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The metric of a nonrotating black hole deformed by a tidal interaction is calculated and expressed as an

expansion in the strength of the tidal coupling. The expansion parameter is the inverse length scale R�1,

where R is the radius of curvature of the external spacetime in which the black hole moves. The

expansion begins at order R�2, and it is carried out through order R�4. The metric is parametrized by a

number of tidal multipole moments, which specify the black hole’s tidal environment. The tidal moments

are freely-specifiable functions of time that are related to the Weyl tensor of the external spacetime. At

order R�2 the metric involves the tidal quadrupole moments Eab and Bab. At order R�3 it involves the

time derivative of the quadrupole moments and the tidal octupole moments Eabc and Babc. At order R�4

the metric involves the second time derivative of the quadrupole moments, the first time derivative of the

octupole moments, the tidal hexadecapole moments Eabcd and Babcd, and bilinear combinations of the

quadrupole moments. The metric is presented in a light-cone coordinate system that possesses a clear

geometrical meaning: The advanced-time coordinate v is constant on past light cones that converge

toward the black hole; the angles � and � are constant on the null generators of each light cone; and the

radial coordinate r is an affine parameter on each generator, which decreases as the light cones converge

toward the black hole. The coordinates are well-behaved on the black-hole horizon, and they are adjusted

so that the coordinate description of the horizon is the same as in the Schwarzschild geometry: r ¼
2MþOðR�5Þ. At the order of accuracy maintained in this work, the horizon is a stationary null

hypersurface foliated by apparent horizons; it is an isolated horizon in the sense of Ashtekar and Krishnan.

As an application of our results we examine the induced geometry and dynamics of the horizon, and

calculate the rate at which the black-hole surface area increases as a result of the tidal interaction.
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I. INTRODUCTION AND OVERVIEW

A. This work and its context

Our main goal in this work is to calculate the gravita-
tional field of a nonrotating black hole that is deformed by
a tidal interaction with external bodies. We assume that the
tidal interaction is weak, and that it changes slowly; we
make no other assumptions, and describe the tidal environ-
ment in the most general terms compatible with the main
assumptions. This work is a continuation of a line of
inquiry that was initiated by Manasse [1] in the early
1960s; our implementation is much more general, and
much more accurate, than Manasse’s original work.

We first introduce the two length scales that are relevant
to this problem. (Throughout the paper we use relativistic
units and set G ¼ c ¼ 1.) The first is M, the mass of the
black hole. The second isR, the radius of curvature of the
external spacetime associated with the external bodies,
evaluated at the black hole’s position. We assume that the
scales are widely separated, so that

M � R: (1.1)

This condition ensures that the tidal interaction is weak,

and allows us to speak meaningfully of a black hole mov-
ing in an external spacetime; whenM is comparable toR,
no clear distinction can be made between the ‘‘black hole’’
and the ‘‘external spacetime.’’ We refer to the approxima-
tion scheme based on the condition M=R � 1 as the
small-tide approximation.
As a concrete example we may consider a situation in

which the black hole is a member of a binary system. Let
M0 denote the mass of the external body, b the separation

between the companions, and V � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMþM0Þ=bp
the orbi-

tal velocity. The radius of curvature is then R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=ðMþM0Þp

, and

M

R
� M

MþM0 V
3: (1.2)

We demand that this be a small quantity. There are two
particular ways to achieve this. In the small-hole approxi-
mation the black-hole mass is assumed to be much smaller
than the external mass, so that M=ðMþM0Þ � 1; then
M=R is small irrespective of the size of V, and the binary
system can be strongly relativistic. In the weak-field ap-
proximation it is V that is assumed to be small, while the
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mass ratio is left unconstrained; here the two companions
can have comparable masses, or the black hole can be
much larger than its companion, but the mutual gravity
between the bodies must be weak. The small-hole and
weak-field approximations are particular instances of the
more general requirement that M=R � 1; they are both
incorporated within our small-tide approximation.

The effects of a tidal field on the structure of spacetime
around a black hole were first investigated by Manasse [1],
in the specific context of the small-hole approximation.
Using techniques similar to those exploited in this paper,
Manasse calculated the metric of a small black hole that
falls radially toward a much larger black hole. Each black
hole was taken to be nonrotating, and the small hole was
taken to move on a geodesic of the (unperturbed)
Schwarzschild spacetime of the large hole. The case of
circular motion around a large Schwarzschild black hole
was treated much later by Poisson [2], and Comeau and
Poisson [3] examined the case of circular motion around a
Kerr black hole.

The methods employed by Manasse could be applied
beyond the small-hole approximation. Alvi [4,5] realized
that they could be seamlessly extended to the more general
context of the small-tide approximation of Eq. (1.1). Alvi
exploited this insight to calculate the tidal fields acting on a
black hole in a post-Newtonian binary system. In Alvi’s
work, the two bodies have comparable masses and the
black hole has a significant influence on the geometry of
the external spacetime. Alvi calculated the tidal fields to
leading (Newtonian) order in the post-Newtonian approxi-
mation to general relativity, and specialized the orbital
motion to circular orbits. His work was later generalized
to first post-Newtonian order, and to generic orbits, by
Taylor and Poisson [6].

Alvi’s work motivated an effort to improve our under-
standing of the tidal interaction of black holes by construct-
ing the black-hole metric to high order in the coupling
strength M=R. More precisely, the metric is calculated in
the black hole’s local neighborhood, and expressed as an
expansion in powers of r=R � 1, where r is the distance
to the black hole; the metric is valid to all orders in M=r.
This program was initiated by Detweiler [7,8], who calcu-
lated the metric through order ðr=RÞ2, the lowest order at
which tidal effects appear. It was pursued by Poisson [9],
who calculated the metric through order ðr=RÞ3. In this
paper we improve on the earlier work by calculating the
metric through order ðr=RÞ4, and present the most accu-
rate version ever produced of the metric of a tidally de-
formed black hole. The improvement of the metric, from
order ðr=RÞ3 to order ðr=RÞ4, represents a significant
challenge, and the work presented here goes much beyond
the work contained in Ref. [9].

Other authors have also contributed to this effort. Frolov
and his collaborators [10,11] examined the internal geome-
try of a tidally deformed black hole, and Damour and

Lecian [12] characterized the tidal deformation in terms
of a polarizability and ‘‘shape Love numbers’’; these works
were restricted to axisymmetric tidal fields, a restriction
that is not made in this paper. In a genuine tour de force,
Yunes and Gonzalez [13] calculated the tidal deformation
of a rapidly rotating black hole to order ðr=RÞ2. The tidal
deformation of neutron stars (and other types of compact
bodies) has also been the subject of recent investigations
[14–17].

B. Tidal quadrupole moments

In the work of Detweiler [7,8] and Poisson [9] reviewed
previously, and in the work presented here, the tidal envi-
ronment is described in the most general terms compatible
with the Einstein field equations. The metric is parame-
trized by freely-specifiable functions of time that serve the
specific purpose of specifying the tidal environment; these
are packaged in symmetric tracefree (STF) tensors Ea1a2���al
and Ba1a2���al [18], which we refer to as the tidal multipole

moments of the black-hole spacetime. (The tidal moments
can be thought of as Cartesian tensors; they are symmetric
and tracefree in all pairs of indices.) At order ðr=RÞ2 the
metric involves the quadrupole moments Eab (5 functions)
andBab (5 functions). At order ðr=RÞ3 the metric involves
the time derivative of the quadrupole moments, as well as
the octupole moments Eabc (7 functions) and Babc (7
functions). And at order ðr=RÞ4 the metric involves the
second time derivative of the quadrupole moments, the first
time derivative of the octupole moments, the hexadecapole
moments Eabcd (9 functions) and Babcd (9 functions), and
bilinear combinations of the quadrupole moments. (The
calculational challenge of this work resides mostly with the
inclusion of the bilinear terms, which are supplied by the
nonlinearities of the Einstein field equations.) This gener-
ality is a substantial virtue of our work, which unifies and
extends earlier works [4,5,19,20] that examined special
cases.
The metric of a tidally deformed black hole is obtained

by integrating the vacuum field equations in the local
neighborhood of the black hole. The field equations leave
the tidal moments undetermined, and the metric is pre-
sented as a functional of these arbitrary moments. In
applications of this framework the tidal environment
must be specified, and this is achieved by making appro-
priate choices for the tidal moments. In practice this typi-
cally requires matching the local metric to a global metric
that includes the black hole and the external bodies that are
responsible for the tidal interaction. For example, Taylor
and Poisson [6] and Johnson-McDaniel et al. [21] carried
out such a matching in the context of the slow-motion
approximation, in which the mutual gravity between the
black hole and the external bodies is weak. The global
metric was expressed as a post-Newtonian expansion,
within which the black hole can justifiably be represented
as a point particle. These authors determined the quadru-
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pole moments Eab and Bab to first post-Newtonian order,
and their work could easily be extended to obtain the
higher multipole moments that also appear in the black-
hole metric. In general the nonlinearities of the field equa-
tions imply that tidal fields depend on the black-hole mass
M. In the small-hole approximation, however, the black
hole can be treated as a test body, and this dependence
disappears; in this case the determination of the tidal mo-
ments is simplified [1–3].

C. Light-cone coordinates

The choice of coordinates is often critical in the con-
struction of a metric and the exploration of its properties.
This is all the more true in the case of black-hole space-
times, which require coordinates that are well-behaved on
the horizon. We have given a lot of attention to the selec-
tion of coordinates, and have chosen to work with a system
ðv; r; �;�Þ that is specifically tailored to describe the ge-
ometry of past light cones. We refer to these as light-cone
coordinates. The coordinates have a clear geometrical
meaning: The advanced-time coordinate v is constant on
past light cones that converge toward the black hole; the
angles � and � (which we collectively denote �A, with the
upper-case Latin index A running from 2 to 3) are constant
on the null generators of each light cone; and the radial
coordinate r is an affine parameter on each generator,
which decreases as the light cones converge toward the
black hole. Through order ðr=RÞ3 the radial coordinate
doubles as an areal radius, in the sense that the area of each
two-surface ðv; rÞ ¼ constant is equal to 4�r2½1þ
Oðr4=R4Þ�; this property is lost at order ðr=RÞ4. In addi-
tion, the radial coordinate is tuned so that the coordinate
description of the black-hole horizon is the same as in the
Schwarzschild spacetime: r ¼ 2M½1þOðM5=R5Þ�. The
light-cone coordinates are well-behaved across the
horizon.

The choice of coordinates is inspired from the work of
Bondi et al. [22] and Sachs [23], in which light-cone
coordinates were utilized to construct the metric of an
asymptotically-flat spacetime. (Here the coordinates were
based on future light cones that expand toward future null
infinity.) It is inspired also by the work of Ellis and col-
laborators on observational cosmology [24–29], in which
the metric of an expanding universe is constructed from
observations made by a typical cosmological observer.
Light-cone coordinates were also introduced by Synge in
his classic textbook on general relativity [30]; we followed
his methods closely in this work and its precursors
[2,9,31,32].

In addition to the quasispherical system of light-cone
coordinates ðv; r; �AÞ, we find it convenient to introduce
also a quasi-Cartesian variant ðv; xaÞ. The spatial coordi-
nates xa (with the lower-case Latin index a running from 1
to 3) are constructed in the usual way from the quasi-
spherical coordinates ðr; �AÞ; we have the relations x ¼

r sin� cos�, y ¼ r sin� sin�, and z ¼ r cos�, which we
collectively denote xa ¼ r�að�AÞ.

D. Black-hole metric

The metric of a tidally deformed black hole is obtained
by constructing a perturbation of the Schwarzschild solu-
tion, which describes a nonrotating black hole in complete
isolation. The Schwarzschild metric is presented in the
Eddington-Finkelstein coordinates ðv; r; �AÞ, and the per-
turbation is presented in a light-cone gauge that preserves
the geometrical meaning of the background coordinates.
To construct the perturbation we rely on the covariant and
gauge-invariant formalism of Martel and Poisson [33], and
on the formulation of the light-cone gauge by Preston and
Poisson [34]. At orders ðr=RÞ2 and ðr=RÞ3 the perturba-
tion satisfies the vacuum field equations linearized with
respect to the Schwarzschild solution. At order ðr=RÞ4 the
perturbation satisfies nonlinear field equations.
In the quasi-Cartesian coordinates ðv; xaÞ the building

blocks of the metric are the tidal potentials introduced in
Tables I, II, III, IV, V, and VI, of Sec. II; these are generated
by the tidal multipole moments introduced previously. The
black-hole metric appears in Eqs. (3.5) of Sec. III C, and it
is expressed in terms of the radial functions listed in
Tables XIV and XV. In the quasispherical coordinates
ðv; r; �AÞ the tidal potentials are listed in Tables VIII, IX,
X, XI, XII, and XIII, of Sec. II, and expressed as expan-
sions in spherical-harmonic functions (see Table VII). The
black-hole metric appears in Eqs. (3.7) of Sec. III C, and it
involves the same set of radial functions.
An important property of the black-hole metric is the

fact, mentioned previously, that in our light-cone coordi-
nates, the position of the horizon is given by

rhorizon ¼ 2M½1þOðM5=R5Þ�; (1.3)

the same relation as in the unperturbed Schwarzschild
spacetime. This information allows us to investigate the
nature and dynamics of the horizon’s geometry, which is
determined by the horizon’s induced metric as well as the
expansion and shear of the horizon’s generators. An im-
portant outcome of this investigation is the statement that

� ¼ OðM5=R6Þ: (1.4)

This represents the rate at which the congruence of null
generators expand, and we find that within the degree of
accuracy maintained in this work, the generators are sta-
tionary. This implies that the horizon of a tidally deformed
black hole is foliated by apparent horizons. The black-hole
horizon is an isolated horizon in the sense of Ashtekar and
Krishnan [35–37].

E. Tidal heating

A dynamical consequence of the tidal interaction is the
fact that the black hole grows in size at a rate described by
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M6ð _Eab

_Eab þ _Bab
_BabÞ

þ 16

4725
M8

�
_Eabc

_Eabc þ 16

9
_Babc

_Babc
�

þOðM9=R9Þ: (1.5)

HereA is the surface area of a cross-section v ¼ constant
of the black-hole horizon, and �0 :¼ ð4MÞ�1 is the surface
gravity of the unperturbed horizon. An overdot indicates
differentiation with respect to v, and the right-hand side of
the equation involves the tidal moments Eab, Eabc,Bab, and
Babc. We refer to the growth of area that results from the
tidal interaction as the tidal heating of the black hole by the
external bodies. This choice of terminology deserves an
explanation.

