced by a unit of rest
mass. Other PPN parameters quantify a theory’s nonline-
arity, the degree to which it incorporates preferred
frames, and the possible violation of conservation laws.
See Ref. [9], Chap. 4, for a detailed discussion.
Unfortunately, no similar framework exists for strong-field
studies. If we hope to use observations as tools for testing
the nature of strong-gravity objects and strong-field grav-
ity, we need to rectify this.
Black holes are of particular interest for studying strong-

field gravity. Aside from having the strongest accessible
gravitational fields of any object in the Universe,1 within
GR they have an amazingly simple spacetime structure: the
‘‘no-hair’’ theorems [10–14] guarantee that the exterior

1More accurately, they have the largest potential ��
GM=Rc2. One may also categorize weak or strong gravity using
spacetime curvature or tides; arguably this is a more fundamental
measure for assessing whether GR is likely to be accurate or not.
From this perspective, black holes are actually not such ‘‘strong-
gravity’’ objects; indeed, the tidal field just outside a 108M�
black hole’s event horizon is not much different from the tidal
field at the surface of the Earth. See Ref. [4] for further
discussion of this point.
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spacetime of any black hole is completely described by
only two numbers, its mass M and spin parameter a. Any
deviation from that simplicity points to a failure either in
our understanding of gravity or in the nature of ultracom-
pact objects.

Recent work by Brink [15] has reviewed in detail the
challenges involved in testing the spacetime structure of
massive compact bodies when one relaxes the assumption
that the spacetime is Kerr. As in Brink’s discussion, we will
focus on spacetimes that are stationary, axisymmetric, and
vacuum in some exterior region. An especially useful
parametrization is provided by the work of Geroch [16]
and Hansen [17]. They demonstrate that such a spacetime
is completely specified by a set of mass multipole moments
Ml and current multipole moments Sl. For a fluid body,Ml

describes the angular distribution of the body’s mass, and
Sl describes the angular distribution of mass flow. In
Newtonian theory, Ml labels a piece of the gravitational
potential that varies as Yl0ð�;�Þ=rlþ1. There is no
Newtonian analog to Sl. In the weak-field limit of GR,
they label a magneticlike contribution to gravity and are
reminiscent of magnetic moments.

In general, the moments fMl; Slg can be arbitrary. For
black holes, they take special values: a Kerr spacetime has
[17]

Ml þ iSl ¼ MðiaÞl (1.1)

(in units with G ¼ 1 ¼ c; we neglect the astrophysically
uninteresting possibility of the hole having macroscopic
charge). In other words, only two moments out of the set
fMl; Slg are independent: M0 ¼ M, and S1 ¼ aM. Once
those two moments have been specified, all other moments
are fixed by Eq. (1.1) if the spacetime is Kerr.

Testing the hypothesis that an object is a Kerr black hole
can thus be framed as a null experiment. First, measure the
putative black hole spacetime’s multipoles. Using the mo-
mentsM0 and S1, determine the parametersM and a. If the
spacetime is Kerr, all moments for l � 2 must be given by
Eq. (1.1). The null hypothesis is that any deviation from
those Kerr moments is zero. Failure of the null hypothesis
means the black hole candidate is not a Kerr black hole,
and may indicate a failure of strong-field GR.

B. Bumpy black holes: Past work

Performing this null experiment requires strong-field
spacetimes with multipoles differing from those of black
holes. Given the tremendous success of general relativity
and the black hole hypothesis at explaining a wide span of
data, a reasonable starting point is to consider spacetimes
whose multipoles deviate only slightly. Imagine starting
with a spacetime whose Geroch-Hansen moments satisfy

Ml þ iSl ¼ MðiaÞl þ �Ml þ i�Sl: (1.2)

The null hypothesis—black hole candidates are described
by GR’s Kerr metric—means �Ml ¼ 0, �Sl ¼ 0 for all l.

To this end, Collins and Hughes [18] (hereafter CH04)
introduced the bumpy black hole: a spacetime that deviates
in a small, controllable manner from the exact black holes
of GR. By construction, the bumpy black hole includes
‘‘normal’’ black holes as a limit. This is central to testing
the black hole hypothesis by a null experiment. Spacetimes
of other proposed massive, compact objects (for example,
boson stars [19,20]) typically do not include black holes as
a limiting case. This limits their utility if black hole can-
didates are, in fact, GR’s black holes. Measurements of
black holes using observables formulated in a bumpy black
hole spacetime should simply measure the spacetime’s
‘‘bumpiness’’ (defined more precisely below) to be zero.
Though a useful starting point, the bumpy black holes

developed in CH04 had two major shortcomings. First, the
changes to the spacetime that were introduced to modify its
multipole moments were not smooth. The worked example
presented in CH04 is interpreted as a Schwarzschild black
hole perturbed by an infinitesimally thin ring of positive
mass around its equator and by a pair of negative mass
infinitesimal points near its poles. Though this changes the
spacetime’s quadrupole moment (the desired outcome of
this construction), it gives the spacetime a pathological
strong-field structure. This is reflected in the fact that
nonequatorial strong-field orbits are ill behaved in the
CH04 construction [21].
Second, CH04 only examined bumpy Schwarzschild

black holes. Although their approach differed in many
details from that used in CH04, Glampedakis and Babak
[22] (hereafter GB06) rectified this deficiency with their
introduction of a ‘‘quasi-Kerr’’ spacetime. Their construc-
tion uses the exterior Hartle-Thorne metric [23,24] describ-
ing the exterior of any slowly rotating, axisymmetric,
stationary body. It includes the Kerr metric to Oða2Þ as a
special case. Identifying the influence of the quadrupole
moment in the Hartle-Thorne form of the Kerr metric, they
then introduce a modification to the full Kerr spacetime
that changes the black hole’s quadrupole moment from its
canonical value.

C. This analysis

The goal of this work is to rectify the deficiencies of
CH04 and to extend the bumpy black hole concept to
spinning black holes. Dealing with the nonsmooth nature
of the bumps presented in CH04 is, as we show in Secs. II,
IV, and V, quite straightforward. It simply requires intro-
ducing perturbations to the black hole background that are
smooth rather than discontinuous. In essence, rather than
having bumps that correspond to infinitesimal points and
rings, the bumps we use here are smeared into pure
multipoles.
Extending CH04 to spinning black holes is more of a

challenge. Given that GB06 already introduced a bumpy-
black-hole-like spacetime that encompasses spacetimes
with angular momentum, one might wonder why another
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construction is needed. A key motivation is that we would
like to be able to make an arbitrary modification to a black
hole’s moments. Although showing that a black hole can-
didate has a non-Kerr value for the quadrupole moment
would be sufficient to falsify its black hole nature (at least
within the framework of GR), one can imagine scenarios in
which the first L moments of a black hole candidate agree
with the Kerr value, but things differ for l > L. For ex-
ample, Yunes and Pretorius have shown that in Chern-
Simons modifications to GR, slowly rotating black hole
solutions have the multipolar structure of Kerr for l < 4,
but differ for l � 4 [25]. There are many ways in which
black hole candidates might differ from the black holes of
general relativity; we need to develop a toolkit sufficiently
robust that it can encompass these many potential points of
departure.

Our technique for making bumpy Kerr holes is based on
the Newman-Janis algorithm [26]. This algorithm trans-
forms a Schwarzschild spacetime into Kerr by ‘‘rotating’’
the spacetime in a complex configuration space.2 In this
paper, we construct bumpy Kerr black holes by applying
the Newman-Janis algorithm to bumpy Schwarzschild
black holes. The outcome of this procedure is a spacetime
whose mass moments are deformed relative to Kerr. When
the bumpiness is set equal to zero, we recover the Kerr
metric. A companion paper [28] examines the multipolar
structure of bumpy Kerr black holes in more detail, dem-
onstrating that one can construct a spacetime in which the
mass moments deviate arbitrarily from Kerr (provided that
they are small).

Once one has constructed a bumpy black hole space-
time, one then needs to show how its bumps are encoded in
observables. The most detailed quantitative tests will come
from orbits near black hole candidates. As such, it is
critical to know how orbital frequencies change as a func-
tion of a spacetime’s bumpiness. More generally, we are
faced with the problem of understanding motion in general
stationary axisymmetric vacuum spacetimes. Brink [29]
has recently published a very detailed analysis of this
problem, with a focus on understanding whether and for
which situations the spacetimes admit integrable motion.
She has found evidence that geodesic motion in such
spacetimes may, in many cases, be integrable. If so, the
problem of mapping general spacetimes (not just ‘‘nearly
black hole’’ spacetimes) may be tractable. Gair, Li, and
Mandel [30] have similarly examined orbital character-
istics in the Manko-Novikov spacetime [31], which has a
particular tunable non-Kerr structure. They show how
orbits change in such spacetimes, and how their bumpiness
colors observable characteristics.

For this analysis, we confine ourselves to the simpler
problem of motion in bumpy black hole spacetimes, ad-
dressing this challenge in Secs. IV and V using canonical
perturbation theory. As is now well known (and was shown
rather spectacularly by Schmidt [32]), Hamilton-Jacobi
methods let us write down closed-form expressions for
the three orbital frequencies ð�r;��;��Þ which com-
pletely characterize the behavior of bound Kerr black
hole orbits. Since bumpy black hole spacetimes differ
only perturbatively from black hole spacetimes, canonical
perturbation theory lets us characterize how a spacetime’s
bumps shift those frequencies, and thus are encoded in
observables. Similar techniques were used in GB06 to
see how frequencies are shifted in a quasi-Kerr metric,
and were also used by Hinderer and Flanagan [33] in a
two-time-scale analysis of inspiral into Kerr black holes.

D. Organization and overview

We begin in Sec. II with an overview of the spacetimes
that we study. We start with the axially symmetric and
stationary Weyl line element. We first review the Einstein
field equations in this representation, introduce the
Schwarzschild limit, and then describe first-order pertur-
bations. The spacetime’s bumpiness is set by choosing a
function c 1 which controls how the spacetime deviates
from the black hole limit. We initially leave c 1 arbitrary,
except for the requirement that it be small enough that
terms of order ðc 1Þ2 can be neglected. Later in the paper,
we will take c 1 to be a pure multipole in the Weyl
representation. Following our discussion of bumpy
Schwarzschild spacetimes, we show how to use the
Newman-Janis algorithm to build bumpy Kerr black holes.
We study geodesic motion in these spacetimes in

Sec. III. We begin by reviewing the most important prop-
erties of normal black hole orbits, reviewing Kerr geo-
desics in Sec. III A, and then describing how to compute
orbital frequencies using Hamilton-Jacobi methods in
Sec. III B. The discussion of frequencies is largely a syn-
opsis of Schmidt’s pioneering study, Ref. [32]. We then
show how these techniques can be adapted, using canonical
perturbation theory, to bumpy black holes (Sec. III C).
Canonical perturbation theory requires averaging a bump’s
shift to an orbit’s Hamiltonian. This averaging was devel-
oped in Ref. [34], and is summarized in Appendix A.
We present our results for bumpy Schwarzschild and

bumpy Kerr orbits in Secs. IVand V, respectively. We take
c 1 to be a pure multipole in the Weyl sector, construct the
spacetime, and numerically compute the shifts in �r, ��,
and ��. Detailed results are given for l ¼ 2, l ¼ 3, and
l ¼ 4. There is no reason in principle to stop there, though
the results quickly become repetitive. Section IV gives our
results for bumpy Schwarzschild black holes, and Sec. V
gives results for bumpy Kerr.
A few results are worth highlighting. First, we find that

the exact numerical results for frequency shifts correctly

2This complex ‘‘rotation’’ is made most clear by framing the
discussion using the Ernst potential [27]. Transforming from
Schwarzschild to Kerr corresponds to adding an imaginary part
to a particular potential. Further discussion is given in a com-
panion paper [28].
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reproduce the Newtonian limit as our orbits are taken into
the weak field. (We develop this limit in some detail in
Appendix B to facilitate the comparison.) The frequency
shifts are substantially enhanced in the strong field. The
shift to the radial frequency is particularly interesting: it
tends to oscillate, shifting between an enhancement and a
decrement as orbits move into the strong field. This behav-
ior appears to be a robust signature of non-Kerr multipole
structure in black hole strong fields.

Interestingly, it turns out that black hole spin does not
have a very strong impact on the bumpiness-induced shifts
to orbital frequencies. Spin’s main effect is to change the
location of the last stable orbit. For large spin, orbits reach
deeper into the strong field, amplifying the bumps’ impact
on orbital frequencies. Aside from the change to the last
stable orbits, the impact of a particular multipolar bump
looks largely the same across all spin values. Some ex-
amples of the frequency shifts we find are shown in Figs. 1
(l ¼ 2, Schwarzschild), 2 (l ¼ 4, Schwarzschild), and 3
(l ¼ 2, Kerr). (We have no figures for l ¼ 3 since the
secular shifts to orbital frequencies are zero in that case,
as they are for all odd values of l. We also do not show
results for l ¼ 4 bumps of Kerr black holes since, as
discussed above, they are very similar to the l ¼ 4
Schwarzschild results.)

Finally, we summarize our analysis and suggest some
directions for future work in Sec. VI. Among the points we
note are that, in this analysis, we only consider changes to
the mass moments of the black hole spacetime. Adding
‘‘current-type’’ bumps to a spacetime is discussed in a
companion paper [28]. We also do not discuss in this
analysis the issue of measurability. Turning these founda-
tions for mapping the multipole moment structure of black
holes into a practical measurement program (for instance,
via gravitational-wave measurements, timing of a black
hole–pulsar binary, or precision mapping in radio or x rays
of accretion flows) will take a substantial effort.

Throughout this paper, we work in geometrized units
withG ¼ c ¼ 1; a useful conversion factor in these units is
1M� ¼ 4:92� 10�6 seconds. When we discuss bumpy
black holes, we will always use a ‘‘hat’’ accent to denote
quantities which are calculated in the pure black hole
background spacetimes. For example, an orbital frequency

is written � ¼ �̂þ ��; �̂ is the frequency of an orbit in
the black hole background, and �� denotes the shift due to
the black hole’s bumps.

II. BLACK HOLE AND BUMPY BLACK HOLE
SPACETIMES

We begin with general considerations on the spacetimes
we consider. Since we focus on stationary, axisymmetric
spacetimes, the Weyl metric [35] is a good starting point:

ds2 ¼ �e2c dt2 þ e2��2c ðd�2 þ dz2Þ þ e�2c�2d�2:

(2.1)

The nontrivial vacuum Einstein equations for this metric
are given by

0 ¼ @2c

@�2
þ 1

�

@c

@�
þ @2c

@z2
; (2.2)

@�

@�
¼ �

��
@c

@�

�
2 �

�
@c

@z

�
2
�
; (2.3)

@�

@z
¼ 2�

@c

@�

@c

@z
: (2.4)

Equations (2.2), (2.3), and (2.4) will be our main tools for
building bumpy black hole spacetimes. We will put c ¼
c 0 þ c 1, � ¼ �0 þ �1, with c 1=c 0 � 1, and �1=�0 �
1. Before specializing to black hole backgrounds, note that
Eq. (2.2) is simply Laplace’s equation. The functions c 1

can thus very conveniently be taken to be harmonic func-
tions. This is key to smoothing out the spacetime’s bumps
and curing one of the deficiencies of CH04.

A. Schwarzschild and bumpy Schwarzschild

We begin by building a bumpy Schwarzschild black
hole. The Schwarzschild metric is recovered from
Eq. (2.1) when c 1 ¼ �1 ¼ 0 and we set

c 0 ¼ ln tanhðu=2Þ; (2.5)

�0 ¼ � 1

2
ln

�
1þ sin2v

sinh2u

�
: (2.6)

The prolate spheroidal coordinates ðu; vÞ are a remapping
of the coordinates ð�; zÞ used in Eq. (2.1):

� ¼ M sinhu sinv; (2.7)

z ¼ M coshu cosv: (2.8)

(Below we will remap these to the familiar Schwarzschild
form.) Expanding the Einstein equations Eqs. (2.2), (2.3),
and (2.4) about these Schwarzschild values to leading order
in c 1 and �1, the perturbations must satisfy

r2c 1 ¼ 0; (2.9)

@�1

@u
¼ 2½tanvð@c 1=@uÞ þ tanhuð@c 1=@vÞ�

sinhuðcothu tanvþ tanhu cotvÞ ; (2.10)

@�1

@v
¼ 2½tanvð@c 1=@vÞ � tanhuð@c 1=@uÞ�

sinhuðcothu tanvþ tanhu cotvÞ : (2.11)

As discussed in CH04, Eqs. (2.10) and (2.11) actually
overdetermine the solution; we will use Eq. (2.11) to
calculate �1. [Note also that the tanv in the numerator of
Eq. (2.10) is incorrectly written cotv in CH04.]
To connect this to the variables we will use later in the

paper (and to put it in a more familiar form), we make a
final change of coordinates, putting
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r ¼ 2Mcosh2ðu=2Þ; (2.12)

� ¼ v; (2.13)

so that

� ¼ r sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

s
; (2.14)

z ¼ ðr�MÞ cos�: (2.15)

The spacetime then becomes

ds2 ¼ �e2c 1

�
1� 2M

r

�
dt2 þ e2�1�2c 1

�
1� 2M

r

��1
dr2

þ r2e2�1�2c 1d�2 þ r2sin2�e�2c 1d�2

� ðĝ�� þ b��Þdx�dx�: (2.16)

Although we have left the potentials c 1 and �1 in expo-
nential form, these quantities must be expanded to first
order, since we solve for them using linearized Einstein
equations. We use the exponential form only for notational
convenience. On the second line, ĝ�� is the Schwarzschild

metric, and

btt ¼ �2c 1

�
1� 2M

r

�
; (2.17)

brr ¼ ð2�1 � 2c 1Þ
�
1� 2M

r

��1
; (2.18)

b�� ¼ ð2�1 � 2c 1Þr2; (2.19)

b�� ¼ �2c 1r
2sin2�: (2.20)

All other components of b�� are zero. We clearly recover

the normal Schwarzschild black hole when c 1 ! 0,
�1 ! 0.

B. Kerr and bumpy Kerr

We now use the Newman-Janis algorithm [26] to trans-
form bumpy Schwarzschild into bumpy Kerr. We begin
with the bumpy Schwarzschild metric written in prolate
spheroidal coordinates:

ds2 ¼ �e2c 1 tanh2ðu=2Þdt2 þ e2�1�2c 14M2cosh4ðu=2Þ
� ðdu2 þ dv2Þ þ e�2c 14M2cosh4ðu=2Þsin2vd�2:

(2.21)

The first step in the Newman-Janis algorithm uses the fact
that the metric can be written in terms of a complex null
tetrad with legs l�, n	, m	:

g�	 ¼ �l�n	 � l	n� þm� �m	 þm	 �m�; (2.22)

an overbar denotes complex conjugate. The legs are given
by

l� ¼ e�c 1coth2ðu=2Þ��
t þ 1

M
ec 1��1cschu��

u ; (2.23)

n� ¼ 1

2
e�c 1��

t � 1

2M
ec 1��1cschutanh2ðu=2Þ��

u ;

(2.24)

m� ¼ 1

2
ffiffiffi
2

p
M

ec 1sech2ðu=2Þðe��1��
v þ i cscv��

�Þ:
(2.25)

We use the Kronecker delta �
�
	 to indicate components.