The changes in black-hole parameters that result from
time-dependent, external processes have been the subject
of investigation by many researchers, starting from the
pioneering work of Teukolsky and Press [38]. It is useful
to classify the physical processes that alter the configura-
tion of a black hole as fast processes on the one hand, and
slow processes on the other. Fast processes occur on a time
scale that is shorter than or comparable to the black-hole
mass M, and these produce (electromagnetic and/or gravi-
tational) radiation that is partially absorbed by the black
hole; in this case the changes in black-hole parameters that
result from the interaction are radiative changes. Slow
processes, on the other hand, occur on a time scale that is
long compared with the black-hole mass; while these con-
tinue to produce changes in the black-hole parameters, the
phenomenon no longer possesses a radiative character, and
the phrase ‘‘tidal heating’’ captures the physics better than
the phrase ‘‘black-hole absorption.’’ It is good to point out
that the mathematical formulation of the phenomenon by
Teukolsky and Press [38] (see also Ref. [39]) is valid both
for fast and slow processes, and is insensitive to matters of
interpretation.

The tidal heating of black holes was recently investi-
gated by Alvi [40], Poisson [9,39], Taylor and Poisson [6],
and Comeau and Poisson [3], building on earlier work by
Poisson and Sasaki [41] and Tagoshi, Mano, and Takasugi
[42]. The notion of tidal work, tidal torque, and tidal
heating was put on a firm relativistic footing by Purdue
[43], Favata [44], and Booth and Creighton [45]. In a recent
work [46], Poisson compared the equations that describe
the rate of change of the black-hole mass, angular momen-
tum, and surface area that result from a tidal interaction
with external bodies, with the equations that describe how
tidal forces do work, torque, and produce heat in a
Newtonian, viscous body; the equations are strikingly
similar, and the correspondence between the Newtonian-
body and black-hole results is revealed to hold in near-
quantitative detail. The tidal heating and torquing of black
holes was incorporated in an effective theory of point
particles by Goldberger and Rothstein [47] and Porto [48].

In favorable circumstances the tidal heating and torqu-
ing of a black hole can be relevant to astrophysical sources
of gravitational waves [49]. In particular, it is likely to be
significant in the generation of low-frequency waves that
would be measured by a space-based detector such as
LISA [50]. For example, Martel [51] showed that during
a close encounter between a massive black hole and a
compact body of a much smaller mass, up to approxi-
mately 5% of the lost orbital energy goes toward the tidal
heating of the black hole; the rest is carried off to infinity
by the gravitational waves. Hughes [52] calculated that
when the massive black hole is rapidly rotating, the tidal
heating slows down the inspiral of the orbiting body, and
therefore increases the duration of the gravitational-wave
signal. These conclusions are supported by Hughes et al.
[53] and Drasco and Hughes [54].
There are indications that the tidal heating and torquing

of black holes may have been seen in accurate numerical
simulations of the inspiral and merger of binary black holes
[55,56]. It is conceivable that as the precision of these
simulations continues to improve in the future, the tidal
heating will be exploited as a diagnostic of numerical
accuracy; the surface area of each simulated black hole
should be seen to grow in accordance to Eq. (1.5) instead of
staying constant in time.

F. Other applications

The work presented here can serve as a foundation for
the construction of initial data sets for the numerical simu-
lation of black-hole inspirals (see Ref. [57] for a review of
the current state of the art). Simulations carried out thus far
have largely relied on initial data [58,59] that were adopted
more for their flexibility and convenience than their astro-
physical realism; these initial data tend to contain a large
amount of spurious radiation and produce unwanted ec-
centric orbital motion. A promising alternative strategy is
to rely on a post-Newtonian metric to construct initial data
sets that give a faithful (though approximate) description of
two widely separated black holes. Early implementations
[60–62] of this idea treated the black holes as post-
Newtonian point masses, and produced initial data that
were unreliable close to each body. An improvement was
proposed by Alvi [4,5], who recognized that the post-
Newtonian metric should be replaced by a different repre-
sentation of the gravitational field in the local neighbor-
hood of each black hole; he therefore patched the post-
Newtonian metric to the metric of a tidally deformed black
hole in a buffer regionM � r � R, in which each metric
gives an acceptable representation of the true gravitational
field. Alvi’s construction was perfected by Yunes and his
collaborators [63–65], and the most mature implementa-
tion of this idea is contained in the recent work of Johnson-
McDaniel et al. [21]. Because the black-hole metric pre-
sented in this paper is more accurate than the Detweiler
metric [7,8] used by Johnson-McDaniel et al., it could be
involved in an improved version of their construction.
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Another interesting avenue of application for our metric
would be to involve it in the dynamical-horizon formalism
of Ashtekar and Krishnan [35–37], which provides a purely
local characterization of the structure and dynamics of
black-hole horizons. Our work could contribute new in-
sights to this effort by allowing the horizon quantities to be
expressed in terms of the tidal moments, which encode
information about the external universe. In this way, our
metric would play the role of messenger between the out-
side world and the horizon. Initial steps along those lines
were taken by Kavanagh and Booth [66]. A particularly
interesting question to investigate is whether the
dynamical-horizon notions of mass and current multipole
moments [67] are compatible with the recent observation
that the tidal Love numbers of a nonrotating black hole
must all be zero [17].

G. Organization of the paper

The remainder of the paper is divided into five sections
and four appendixes. We describe our results in Secs. II,
III, and IV, and provide derivations of these results in
Secs. V and VI, and the appendixes.

We begin in Sec. II by providing definitions for the tidal
multipole moments Eab, Eabc, Eabcd,Bab,Babc, andBabcd.
The tidal moments allow us to introduce the length scale
R, and they give rise to tidal potentials that form the
building blocks for the construction of the black-hole
metric.

In Sec. III we display our expressions for the metric of a
tidally deformed black hole. We proceed in two steps. We
first consider a smooth timelike geodesic � in a vacuum
region of an arbitrary spacetime, and we construct the
metric of this spacetime in a neighborhood of the world
line. We refer to this spacetime as the background space-
time, and its metric is displayed in Eqs. (3.3) and (3.4); the
metric is presented in the light-cone coordinates ðv; r; �AÞ
and ðv; xaÞ introduced previously. We next insert a black
hole of mass M into the background spacetime, place it on
the world line �, and recalculate the metric. The metric of
the black-hole spacetime is displayed in Eqs. (3.7) and
(3.5).

In Sec. IV we describe the consequences of the tidal
deformation on the structure and dynamics of the black-
hole horizon. We establish the statements of Eqs. (1.3),
(1.4), and (1.5).

In Sec. V we provide a derivation of the background
metric of Eqs. (3.3) and (3.4). In Sec. VI we present a
derivation of the black-hole metric of Eqs. (3.5) and (3.7).

In Appendix Awe describe how the tidal potentials can
be decomposed in (scalar, vector, and tensor) spherical
harmonics. In Appendix B we calculate the determinant
of the induced metric on the black-hole horizon; the result
is displayed (but not derived) in Sec. IV. In Appendix C we
provide calculational details relevant to the computation of
the tidal heating in Sec. IV. And in Appendix D we sketch a

second, alternative derivation of the background metric of
Eqs. (3.3) and (3.4).

II. TIDAL MOMENTS AND POTENTIALS

The work of Zhang [18] reveals that the metric of any
vacuum spacetime can be constructed in the neighborhood
of any geodesic world line and expressed in terms of two
sets of tidal multipole moments. We begin our exploration
of the geometry of a tidally deformed black hole in
Sec. II A with a formal definition of these moments. We
use them in Sec. II B to specify the length and time scales
associated with the tidal environment, and in Sec. II C we
describe their properties under parity transformations. We
conclude in Secs. II D and II E with the introduction of
potentials that can be constructed from the tidal moments.

A. Definition of tidal moments

We consider a vacuum region of spacetime in a neigh-
borhood of a smooth timelike geodesic �. The world line is
described by the parametric relations z�ð�Þ in an arbitrary
coordinate system x�, and it is parametrized by proper time
�. The velocity vector u� :¼ dz�=d� is tangent to the
world line, and we construct a vectorial basis by adding
to u� an orthonormal triad of vectors e�a ð�Þ, which we
assume to be orthogonal to u� and parallel-transported
on the world line; the Latin index a labels the three
members of the triad.
We use the basis ðu�; e�a Þ to decompose tensors that are

evaluated on the world line. For example,

Ca0b0 :¼ C��	
e
�
au

�e	b u

; (2.1a)

Cabc0 :¼ C�	��e
�
a e

	
b e

�
c u�; (2.1b)

Cabcd :¼ C�	��e
�
a e

	
b e

�
c e�d (2.1c)

are the frame components of the Weyl tensor evaluated on
�; these are functions of proper time �. We shall also need
the frame components of its first covariant derivative,

Ca0b0jc :¼ C��	
;�e
�
au

�e	b u

e�c ; (2.2a)

Cabc0jd :¼ C�	��;�e
�
a e

	
b e

�
c e�du

�; (2.2b)

Cabcdje :¼ C�	��;�e
�
a e

	
b e

�
c e�de

�
e; (2.2c)

as well as

Ca0b0jcd :¼ C��	
;��e
�
au

�e	b u

e�c e�d; (2.3a)

Cabc0jde :¼ C�	��;��e
�
a e

	
b e

�
c u�e�de

�
e; (2.3b)

Cabcdjef :¼ C�	��;�
e
�
a e

	
b e

�
c e�de

�
ee



f ; (2.3c)

the frame components of its second covariant derivatives.
We manipulate frame indices as if they were associated
with Cartesian tensors; we lower them with the Kronecker
delta �ab, and we raise them with �ab.
The symmetries of the Weyl tensor imply that it pos-

sesses 10 algebraically-independent components, and
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these can be encoded in the two symmetric-tracefree (STF)
tensors

Eab :¼ ðCa0b0ÞSTF; (2.4a)

Bab :¼ 1

2
ð�apqCpq

b0ÞSTF: (2.4b)

Here �abc is the permutation symbol, and the STF sign
instructs us to symmetrize all free indices and remove all
traces. We also use an angular-bracket notation to indicate
the same operation: If Aabcd is an arbitrary tensor, then

Ahabcdi :¼ ðAabcdÞSTF: (2.5)

In the case of Eq. (2.4) the STF operation is superfluous,
because Ca0b0 and �apqC

pq
b0 are already symmetric and

tracefree. We refer to Eab and Bab as the tidal quadrupole
moments associated with the world line �. Each STF tensor
contains 5 independent components, and these are func-

tions of proper time �. We use _Eab and _Bab to denote the

derivative of each moment with respect to �, and €Eab and
€Bab to denote the second derivatives. The derivatives of the
Weyl tensor in the direction of u� can be expressed directly
in terms of these quantities.

The symmetries of the Weyl tensor and the Bianchi
identities imply that the spatial derivatives of the Weyl
tensor—those listed in Eq. (2.2)—possess 24
algebraically-independent components. These are encoded
in the STF tensors

Eabc :¼ ðCa0b0jcÞSTF; (2.6a)

Babc :¼ 3

8
ð�apqCpq

b0jcÞSTF; (2.6b)

and in _Eab and
_Bab. We refer to Eabc and Babc as the tidal

octupole moments associated with the world line �. Each
tensor contains 7 independent components, and these are

functions of proper time �. We use _Eabc and
_Babc to denote

the derivative of each moment with respect to �. The
derivatives of the spatially-differentiated Weyl tensor in
the direction of u� can be expressed directly in terms of
these quantities.

We shall also require the second spatial derivatives of
the Weyl tensor, as listed in Eqs. (2.3). In this case there are
62 algebraically-independent components, and these are

encoded in €Eab,
€Bab, _Eabc,

_Babc, and in the new STF
tensors

Eabcd :¼ 1

2
ðCa0b0jcdÞSTF; (2.7a)

Babcd :¼ 3

20
ð�apqCpq

b0jcdÞSTF: (2.7b)

We refer to Eabcd and Babcd as the tidal hexadecapole
moments associated with the world line �. Each tensor
contains 9 independent components, and these are func-
tions of proper time �.

The decomposition of the Weyl tensor and its deriva-
tives in terms of tidal moments is displayed in Eqs. (D15),
(D17), and (D19) of Appendix D. The numerical factors
inserted in Eqs. (2.4), (2.6), and (2.7), are inherited from
Zhang’s choice of normalization [18].
The black-hole metric of Sec. III will be expressed in

terms of the tidal moments Eab, Eabc, Eabcd,Bab,Babc, and
Babcd, which are treated as freely-specifiable functions of
time. As we shall explain in Sec. III, the relation between
the tidal moments and the Weyl tensor will be more subtle
than what was described here.

B. Tidal scales

The tidal moments allow us to specify length and time
scales that characterize the tidal environment around the
world line �. We thus introduce the length scalesR andL,
the time scaleT , and the velocity scaleV . Our discussion
here follows Thorne and Hartle [68] and Zhang [18].
The length R is the local radius of curvature, and

represents the strength of the Weyl tensor evaluated on
the world line. We express this as

E ab � 1

R2
; Bab � V

R2
: (2.8)

The first equation indicates that a typical component of Eab

will have a magnitude comparable to R�2. The second
equation indicates that a typical component of Bab will
differ from this by a factor of V , and this defines the
velocity scale.
The length L is the inhomogeneity scale, and it mea-

sures the degree of spatial variation of the Weyl tensor. It is
defined through the relations

E abc � 1

R2L
; Babc � V

R2L
(2.9)

involving the tidal octupole moments. We expect that the
hexadecapole moments will be suppressed by an additional
factor of L:

E abcd � 1

R2L2
; Babcd � V

R2L2
: (2.10)

The time T is the scale associated with changes in the
behavior of the Weyl tensor. This is defined by

_E ab � 1

R2T
; _Bab � V

R2T
: (2.11)

We also have €Eab ¼ R�2T �2 and _Eabc ¼ R�2L�1T �1,

as well as €Bab ¼ VR�2T �2 and _Babc ¼
VR�2L�1T �1.
To illustrate the meaning of these tidal scales, let us

consider as an example the world line of an observer
moving on a circular orbit of radius b around a body of

massM0. In this case the velocity scale isV � ffiffiffiffiffiffiffiffiffiffiffiffi
M0=b

p
, the

radius of curvature is R� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=M0p

, the inhomogeneity

ERIC POISSON AND IGOR VLASOV PHYSICAL REVIEW D 81, 024029 (2010)

024029-6



scale is L� b, and the time scale is T � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=M0p

. In this
example we have that T �R, V �L=T , and L�
VR. When the motion is slow we have that L � R,
and there is a wide separation between the two length
scales. When the motion is relativistic, however, all scales
are comparable to each other.

To simplify our notation in later portions of the paper,
we choose to eliminate the distinction between the differ-
ent tidal scales. We therefore set V � 1, L�T �R,
and adopt R as the single scale associated with the tidal
environment. In this sloppy notation we write

Eab �Bab � 1

R2
; (2.12a)

Eabc �Babc � _Eab � _Bab � 1

R3
; (2.12b)

Eabcd �Babcd � _Eabc � _Babc � €Eab � €Bab � 1

R4
:

(2.12c)

We emphasize that this relaxation of our notation is simply
to save writing. For example, an error term that should be
written Oðr5R�2L�2T �1Þ will be condensed to the sim-
pler expression Oðr5=R5Þ. The form of the equations will
always allow us to determine the order of magnitude of
each term in relation to the complete set of scaling
quantities.

C. Parity rules

In the context of this work, a parity transformation is a
change of tetrad vectors described by u� ! u� and e�a !
�e�a ; the transformation keeps the permutation symbol
unchanged: �abc ! �abc. Under the transformation the
frame components of the Weyl tensor change according
to Ca0b0 ! Ca0b0 and Cabc0 ! �Cabc0. We also have
Ca0b0jc ! �Ca0b0jc, Cabc0jd ! Cabc0jd, and Ca0b0jcd !
Ca0b0jcd, Cabc0jde ! �Cabc0jde. From Eqs. (2.4), (2.6), and

(2.7) we deduce the transformation rules

Eab ! Eab; Eabc ! �Eabc; Eabcd ! Eabcd;

(2.13a)

Bab ! �Bab; Babc ! Babc; Babcd ! �Babcd

(2.13b)

for the tidal moments. We say that Eab, Eabc, and Eabcd

have even parity, because they transform as ordinary
Cartesian tensors under a parity transformation. And we
say that Bab, Babc, and Babcd have odd parity, because
they transform as pseudotensors.

D. Tidal potentials: Cartesian coordinates

For the purposes of writing down the black-hole metric
in Sec. III, we involve the tidal moments in the construc-
tion of tidal potentials that will form the main building
blocks for the metric. We first achieve this with the help of

a system of Cartesian coordinates xa that we assume is at
our disposal. In the following subsection we convert the
potentials to spherical coordinates ðr; �;�Þ.
We introduce

�a :¼ xa=r (2.14)

as the radial unit vector, with r :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�abx

axb
p

denoting the
usual Euclidean distance. We refer to the radial direction as
the longitudinal direction, and to the orthogonal space as
the transverse directions.
We wish to combine the tidal moments with �a so as to

form scalar, vector, and (rank-two, symmetric) tensor po-
tentials that satisfy the following properties:
(1) Each potential is an element of an irreducible rep-

resentation of the rotation group labeled by multi-
pole order l.

(2) Each scalar potential transforms as such under a
parity transformation.

(3) Each vector potential transforms as such under a
parity transformation, and is purely transverse, in
the sense of being orthogonal to �a.

(4) Each tensor potential transforms as such under a
parity transformation, and is transverse-tracefree,
in the sense of being orthogonal to �a and having
a vanishing trace.

The first property implies that each potential will satisfy an
appropriate eigenvalue equation that depends on the multi-
pole order and the tensorial rank of the potential; these are
displayed in Eqs. (A3) and (A10) of Appendix A. Under a
parity transformation the longitudinal vector transforms as
�a ! ��a, a scalar potential remains invariant, a vector
potential changes sign, and a tensor potential remains
invariant. To aid the construction of the potentials we
introduce

�a
b
:¼ �a

b ��a�b (2.15)

as a projector to the transverse space orthogonal to�a; this
transforms as �ab ! �ab under a parity transformation.
The required potentials are displayed in a number of

tables. In Table I we list the tidal potentials that are con-
structed from the even-parity tidal moments Eab, Eabc, and
Eabcd. In Table II we have the tidal potentials that are
constructed from the odd-parity tidal moments Bab,
Babc, and Babcd. In Table III we list the potentials that
arise from the bilinear combination EabEcd of even-parity
moments. In Table IV we have the potentials that arise
from the bilinear combination BabBcd of odd-parity mo-
ments. In Table V we list potentials that arise when we
combine Eab and Bab into an even-parity structure. And
finally, in Table VI we combine them into an odd-parity
structure.
We illustrate the construction of the potentials by exam-

ining a few examples. The simplest cases involve the tidal
quadrupole moment Eab, which transforms as a tensor
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under a parity transformation. The associated scalar poten-
tial is Eab�

a�b; this transforms appropriately under a
parity transformation, and because Eab is tracefree this
satisfies the scalar eigenvalue equation with l ¼ 2. To get
a vector potential we first form Ecb�

b, which has the
appropriate number of free indices. We next multiply this
by �c

a to make the vector transverse, and verify that the
final object satisfies the vectorial eigenvalue equation with
l ¼ 2. To get a transverse tensor potential we first form
�c

a�
d
bEcd, and we remove its trace by adding

1
2�abðEcd�

c�dÞ; the result satisfies the appropriate eigen-
value equation with l ¼ 2. The method generalizes easily
to octupole and hexadecapole potentials, and the final
results are displayed in Table I.
We next examine the potentials associated with the odd-

parity quadrupole moment Bab. The combination
Bab�

a�b transforms as a pseudoscalar under a parity
transformation and does not, therefore, satisfy the criteria
that were formulated previously. To obtain a suitable po-
tential we must involve the permutation symbol, and the
simplest allowed combination is �apq�

pBq
c�

c. This

transforms as a vector under a parity transformation and
satisfies the appropriate eigenvalue equation with l ¼ 2;
we therefore include it as one of our building blocks. To
form a tensor potential we remove �c, replace it with the
projector �c

b, and symmetrize the indices; the end result

satisfies all the properties required of a tensor potential.
The method generalizes easily to octupole and hexadeca-
pole potentials, and these are listed in Table II.
The bilinear potentials are constructed by forming STF

products of the quadrupole moments Eab and Bab and
combining these with appropriate factors of �a, �a

b, and

�abc. For example, the STF products that can be formed
from two factors of Eab are the scalar EpqEpq, the rank-two

tensor EphaEp
bi, and the rank-four tensor EhabEcdi; the

TABLE VI. Irreducible tidal potentials: type-EB, odd-parity.
The superscripts q and h stand for ‘‘quadrupole’’ and ‘‘hexade-
capole,’’ respectively.

H q
a ¼ �a

pq�pErhqBr
ci�

c

H q
ab ¼ �a

pq�pErhqBr
di�

d
b þ �b

pq�pErhqBr
ci�

c
a

H h
a ¼ �a

pq�pEhqcBdei�c�d�e

H h
ab ¼ ð�apq�pEhqdBefi�d

b þ �b
pq�pEhqcBefi�c

aÞ�e�fTABLE II. Irreducible tidal potentials: type-B, odd-parity.
The superscripts q, o, and h stand for ‘‘quadrupole,’’ ‘‘octupole,’’
and ‘‘hexadecapole,’’ respectively. The tidal moments Bab,
Babc, and Babcd are the STF tensors defined in the text. The
factors of 4

3 and
10
3 are inserted to respect Zhang’s normalization

convention for Babc and Babcd; see Eqs. (2.6) and (2.7).

Bq
a ¼ �apq�

pBq
c�

c

Bq
ab ¼ �apq�

pBq
d�

d
b þ �bpq�

pBq
c�

c
a

Bo
a ¼ 4

3 �apq�
pBq

cd�
c�d

Bo
ab ¼ 4

3 ð�apq�pBq
de�

d
b þ �bpq�

pBq
ce�

c
aÞ�e

Bh
a ¼ 10

3 �apq�
pBq

cde�
c�d�e

Bh
ab ¼ 10

3 ð�apq�pBq
def�

d
b þ �bpq�

pBq
cef�

c
aÞ�e�f

TABLE III. Irreducible tidal potentials: type-EE, even-parity.
The superscripts m, q, and h stand for ‘‘monopole,’’ ‘‘quadru-
pole,’’ and ‘‘hexadecapole,’’ respectively.

Pm ¼ EpqEpq

P q ¼ EphcEp
di�

c�d

P q
a ¼ �a

cEphcEp
di�

d

P q
ab ¼ 2�a

c�b
dEphcEp

di þ �abP q

P h ¼ EhcdEefi�c�d�e�f

P h
a ¼ �a

cEhcdEefi�d�e�f

P h
ab ¼ 2�a

c�b
dEhcdEefi�e�f þ �abP h

TABLE I. Irreducible tidal potentials: type-E, even-parity. The
superscripts q, o, and h stand for ‘‘quadrupole,’’ ‘‘octupole,’’ and
‘‘hexadecapole,’’ respectively. The tidal moments Eab, Eabc, and
Eabcd are the STF tensors defined in the text. The extra factors of
2 in the hexadecapole potentials are inserted to respect Zhang’s
normalization convention for Eabcd; see Eqs. (2.7).

Eq ¼ Ecd�
c�d

Eq
a ¼ �a

cEcd�
d

Eq
ab ¼ 2�a

c�b
dEcd þ �abEq

Eo ¼ Ecde�
c�d�e

Eo
a ¼ �a

cEcde�
d�e

Eo
ab ¼ 2�a

c�b
dEcde�

e þ �abEo

Eh ¼ 2Ecdef�
c�d�e�f

Eh
a ¼ 2�a

cEcdef�
d�e�f

Eh
ab ¼ 4�a

c�d
bEcdef�

e�f þ �abEh

TABLE IV. Irreducible tidal potentials: type-BB, even-parity.
The superscripts m, q, and h stand for ‘‘monopole,’’ ‘‘quadru-
pole,’’ and ‘‘hexadecapole,’’ respectively.

Qm ¼ BpqBpq

Qq ¼ BphcBp
di�

c�d

Qq
a ¼ �a

cBphcBp
di�

d

Qq
ab ¼ 2�a

c�b
dBphcBp

di þ �abQq

Qh ¼ BhcdBefi�c�d�e�f

Qh
a ¼ �a

cBhcdBefi�d�e�f

Qh
ab ¼ 2�a

c�b
dBhcdBefi�e�f þ �abQh

TABLE V. Irreducible tidal potentials: type-EB, even-parity.
The superscripts d and o stand for ‘‘dipole’’ and ‘‘octupole,’’
respectively.

Gd ¼ �cpqEp
rBrq�c

Gd
a ¼ �a

c�cpqEp
rBrq

Go ¼ �pqhcEp
dB

q
ei�

c�d�e

Go
a ¼ �a

c�pqhcEp
dB

q
ei�

d�e

Go
ab ¼ 2�a

c�b
d�pqhcEp

dB
q
ei�

e þ �abGo
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associated potentials are listed in Table III, and those of
Table IV follow from similar manipulations. When Eab and
Bab are both involved we must be mindful of the parity
rules; for example, the hexadecapole potential
EhabBcdi�a�b�c�d is ruled out because it transforms

as a pseudoscalar under a parity transformation. The ap-
propriate combinations must involve the permutation sym-
bol, and these are displayed in Tables V and VI.

E. Tidal potentials: Angular coordinates

A transformation from Cartesian coordinates xa to
spherical coordinates ðr; �; �Þ is effected by

xa ¼ r�að�AÞ; (2.16)

in which the longitudinal vector �a is now parametrized
by two polar angles �A ¼ ð�;�Þ. Explicitly, we have that
�a ¼ ½sin� cos�; sin� sin�; cos��. The transformation
implies that @xa=@r ¼ �a and @xa=@�A ¼ r�a

A, with

�a
A
:¼ @�a

@�A
: (2.17)

We note the useful identities

�a�
a
A ¼ 0; (2.18a)

�AB ¼ �ab�
a
A�

b
B; (2.18b)

�AB�a
A�

b
B ¼ �ab: (2.18c)

Here �AB ¼ diag½1; sin2�� is the metric on the unit two-
sphere, and �AB is its inverse. We introduce DA as the
covariant-derivative operator compatible with �AB, and
�AB as the Levi-Civita tensor on the unit two-sphere
(with nonvanishing components ��� ¼ ���� ¼ sin�).

We adopt the convention that upper-case Latin indices
are raised and lowered with �AB and �AB, respectively.
Finally, we note that DC�AB ¼ DC�AB ¼ 0.
We convert the vector and tensor potentials from their

initial Cartesian incarnations to angular-coordinate ver-
sions by making use of the transformation matrix �a

A.

TABLE VII. Spherical-harmonic functions Ylm and harmonic components AðlÞ
m involved in

the decomposition of AðlÞ :¼ Ak1���kl�
k1 � � ��kl ¼ P

mA
ðlÞ
m Ylm. The functions are real, and

they are listed for the relevant modes l ¼ 1 (dipole), l ¼ 2 (quadrupole), l ¼ 3 (octupole), and
l ¼ 4 (hexadecapole). The abstract index m describes the dependence of these functions on the
angle �; for example Yl;2s is proportional to sin2�. To simplify the expressions we write C :¼
cos� and S :¼ sin�. The harmonic components are expressed in terms of the independent
components of the STF tensor Ak1���kl .