Next follows the key step of the Newman-Janis algorithm:
We allow the coordinate u to be complex, and rewrite l�,
n�, and m� as

l� ¼ e�c 1
2��

t

tanh2ðu=2Þ þ tanh2ð �u=2Þ
þ ec 1��1

��
u

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshu cosh �u� 1

p ; (2.26)

n� ¼ 1

2
e�c 1�

�
t � ec 1��1

½tanh2ðu=2Þ þ tanh2ð �u=2Þ�
4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshu cosh �u� 1

p �
�
u ;

(2.27)

m� ¼ 1

2
ffiffiffi
2

p
M

ec 1 sech2ð �u=2Þðe��1��
v þ i cscv��

�Þ: (2.28)

Notice that we recover the original tetrad when we force
u ¼ �u. Further discussion of this seemingly ad hoc proce-
dure (and an explanation of how it uniquely generates the
Kerr spacetime) is given in Ref. [36].
Next, change coordinates: Rewrite the tetrad using

ðU; r; �;�Þ, given by

U ¼ t� 2Mcosh2ðu=2Þ � 2M ln½sinh2ðu=2Þ� � ia cos�;

(2.29)

r ¼ 2Mcosh2ðu=2Þ þ ia cos�; (2.30)

� ¼ v: (2.31)

The axial coordinate � is the same in both coordinate
systems. At this point, a is just a parameter. The result of
this transformation is

l� ¼ ðe�c 1 � ec 1��1Þ
�
1� 2Mr

�

��1
��
U þ ec 1��1��

r ;

(2.32)

n� ¼ 1

2
ðe�c 1 þ ec 1��1Þ��

U � 1

2
ec 1��1

�
1� 2Mr

�

�
�
�
r ;

(2.33)
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m� ¼ ec 1��1ffiffiffi
2

p ðrþ ia cos�Þ ½ia sin�ð�
�
U � �

�
r Þ þ �

�
�

þ e�1 i csc���
��; (2.34)

where � ¼ r2 þ a2cos2�. Making one further coordinate
transformation,

dU ¼ dt� r2 þ a2

�
dr; d� ¼ d�0 � a

�
dr; (2.35)

gives us a bumpy Kerr black hole metric in Boyer-
Lindquist coordinates:

ds2 ¼ �e2c 1

�
1� 2Mr

�

�
dt2 þ e2c 1��1ð1� e�1Þ 4a

2Mrsin2�

��
dtdr� e2c 1��1

4aMrsin2�

�
dtd�þ e2�1�2c 1

�
1� 2Mr

�

��1

�
�
1þ e�2�1ð1� 2e�1Þa

2sin2�

�
� e4c 1�4�1ð1� e�1Þ2 4a

4M2r2sin4�

�2�2

�
dr2

� 2ð1� e�1Þasin2�
�
e�2c 1

�
1� 2Mr

�

��1 � e2c 1�2�1
4a2M2r2sin2�

��ð�� 2MrÞ
�
drd�þ e2�1�2c 1�d�2

þ �

�
e�2c 1

�
1� 2Mr

�

��1 � e2c 1�2�1
4a2M2r2sin2�

��ð�� 2MrÞ
�
sin2�d�2; (2.36)

where � � r2 � 2Mrþ a2, and we have dropped the
prime on �. Notice that Eq. (2.36) reduces to the normal
Kerr black hole metric when c 1 ! 0, �1 ! 0; the parame-
ter a is seen to be the specific spin angular momentum,
j ~Sj=M. A companion paper [28] examines the multipoles
of this spacetime for particular choices of c 1 and demon-
strates that it corresponds to Kerr with some moments set
to the ‘‘wrong’’ values. The Newman-Janis algorithm ap-
plied to the bumpy Schwarzschild black hole produces a
bumpy Kerr black hole.

Writing the bumpy Kerr metric in the form g�� ¼
ĝ�� þ b��, we read out of Eq. (2.36)

btt ¼ �2

�
1� 2Mr

�

�
c 1; (2.37)

btr ¼ ��1

2a2Mrsin2�

��
; (2.38)

bt� ¼ ð�1 � 2c 1Þ 2aMrsin2�

�
; (2.39)

brr ¼ 2ð�1 � c 1Þ�� ; (2.40)

br� ¼ �1

��
1� 2Mr

�

��1 � 4a2M2r2sin2�

��ð�� 2MrÞ
�
asin2�;

(2.41)

b�� ¼ 2ð�1 � c 1Þ�; (2.42)

b�� ¼
�
ð�1 � c 1Þ 8a

2M2r2sin2�

��ð�� 2MrÞ � 2c 1

�
1� 2Mr

�

��1
�

� �sin2�: (2.43)

Other components are related by symmetry or zero. By
inspection, we can see that b�� ! 0 as c 1 ! 0, �1 ! 0.

Before moving on, we summarize. To build a bumpy
black hole spacetime, we first select a function c 1 which
satisfies the Laplace equation (2.2). We find the function �1

which satisfies Eqs. (2.3) and (2.4), and then apply the
Newman-Janis algorithm to ‘‘rotate’’ the spacetime to non-
zero a. The result is given by Eqs. (2.36)–(2.43).

III. MOTION IN BLACK HOLE AND BUMPY
BLACK HOLE SPACETIMES

We now discuss motion in these spacetimes. Our focus
will be computing the frequencies associated with oscil-
lations in the radial coordinate r, the polar angle �,
and rotations in � about the symmetry axis. These fre-
quencies are typically the direct observables of black hole
orbits; it is from measuring these frequencies (or the
evolution of these frequencies if the orbit evolves) that
one can hope to constrain the properties of black hole
candidates.

A. Geodesics of Kerr black holes

As background to our discussion of black hole orbital
frequencies, we first briefly review the equations governing
black hole geodesic orbits, and some useful reparametriza-
tions for practical computations. One goal of this discus-
sion is to introduce certain quantities which we will use in
the remainder of this paper.
As first recognized by Carter [37], geodesic motion for a

test mass m in a black hole spacetime is separable with
respect to Boyer-Lindquist coordinates t, r, �, and �. The
test body’s motion is then completely described by four
first-order ordinary differential equations:
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m2�2

�
dr

d


�
2 ¼ ½ðr2 þ a2ÞE� aLz�2

� �½m2r2 þ ðLz � aEÞ2 þQ� � RðrÞ;
(3.1)

m2�2

�
d�

d


�
2 ¼ Q� cot2�L2

z � a2cos2�ðm2 � E2Þ
� �ð�Þ; (3.2)

m�

�
d�

d


�
¼ csc2�Lz þ aE

�
r2 þ a2

�
� 1

�
� a2Lz

�

� �ðr; �Þ; (3.3)

m�

�
dt

d


�
¼ E

�ðr2 þ a2Þ2
�

� a2sin2�

�

þ aLz

�
1� r2 þ a2

�

�
� Tðr; �Þ: (3.4)

As in the previous section, � ¼ r2 � 2Mrþ a2 and � ¼
r2 þ a2cos2�; 
 is proper time along the test body’s world-
line. In developing these equations, one isolates four con-
stants of the motion. One is simply the rest mass itself,
m2 ¼ �p�p�; this motivates the definition of the

Hamiltonian for test body motion,

H � 1
2g

��p�p�; (3.5)

where the 4-momentum components p� ¼
mg�	ðdx	=d
Þ. The other constants are the energy E, axial
angular momentum Lz, and ‘‘Carter constant’’ Q, given by

E � �pt; (3.6)

Lz � p�; (3.7)

Q � p2
� þ cos2�½a2ðm2 � E2Þ þ csc2�L2

z�: (3.8)

Given a choice of the constants ðE; Lz; QÞ and a set of
initial conditions, Eqs. (3.1), (3.2), (3.3), and (3.4) com-
pletely describe the geodesic motion of a test body near a
Kerr black hole. The equations for r and � can present
some problems, however, since their motion includes turn-
ing points where dr=d
 and d�=d
 pass through zero and
switch sign. To account for this behavior, it is convenient to
reparametrize these motions using angles c r (for the radial
motion) and � (for the polar motion) which smoothly vary
from 0 to 2� as the motion oscillates between its extremes.
Consider first the radial motion. We define

r ¼ pM

1þ e cosc r

: (3.9)

The constants p and e are the orbit’s semilatus rectum and
eccentricity, respectively. Substituting into Eq. (3.1), it is
simple to develop an equation governing c r. Periapsis and
apoapsis are given by rp ¼ pM=ð1þ eÞ and ra ¼
pM=ð1� eÞ, respectively. This allows us to relate the
constants p and e to the constants E, Lz, and Q: They
are the outermost radii for which the radial ‘‘potential’’
goes to zero,

RðrpÞ ¼ RðraÞ ¼ 0: (3.10)

For the polar motion, we note that Eq. (3.2) can be
written

�2

�
d�

d


�
2 ¼ z2½a2ðm2 � E2Þ� � z½Qþ L2

z þ a2ðm2 � E2Þ� þQ

1� z
; (3.11)

where we have introduced z � cos2�. Denote by z	 the
two roots of the quadratic on the right-hand side of
Eq. (3.11). Turning points of the � motion correspond to
z ¼ z�, the smaller of these roots. (The root zþ is greater
than 1, and does not correspond to a turning point.)
Transforming back to the angle �, we find that the mini-
mum polar angle reached by the orbit is

cos�min ¼ ffiffiffiffiffiffi
z�

p
: (3.12)

(The maximum angle is �max ¼ �� �min.) A useful rep-
arametrization of the � coordinate is

cos� ¼ cos�min cos�; (3.13)

where � accumulates like the angle c r. By substitution in
Eq. (3.2), we can easily develop an equation governing the
evolution of �.

Before moving on, we note that Eqs. (3.10) and (3.12)
allow us to map from the parameters ðE; Lz; QÞ to
ðp; e; �minÞ. [Schmidt [32] in fact gives an analytic solution
for ðE; Lz; QÞ as functions of ðp; e; �minÞ.] Up to initial
conditions, either parametrization thus completely speci-
fies an orbit. Wewill flip between these parametrizations as
convenient.

B. Orbital frequencies for black holes

To frame our discussion, we begin by examining the
frequencies of motion for normal black hole spacetimes.
Our discussion here closely follows that given by Schmidt
[32], which uses Hamilton-Jacobi methods to compute
black hole orbital frequencies. A useful starting point is
to note that in separating the coordinate-space motion, one
identifies not only constants of the motion, but also the
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action variables

Jr � 1

2�

I
prdr ¼ 1

�

Z ra

rp

ffiffiffiffiffiffiffiffiffi
RðrÞp
�

dr; (3.14)

J� � 1

2�

I
p�d� ¼ 2

�

Z �=2

�min

ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp

d�; (3.15)

J� � 1

2�

I
p�d� ¼ Lz: (3.16)

It is also useful to define

Jt � �E: (3.17)

This is a slight abuse of the notation since geodesic motion
is not cyclic in t (and hence we cannot define Jt as a closed
integral over time), but is convenient for reasons we will
illustrate shortly.

At least formally, we can now reparametrize our
Hamiltonian (3.5) in terms of the action variables J�. Let

us write the Hamiltonian so reparametrized as H ðaaÞ. By
Hamilton-Jacobi theory, the orbital frequencies are the

derivatives of H ðaaÞ with respect to the action variables:

m!i ¼ @H ðaaÞ

@Ji
: (3.18)

For black hole orbits, we cannot explicitly reparametrize
the Hamiltonian in this way, making it difficult to calculate
the orbital frequencies. However, by using the chain rule,
we can reexpress (3.18) in terms of derivatives that are not
so difficult to explicitly write out. Following Ref. [32]
(modifying its notation slightly), we put

P� _¼ðH ; E; Lz; QÞ: (3.19)

Define the matrices A and B, whose components are

A �
� ¼ @P�

@J�
; B�

� ¼ @J�
@P�

: (3.20)

By the chain rule, these matrices have an inverse relation-
ship:

A �
�B�

� ¼ ��
�: (3.21)

The components of the matrixA are directly related to the
frequencies we wish to compute. In particular, since Pt is
just the invariant Hamiltonian, m!i ¼ @Pt=@Ji � At

i.
However, the components of the matrix B are written in
a way that is fairly easy to work out. We exploit this to
write m!i ¼ ðB�1Þti, from which we find

m!r ¼ @J�=@Q

ð@Jr=@H Þð@J�=@QÞ � ð@Jr=@QÞð@J�=@H Þ ;
(3.22)

m!� ¼ �@Jr=@Q

ð@Jr=@H Þð@J�=@QÞ � ð@Jr=@QÞð@J�=@H Þ ;
(3.23)

m!� ¼ ð@Jr=@QÞð@J�=@LzÞ � ð@Jr=@LzÞð@J�=@QÞ
ð@Jr=@H Þð@J�=@QÞ � ð@Jr=@QÞð@J�=@H Þ :

(3.24)

The partial derivatives of Jr and J� appearing here are
given by

@Jr
@H

¼ 1

2�

I r2ffiffiffiffiffiffiffiffiffi
RðrÞp dr; (3.25)

@Jr
@Q

¼ � 1

4�

I 1ffiffiffiffiffiffiffiffiffi
RðrÞp dr; (3.26)

@Jr
@Lz

¼ � 1

2�

I rðrLz � 2MðLz � aEÞÞ
�

ffiffiffiffiffiffiffiffiffi
RðrÞp dr; (3.27)

@Jr
@E

¼ 1

2�

I r½rEðr2 þ a2Þ � 2MaðLz � aEÞ�
�

ffiffiffiffiffiffiffiffiffi
RðrÞp dr;

(3.28)

@J�
@H

¼ 1

2�

I a2cos2�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp d�; (3.29)

@J�
@Q

¼ 1

4�

I 1ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp d�; (3.30)

@J�
@Lz

¼ � 1

2�

I Lzcot
2�ffiffiffiffiffiffiffiffiffiffiffi

�ð�Þp d�; (3.31)

@J�
@E

¼ 1

2�

I a2Ecos2�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp d�: (3.32)

(The derivatives @Jr;�=@E will be needed for a quantity we

introduce below.) Schmidt [32] combines these results to
give closed-form expressions for the three frequencies
!r;�;�; we will not repeat these expressions here.
The frequencies !r;�;� are conjugate to the orbit’s

proper time; they would be measured by an observer who
rides on the orbit itself. For our purposes, it will be more
useful to convert to frequencies conjugate to the Boyer-
Lindquist coordinate time, describing measurements made
by a distant observer. The quantity3

� � 1

m

@H ðaaÞ

@Jt
¼ � 1

m

@H ðaaÞ

@E
(3.33)

3We have adjusted notation from Schmidt slightly to avoid
confusion with our metric function �.
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performs this conversion; the frequencies �r;�;� ¼
!r;�;�=� are of observational relevance. Going back to
Eqs. (3.20) and (3.21), we find m� ¼ ðB�1Þtt, or

m� ¼ ð@Jr=@EÞð@J�=@QÞ � ð@Jr=@QÞð@J�=@EÞ
ð@Jr=@H Þð@J�=@QÞ � ð@Jr=@QÞð@J�=@H Þ :

(3.34)

In the discussion that follows, it will be useful to have
weak-field (p 
 M) forms of these frequencies as a point
of comparison. We begin by we taking the exact expres-
sions for E, Lz, and Q given by Schmidt (Appendix B of
Ref. [32]), expand to leading order in a, and then expand in
1=p. The result is

E ¼ m

�
1� 1� e2

2p
þ ð1� e2Þ2

p2

�
3

8
� a

M

sin�minffiffiffiffi
p

p
��

;

(3.35)

L2
z þQ ¼ m2M2p

�
1þ 3þ e2

p
þ ð3þ e2Þ2

p2
� a

M

�
�
2ð3þ e2Þ

p3=2
þ 4ð2þ e2Þð3þ e2Þ

p5=2

�
sin�min

�
;

(3.36)

Lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

q ¼ sin�min: (3.37)

The orbital frequencies become

�r ¼ !K

�
1� 3ð1� e2Þ

p
þ a

M

3ð1� e2Þ sin�min

p3=2

�
;

(3.38)

�� ¼ !K

�
1þ 3e2

p
� a

M

3ð1þ e2Þ sin�min

p3=2

�
; (3.39)

�� ¼ !K

�
1þ 3e2

p
� a

M

3ð1þ e2Þ sin�min

p3=2
þ a

M

2

p3=2

�
;

(3.40)

where

!K ¼ 1

M

�
1� e2

p

�
3=2

(3.41)

is the Kepler frequency.

C. Orbital frequencies of bumpy black holes

Now examine how the orbital frequencies change if the
black hole is bumpy. Begin with the Hamiltonian H . It
remains conserved with value �m2=2, but its functional
form is shifted:

H ¼ 1

2
g��p�p� ¼ �m2

2
¼ Ĥ þH 1; (3.42)

where Ĥ is the original (nonbumpy) Hamiltonian andH 1

gathers together the influence of the spacetime’s bumpi-
ness. To first order in b��,

g�� ¼ ĝ�� � b��; (3.43)

where

b�� ¼ ĝ��ĝ�	b�	: (3.44)

Combining these expressions, we have

H 1 ¼ �1
2ĝ

��ĝ�	b�	p�p�; (3.45)

which can be rewritten

H 1 ¼ � 1

2
b�	p

�p	 ¼ �m2

2
b�	

dx�

d


dx	

d

: (3.46)

When we add bumps to a spacetime, shifting the
Hamiltonian by H 1, the motion is no longer separable
(except for the special case of equatorial motion) and the
techniques used in Sec. III B for computing orbital fre-
quencies do not work. However, since the spacetime is
‘‘close to’’ the exact black hole spacetime in a well-defined
sense, the motion is likewise ‘‘close to’’ the integrable
motion. We can thus take advantage of canonical perturba-
tion theory as described in, for example, Goldstein, Poole,
and Safko [38], to calculate how the spacetime’s bumps
change the frequencies.
The key result which we use is that the shift can be found

by suitably averaging H 1:

m�!i ¼ @hH 1i
@Ĵi

; m�� ¼ @hH 1i
@Ĵt

: (3.47)

Notice that the derivatives are taken with respect to the
action variables defined for the background motion; the
averaging, which we denote with angular brackets, is like-
wise done with respect to orbits in the background. Once
these derivatives are taken, it is simple to compute the
changes to the observable frequencies. Expanding

�i ¼ !i

�
¼ !̂i þ �!i

�̂þ ��
� �̂i þ ��i; (3.48)

we read out

��i ¼ �!i

�̂
� !̂i��

�̂2
; (3.49)

or

��i

�̂i
¼ �!i

!̂i � ��

�̂
: (3.50)

The averaging used in Eq. (3.47) is described in detail in
Appendix A. This procedure uses the fact that the radial
and polar components of the background motion can be
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separated, and thus can be averaged independently.
Following Appendix A, this amounts to computing

hH 1i ¼ 1

�tð2�Þ2
Z 2�

0
dwr

Z 2�

0
dw�H 1½rðwrÞ; �ðw�Þ�

� T½rðwrÞ; �ðw�Þ�; (3.51)

where Tðr; �Þ is defined by Eq. (3.4), where �t is defined
by Eq. (A11), and wherewr;� are angles associated with the
separated r and � motions (defined and discussed in detail
in Appendix A).