Y1;0 ¼ C Ad
0 ¼ A3

Y1;1c ¼ S cos� Ad
1c ¼ A1

Y1;1s ¼ S sin� Ad
1s ¼ A2

Y2;0 ¼ 1� 3C2 Aq
0 ¼ 1

2 ðA11 þA22Þ
Y2;1c ¼ 2SC cos� Aq

1c ¼ A13

Y2;1s ¼ 2SC sin� Aq
1s ¼ A23

Y2;2c ¼ S2 cos2� Aq
2c ¼ 1

2 ðA11 �A22Þ
Y2;2s ¼ S2 sin2� Aq

2s ¼ A12

Y3;0 ¼ Cð3� 5C2Þ Ao
0 ¼ 1

2 ðA113 þA223Þ
Y3;1c ¼ 3

2Sð1� 5C2Þ cos� Ao
1c ¼ 1

2 ðA111 þA122Þ
Y3;1s ¼ 3

2Sð1� 5C2Þ sin� Ao
1s ¼ 1

2 ðA112 þA222Þ
Y3;2c ¼ 3S2C cos2� Ao

2c ¼ 1
2 ðA113 �A223Þ

Y3;2s ¼ 3S2C sin2� Ao
2s ¼ A123

Y3;3c ¼ S3 cos3� Ao
3c ¼ 1

4 ðA111 � 3A122Þ
Y3;3s ¼ S3 sin3� Ao

3s ¼ 1
4 ð3A112 �A222Þ

Y4;0 ¼ 1
2 ð3� 30C2 þ 35C4Þ Ah

0 ¼ 1
4 ðA1111 þ 2A1122 þA2222Þ

Y4;1c ¼ 2SCð3� 7C2Þ cos� Ah
1c ¼ 1

2 ðA1113 þA1223Þ
Y4;1s ¼ 2SCð3� 7C2Þ sin� Ah

1s ¼ 1
2 ðA1123 þA2223Þ

Y4;2c ¼ S2ð1� 7C2Þ cos2� Ah
2c ¼ 1

2 ðA1111 �A2222Þ
Y4;2s ¼ S2ð1� 7C2Þ sin2� Ah

2s ¼ A1112 þA1222

Y4;3c ¼ 4S3C cos3� Ah
3c ¼ 1

4 ðA1113 � 3A1223Þ
Y4;3s ¼ 4S3C sin3� Ah

3s ¼ 1
4 ð3A1123 �A2223Þ

Y4;4c ¼ S4 cos4� Ah
4c ¼ 1

8 ðA1111 � 6A1122 þA2222Þ
Y4;4s ¼ S4 sin4� Ah

4s ¼ 1
2 ðA1112 �A1222Þ
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We thus define

E q
A
:¼ Eq

a�a
A; Eq

AB
:¼ Eq

ab�
a
A�

b
A; (2.19)

and apply the same rule to all other potentials; for example,
Go

AB
:¼ Go

ab�
a
A�

b
B. After this conversion the tidal poten-

tials become scalar, vector, and tensor fields on the unit
two-sphere, and they depend on the angular coordinates �A

only. It is easy to show that the conversion can be undone;
for example Eq

a ¼ Eq
A�

A
a , with �A

a :¼ �ab�
AB�b

B.

The tidal potentials can all be expressed in terms of
(scalar, vector, and tensor) spherical harmonics. Let Ylm

be real-valued spherical-harmonic functions (as defined in
Table VII). The relevant vectorial and tensorial harmonics
of even parity are

Ylm
A

:¼ DAY
lm; (2.20a)

Ylm
AB

:¼
�
DADB þ 1

2
lðlþ 1Þ�AB

�
Ylm; (2.20b)

notice that �ABYlm
AB ¼ 0 by virtue of the eigenvalue equa-

tion satisfied by the spherical harmonics. The vectorial and
tensorial harmonics of odd parity are

TABLE IX. The first column lists the harmonic components of
type-B, odd-parity tidal potentials, as defined in Table II. The
second column lists their expansions in scalar, vector, and tensor
harmonics. The components of Bo come with an additional
factor of 4

3 to accommodate Zhang’s choice of normalization,

and those of Bh come with an additional factor 10
3 ; see Table II.

Bq
0 ¼ 1

2 ðB11 þB22Þ
Bq

1c ¼ B13 Bq ¼ P
mB

q
mY2;m

Bq
1s ¼ B23 Bq

A ¼ 1
2

P
mB

q
mX

2;m
A

Bq
2c ¼ 1

2 ðB11 �B22Þ Bq
AB ¼ P

mB
q
mX

2;m
AB

Bq
2s ¼ B12

Bo
0 ¼ 2

3 ðB113 þB223Þ
Bo

1c ¼ 2
3 ðB111 þB122Þ

Bo
1s ¼ 2

3 ðB112 þB222Þ Bo ¼ P
mB

o
mY

3;m

Bo
2c ¼ 2

3 ðB113 �B223Þ Bo
A ¼ 1

3

P
mB

o
mX

3;m
A

Bo
2s ¼ 4

3B123 Bo
AB ¼ 1

3

P
mB

o
mX

3;m
AB

Bo
3c ¼ 1

3 ðB111 � 3B122Þ
Bo

3s ¼ 1
3 ð3B112 �B222Þ

Bh
0 ¼ 5

6 ðB1111 þ 2B1122 þB2222Þ
Bh

1c ¼ 5
3 ðB1113 þB1223Þ

Bh
1s ¼ 5

3 ðB1123 þB2223Þ
Bh

2c ¼ 5
3 ðB1111 �B2222Þ Bh ¼ P

mB
h
mY

4;m

Bh
2s ¼ 10

3 ðB1112 þB1222Þ Bh
A ¼ 1

4

P
mB

h
mX

4;m
A

Bh
3c ¼ 5

6 ðB1113 � 3B1223Þ Bh
AB ¼ 1

6

P
mB

h
mX

4;m
AB

Bh
3s ¼ 5

6 ð3B1123 �B2223Þ
Bh

4c ¼ 5
12 ðB1111 � 6B1122 þB2222Þ

Bh
4s ¼ 5

3 ðB1112 �B1222Þ

TABLE VIII. The first column lists the harmonic components
of type-E, even-parity tidal potentials, as defined in Table I. The
second column lists their expansions in scalar, vector, and tensor
harmonics. The components of Eh come with an additional factor
of 2 to accommodate Zhang’s choice of normalization; see
Table I.

Eq
0 ¼ 1

2 ðE11 þ E22Þ
Eq
1c ¼ E13 Eq ¼ P

mE
q
mY2;m

Eq
1s ¼ E23 Eq

A ¼ 1
2

P
mE

q
mY

2;m
A

Eq
2c ¼ 1

2 ðE11 � E22Þ Eq
AB ¼ P

mE
q
mY

2;m
AB

Eq
2s ¼ E12

Eo
0 ¼ 1

2 ðE113 þ E223Þ
Eo
1c ¼ 1

2 ðE111 þ E122Þ
Eo
1s ¼ 1

2 ðE112 þ E222Þ Eo ¼ P
mE

o
mY

3;m

Eo
2c ¼ 1

2 ðE113 � E223Þ Eo
A ¼ 1

3

P
mE

o
mY

3;m
A

Eo
2s ¼ E123 Eo

AB ¼ 1
3

P
mE

o
mY

3;m
AB

Eo
3c ¼ 1

4 ðE111 � 3E122Þ
Eo
3s ¼ 1

4 ð3E112 � E222Þ
Eh
0 ¼ 1

2 ðE1111 þ 2E1122 þ E2222Þ
Eh
1c ¼ E1113 þ E1223

Eh
1s ¼ E1123 þ E2223

Eh
2c ¼ E1111 � E2222 Eh ¼ P

mE
h
mY

4;m

Eh
2s ¼ 2ðE1112 þ E1222Þ Eh

A ¼ 1
4

P
mE

h
mY

4;m
A

Eh
3c ¼ 1

2 ðE1113 � 3E1223Þ Eh
AB ¼ 1

6

P
mE

h
mY

4;m
AB

Eh
3s ¼ 1

2 ð3E1123 � E2223Þ
Eh
4c ¼ 1

4 ðE1111 � 6E1122 þ E2222Þ
Eh
4s ¼ E1112 � E1222

TABLE X. Harmonic components of type-EE, even-parity ti-
dal potentials, as defined in Table III. The spherical-harmonic
decompositions are P q ¼ P

mP
q
mY2;m, P q

A ¼ 1
2

P
mP

q
mY

2;m
A ,

P q
AB ¼ P

mP
q
mY

2;m
AB , P h ¼ P

mP
h
mY

4;m, P h
A ¼ 1

4

P
mP

h
mY

4;m
A ,

and P h
AB ¼ 1

6

P
mP

h
mY

4;m
AB .

Pm ¼ 6ðEq
0Þ2 þ 2ðEq

1cÞ2 þ 2ðEq
1sÞ2 þ 2ðEq

2cÞ2 þ 2ðEq
2sÞ2

P q
0 ¼ �ðEq

0Þ2 � 1
6 ðEq

1cÞ2 � 1
6 ðEq

1sÞ2 þ 1
3 ðEq

2cÞ2 þ 1
3 ðEq

2sÞ2
P q

1c ¼ �Eq
0E

q
1c þ Eq

1cE
q
2c þ Eq

1sE
q
2s

P q
1s ¼ �Eq

0E
q
1s þ Eq

1cE
q
2s � Eq

1sE
q
2c

P q
2c ¼ 2Eq

0E
q
2c þ 1

2 ðEq
1cÞ2 � 1

2 ðEq
1sÞ2

P q
2s ¼ 2Eq

0E
q
2s þ Eq

1cE
q
1s

P h
0 ¼ 18

35 ðEq
0Þ2 � 4

35 ðEq
1cÞ2 � 4

35 ðEq
1sÞ2 þ 1

35 ðEq
2cÞ2 þ 1

35 ðEq
2sÞ2

P h
1c ¼ 6

7 E
q
0E

q
1c þ 1

7 E
q
1cE

q
2c þ 1

7 E
q
1sE

q
2s

P h
1s ¼ 6

7 E
q
0E

q
1s þ 1

7 E
q
1cE

q
2s � 1

7 E
q
1sE

q
2c

P h
2c ¼ 6

7 E
q
0E

q
2c � 2

7 ðEq
1cÞ2 þ 2

7 ðEq
1sÞ2

P h
2s ¼ 6

7 E
q
0E

q
2s � 4

7 E
q
1cE

q
1s

P h
3c ¼ 1

2 E
q
1cE

q
2c � 1

2 E
q
1sE

q
2s

P h
3s ¼ 1

2 E
q
1cE

q
2s þ 1

2 E
q
1sE

q
2c

P h
4c ¼ 1

2 ðEq
2cÞ2 � 1

2 ðEq
2sÞ2

P h
4s ¼ Eq

2cE
q
2s
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Xlm
A

:¼ ��A
BDBY

lm; (2.21a)

Xlm
AB

:¼ � 1

2
ð�ACDB þ �B

CDAÞDCY
lm ¼ 0; (2.21b)

the tensorial harmonics Xlm
AB also are tracefree: �ABXlm

AB ¼
0. The decomposition of the tidal potentials in spherical
harmonics is presented in Tables VIII, IX, X, XI, XII, and
XIII. A derivation of these results is presented in
Appendix A.

III. GEOMETRY OFA DEFORMED BLACK HOLE

We construct the metric of a tidally deformed black hole
in two steps. In the first step we continue to think of a
smooth timelike geodesic � in a vacuum region of an

arbitrary spacetime, and we construct the metric of this
(background) spacetime in a neighborhood of the world
line. We denote this neighborhood by N , and we require
that it be small in comparison with the length scale R that
characterizes the tidal environment; we demand that

r � R; (3.1)

where r is a radial coordinate (to be introduced below) that
measures distance to the world line. In the second step we
insert a black hole of mass M into the background space-
time, and place it on the world line �. For the construction
to be successful it is necessary that the world tube traced by
the black hole fit comfortably within N , and this can be
achieved when

M � R: (3.2)

This condition implies both that the black hole is weakly
perturbed by the tidal environment, and that the world tube
is small when viewed on the scale R of the external
spacetime. In this situation it makes (approximate) sense
to say that the black hole moves on a world line �.
The metric of the background spacetime is presented in

Sec. III B, and the metric of the black-hole spacetime is
presented in Sec. III C. These subsections contain what is
truly a presentation of the metrics, and there the reader will
find no trace of a derivation of our results. The calculations
that lead to the metrics are quite lengthy, and derivations
are relegated to Secs. Vand VI, and Appendix D. We begin
in Sec. III A with a description of our coordinate systems.

A. Light-cone coordinates

We work with a system ðv; r; �; �Þ that is specifically
tailored to describe the geometry of light-cone surfaces.
We refer to these as light-cone coordinates. In the case of
the background spacetime (Fig. 1), we consider past light
cones that converge toward the world line �, so that the
apex of each cone coincides with a point on the world line.
InN the light cones provide spacetime with a foliation by
null hypersurfaces, and each light cone is generated by a

TABLE XI. Harmonic components of type-BB, even-parity
tidal potentials, as defined in Table IV. The spherical-harmonic
decompositions are Qq ¼ P

mQ
q
mY2;m, Qq

A ¼ 1
2

P
mQ

q
mY

2;m
A ,

Qq
AB ¼ P

mQ
q
mY

2;m
AB , Qh ¼ P

mQ
h
mY

4;m, Qh
A ¼ 1

4

P
mQ

h
mY

4;m
A ,

and Qh
AB ¼ 1

6

P
mQ

h
mY

4;m
AB .

Qm ¼ 6ðBq
0Þ2 þ 2ðBq

1cÞ2 þ 2ðBq
1sÞ2 þ 2ðBq

2cÞ2 þ 2ðBq
2sÞ2

Qq
0 ¼ �ðBq

0Þ2 � 1
6 ðBq

1cÞ2 � 1
6 ðBq

1sÞ2 þ 1
3 ðBq

2cÞ2 þ 1
3 ðBq

2sÞ2
Qq

1c ¼ �Bq
0B

q
1c þBq

1cB
q
2c þBq

1sB
q
2s

Qq
1s ¼ �Bq

0B
q
1s þBq

1cB
q
2s �Bq

1sB
q
2c

Qq
2c ¼ 2Bq

0B
q
2c þ 1

2 ðBq
1cÞ2 � 1

2 ðBq
1sÞ2

Qq
2s ¼ 2Bq

0B
q
2s þBq

1cB
q
1s

Qh
0 ¼ 18

35 ðBq
0Þ2 � 4

35 ðBq
1cÞ2 � 4

35 ðBq
1sÞ2 þ 1

35 ðBq
2cÞ2 þ 1

35 ðBq
2sÞ2

Qh
1c ¼ 6

7B
q
0B

q
1c þ 1

7B
q
1cB

q
2c þ 1

7B
q
1sB

q
2s

Qh
1s ¼ 6

7B
q
0B

q
1s þ 1

7B
q
1cB

q
2s � 1

7B
q
1sB

q
2c

Qh
2c ¼ 6

7B
q
0B

q
2c � 2

7 ðBq
1cÞ2 þ 2

7 ðBq
1sÞ2

Qh
2s ¼ 6

7B
q
0B

q
2s � 4

7B
q
1cB

q
1s

Qh
3c ¼ 1

2B
q
1cB

q
2c � 1

2B
q
1sB

q
2s

Qh
3s ¼ 1

2B
q
1cB

q
2s þ 1

2B
q
1sB

q
2c

Qh
4c ¼ 1

2 ðBq
2cÞ2 � 1

2 ðBq
2sÞ2

Qh
4s ¼ Bq

2cB
q
2s

TABLE XII. Harmonic components of type-EB, even-parity tidal potentials, as defined in
Table V. The spherical-harmonic decompositions are Gd ¼ P

mG
d
mY

1;m, Gd
A ¼ P

mG
d
mY

1;m
A ,

Go ¼ P
mG

o
mY

3;m, Go
A ¼ 1

3

P
mG

o
mY

3;m
A , and Go

AB ¼ 1
3

P
mG

o
mY

3;m
AB .