Before moving on, we discuss a few issues in practically
computing hH 1i and the frequency shifts. Begin by ex-
panding the Hamiltonian:

H 1 ¼ �m2

2

�
btt

�
dt

d


�
2 þ brr

�
dr

d


�
2 þ b��

�
d�

d


�
2

þ b��

�
d�

d


�
2 þ 2btr

dt

d


dr

d

þ 2b�r

d�

d


dr

d


þ 2b�t

d�

d


dt

d


�

¼ �m2

2

�
btt

�
dt

d


�
2 þ brr

�
dr

d


�
2 þ b��

�
d�

d


�
2

þ b��

�
d�

d


�
2 þ 2b�t

d�

d


dt

d


�

¼ � 1

2�2
½bttTðr; �Þ2 þ brrRðrÞ þ b���ð�Þ

þ b���ðr; �Þ2 þ 2b�t�ðr; �ÞTðr; �Þ�: (3.52)

In going from the first line to the second, we use the fact
that terms linear in dr=d
 go to zero when we average
since the radial motion switches sign after half a cycle. The
final line of Eq. (3.52) is in a good form for averaging.

In computing this average, we end up with hH 1i as a
function of p, e, and �min. We likewise compute the actions
J� using these parameters, and then compute the shifts to

the frequencies and � using the chain rule. To set up this
calculation, define an array b� which contains all the

system’s physical parameters:

b� _¼ðm;p; e; �minÞ: (3.53)

Next, define the matrix J , the Jacobian of the actions with
respect to these parameters:

ðJ Þ�� ¼ @J�
@b�

: (3.54)

Then,

�!i ¼ @hH 1i
@b�

ðJ�1Þ�i; (3.55)

�� ¼ @hH 1i
@b�

ðJ�1Þ�t; (3.56)

where J�1 is the matrix inverse of the Jacobian J .

IV. RESULTS I: ORBITS OF BUMPY
SCHWARZSCHILD BLACK HOLES

We now examine spacetimes and orbits for specific
choices of c 1. Recalling that this function satisfies the
Laplace equation, we take c 1 to be a pure multipole in
the ‘‘Weyl sector’’ [i.e., in the coordinates of Eq. (2.1)]. As
we will show in this section and the next, this smooths out
the bumps and cures the strong-field pathologies associated
with orbits in the spacetimes developed in CH04.
Note that a pure multipole in the Weyl sector will not

correspond to a pure Geroch-Hansen moment of the black
hole. For example, taking c 1 to be proportional to an l ¼ 2
spherical harmonic does not change only the moment M2

of the Geroch-Hansen sequence [Eq. (1.1)]. However, it
turns out that taking c 1 to be proportional to a spherical
harmonic Yl0 changes no Geroch-Hansen moments lower
than Ml: taking c 1 to be an l ¼ 2 harmonic changes M2

and higher moments; taking it to be an l ¼ 3 harmonic
changes M3 and higher; etc. A companion paper [28]
demonstrates this explicitly, and further shows that the
dominant change for c 1 / Yl0 is to the lth Geroch-
Hansen moment. Further, since the equations governing
c 1 and �1 are linear in these fields, one can choose c 1 to
be a combination of multipoles such that the resulting
spacetime puts its ‘‘bump’’ into a single Geroch-Hansen
moment. In this way, one can arbitrarily adjust the Geroch-
Hansen moments of a spacetime (providing that the adjust-
ments are small).
We begin with spacetimes and orbits of bumpy

Schwarzschild black holes.

A. Quadrupole bumps (l ¼ 2)

First we examine an l ¼ 2 perturbation in the Weyl
sector. The perturbation c 1 which satisfies Eq. (2.2) and
has an l ¼ 2 spherical harmonic form is

c l¼2
1 ð�; zÞ ¼ B2M

3
Y20ð�WeylÞ
ð�2 þ z2Þ3=2

¼ B2M
3

4

ffiffiffiffi
5

�

s
3cos2�Weyl � 1

ð�2 þ z2Þ3=2 ; (4.1)

where cos�Weyl ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
. The dimensionless con-

stant B2 sets the magnitude of the spacetime’s bumpiness
for this multipole. Since we are treating the bumpiness as a
perturbation, B2 � 1. Transforming to Schwarzschild co-
ordinates by Eqs. (2.7), (2.8), (2.12), and (2.13), we find

c l¼2
1 ðr; �Þ ¼ B2M

3

4

ffiffiffiffi
5

�

s
1

dðr; �Þ3
�
3ðr�MÞ2cos2�

dðr; �Þ2 � 1

�
;

(4.2)

where
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dðr; �Þ � ðr2 � 2MrþM2cos2�Þ1=2: (4.3)

As a useful aside, the mapping from ð�; zÞ to ðr; �Þ implies
that any Weyl sector c 1 can be transformed into
Schwarzschild coordinates by putting

�2 þ z2 ! dðr; �Þ; (4.4)

cos�Weyl ! ðr�MÞ
dðr; �Þ cos�: (4.5)

Integrating the constraint (2.11) and imposing the con-
dition �1ðr ! 1Þ ¼ 0 gives

�l¼2
1 ðr; �Þ ¼ B2

ffiffiffiffi
5

�

s �ðr�MÞ
2

½c20ðrÞ þ c22ðrÞcos2��
dðr; �Þ5 � 1

�
;

(4.6)

where

c20ðrÞ ¼ 2ðr�MÞ4 � 5M2ðr�MÞ2 þ 3M4; (4.7)

c22ðrÞ ¼ 5M2ðr�MÞ2 � 3M4: (4.8)

Figure 1 shows the impact of an l ¼ 2 bump on orbital
frequencies as a function of p for a few choices of e and
�m. We show the three shifts ��r;�;�, normalized by the

bumpiness B2 and rescaled by the asymptotic weak-field

dependence ��x
l¼2 / p�7=2 (derived in Appendix B). As

we move to the weak field, the numerical results (solid
lines) converge to the weak-field forms (dashed lines). The
frequency shifts generically get substantially larger as we
move into the strong field. The bumps have a very strong
influence near the last stable orbit, pLSO ¼ ð6þ 2eÞ,
although the behavior is smooth and nonpathological.

B. Octupole bumps (l ¼ 3)

Next, consider an l ¼ 3 perturbation. In Weyl coordi-
nates, we put

c l¼3
1 ð�; zÞ ¼ B3M

4
Y30ð�WeylÞ
ð�2 þ z2Þ2 : (4.9)

In Schwarzschild coordinates, this becomes

c l¼3
1 ðr; �Þ ¼ B3M

4

4

1

dðr; �Þ4
ffiffiffiffi
7

�

s �
5ðr�MÞ3cos3�

dðr; �Þ3

� 3ðr�MÞ cos�
dðr; �Þ

�
: (4.10)

From the constraint equation (2.11) and the condition
�1ðr ! 1Þ ¼ 0, we find

�l¼3
1 ðr; �Þ ¼ B3M

5

2

ffiffiffiffi
7

�

s
cos�

�
c30ðrÞ þ c32ðrÞcos2�þ c34ðrÞcos4�þ c36ðrÞcos6�

dðr; �Þ7
�
; (4.11)

FIG. 1 (color online). Shifts to black hole orbital frequencies due to an l ¼ 2 bump. The shifts ��r;�;� are normalized by the
bumpiness parameter B2, and are scaled by p

7=2; this is because in the Newtonian limit, ��r;�;� / p�7=2. The Newtonian limit (dashed
lines) does a good job of describing the exact calculations (solid lines) for large p. This limit substantially underestimates the shifts in
the strong field. Notice that the radial frequency shift changes sign in the strong field, typically at p� ð10–13ÞM, depending slightly on
parameters. This behavior is starkly different from the weak-field limit.
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where

c30ðrÞ ¼ �3rðr� 2MÞ; (4.12)

c32ðrÞ ¼ 10rðr� 2MÞ þ 2M2; (4.13)

c34ðrÞ ¼ �7rðr� 2MÞ; (4.14)

c36ðrÞ ¼ �2M2: (4.15)

Notice that c l¼3
1 and �l¼3

1 are proportional to cos�. As
such, their contribution to the averaged Hamiltonian hH 1i
is zero: There is no secular shift to orbital frequencies from
l ¼ 3 bumps. This is identical to the result in Newtonian
gravity, as discussed in Appendix B, and holds for all odd
values of l.

As in the Newtonian limit, there will be nonsecular shifts
to the motion which cannot be described by our orbit-
averaged approach. These shifts would be apparent in a
direct (time-domain) evolution of the geodesics of space-
times with odd l bumps. It would be a useful exercise to
examine these effects and ascertain under which conditions
odd l spacetime bumps could, in principle, have an ob-
servable impact.

C. Hexadecapole bumps (l ¼ 4)

We conclude our discussion of Schwarzschild bumps
with l ¼ 4:

c l¼4
1 ð�; zÞ ¼ B4M

5
Y40ð�WeylÞ
ð�2 þ z2Þ5=2 ; (4.16)

from which we obtain

c l¼4
1 ðr; �Þ ¼ B4M

5

16

1

dðr; �Þ5
ffiffiffiffi
9

�

s �
35ðr�MÞ4cos4�

dðr; �Þ4

� 30ðr�MÞ2cos2�
dðr; �Þ2 þ 3

�
: (4.17)

Solving for �1 as before, we find

�l¼4
1 ðr; �Þ ¼ B4

ffiffiffiffi
9

�

s �ðr�MÞ
2

� c40ðrÞ þ c42ðrÞcos2�þ c44ðrÞcos4�
dðr; �Þ9 � 1

�
;

(4.18)

where

c40ðrÞ ¼ 8ðr�MÞ8 � 36M2ðr�MÞ6 þ 63M4ðr�MÞ4
� 50M6ðr�MÞ2 þ 15M8; (4.19)

c42ðrÞ ¼ 36M2ðr�MÞ6 � 126M4ðr�MÞ4
þ 120M6ðr�MÞ2 � 30M8; (4.20)

c44ðrÞ ¼ 63M4ðr�MÞ4 � 70M6ðr�MÞ2 þ 15M8:

(4.21)

Figure 2 presents the same orbits as are shown in Fig. 1
for l ¼ 4. The shifts are normalized by the bumpiness B4

and rescaled by the weak-field form ��x
l¼4 / p�11=2. The

qualitative behavior is largely the same as for the quadru-
pole bump. In particular, we see once again that there are
no strong-field pathologies in the orbit shifts, and that the
degree of shift due to spacetime bumps is especially strong
near the last stable orbit. The strong-field radial oscillations
in ��r are even more pronounced than they were in the

FIG. 2 (color online). Shifts to black hole orbital frequencies due to an l ¼ 4 bump. The shifts ��r;�;� are normalized by the
bumpiness parameter B4, and are scaled by p11=2, which sets the scaling in the Newtonian limit. As in the l ¼ 2 case (Fig. 1), exact
results and the Newtonian limit coincide at large p, but there are significant differences in the strong field. The functional behavior of
the radial frequency shift can be especially complicated in this case.

SARAH J. VIGELAND AND SCOTT A. HUGHES PHYSICAL REVIEW D 81, 024030 (2010)

024030-12



l ¼ 2 case. This appears to be a robust signature of non-
Kerr multipoles in the strong field.

V. RESULTS II: ORBITS OF BUMPY KERR BLACK
HOLES

We now repeat the above exercises on a Kerr black hole
background.

A. Quadrupole bumps (l ¼ 2)

We begin with an l ¼ 2 perturbation in the Weyl sector,
starting with Eq. (4.1). Transforming to prolate spheroidal
coordinates by Eqs. (2.7) and (2.8), this becomes

c l¼2
1 ðu; vÞ ¼ B2

4

ffiffiffiffi
5

�

s �
3cosh2ucos2v

sinh2usin2vþ cosh2ucos2v
� 1

�
� ðsinh2usin2vþ cosh2ucos2vÞ�3=2: (5.1)

The corresponding �1 is

�l¼2
1 ðu; vÞ ¼ B2

ffiffiffiffi
5

�

s �
coshu½4� cos2vþ ð5 cos2v� 1Þ cosh2uþ cosh4u�

8ðsinh2usin2vþ cosh2ucos2vÞ5=2 � 1

�
: (5.2)

Following the logic of the Newman-Janis algorithm, we allow u to be complex, and replace cosh2u with coshu cosh �u and
sinh2u with ( coshu cosh �u� 1). Making the coordinate transformation

coshu ¼ r� ia cos�

M
� 1; v ¼ � (5.3)

puts the result in Boyer-Lindquist coordinates:

c l¼2
1 ðr; �Þ ¼ B2M

3

4

ffiffiffiffi
5

�

s
1

dðr; �; aÞ3
�
3Lðr; �; aÞ2cos2�

dðr; �; aÞ2 � 1

�
; (5.4)

�l¼2
1 ðr; �Þ ¼ B2

ffiffiffiffi
5

�

s �
Lðr; �; aÞ

2

½c20ðr; aÞ þ c22ðr; aÞcos2�þ c24ðr; aÞcos4��
dðr; �; aÞ5 � 1

�
; (5.5)

where

dðr; �; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2Mrþ ðM2 þ a2Þcos2�

q
; (5.6)

FIG. 3 (color online). Shifts to Kerr black hole orbital frequencies for an l ¼ 2 bump. As with the Schwarzschild results presented in
Fig. 1, the shifts ��r;�;� are normalized by the bumpiness B2 and scaled by p7=2. Rather than examining a variety of orbital
geometries, we here examine a few black hole spins, showing results for a ¼ 0:1M, a ¼ 0:5M, and a ¼ 0:9M. Qualitatively, the
results are very similar to what we find for the Schwarzschild case. The major difference is that the last stable orbit is located at smaller
p, so that these orbits can get deeper into the strong field. The overall impact of the bumps is greater in these cases which reach deeper
into the strong field.
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Lðr; �; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�MÞ2 þ a2cos2�

q
; (5.7)

and

c20ðr; aÞ ¼ 2ðr�MÞ4 � 5M2ðr�MÞ2 þ 3M4; (5.8)

c22ðr; aÞ ¼ 5M2ðr�MÞ2 � 3M4 þ a2½4ðr�MÞ2 � 5M2�;
(5.9)

c24ðr; aÞ ¼ a2ð2a2 þ 5M2Þ: (5.10)

Note that the result for c 1 can be found by taking the
Weyl-sector perturbation given by Eq. (4.1) and putting

�2 þ z2 ! dðr; �; aÞ; (5.11)

cos�Weyl ! Lðr; �; aÞ
dðr; �; aÞ cos�: (5.12)

This is the Kerr analog to the mapping described in
Eqs. (4.4) and (4.5).
Figure 3 shows how an l ¼ 2 bump changes Kerr orbital

frequencies. We focus here on how black hole spin affects
our results, presenting results for a single orbit geometry
(e ¼ 0:3, �m ¼ �=3). The major impact of black hole spin
is to change the value of p at which orbits become unstable.
For large spin, orbits can reach deeper into the strong field,
accumulating larger anomalous shifts to their orbital fre-
quencies. Aside from this behavior, spin has relatively little
effect on the shifts: the three panels are similar to one
another and to the Schwarzschild result (compare the left-
most panel of Fig. 1). Similar results hold for other orbital
geometries, so we confine our plots to these results.

B. Octupole bumps (l ¼ 3)

For the l ¼ 3 Kerr bump, we begin with Eq. (4.9), then
follow the same procedure to take it to Boyer-Linquist
coordinates as described for the l ¼ 2 Kerr bump. The
result is

c l¼3
1 ðr; �Þ ¼ B3M

4

4

ffiffiffiffi
7

�

s
1

dðr; �; aÞ4
�
5Lðr; �; aÞ3cos3�

dðr; �; aÞ3 � 3Lðr; �; aÞ cos�
dðr; �; aÞ

�
; (5.13)

�l¼3
1 ðr; �Þ ¼ B3M

5

2

ffiffiffiffi
7

�

s
cos�

�
c30ðr; aÞ þ c32ðr; aÞcos2�þ c34ðr; aÞcos4�þ c36ðr; aÞcos6�

dðr; �; aÞ7
�
; (5.14)

where

c30ðr; aÞ ¼ �3rðr� 2MÞ; (5.15)

c32ðr; aÞ ¼ 10rðr� 2MÞ þ 2M5 � 3a2; (5.16)

c34ðr; aÞ ¼ �7rðr� 2MÞ þ 10a2; (5.17)

c36ðr; aÞ ¼ �2M2 � 7a2: (5.18)

As with the Schwarzschild l ¼ 3 bumps, c l¼3
1 and �l¼3

1

are proportional to cos�, so that hH 1i ¼ 0. Thus, for Kerr

as for Schwarzschild, there is no secular shift to orbital
frequencies for l ¼ 3, or any other odd value of l. We
emphasize again that there will be nonsecular shifts to
the motion which our orbit-averaged approach misses by
construction, and that it would be worthwhile to investigate
their importance in future work.

C. Hexadecapole bumps (l ¼ 4)

For l ¼ 4, we begin with Eq. (4.16). Repeating our
procedure to take this into a Kerr bump, we find

c l¼4
1 ðr; �Þ ¼ B4M

5

16

ffiffiffiffi
9

�

s
1

dðr; �; aÞ5
�
35Lðr; �; aÞ4cos4�

dðr; �; aÞ4 � 30Lðr; �; aÞ2cos2�
dðr; �; aÞ2 þ 3

�
; (5.19)

�l¼4
1 ðr; �Þ ¼ B4

ffiffiffiffi
9

�

s �
Lðr; �; aÞ

8

½c40ðr; aÞ þ c42ðr; aÞcos2�þ c44ðr; aÞcos4�þ c46ðr; aÞcos6�þ c48ðr; aÞcos8��
dðr; �; aÞ9 � 1

�
;

(5.20)

SARAH J. VIGELAND AND SCOTT A. HUGHES PHYSICAL REVIEW D 81, 024030 (2010)

024030-14



where

c40ðr; aÞ ¼ 8ðr�MÞ8 � 36M2ðr�MÞ6 þ 63M4ðr�MÞ4
� 50M6ðr�MÞ2 þ 15M8; (5.21)

c42ðr; aÞ ¼ 36M2ðr�MÞ6 � 126M4ðr�MÞ4
þ 120M6ðr�MÞ2 � 30M8

þ 2a2½16ðr�MÞ6 � 54M2ðr�MÞ4
þ 63M4ðr�MÞ2 � 25M6�; (5.22)

c44ðr; aÞ ¼ 63M4ðr�MÞ4 � 70M6ðr�MÞ2
þ 15M8 þ 3a2½4M2ð9ðr�MÞ4
� 21M2ðr�MÞ2 þ 10M4Þ
þ a2ð16ðr�MÞ4 � 36M2ðr�MÞ2 þ 21M4Þ�;

(5.23)

c46ðr; aÞ ¼ 2a2½2a4ð8ðr�MÞ2 � 9M2Þ
þ 9a2M2ð6ðr�MÞ2 � 7M2Þ
þ 7M4ð9ðr�MÞ2 � 5M2Þ�; (5.24)

c48ðr; aÞ ¼ a4ð8a4 þ 36a2M2 þ 63M4Þ: (5.25)

It is a straightforward exercise to numerically compute
��r;�;� using c l¼4

1 and �l¼4
1 and build the Kerr analogs

to the results we show in Fig. 2. The results are not
markedly different from those for Schwarzschild, modulo
the fact that the orbit can (especially for large spin) reach
deeper into the strong field and hence accumulate more
bump-induced anomalous precession. Since there are no
particularly surprising features in these results compared to
what we have already shown, we will not show such plots.