Gd
0 ¼ Eq

1cB
q
1s � Eq

1sB
q
1c þ 2Eq

2cB
q
2s � 2Eq

2sB
q
2c

Gd
1c ¼ ð3Eq

0 � Eq
2cÞBq

1s � Eq
1cB

q
2s � Eq

1sð3Bq
0 �Bq

2cÞ þ Eq
2sB

q
1c

Gd
1s ¼ �ð3Eq

0 þ Eq
2cÞBq

1c þ Eq
1cð3Bq

0 þBq
2cÞ þ Eq

1sB
q
2s � Eq

2sB
q
1s

Go
0 ¼ � 2

5 E
q
1cB

q
1s þ 2

5 E
q
1sB

q
1c þ 1

5 E
q
2cB

q
2s � 1

5 E
q
2sB

q
2c

Go
1c ¼ � 2

5 E
q
0B

q
1s � 1

5 E
q
1cB

q
2s þ 1

5 E
q
1sð2Bq

0 þBq
2cÞ � 1

5 E
q
2cB

q
1s þ 1

5 E
q
2sB

q
1c

Go
1s ¼ 2

5 E
q
0B

q
1c � 1

5 E
q
1cð2Bq

0 �Bq
2cÞ þ 1

5 E
q
1sB

q
2s � 1

5 E
q
2cB

q
1c � 1

5 E
q
2sB

q
1s

Go
2c ¼ Eq

0B
q
2s � Eq

2sB
q
0

Go
2s ¼ �Eq

0B
q
2c þ Eq

2cB
q
0

Go
3c ¼ � 1

2 E
q
1cB

q
2s � 1

2 E
q
1sB

q
2c þ 1

2 E
q
2cB

q
1s þ 1

2 E
q
2sB

q
1c

Go
3s ¼ 1

2 E
q
1cB

q
2c � 1

2 E
q
1sB

q
2s � 1

2 E
q
2cB

q
1c þ 1

2 E
q
2sB

q
1s
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congruence of null geodesics. (We assume that caustics do
not develop within N , except at the apex of each light
cone.) The coordinates are intimately tied to the light cones
and their generators:

(1) The advanced-time coordinate v is constant on each
light cone, and its value on a given light cone is
equal to proper time � on the corresponding point of
the world line.

(2) The angular coordinates �A ¼ ð�;�Þ are constant on
the null generators of each light cone; the angles
refer to a set of axes that are aligned with the basis
vectors e�a introduced in Sec. II A.

(3) The radial coordinate r is an affine parameter on the
null generators of each light cone, normalized in
such a way that the metric takes a Minkowski form
in the immediate vicinity of the world line; note that
r decreases to zero as the generators converge to-
ward the world line.

To illustrate the meaning of the coordinates we examine
the simple case of an observer at rest in flat spacetime. The
observer’s proper time � is equal to coordinate time t, the
advanced-time coordinate is obtained by the transforma-
tion v ¼ tþ r, and ðr; �; �Þ are obtained in the usual way
from the Lorentzian coordinates xa. The metric is ds2 ¼
�dv2 þ 2dvdrþ r2d�2, with d�2 :¼ d�2 þ sin2�d�2

denoting the metric on the unit two-sphere. It is easy to
verify that the light-cone coordinates satisfy all the prop-
erties listed previously.
In the case of the black hole spacetime (Fig. 2), the light

cones no longer converge toward a world line. Instead they
converge toward the horizon, which traces a world tube in
spacetime. They still, however, provideN with a foliation
by null hypersurfaces, and each light cone is still generated
by a congruence of null geodesics. The light-cone coordi-
nates keep most of the properties listed previously:
(1) The advanced-time coordinate v is constant on each

light cone.
(2) The angular coordinates �A ¼ ð�;�Þ are constant on

the null generators of each light cone.
(3) The radial coordinate r is an affine parameter on the

null generators of each light cone.

TABLE XIII. Harmonic components of type-EB, odd-parity tidal potentials, as defined in
Table VI. The spherical-harmonic decompositions are H q

A ¼ 1
2

P
mH

q
mX

2;m
A , H q

AB ¼P
mH

q
mX

2;m
AB , H

h
A ¼ 1

4

P
mH

h
mX

4;m
A , and H h

AB ¼ 1
6

P
mH

h
mX

4;m
AB .

H q
0 ¼ �Eq

0B
q
0 � 1

6 E
q
1cB

q
1c � 1

6 E
q
1sB

q
1s þ 1

3 E
q
2cB

q
2c þ 1

3 E
q
2sB

q
2s

H q
1c ¼ � 1

2 E
q
0B

q
1c � 1

2 E
q
1cðBq

0 �Bq
2cÞ þ 1

2 E
q
1sB

q
2s þ 1

2 E
q
2cB

q
1c þ 1

2 E
q
2sB

q
1s

H q
1s ¼ � 1

2 E
q
0B

q
1s þ 1

2 E
q
1cB

q
2s � 1

2 E
q
1sðBq

0 þBq
2cÞ � 1

2 E
q
2cB

q
1s þ 1

2 E
q
2sB

q
1c

H q
2c ¼ Eq

0B
q
2c þ 1

2 E
q
1cB

q
1c � 1

2 E
q
1sB

q
1s þ Eq

2cB
q
0

H q
2s ¼ Eq

0B
q
2s þ 1

2 E
q
1cB

q
1s þ 1

2 E
q
1sB

q
1c þ Eq

2sB
q
0

H h
0 ¼ 18

35 E
q
0B

q
0 � 4

35 E
q
1cB

q
1c � 4

35 E
q
1sB

q
1s þ 1

35 E
q
2cB

q
2c þ 1

35 E
q
2sB

q
2s

H h
1c ¼ 3

7 E
q
0B

q
1c þ 1

14 E
q
1cð6Bq

0 þBq
2cÞ þ 1

14 E
q
1sB

q
2s þ 1

14 E
q
2cB

q
1c þ 1

14 E
q
2sB

q
1s

H h
1s ¼ 3

7 E
q
0B

q
1s þ 1

14 E
q
1cB

q
2s þ 1

14 E
q
1sð6Bq

0 �Bq
2cÞ � 1

14 E
q
2cB

q
1s þ 1

14 E
q
2sB

q
1c

H h
2c ¼ 3

7 E
q
0B

q
2c � 2

7 E
q
1cB

q
1c þ 2

7 E
q
1sB

q
1s þ 3

7 E
q
2cB

q
0

H h
2s ¼ 3

7 E
q
0B

q
2s � 2

7 E
q
1cB

q
1s � 2

7 E
q
1sB

q
1c þ 3

7 E
q
2sB

q
0

H h
3c ¼ 1

4 E
q
1cB

q
2c � 1

4 E
q
1sB

q
2s þ 1

4 E
q
2cB

q
1c � 1

4 E
q
2sB

q
1s

H h
3s ¼ 1

4 E
q
1cB

q
2s þ 1

4 E
q
1sB

q
2c þ 1

4 E
q
2cB

q
1s þ 1

4 E
q
2sB

q
1c

H h
4c ¼ 1

2 E
q
2cB

q
2c � 1

2 E
q
2sB

q
2s

H h
4s ¼ 1

2 E
q
2cB

q
2s þ 1

2 E
q
2sB

q
2c

FIG. 1 (color online). Light-cone coordinates centered on a
world line �. The figure shows a light cone v ¼ constant that
intersects the world line at the point zðvÞ. It shows also one of the
light cone’s generators, along which �A is constant; the affine
parameter r decreases to zero as the generator approaches the
world line.
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Since the calibration by the world line is no longer avail-
able, the coordinates have lost some of their rigidity. We
can, however, restore most of this rigidity by imagining
two spacetimes foliated by past light cones. The first is the
background spacetime, with its fully specified set of light-
cone coordinates. The second is the black-hole spacetime,
with its own set of light-cone coordinates. Far from the
black hole, where r is much larger than M but still much
smaller than R, the gravitational influence of the black
hole is small, and light rays behave there just as they do in
the background spacetime. We can therefore tune the
black-hole coordinates so that the asymptotic description
of the null generators agrees with the background descrip-
tion. This correspondence does not permit the complete
specification of the coordinates; there remains a limited
freedom to redefine the coordinates without changing their
geometrical meaning. We have thoroughly exploited this
freedom to simplify the form of the black-hole metric.

The light-cone coordinates are best described in terms of
the radial distance r and the angles �A. It is useful, how-
ever, to introduce also a variant of the light-cone coordi-
nates that involves the quasi-Cartesian system xa instead of
the quasispherical system ðr; �AÞ. The coordinates xa are
defined in the usual way by Eq. (2.16). In the flat-spacetime
example examined previously, we find that the components
of the Minkowski metric are given by 
vv ¼ �1, 
va ¼
�a, and 
ab ¼ �ab when presented in the light-cone co-
ordinates ðv; xaÞ. It should be noted that the metric is
mildly singular at xa ¼ 0, because its value depends on
the ambiguous direction of the longitudinal vector �a.
This singularity persists in the background spacetime,

and dealing with it requires some care; but it is not a
serious obstacle to any computation.

B. Background spacetime

The metric of a vacuum region of spacetime that sur-
rounds a timelike geodesic � can be presented in the light-
cone coordinates ðv; xaÞ introduced in the preceding sub-
section and expressed as an expansion in powers of
r=R � 1. It is given by

gvv ¼�1� r2Eq þ 1

3
r3 _Eq � 1

3
r3Eo� 2

21
r4 €Eqþ 1

6
r4 _Eo

� 1

12
r4Eh þ 1

15
r4ðPm þQmÞþ 2

15
r4Gdþ 2

7
r4Qq

þ 2

3
r4Go � 1

3
r4ðP h þQhÞþOð5Þ; (3.3a)

gva ¼�a � 2

3
r2ðEq

a �Bq
aÞþ 1

3
r3ð _Eq

a � _Bq
aÞ

� 1

4
r3ðEo

a �Bo
aÞ� 8

63
r4ð €Eq

a � €Bq
aÞ

þ 1

6
r4ð _Eo

a � _Bo
aÞ� 1

15
r4ðEh

a �Bh
aÞ� 8

75
r4Gd

a

þ 8

21
r4H q

a þ 4

105
r4ðP q

a þ 11Qq
aÞþ 2

5
r4Go

a

� 2

15
r4ðP h

a þQh
aÞþOð5Þ; (3.3b)

gab ¼ �ab � 1

3
r2ðEq

ab �Bq
abÞþ

5

18
r3ð _Eq

ab � _Bq
abÞ

� 1

6
r3ðEo

ab �Bo
abÞ�

1

7
r4ð €Eq

ab � €Bq
abÞ

þ 3

20
r4ð _Eo

ab � _Bo
abÞ�

1

20
r4ðEh

ab �Bh
abÞ

þ 8

225
r4�abðPm þQmÞþ 32

225
r4�abGd

� 16

105
r4�abðP qþQqÞ� 3

14
r4ðP q

ab �Qq
abÞ

þ 3

7
r4H q

ab �
8

45
r4�abGo þ 2

45
r4�abðP h þQhÞ

þOð5Þ: (3.3c)

The metric features the tidal potentials encountered in
Sec. II D, and the notation Oð5Þ indicates that the error
terms are of order ðr=RÞ5. The world line is situated at
xa ¼ 0, and v is proper time on �.
The terms of order ðr=RÞ2 involve the quadrupole tidal

moments Eab and Bab, which are now expressed as func-
tions of advanced time v instead of proper time �. At order

ðr=RÞ3 we find terms involving _Eab and _Bab, the time
derivatives of the quadrupole moments, as well as the
octupole tidal moments Eabc and Babc. And at order

ðr=RÞ4 we see occurrences of €Eab,
€Bab, _Eabc,

_Babc, the
hexadecapole tidal moments Eabcd, Babcd, and bilinear

FIG. 2 (color online). Light-cone coordinates centered on a
black hole. The figure shows the world tube traced by the black-
hole horizon. It shows also the light cone v ¼ constant and one
of its generators. As in Fig. 1, the angles �A are constant and the
affine parameter r decreases on the generator.
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combinations of the quadrupole moments. We see that the
metric involves the majority of the tidal potentials listed in
Tables I, II, III, IV, V, and VI. Exceptions are P q, H h

a,
Go

ab, P
h
ab,Q

h
ab, andH

h
ab; these could have occurred in the

metric, but they happen to be ruled out by the Einstein field
equations.

A useful way to view the metric of Eqs. (3.3) is to
recognize that it possesses the correct number of freely-
specifiable functions of time to describe correctly, and in
sufficient generality, the geometry of a vacuum region of
spacetime in a neighborhood N of a timelike geodesic.
The functions of time are contained in the tidal moments;
we have 10 of them in Eab and Bab, 14 in Eabc and Babc,
and 18 in Eabcd and Babcd. The total is 42, the correct
number for a metric constructed through order ðr=RÞ4.
These functions encode meaningful information about the
spacetime geometry; as we saw in Sec. II A they represent
components of the Weyl tensor and its derivatives eval-
uated on the world line �.

In quasispherical coordinates ðv; r; �AÞ the nonvanishing
components of the metric are

gvv ¼�1� r2Eq þ 1

3
r3 _Eq � 1

3
r3Eo � 2

21
r4 €Eq þ 1

6
r4 _Eo

� 1

12
r4Eh þ 1

15
r4ðPm þQmÞþ 2

15
r4Gd þ 2

7
r4Qq

þ 2

3
r4Go� 1

3
r4ðP h þQhÞþOð5Þ; (3.4a)

gvr ¼ 1; (3.4b)

gvA ¼�2

3
r3ðEq

A�Bq
AÞþ

1

3
r4ð _Eq

A � _Bq
AÞ�

1

4
r4ðEo

A �Bo
AÞ

� 8

63
r5ð €Eq

A� €Bq
AÞþ

1

6
r5ð _Eo

A� _Bo
AÞ

� 1

15
r5ðEh

A�Bh
AÞ�

8

75
r5Gd

A þ
8

21
r5H q

A

þ 4

105
r5ðP q

Aþ 11Qq
AÞþ

2

5
r5Go

A

� 2

15
r5ðP h

AþQh
AÞþ rOð5Þ; (3.4c)

gAB ¼ r2�AB � 1

3
r4ðEq

AB �Bq
ABÞþ

5

18
r5ð _Eq

AB � _Bq
ABÞ

� 1

6
r5ðEo

AB �Bo
ABÞ�

1

7
r6ð €Eq

AB � €Bq
ABÞ

þ 3

20
r6ð _Eo

AB � _Bo
ABÞ� 1

20
r6ðEh

AB �Bh
ABÞ

þ 8

225
r6�ABðPm þQmÞþ 32

225
r6�ABGd

� 16

105
r6�ABðP q þQqÞ� 3

14
r6ðP q

AB �Qq
ABÞ

þ 3

7
r6H q

AB �
8

45
r6�ABGoþ 2

45
r6�ABðP h þQhÞ

þ r2Oð5Þ: (3.4d)

This can be obtained from Eq. (3.3) by applying the trans-
formation rules described in Sec. II E. The statements that
gvr ¼ 1 and grA ¼ 0 are exact, and they follow from the
light-cone nature of the coordinate system. Here the metric
features the tidal potentials listed in Tables VIII, IX, X, XI,
XII, and XIII. When dealing with the angular coordinates it
is convenient to rely on the decomposition of the potentials
in scalar, vector, and tensor harmonics.