VI. SUMMARYAND FUTURE WORK

This analysis significantly improves on the earlier pre-
sentation of bumpy black holes given in CH04, producing
bumps with well-behaved strong-field structure, and ex-
tending the concept to Kerr black holes. These extensions
greatly expand the astrophysical relevance of these space-
times. We have also demonstrated how Hamilton-Jacobi
theory can be applied to orbits in bumpy spacetimes to
categorize the anomalous precessions arising from their
bumps in a reasonably straightforward manner. Bumpy
black holes can now, at least in principle, be used as the
foundation for strong-gravity tests with astrophysical data.

It is worth reemphasizing why we propose to use bumpy
black holes, rather than using exact solutions which in-
clude black holes as a limit (for example, the Novikov-
Manko spacetime [31] used in Ref. [30]). In large part, our
choice is a matter of taste. Our goal is to tweak a black
hole’s moments in an arbitrary manner, so that the non-

Kerr nature is entirely under our control. From the stand-
point of formulating a null experiment, it arguably makes
no difference whether the Kerr deviation takes one particu-
lar form or another. Any falsifiable non-Kerr form is good
enough to formulate the test. To our minds, the nice feature
of this approach is that if, for example, a theory of gravity
specifies that a black hole should have the same moment
structure as general relativity up to some l ¼ L, it is simple
to design a spacetime tailored to testing that theory. The
case of Chern-Simons gravity discussed in Ref. [25] shows
that this motivation is not merely academic, but is moti-
vated by plausible alternatives to general relativity.
This analysis provides a complete description of ‘‘mass-

type’’ bumps, i.e., perturbations to the mass moments Ml.
We have not examined ‘‘current-type bumps,’’ shifts to the
spin moments Sl. It is also worth bearing in mind that a
pure multipole in the Weyl sector, c l

1 / Yl0ð�Þ does not

correspond to a shift in a pure Geroch-Hansen multipole. A
companion paper by one of us (S. J. V.) addresses these
issues [28]. That analysis shows how spin moments can be
adjusted from their Kerr values by perturbing the Ernst
potential describing the spacetime [27]. It also shows that a
pure Weyl-sector multipole c l

1 changes no Geroch-Hansen

moments lower than l. As such, a pure Geroch-Hansen
moment perturbation can be assembled by combining mul-
tiple Weyl-sector multipole perturbations.
Aside from these more formal issues, the next major step

in this program will be to use these foundations to formu-
late actual strong-field gravity tests that can be applied to
astrophysical data. We imagine several directions that
would be interesting to follow:
(i) Extreme mass ratio inspiral (EMRI): The capture

and inspiral of stellar mass compact into massive
black holes at galaxy centers is one of the original
motivations of this work. Much of the recent
literature on testing and mapping black hole space-
times has centered on understanding the character
of orbits in non-Kerr black hole candidate space-
times [15,29,39], with an eye on application to
gravitational-wave measurement of EMRIs.
The full analysis of EMRIs in non-Kerr spacetimes
is, in principle, quite complicated since their non-
Kerr-ness breaks the Petrov type D character of Kerr
black holes. As such, it may be quite difficult to
accurately compute their radiation emission. It may
not be quite so difficult in bumpy black hole space-
times. Thanks to the smallness of their non-Kerr
character, it may be fruitful to use a ‘‘hybrid’’ ap-
proach in which the short time scale motion is com-
puted in the bumpy spacetime, but the radiation
generation and backreaction is computed in the
Kerr spacetime; a similar idea was suggested in the
context of modeling EMRI events in Chern-Simons
gravity [40]. Given that our goal is to formulate a
null experiment, this hybrid may be good enough for
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a useful test, in lieu of solving the entire radiation
reaction problem in non-Kerr spacetimes.

(ii) Black hole–pulsar systems: One of the goals of the
planned Square Kilometer Array [6] is the discovery
of a black hole–pulsar binary system. If such a
system is discovered, detailed observation over
many years should be able to tease the multipole
structure of the black hole from the data. Similar
observations of neutron star–pulsar binary systems
have already allowed us to make exquisite measure-
ments of neutron star properties and gravitational-
wave emission [41]. The tools developed here may
already be adequate for doing this analysis since
such binaries will have a relatively slow inspiral
time.

(iii) Accretion flows on black hole candidate: Programs
to observe the (presumed) black hole at the center
of our galaxy are maturing very quickly; programs
to study accretion flows onto stellar mass black
holes in x rays are already quite mature. In our
galactic center, the most precise measurements
come from millimeter wavelength radio emission
from gas accreting onto this central object. The
precision of these measurements is increasing to
the point where we will soon be able to use them to
map the detailed strong-field spacetime structure of
the spacetime near Sagittarius A�. It would be a
worthwhile exercise to repeat analyses of the ap-
pearance of these flows in Kerr spacetimes [42] for
bumpy spacetimes to see how accurately such mea-
surements may be able to probe the central object’s
multipoles. Such an analysis will require develop-
ing imaging maps of bumpy black holes, going
beyond the orbit frequency analysis we have given
here. In the domain of x rays, it would be very
interesting to extend work on quiescent accretion
flows (as in, for example, Ref. [5]) to include
accretion in bumpy black hole spacetimes. It may
be possible to extend those analyses to fit for multi-
poles beyond the black hole’s mass and spin.
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APPENDIX A: AVERAGING FUNCTIONS ALONG
BLACK HOLE ORBITS

Key to computing the shifts that a black hole’s bumps
impart to its orbital frequencies is averaging the
Hamiltonian perturbationH 1 ¼ H 1ðr; �Þ along the orbit.
The averaging we wish to use is a time average:

hH 1i ¼ lim
T!1

1

2T

Z T

�T
H 1½rðtÞ; �ðtÞ�dt: (A1)

Implementing this integral is somewhat involved, so we
review the procedure here. These details were first devel-
oped by Drasco and Hughes (Ref. [34]), hereafter DH04.
Most GR textbooks (e.g., Ref. [8], Chap. 33) describe

the motion of a small test body orbiting a Kerr black hole
using Eqs. (3.1), (3.2), (3.3), and (3.4). Although the coor-
dinate motions are formally separated in these equations, in
a practical application they are not quite ‘‘separated
enough’’ thanks to the factors of � ¼ r2 þ a2cos2� which
appear on the left-hand side of these equations. These
factors couple the radial and polar motion, and complicate
averaging functions of the form fðr; �Þ that are computed
on an orbit. Unless the r and � periods coincide (or are in
an integer ratio), one cannot easily average over the r and �
motion.
This residual coupling is eliminated by parametrizing

the orbits using what is now often called ‘‘Mino time’’ ,
defined by d ¼ d
=�. Equations (3.1), (3.2), (3.3), and
(3.4) become �

dr

d

�
2 ¼ RðrÞ; (A2)

�
d�

d

�
2 ¼ �ð�Þ; (A3)

d�

d
¼ �ðr; �Þ; (A4)

dt

d
¼ Tðr; �Þ: (A5)

Since this time variable explicitly separates the r and �
motion, it is simple to construct rðÞ using Eq. (A2), and
likewise to construct �ðÞ with (A3). It is also simple to
compute the r and � periods in Mino time: By inspection of
Eqs. (A2) and (A3), and taking into account symmetries of
the motion and the appropriate functions, we have

	r ¼ 2
Z ra

rp

drffiffiffiffiffiffiffiffiffi
RðrÞp ; (A6)

	� ¼ 4
Z �=2

�min

d�ffiffiffiffiffiffiffiffiffiffiffi
�ð�Þp : (A7)
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Following DH04, we define frequencies conjugate to these
periods,

�r;� ¼ 2�=	r;�; (A8)

and then introduce angles

wr;� ¼ �r;�: (A9)

We then write the radial motion as a function of wr,

rðwrÞ ¼ rð ¼ wr=�rÞ; (A10)

we likewise parametrize the polar motion using w�. The
key concept behind the averaging is that we now allow the
angles wr and w� to separately vary. This allows us to
separately average the r and � motions.

We are nearly ready to use these tools to average our
Hamiltonian. Before doing so, we define �t, the time
function Tðr; �Þ averaged over the angles wr and w�:

�t � 1

ð2�Þ2
Z 2�

0
dwr

Z 2�

0
dw�T½rðwrÞ; �ðw�Þ�: (A11)

[In DH04, this quantity was denoted by a capital gamma;
we are adjusting the notation slightly to avoid conflict with
� as defined in Eq. (3.34). It is something of an abuse of our
notation, since the time t is not periodic and �i typically
denotes a frequency.]

As shown in DH04, it is now simple to compute the
long-time average of any black hole orbit functional:

hfi � lim
T!1

1

2T

Z T

�T
f½rðtÞ; �ðtÞ�dt

¼ 1

�tð2�Þ2
Z 2�

0
dwr

Z 2�

0
dw�f½rðwrÞ; �ðw�Þ�

� T½rðwrÞ; �ðw�Þ�: (A12)

This is the procedure we use to compute hH 1i for all the
computations presented in this paper.