C. Black-hole spacetime

The metric of a tidally deformed black hole resembles
closely the background metric presented in the preceding
subsection. In the quasi-Cartesian coordinates ðv; xaÞ it is
given by (f :¼ 1� 2M=r)

gvv ¼�f� r2eq1E
q þ 1

3
r3eq2

_Eq � 1

3
r3eo1E

o � 2

21
r4eq3

€Eq

þ 1

6
r4eo2

_Eo � 1

12
r4eh1E

h þ 1

15
r4ðpm

1 P
m þ qm1 Q

mÞ

þ 2

15
r4gd1G

d þ 2

7
r4ðpq

1P
qþ qq1Q

qÞþ 2

3
r4go1G

o

� 1

3
r4ðph

1P
h þqh1Q

hÞþOð5Þ; (3.5a)

gva ¼�a � 2

3
r2ðeq4Eq

a � bq4B
q
aÞþ 1

3
r3ðeq5 _Eq

a �bq5
_Bq
aÞ

� 1

4
r3ðeo4Eo

a �bo4B
o
aÞ� 8

63
r4ðeq6 €Eq

a �bq6
€Bq
aÞ

þ 1

6
r4ðeo5 _Eo

a �bo5
_Bo
aÞ� 1

15
r4ðeh4Eh

a �bh4B
h
aÞ

� 8

75
r4gd2G

d
a þ 8

21
r4hq2H

q
a

þ 4

105
r4ðpq

2P
q
aþ 11qq2Q

q
aÞþ 2

5
r4go2G

o
a þ r4hh2H

h
a

� 2

15
r4ðph

2P
h
a þ qh2Q

h
aÞþOð5Þ; (3.5b)

gab ¼ �ab � 1

3
r2ðeq7Eq

ab � bq7B
q
abÞþ

5

18
r3ðeq8 _Eq

ab �bq8
_Bq
abÞ

� 1

6
r3ðeo7Eo

ab � bo7B
o
abÞ�

1

7
r4ðeq9 €Eq

ab � bq9
€Bq
abÞ

þ 3

20
r4ðeo8 _Eo

ab � bo8
_Bo
abÞ�

1

20
r4ðeh7Eh

ab �bh7B
h
abÞ

þ 8

225
r4�abðpm

3 P
m þ qm3 Q

mÞþ 32

225
r4�abg

d
3G

d

� 16

105
r4�abðpq

3P
q þqq3Q

qÞ

� 3

14
r4ðpq

4P
q
ab � qq4Q

q
abÞþ

3

7
r4hq3H

q
ab

� 8

45
r4�abg

o
3G

o þ r4go4G
o
ab

þ 2

45
r4�abðph

3P
h þqh3Q

hÞþ r4ðph
4P

h
ab þqh4Q

h
abÞ

þ r4hh3H
h
ab þOð5Þ: (3.5c)
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A comparison with Eqs. (3.3) reveals that there are two
main differences between the metrics. The first is that the
black-hole metric involves the radial functions eqn, eon, e

h
n,

bqn, bon, and bhn that are listed in Table XIV, as well as the
radial functions pm

n , p
q
n, ph

n, q
m
n , q

q
n, qhn, g

d
n, g

o
n, h

q
n, and hon

that are listed in Table XV. The second is that the tidal
potentials P q, H h

a, Go
ab, P

h
ab, Q

h
ab, and H h

ab now make

an appearance in the black-hole metric. (Recall that they
were absent in the background metric.) The black-hole
metric contains the same number of freely-specifiable
functions of time as the background metric; these are

contained in the tidal moments Eab, Bab, Eabc, Babc,
Eabcd, and Babcd, which all depend on advanced time v.
The metric of Eqs. (3.5) contains two fundamental

length scales, the black-hole mass M and the tidal radius
R. It is assumed that M � R, and the metric is valid
when r � R. WhenM ! 0 the metric becomes the back-
ground metric of Eqs. (3.3). This can be seen from the fact
that most of the radial functions approach unity when
2M=r ! 0. Exceptions are pq

1 , g
o
4 , p

h
4 , q

h
4 , h

h
2 , and hh3 ,

which all approach zero; these functions come with the
tidal potentials that were absent in the background metric.

TABLE XIV. Radial functions: linear potentials. The radial functions are expressed in terms of x :¼ r=ð2MÞ and f :¼ 1� 1=x. The
dilogarithm function is defined as dilogx ¼ R

x
1 dt logðtÞ=ð1� tÞ, with logx denoting the natural logarithm. All radial functions vanish

at r ¼ 2M, except for eq7 ¼ 1
2 , e

o
7 ¼ 1

10 , e
h
7 ¼ 1

42 , b
q
7 ¼ � 1

2 , b
o
7 ¼ � 1

10 , b
h
7 ¼ � 1

42 .

eq1 ¼ f2

eq2 ¼ f½1þ 1
4x ð5þ 12 logxÞ � 1

4x2
ð27þ 12 logxÞ þ 7

4x3
þ 3

4x4
�

eq3 ¼ 1þ 1
24x ð89þ 84 logxÞ þ 1

160x2
ð431þ 996 logx� 1680dilogxÞ � 1

10x3
ð315þ 282 logx� 210dilogxÞ

þ 1
120x4

ð4183þ 2322 logx� 1260dilogxÞ � 363
40x5

� 809
480x6

eq4 ¼ f

eq5 ¼ f½1þ 1
6x ð13þ 12 logxÞ � 5

2x2
� 3

2x3
� 1

2x4
�

eq6 ¼ 1þ 1
32x ð117þ 84 logxÞ þ 1

320x2
ð929þ 1836 logx� 1680dilogxÞ � 1

40x3
ð597þ 387 logx� 210dilogxÞ þ 387

80x4
þ 809

480x5
þ 809

960x6

eq7 ¼ 1� 1
2x2

eq8 ¼ 1þ 2
5x ð4þ 3 logxÞ � 9

5x2
� 1

5x3
ð7þ 3 logxÞ þ 3

5x4

eq9 ¼ 1þ 1
216x ð739þ 420 logxÞ þ 1

90x2
ð262þ 387 logx� 210dilogxÞ � 1

60x3
ð317þ 70 logxÞ

� 1
540x4

ð1511þ 1161 logx� 630dilogxÞ þ 809
1080x5

eo1 ¼ f2ð1� 1
2xÞ

eo2 ¼ f½1þ 1
30x ð73þ 60 logxÞ � 1

60x2
ð479þ 180 logxÞ þ 1

20x3
ð87þ 20 logxÞ � 3

20x4
þ 1

60x5
�

eo4 ¼ fð1� 2
3xÞ

eo5 ¼ f½1þ 1
40x ð103þ 60 logxÞ � 1

60x2
ð233þ 60 logxÞ þ 1

5x3
� 1

20x4
� 1

120x5
�

eo7 ¼ fþ 1
10x3

eo8 ¼ 1þ 1
54x ð85þ 60 logxÞ � 10

27x2
ð10þ 3 logxÞ þ 2

3x3
þ 1

9x4
ð4þ logxÞ þ 1

54x5

eh1 ¼ f2ðfþ 3
14x2

Þ
eh4 ¼ fð1� 5

4x þ 5
14x2

Þ
eh7 ¼ 1� 5

3x þ 5
7x2

� 1
42x4

bq4 ¼ f

bq5 ¼ f½1þ 1
6x ð7þ 12 logxÞ � 3

2x2
� 1

2x3
� 1

6x4
�

bq6 ¼ 1þ 1
32x ð75þ 84 logxÞ þ 1

320x2
ð649þ 996 logx� 1680dilogxÞ � 1

80x3
ð879þ 564 logx� 420dilogxÞ þ 141

40x4
þ 223

160x5
þ 223

320x6

bq7 ¼ 1� 3
2x2

bq8 ¼ 1þ 1
5x ð5þ 6 logxÞ � 9

5x2
� 1

5x3
ð2þ 3 logxÞ þ 1

5x4

bq9 ¼ 1þ 1
216x ð529þ 420 logxÞ þ 1

360x2
ð593þ 1128 logx� 840dilogxÞ � 1

30x3
ð106þ 35 logxÞ

� 1
1080x4

ð2357þ 1692 logx� 1260dilogxÞ þ 223
360x5

bo4 ¼ fð1� 2
3xÞ

bo5 ¼ f½1þ 1
40x ð97þ 60 logxÞ � 1

60x2
ð227þ 60 logxÞ þ 3

10x3
þ 1

20x4
þ 1

120x5
�

bo7 ¼ f� 1
10x3

bo8 ¼ 1þ 1
54x ð79þ 60 logxÞ � 1

27x2
ð97þ 30 logxÞ þ 2

3x3
þ 1

27x4
ð13þ 3 logxÞ � 1

54x5

bh4 ¼ fð1� 5
4x þ 5

14x2
Þ

bh7 ¼ 1� 5
3x þ 5

7x2
� 1

14x4
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In this limit the tidal moments acquire their precise relation
with the Weyl tensor (and its derivatives) evaluated on the
world line xa ¼ 0.

When M � 0 the world line disappears and is replaced
by the world tube traced by the black-hole horizon. But the
black-hole metric continues to approach the background
metric when r is very large compared with M (but still
much smaller thanR). In this case the interpretation of the
tidal moments is more subtle. They still provide a complete
characterization of the tidal environment, but they are no
longer associated with the Weyl tensor evaluated on a
world line.

To elucidate the meaning of the tidal moments it is
helpful to return to the two spacetimes of Sec. III A. The
first is the background spacetime with its central world
line, and the second is the black-hole spacetime in which
no such world line exists. We assume that the spacetimes
share the same set of tidal moments: The functions of time
contained in Eab,Bab, Eabc,Babc, Eabcd, andBabcd are the
same in each spacetime. An observer in the first spacetime
can measure the tidal moments anywhere and relate them
to the Weyl tensor (and its derivatives) evaluated on the
central world line. An observer in the second spacetime
can still measure the tidal moments, but is prevented by the
black hole from relating the results of his measurements to
a world-line Weyl tensor. But the second observer is free to
imagine that the black hole could be removed from the

spacetime without altering the conditions in the asymptotic
region r � M, so that his measurements could, after all, be
related to a world-line Weyl tensor.1 This thought experi-
ment provides him with a loose interpretation of the tidal
moments: They can still be related to a world-line Weyl
tensor, but the Weyl tensor and the world line are fictitious
extrapolations to r ¼ 0 obtained from information avail-
able in the r � M portion of the black-hole spacetime.
When the tidal perturbation is turned off (by putting all

the tidal moments to zero, thereby sending R off to
infinity), the black-hole metric becomes

gvv ¼ �f; gva ¼ �a; gab ¼ �ab; (3.6)

where, we recall, f ¼ 1� 2M=r. This is the well-known
Schwarzschild solution expressed in the light-cone coor-
dinates ðv; xaÞ.
In quasispherical coordinates ðv; r; �AÞ the nonvanishing

components of the black-hole metric are

TABLE XV. Radial functions: bilinear potentials. The radial functions are expressed in terms
of x :¼ r=ð2MÞ and f :¼ 1� 1=x. All radial functions vanish at r ¼ 2M, except for pm

3 ¼
qm3 ¼ pq

3 ¼ qq3 ¼ ph
3 ¼ qh3 ¼ 5

16 , gd3 ¼ go3 ¼ � 5
16 , ph

4 ¼ 1
84 , qh4 ¼ � 5

126 , and hh3 ¼ 13
252 . All

functions approach unity as x ! 1, except for pq
1 , p

h
4 , q

h
4 , g

o
4 , h

h
2 , and hh3 , which all approach

zero.

pm
1 ¼ fð1� 19

15x þ 1
15x2

þ 1
15x3

þ 1
5x4
Þ qm1 ¼ fð1� 19

15x þ 1
15x2

þ 1
15x3

þ 1
5x4
Þ

pm
3 ¼ 1� 5

4x2
þ 9

16x4
qm3 ¼ 1� 15

4x2
þ 49

16x4

pq
1 ¼ f2ð� 26

15x þ 19
20x2

þ 2
15x3

þ 1
15x4

Þ qq1 ¼ f2ð1þ 4
15x � 41

20x2
þ 2

15x3
þ 1

15x4
Þ

pq
2 ¼ fð1� 9

x þ 19
4x2

þ 1
x3
þ 1

x4
Þ qq2 ¼ fð1þ 1

11x � 101
44x2

þ 1
11x3

þ 1
11x4

Þ
pq
3 ¼ 1� 5

4x2
þ 5

16x4
þ 1

4x5
qq3 ¼ 1� 15

4x2
þ 45

16x4
þ 1

4x5

pq
4 ¼ fð1þ 1

xÞ qq4 ¼ fð1þ 1
x � 2

x2
� 2

x3
Þ

ph
1 ¼ f2ð1� 121

60x þ 39
280x2

þ 1
30x3

þ 1
60x4

Þ qh1 ¼ f2ð1þ 29
60x � 11

280x2
þ 1

30x3
þ 1

60x4
Þ

ph
2 ¼ fð1� 61

24x þ 13
28x2

þ 1
6x3

þ 1
6x4

Þ qh2 ¼ fð1þ 29
24x � 221

84x2
þ 1

6x3
þ 1

6x4
Þ

ph
3 ¼ 1� 5

4x2
þ 5

16x4
þ 1

4x5
qh3 ¼ 1� 15

4x2
þ 45

16x4
þ 1

4x5

ph
4 ¼ 5

36x � 29
252x2

� 1
84x4

qh4 ¼ � 5
36x þ 19

84x2
� 8

63x4

gd1 ¼ f2ð1þ 2
15x � 7

5x2
þ 1

15x3
þ 1

30x4
Þ

gd2 ¼ fð1� 2
3x þ 1

6x2
� 1

24x3
� 1

24x4
Þ hq2 ¼ f2ð1þ 2

xÞ
gd3 ¼ 1� 5

2x2
þ 5

4x4
� 1

16x5
hq3 ¼ f2ð1þ 1

xÞ2
go1 ¼ f2ð1þ 79

30x � 53
20x2

þ 1
15x3

þ 1
30x4

Þ
go2 ¼ fð1þ 89

24x � 29
6x2

þ 1
6x3

þ 1
6x4
Þ hh2 ¼ � 1

2x þ 29
42x2

� 4
21x3

go3 ¼ 1� 5
2x2

þ 15
16x4

þ 1
4x5

hh3 ¼ � 5
18x þ 43

126x2
� 1

84x4

go4 ¼ fð 76x � 1
3x2

� 1
3x3
Þ

1This is a thought experiment that could not be realized
physically. It is meant to reflect a mathematical procedure in
which M is taken to zero while keeping the tidal moments fixed.
The procedure disregards the fact that in most physical applica-
tions, the tidal moments carry a dependence on M that is
revealed by matching the local black-hole metric to a global
metric that contains the black hole and the external bodies.
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gvv ¼ �f� r2eq1E
q þ 1