APPENDIX B: NEWTONIAN PRECESSION
FREQUENCIES

For weak-field orbits, we expect that the bumpy
black hole frequency shifts [Eqs. (3.47), (3.48), (3.49), and
(3.50)] are well described using Newtonian gravity. In this
appendix, we compute the relevant Newtonian frequency
shifts; in Secs. IVand V, we show that our general formulas
limit to the results we develop here for large radius orbits.

As in our relativistic calculation, we compute frequency
shifts due to multipolar ‘‘bumps’’ by examining the varia-
tion of a perturbed Hamiltonian with respect to an orbit’s
action variables:

m��i ¼ @hH 1i
@Ji

: (B1)

(Since there is no distinction between coordinate and
proper time in Newtonian gravity, these ��i are the mea-

surable frequencies.) The actions are defined just as in the
relativistic case, Eqs. (3.14), (3.15), and (3.16). For a body
of mass m orbiting a mass M in Newtonian gravity, they
become

Jr ¼ m
ffiffiffiffiffiffiffiffi
pM

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1� e2

s
� 1

�
; (B2)

J� ¼ m
ffiffiffiffiffiffiffiffi
pM

p ð1� sin�mÞ; (B3)

J� ¼ m
ffiffiffiffiffiffiffiffi
pM

p
sin�m: (B4)

The perturbation to the Hamiltonian for orbits is propor-
tional to the perturbation to the potential:

H Newt
1 ¼ m�Vlðr; �Þ ¼ mBlM

lþ1

rlþ1
Yl0ðcos�Þ: (B5)

To perform the averaging, we first reparametrize both the
radial and angular motion in a manner similar to what we
use for black hole orbits:

r ¼ pM

1þ e cosc r

; (B6)

cos� ¼ cos�m cosðc r � �0Þ: (B7)

Notice that the radial and angular motions vary in phase
with one another in the Newtonian limit: both complete a
full cycle as the angle c r varies from 0 to 2�. The angle �0

is an offset phase between these motions. Inserting this
parametrization into the Newtonian equations of orbital
motion, we find

dc r

dt
¼

ffiffiffiffiffiffi
M

p3

s
ð1þ e cosc rÞ2: (B8)

The averaged Hamiltonian is then given by

hH Newt
1 i ¼ m

TK

Z TK

0
�Vl½rðtÞ; �ðtÞ�dt

¼ m

TK

Z 2�

0

�
dc r

dt

��1
�Vl½rðc rÞ; cos�ðc rÞ�dc r;

(B9)

where TK ¼ 2�M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3=ð1� e2Þ3p

is the Keplerian orbital
period. [To put this in a more familiar form, recall that the
orbit’s semimajor axis A ¼ pM=ð1� e2Þ.]
Using these results, we now examine the Newtonian

limit of l ¼ 2, 3, and 4 black hole bumps.

1. Quadrupole (l ¼ 2)

The quadrupole bump is given by the potential

�Vl¼2 ¼ B2M
3

4r3

ffiffiffiffi
5

�

s
½3cos2�� 1�; (B10)

for which we find
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hH 1i ¼ mB2

8p3

ffiffiffiffi
5

�

s
ð1� e2Þ3=2ð1� 3sin2�mÞ: (B11)

Varying this averaged Hamiltonian with respect to Jr;�;�,

we find

��r ¼ 3B2

8M

1

p7=2

ffiffiffiffi
5

�

s
ð1� e2Þ2ð3sin2�m � 1Þ; (B12)

��� ¼ 3B2

8M

1

p7=2

ffiffiffiffi
5

�

s
ð1� e2Þ3=2

� ½sin2�mð5þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1�; (B13)

��� ¼ 3B2

8M

1

p7=2

ffiffiffiffi
5

�

s
ð1� e2Þ3=2

� ½sin2�mð5þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ � 2 sin�m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� 1�: (B14)

These frequencies are written using the Kepler frequency
!K ¼ 2�=TK.

Equations (B12)–(B14) reproduce well-known results
for motion in a spherical potential augmented by a quad-
rupole perturbation. To facilitate comparison with the lit-
erature, it is useful to change our description of the
orientation of the orbital plane from �m (the minimum
angle � reached over an orbit) to � ¼ �=2� �m (the orbit’s
inclination with respect to the equatorial plane). We then
construct the precession frequencies

�apsis ¼ ��� � ��r ¼ !K � 3B2

8M

1

p2

ffiffiffiffi
5

�

s
ð5cos2�� 1Þ;

(B15)

�plane ¼ ��� � ��� ¼ �!K � 3B2

4M

1

p2

ffiffiffiffi
5

�

s
cos�;

(B16)

�apsis describes the frequency of the orbit’s apsidal pre-
cession within its orbital plane, and�plane the frequency at
which the orbital plane precesses around the symmetry
axis. These frequencies reproduce expressions that can be
found in the literature; cf. Sec. 12.3C of Ref. [38], and
Sec. 3.6.2 of Ref. [43].

The apsidal precession (B15) is due to beating between
the orbit’s radial and polar motions. In many relativity
applications, one is interested in the precession of an
orbit’s periastron, which is due to a beat between the orbit’s
radial and azimuthal motions. For the quadrupole bump,
we find

�peri ¼ ��� � ��r

¼ !K � 3B2

8M

1

p2

ffiffiffiffi
5

�

s
ð5cos2�� 2 cos�� 1Þ: (B17)

Taking the equatorial limit (� ¼ 0), we see that this result
agrees with Eq. (A4) of CH04 provided we identify their

parameter Q with B2M
3

ffiffiffiffiffiffiffiffiffiffiffiffi
5=4�

p
. Comparison of the

potential used in CH04 [their Eq. (A4)] with our form
[Eq. (B10)] shows that this identification is exactly correct.

2. Octupole shift (l ¼ 3)

The octupole bump is given by the potential

�Vl¼3 ¼ B3M
4

4r4

ffiffiffiffi
7

�

s
½5cos3�� 3 cos��; (B18)

leading to

hH 1i ¼ 3mB3e

16p4

ffiffiffiffi
7

�

s
ð1� e2Þ3=2 cos�mð5cos2�m � 4Þcos�0:

(B19)

This is proportional to cos�0, and so depends on the phase
offset of the radial and angular motions. Over very long
time scales, precessions will average out this dependence.
However, on time scales that are not long enough for �0 to
vary over its full range, there is a residual impact, leading
to octupolar shifts to observable frequencies. This can be
very important in Newtonian celestial mechanics. For
black hole applications, where the r and � motions do
not vary in phase with one another, this averaging will be
much stronger, and treating hH 1i ’ 0 should be much
more accurate.
Varying the averaged octupole Hamiltonian shift, we

find

��r ¼ 3B3

16eM

1

p9=2

ffiffiffiffi
7

�

s
ð1� e2Þ2ð1� 4e2Þ

� ð5cos2�m � 4Þ cos�0; (B20)

��� ¼ 3B3

16eM

1

p9=2

ffiffiffiffi
7

�

s
ð1� e2Þ3=2

� ½cos�m½4ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
þ 4e2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ÞÞ

þ 15e2sin2�m� � 4e2 sin�m tan�m

� 5½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
þ 4e2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ�

� cos3�m� cos�0; (B21)
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��� ¼ 3B3

16eM

1

p9=2

ffiffiffiffi
7

�

s
ð1� e2Þ3=2

� ½cos�m½4� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
þ 16e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
þ e2½16þ 15ðsin�m � 1Þ� sin�m�
� 4e2ðsin�m � 1Þ tan�m
� 5½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
þ 4e2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
Þ�

� cos3�m� cos�0: (B22)

As expected from the form of the averaged Hamiltonian,
all precession frequencies are proportional to the cosine of
the offset phase �0. On average we therefore find no
influence from the l ¼ 3 perturbation, nor from any odd l
multipolar bump. The ‘‘instantaneous’’ impact of odd l
bumps is, however, nonzero.

3. Hexadecapole shift (l ¼ 4)

Finally, for the hexadecapole bump, we have

�Vl¼4 ¼ B4M
5

16r5

ffiffiffiffi
9

�

s
½35cos4�� 30cos2�þ 3�; (B23)

leading to

hH 1i ¼ 3mB4

256p5

ffiffiffiffi
9

�

s
ð1� e2Þ3=2

� ½8ð2þ 3e2Þ � 20cos2�mð4þ 6e2

þ 3e2 cos2�0Þ
þ 35cos4�mð2þ 3e2 þ 2e2 cos2�0Þ�: (B24)

We focus on the secular (long-time average) precessions,
and average this over �0, leaving

hH 1i ¼ 3mB4

256p5

ffiffiffiffi
9

�

s
ð1� e2Þ3=2ð2þ 3e2Þ

� ð8� 40cos2�m þ 35cos4�mÞ: (B25)

The precession frequencies which arise from this are

��r ¼ � 45B4

256M

1

p11=2

ffiffiffiffi
9

�

s
ð1� e2Þ2

� ð8� 40cos2�m þ 35cos4�mÞ; (B26)

��� ¼ � 15B4

256M

1

p11=2

ffiffiffiffi
9

�

s
ð1� e2Þ3=2

� ½8ð8þ 3e2ð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ÞÞ

� 4ð62þ e2ð63þ 30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ÞÞcos2�m

þ 7ð28þ 3e2ð9þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ÞÞcos4�m�; (B27)

��� ¼ ��� þ 15B4

256M

1

p11=2

ffiffiffiffi
9

�

s
ð1� e2Þ3=2ð2þ 3e2Þ

� sin�mð28� 40cos2�mÞ: (B28)
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