3
r3eq2

_Eq � 1

3
r3eo1E

o � 2

21
r4eq3

€Eq þ 1

6
r4eo2

_Eo � 1

12
r4eh1E

h þ 1

15
r4ðpm

1 P
m þ qm1 Q

mÞ

þ 2

15
r4gd1G

d þ 2

7
r4ðpq

1P
q þ qq1Q

qÞ þ 2

3
r4go1G

o � 1

3
r4ðph

1P
h þ qh1Q

hÞ þOð5Þ; (3.7a)

gvr ¼ 1; (3.7b)

gvA ¼ � 2

3
r3ðeq4Eq

A � bq4B
q
AÞ þ

1

3
r4ðeq5 _Eq

A � bq5
_Bq
AÞ �

1

4
r4ðeo4Eo

A � bo4B
o
AÞ �

8

63
r5ðeq6 €Eq

A � bq6
€Bq
AÞ

þ 1

6
r5ðeo5 _Eo

A � bo5
_Bo
AÞ � 1

15
r5ðeh4Eh

A � bh4B
h
AÞ �

8

75
r5gd2G

d
A þ 8

21
r5hq2H

q
A þ 4

105
r5ðpq

2P
q
A þ 11qq2Q

q
AÞ

þ 2

5
r5go2G

o
A þ r5hh2H

h
A � 2

15
r5ðph

2P
h
A þ qh2Q

h
AÞ þ rOð5Þ; (3.7c)

gAB ¼ r2�AB � 1

3
r4ðeq7Eq

AB � bq7B
q
ABÞ þ

5

18
r5ðeq8 _Eq

AB � bq8
_Bq
ABÞ �

1

6
r5ðeo7Eo

AB � bo7B
o
ABÞ �

1

7
r6ðeq9 €Eq

AB � bq9
€Bq
ABÞ

þ 3

20
r6ðeo8 _Eo

AB � bo8
_Bo
ABÞ � 1

20
r6ðeh7Eh

AB � bh7B
h
ABÞ þ

8

225
r6�ABðpm

3 P
m þ qm3 Q

mÞ þ 32

225
r6�ABg

d
3G

d

� 16

105
r6�ABðpq

3P
q þ qq3Q

qÞ � 3

14
r6ðpq

4P
q
AB � qq4Q

q
ABÞ þ

3

7
r6hq3H

q
AB � 8

45
r6�ABg

o
3G

o þ r6go4G
o
AB

þ 2

45
r6�ABðph

3P
h þ qh3Q

hÞ þ r6ðph
4P

h
AB þ qh4Q

h
ABÞ þ r6hh3H

h
AB þ r2Oð5Þ: (3.7d)

In these coordinates the R ! 1 limit of the metric is
ds2 ¼ fdv2 þ 2dvdrþ r2d�2, the Eddington-
Finkelstein form of the Schwarzschild solution.

IV. GEOMETRYAND DYNAMICS OF THE
DEFORMED HORIZON

In this section we extract the consequences of the black-
hole metric of Eqs. (3.7) on the structure and dynamics of
the tidally deformed horizon. We begin in Sec. IVAwith a
proof that, in the coordinate system adopted here, the
deformed horizon continues to be described by r ¼ 2M.
In Sec. IVB we display the components of the induced
metric on the horizon. In Sec. IVC we examine the con-
gruence of null geodesics that generates the horizon, and
derive expressions for its expansion scalar and shear tensor.
And finally, in Sec. IVD we integrate Raychaudhuri’s
equation and calculate the rate at which the horizon grows
as a result of the tidal interaction.

A. Position of the horizon

The black-hole metric of Eqs. (3.7) is presented in light-
cone coordinates ðv; r; �AÞ whose geometrical meaning
was described in Sec. III A. As we saw, the coordinates
are tied to the behavior of incoming light rays that mesh
together to form light cones that converge toward the black
hole. And as we saw, the light-cone coordinates are not
fully specified; the limited coordinate freedom that re-
mains was exploited to simplify the form of the metric.

Concretely, the coordinate freedom was utilized to im-
pose a set of horizon-locking conditions that are designed
to keep the black-hole horizon in its usual place. As a
result, the horizon of a tidally deformed black hole is
situated at

r ¼ 2M½1þOð5Þ� (4.1)

in the light-cone coordinates that give rise to the metric of
Eqs. (3.7). In Eq. (4.1), and in all equations below, the
symbol Oð5Þ means that the correction terms are of order
ðM=RÞ5. The horizon-locking conditions are

gvv ¼ 0 ¼ gvA at r ¼ 2M; (4.2)

and it is easy to verify that the metric of Eqs. (3.7) satisfies
this property.
The horizon-locking conditions imply that the surface

r ¼ 2M is a null hypersurface in the black-hole spacetime.
This is seen from the fact that grr ¼ 0 at r ¼ 2M, which
follows from the statement that thanks to Eq. (4.2), gvr ¼ 1
and gAB are the only nonvanishing components of the
metric at r ¼ 2M. The null hypersurface is generated by
a congruence of null geodesics, and in Sec. IVC we show
that the expansion of this congruence vanishes. [The ex-
pansion scalar is denoted �, and we show more precisely
that � ¼ OðM5=R6Þ. This implies that the expansion
vanishes through order R�4, which is the order of accu-
racy maintained in the metric and the description of the
surface.] The surface r ¼ 2M is therefore a stationary null
surface, and it is in this sense that it describes a black-hole
horizon. It is an isolated horizon in the sense of Ashtekar
and Krishnan [35–37].
In general we cannot state that r ¼ 2M is an event

horizon, because the exact position of the event horizon
depends on the entire future history of the spacetime, and is
located by tracing light rays backward in time from future
null infinity. Because our metric may not be accurate for all
times, and because it applies only to a neighborhood of the
black hole, it does not supply us with the tools to locate the
event horizon. Under restrictive assumptions, however, we
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can go beyond these limitations and prove that r ¼ 2M
describes the position of the event horizon.

We consider a situation in which the tidal perturbation is
switched off after a time v ¼ v1, so that the metric returns
to its usual Schwarzschild form when v > v1. This final
Schwarzschild metric possesses the same mass parameter
M as the original black-hole metric, because (as we shall
see in Sec. IVD) the total change in mass that can result
from tidal heating over a time v1 �R is of orderM6=R5;
this effect is too small to be described by our metric. It
follows that the event horizon is described by r ¼ 2M
when v > v1. At earlier times the horizon is described by
a null hypersurface that joins smoothly with r ¼ 2M at
v ¼ v1. Since r ¼ 2M is null at all times, we conclude that
the event horizon is always situated at r ¼ 2M.

B. Horizon metric and surface gravity

The horizon metric is the specialization of the black-
hole metric to the null hypersurface r ¼ 2M½1þOð5Þ�.
Because its component along the v-direction vanishes, the
horizon metric is degenerate and explicitly two-
dimensional. We denote its nonvanishing components by
�AB, and these are obtained by inserting r ¼ 2M within
Eqs. (3.7). We get

�AB ¼ 4M2�AB � 8

3
M4ðEq

AB þBq
ABÞ

� 8

15
M5ðEo

AB þBo
ABÞ �

8

105
M6ðEh

AB þBh
ABÞ

þ 32

45
M6�ABðPm þQmÞ � 128

45
M6�ABGd

� 64

21
M6�ABðP q þQqÞ þ 32

9
M6�ABGo

þ 8

9
M6�ABðP h þQhÞ þ 16

21
M6P h

AB

� 160

63
M6Qh

AB þ 208

63
M6H h

AB þM2Oð5Þ: (4.3)

In Appendix B we calculate the determinant � of the
horizon metric. We find the simple resultffiffiffiffi

�
p ¼ 4M2 sin�½1þOð5Þ�; (4.4)

the tidal potentials do not give rise to corrections to the
horizon’s surface element,

ffiffiffiffi
�

p
d�d�.

The surface gravity � of the perturbed horizon is defined
by the relation k	r	k

� ¼ �k�, where the vector k� :¼
½1; 0; 0; 0� is tangent to the horizon’s null generators. A
calculation based on the metric of Eqs. (3.7) reveals that

� ¼ 1

4M

�
1þ 16

3
M3 _Eab�

a�b þ 32

9
M4 €Eab�

a�b

þ 8

9
M4 _Eabc�

a�b�c � 16

225
M4ðEabEab þBabBabÞ

þOð5Þ
�
: (4.5)

We see that the surface gravity is no longer uniform on
the horizon; the tidal perturbation introduces a variation of
order ðM=RÞ3 over its surface. Notice that this variation is
associated with changes in the tidal environment. When
the perturbation is stationary the correction to the surface
gravity comes from the last term, which is of order
ðM=RÞ4 and uniform over the horizon. These observations
are compatible with the zeroth law of black-hole
mechanics.

C. Expansion scalar and shear tensor

The null generators of the horizon form a congruence
whose behavior is described by an expansion scalar � and
a shear tensor �AB; these are defined by (see, for example,
Sec. III of Ref. [39])

@v�AB ¼ ��AB þ 2�AB; (4.6)

together with the requirement that the shear tensor be
tracefree: �AB�AB ¼ 0. The expansion scalar is then equal
to the trace of @v�AB, so that� ¼ 1

2�
�1@v�, where � is the

metric determinant. Equation (4.4) implies that

� ¼ OðM5=R6Þ: (4.7)

This means that up to this level of accuracy, the surface r ¼
2M is foliated by apparent horizons.
With this we find that Eq. (4.6) reduces to �AB ¼

1
2@v�AB þOðM7=R6Þ. This is

�AB ¼ � 4

3
M4ð _Eq

AB þ _Bq
ABÞ �

4

15
M5ð _Eo

AB þ _Bo
ABÞ � 4

105
M6ð _Eh

AB þ _Bh
ABÞ þ 16

45
M6�ABð _Pm þ _QmÞ � 64

45
M6�AB

_Gd

� 32

21
M6�ABð _P q þ _QqÞ þ 16

9
M6�AB

_Go þ 4

9
M6�ABð _P h þ _QhÞ þ 8

21
M6 _P h

AB � 80

63
M6 _Qh

AB

þ 104

63
M6 _H h

AB þMOð6Þ: (4.8)

D. Tidal heating

More information about the expansion scalar can be obtained by integrating Raychaudhuri’s equation (see, for example,
Sec. III of Ref. [39])
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@v� ¼ ��� 1

2
�2 � �AB�

AB; (4.9)

in which we can neglect �2 ¼ OðM10=R12Þ. The squared
shear contains terms that begin at order M4=R6, and the
neglected terms are of order M7=R9 and higher. The
solution to Eq. (4.9) will be an expression for� that begins
at order M5=R6, and neglects terms of order M8=R9 and
higher. Given this degree of available accuracy, it is appro-
priate to set

� ’ �0 :¼ 1

4M
(4.10)

in Eq. (4.9); the fractional corrections of order ðM=RÞ3
and ðM=RÞ4 displayed in Eq. (4.5) are not required in the
determination of �.

Instead of proceeding directly with Eq. (4.9), we inte-
grate it over a cross section of the horizon and work out a
differential equation for the surface area

A ðvÞ :¼
Z ffiffiffiffi

�
p

d�d�: (4.11)

Its rate of change is _A ¼ R
�

ffiffiffiffi
�

p
d�d�, and the second

rate of change is €A ¼ R
@v�

ffiffiffiffi
�

p
d�d�þ R

�2 ffiffiffiffi
�

p
d�d�;

here we may once more ignore the second integral involv-
ing �2.

The differential equation that governs the behavior of
the area function is

�0
_A� €A ¼

Z
�AB�

AB ffiffiffiffi
�

p
d�d�þOð9Þ: (4.12)

The steps required in the evaluation of the right-hand side
are described in Appendix C, and the end result is

�0
_A� €A ¼ 8�F ; (4.13)

where

F ðvÞ :¼ 16

45
M6ð _Eab

_Eab þ _Bab
_BabÞ

þ 16

4725
M8

�
_Eabc

_Eabc þ 16

9
_Babc

_Babc
�
þOð9Þ

(4.14)

might be called the flux function. We notice that F is
positive-definite, and that it cannot be expressed as a total
derivative with respect to v.

As we show in Appendix C, the solution to Eq. (4.13) is

�0

8�
_AðvÞ ¼ F ðvÞ þ

_F ðvÞ
�0

þ
€F ðvÞ
�2
0

þOð9Þ: (4.15)

We observe that the second and third terms on the right-
hand side are total time derivatives, and that it is natural to
bring them over to the left-hand side of the equation. We
write our final result as

�0

8�
_A� ¼ F þOð9Þ; (4.16)

in terms of a ‘‘renormalized area function’’ defined by

A� ¼ A� 8�F =�2
0 � 8� _F =�3

0 þOðM10=R8Þ. The

shift in area is of order M8=R6 and corresponds to a
correction to the relation r ¼ 2M of fractional order
ðM=RÞ6; this is well beyond the level of accuracy of
Eq. (4.1).
Equation (4.16) describes the rate at which the renor-

malized black-hole area A� increases as a result of the
tidal interaction. We refer to this phenomenon as tidal
heating, recalling the deep analogy that exists between
the relativistic tidal dynamics of black holes and the
Newtonian tidal dynamics of viscous bodies [46,69,70].
The phrase also recalls the fact that in black-hole thermo-
dynamics, the area plays the role of entropy S, while the
surface gravity plays the role of (Hawking) temperature T;

in this context we write ð�0=8�Þ _A� ¼ T _S and interpret
Eq. (4.16) as describing a flow of heat across the horizon.
By the first law of black-hole mechanics, dM ¼
ð�=8�ÞdA, the equation also describes the rate at which
the black-hole mass increases during the tidal interaction.

V. BACKGROUND METRIC: DERIVATION

Our main results were presented in the preceding sec-
tions, and we now turn to a detailed derivation of these
results. In this section we provide a derivation of the
background metric of Eqs. (3.3) and (3.4); an alternative
derivation is sketched in Appendix D. In Sec. VI we
present a derivation of the black-hole metric of Eqs. (3.5)
and (3.7).

A. Kinematical properties of the metric

We construct the metric of a vacuum region of spacetime
that surrounds a timelike geodesic �, and we adopt the
light-cone coordinates ðv; r; �AÞ. These are centered on the
world line, and the geometrical meaning of the coordinates
was specified in Sec. III A. The three defining properties
listed there give rise to four important conditions on the
metric.
To spell them out we introduce the dual vector ‘� :¼

�@�v ¼ ½�1; 0; 0; 0�, which is normal to hypersurfaces of
constant advanced time v. According to the first property,
this dual vector is null—g�	‘�‘	 ¼ 0—and this condition

immediately implies that gvv ¼ 0. The vector ‘� is tangent
to the null generators of the light cones v ¼ constant, and
the second and third properties imply that its components
in the light-cone coordinates must be given by ‘� ¼
½0;�1; 0; 0�; that ‘v ¼ ‘A ¼ 0 means that v and �A are
constant on the generators, and ‘r ¼ �1means that r is an
affine parameter that decreases as the generators converge
toward the world line. The relation ‘� ¼ g�	‘	 then im-

plies that the inverse metric must satisfy the conditions

GEOMETRYAND DYNAMICS OF A TIDALLY DEFORMED . . . PHYSICAL REVIEW D 81, 024029 (2010)

024029-19



gvv ¼ 0 ¼ gvA; gvr ¼ 1: (5.1)

Calculating the inverse, we find that the metric must satisfy

grr ¼ 0 ¼ grA; gvr ¼ 1: (5.2)

These statements are exact, and follow from the light-cone
nature of the coordinates. The other nonvanishing compo-
nents of the metric are gvv, gvA, and gAB. We have not yet
made a choice of normalization for the radial coordinate r,
nor a choice of axes for the angular coordinates �A.

From the quasispherical coordinates ðr; �AÞwe construct
a system of quasi-Cartesian coordinates xa ¼ r�að�AÞ and
transform the spatial components of the inverse metric
according to the rules described in Sec. II E. We find that
gva ¼ �a, but the form of gab is not constrained by the
conditions of Eq. (5.1).

At this stage we impose the additional condition that the
inverse metric should be locally flat near the world line, so
that gab ¼ �ab þ hab, with hab going to zero (as r2) when
r ! 0. This condition implicitly specifies a normalization
for r, which reduces to the usual Euclidean distance in the
immediate vicinity of the world line. And it specifies a set
of reference axes for the angular coordinates, which are
aligned with the Cartesian directions associated with the
coordinates xa; the fact that hab scales as r2 (instead of r)
when r ! 0 implies that the world line is unaccelerated
and that the axes are locally nonrotating.

Our expression for the inverse metric in quasi-Cartesian
coordinates is therefore

gvv ¼ 0; (5.3a)

gva ¼ �a; (5.3b)

gab ¼ �ab þ hab; (5.3c)

with

hab ¼ r2hab2 þ r3hab3 þ r4hab4 þOðr5Þ: (5.4)

The last equation indicates that as r ! 0, r�2hab ap-
proaches the (direction-dependent) limit hab2 ,
r�1ðr�2hab � hab2 Þ approaches hab3 , and so on.

To proceed it is useful to introduce a decomposition of
hab into longitudinal and transverse pieces. We write

hab ¼ �a�bAþ�aAb þ Aa�b þ Aab (5.5)

with

�aA
a ¼ 0 ¼ �aA

ab: (5.6)

Here and below, indices on �a are lowered with the
Euclidean metric �ab. The first term in Eq. (5.5) is the
longitudinal piece of hab, and A :¼ hab�a�b is its com-
ponent in the direction of the unit radial vector�a. The last
term is the transverse piece of hab, and Aab :¼ �a

c�
b
dh

cd

are the components in the directions orthogonal to�a; �a
c

is the projector of Eq. (2.15). The second and third terms
are the longitudinal-transverse piece of hab, and Aa :¼

�a
ch

cb�b contains the relevant components. The six inde-
pendent components of hab are contained in A (one com-
ponent), Aa (two independent components), and Aab (three
independent components). It is sometimes useful to further
decompose Aab into trace and tracefree pieces, but we
choose not to do so at this stage; we will find in due course
that the Einstein field equations automatically enforce
�abA

ab ¼ 0. The decomposition of Eq. (5.5) can be applied
individually to each habn that appears in Eq. (5.4); this
defines An, A

a
n, and Aab

n .
Wewrite the inverse metric of Eq. (5.3) as g�	 ¼ 
�	 þ

h�	, with 
�	 denoting the inverse of the Minkowski
metric in light-cone coordinates (with components 
vv ¼
0, 
va ¼ �a, and 
ab ¼ �ab) and h�	 ¼ Oðr2Þ denoting a
perturbation (with components hvv ¼ 0, hva ¼ 0, and
hab). The metric is then g�	 ¼ 
�	 � h�	 þ h��h

�
	 þ

Oðr5Þ, where all indices are lowered with the Minkowski
metric 
�	 (with components 
vv ¼ �1, 
va ¼ �a, and


ab ¼ �ab). A straightforward calculation using Eq. (5.5)
reveals that

gvv ¼ �1� Aþ AaA
a þOðr5Þ; (5.7a)

gva ¼ �a � Aa þ AabA
b þOðr5Þ; (5.7b)

gab ¼ �ab � Aab þ AacA
c
b þOðr5Þ: (5.7c)

In these expressions it is understood that indices on Aa and
Aab are lowered with �ab; by virtue of Eqs. (5.6) this
operation is equivalent to lowering indices with 
ab ¼
�ab. It is also understood that A, Aa, and Aab can be
expanded in powers of r as in Eq. (5.4); we have

A ¼ r2A2 þ r3A3 þ r4A4 þOðr5Þ; (5.8a)

Aa ¼ r2A2a þ r3A3a þ r4A4a þOðr5Þ; (5.8b)

Aab ¼ r2A2ab þ r3A3ab þ r4A4ab þOðr5Þ; (5.8c)

and a term like AaA
a reduces to r4A2aA

a
2 þOðr5Þ.

We now return to the quasispherical coordinates ðr; �AÞ.
We define the angular version of the vector potential Aa by

AA :¼ Aa�
a
A; (5.9)

where �a
A
:¼ @A�

a, and we define the angular version of
the tensor potential Aab by

AAB :¼ Aab�
a
A�

b
B: (5.10)

In spite of the suggestive notation, these are not the com-
ponents of the Cartesian tensors Aa and Aab in spherical
coordinates; for these we have Aa@x

a=@r ¼ Aa�
a ¼ 0 and

Aa@x
a=@�A ¼ rAa�

a
A ¼ rAA, with similar equations hold-

ing for Aab.
Using the identities of Eqs. (2.18) we find that the

spherical-coordinate form of the metric is
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gvv ¼ �1� Aþ AAA
A þOðr5Þ; (5.11a)

gvr ¼ 1; (5.11b)

gvA ¼ �rAA þ rAABA
B þOðr6Þ; (5.11c)

gAB ¼ r2�AB � r2AAB þ r2AACA
C
B þOðr7Þ: (5.11d)

It is understood that, in these expressions, indices on AA

and AAB are raised with �AB. As we saw previously, each
potential can be expanded in powers of r, so that

A ¼ r2A2 þ r3A3 þ r4A4 þOðr5Þ; (5.12a)

AA ¼ r2A2A þ r3A3A þ r4A4A þOðr5Þ; (5.12b)

AAB ¼ r2A2AB þ r3A3AB þ r4A4AB þOðr5Þ: (5.12c)

The coefficients An, AnA, and AnAB are assumed to depend
on �A only, so that the dependence of the metric on r is
contained explicitly in the power expansion.

B. Field equations I

The metric forms of Eqs. (5.7) and (5.11) follow directly
from the light-cone nature of the coordinate systems, and
they embody the purely kinematical requirements imposed
by the choice of coordinates. To obtain more information
we must impose the Einstein field equations.

In this first stage we involve the metric of Eqs. (5.11) in a
computation of Rvv, the time-time component of the Ricci
tensor. Setting this to zero order-by-order in r reveals that

�ABA2AB ¼ 0; (5.13a)

�ABA3AB ¼ 0; (5.13b)

�ABA4AB ¼ 3

5
A2ABA

AB
2 : (5.13c)

In quasi-Cartesian coordinates these equations read

�abA2ab ¼ 0; (5.14a)

�abA3ab ¼ 0; (5.14b)

�abA4ab ¼ 3

5
A2abA

ab
2 : (5.14c)

These equations mean that Aab is tracefree through order
r3, and that its trace is given by �abAab ¼ 3

5 r
4A2abA

ab
2 þ

Oðr5Þ.
We use this observation to simplify the form of the

metric. Continuing to work in the quasi-Cartesian coordi-
nates xa, we reexpress A4ab as a sum of trace and tracefree
pieces:

A4ab ! A4ab þ 3

10
�abA2cdA

cd
2 ; (5.15)

where the new A4ab, like A2ab and A3ab, is now known to be
tracefree. We also exploit the identity

A2acA
c
2b ¼ 1

2
�abA2cdA

cd
2 ; (5.16)

which holds for any symmetric-tracefree tensor A2ab.

Making these substitutions in Eq. (5.11), we arrive at

gvv ¼ �1� r2A2 � r3A3 � r4A4 þ r4A2aA
a
2 þOðr5Þ;

(5.17a)

gva ¼ �a � r2A2a � r3A3a � r4A4a þ r4A2abA
b
2 þOðr5Þ;

(5.17b)

gab ¼ �ab � r2A2ab � r3A3ab � r4A4ab þ 1

5
r4�abA2cdA

cd
2

þOðr5Þ: (5.17c)

It is understood that the vector potentials A2a, A3a, A4a, and
A2abA

b
2 are transverse, in the sense that they are all or-

thogonal to �a. And it is now understood that the tensor
potentials A2ab, A3ab, and A4ab are both transverse and
tracefree; the potential �abA2cdA

cd
2 is transverse and pure

trace.
In quasispherical coordinates the metric is

gvv ¼ �1� r2A2 � r3A3 � r4A4 þ r4A2AA
A
2 þOðr5Þ;

(5.18a)

gvr ¼ 1; (5.18b)

gvA ¼ �r3A2A � r4A3A � r5A4A þ r5A2ABA
B
2 þOðr6Þ;

(5.18c)

gAB ¼ r2�AB � r4A2AB � r5A3AB � r6A4AB

þ 1

5
r6�ABA2CDA

CD
2 þOðr7Þ: (5.18d)

Here also the tensor potentials are tracefree, except for the
term proportional to �AB, which is pure trace.

C. Field equations II

The metric of Eqs. (5.17) and (5.18) is a partial solution
to the Einstein field equations. In its quasi-Cartesian form
the metric involves the transverse potentials A2a, A3a, A4a,
A2ab, A3ab, and A4ab, and imposing the vacuum equation
Rvv ¼ 0 has revealed the important fact that the tensor
potentials are all tracefree. In the quasispherical form of
the metric, the potentials have components in the angular
directions only, and these depend on �A only. To obtain a
complete solution to the field equations we must now
determine the potentials.
We rely on Zhang’s work [18], which allows us to state

that the metric of a vacuum region of spacetime around a
timelike geodesic is a functional of two (and only two) sets
of tidal moments Ea1a2���al and Ba1a2���al ; the tidal moments
are STF tensors that depend on proper time on the world
line, and they are related to components of the Weyl tensor
(and its derivatives) evaluated on the world line. For a
complete description of the metric one requires an infinite
number of tidal moments; for an approximate description
one requires a finite number. In our case the construction of
the metric shall involve the quadrupole moments Eab and
Bab, the octupole moments Eabc and Babc, and the hex-
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adecapole moments Eabcd and Babcd. These were intro-
duced in Sec. II A, and their scaling properties are de-
scribed in Sec. II B.

Collecting the observations summarized in the preced-
ing two paragraphs, we obtain three important guiding
rules for the construction of the metric:

(1) The metric is constructed from scalar potentials,
vector potentials that are transverse, and tensor po-
tentials that are transverse and tracefree.

(2) The potentials depend on the angles �A only; they
are independent of r, which appears as a multipli-
cative factor in front of the potentials.

(3) The potentials depend on two sets of tidal moments.

The rules imply that the metric must be constructed from
the tidal potentials introduced in Secs. II D and II E. There
are no other possible building blocks for the metric.

We begin the construction of the metric with the deter-
mination of A2, A2A, and A2AB. (In practical matters it is
convenient to deal with the quasispherical representation
of the metric, because the r-dependence is then explicitly
known.) These terms occur at order r2 in gvv, r

3 in gvA, and
r4 in gAB, and proper dimensionality requires that the
potentials scale as R�2. Equation (2.12) then implies
that the potentials must be constructed from Eab and
Bab. The possible building blocks are listed in
Tables VIII and IX, and we write A2 ¼ aEq, A2A ¼ bEq

A þ
pBq

A, A2AB ¼ cEq
AB þ qBq

AB, where a, b, c, p, and q are

undetermined numerical coefficients. From this we form
the metric gvv ¼ �1� r2A2 þOðr3Þ, gvr ¼ 1, gvA ¼
�r3A2A þOðr4Þ, and gAB ¼ r2�AB � r4A2AB þOðr5Þ,
which we substitute into the vacuum field equations. (At
this stage of the computations the v-dependence of the
tidal potentials can be ignored, because their v-derivatives
are suppressed by a factor of order R�1 relative to the
spatial derivatives. Another simplifying move is momen-
tarily to switch off the �-dependence of the metric by
adopting Eq

0 and Bq
0 as the only nonvanishing components

of the tidal moments.) The exercise returns the relations
b ¼ 2

3 a, c ¼ 1
3a, and q ¼ 1

2p, which leaves a and p as

undetermined constants. To obtain a and pwe compute the
frame components Ca0b0 and Cabc0 of the Weyl tensor in
the limit r ! 0, and demand that the results agree with
Eqs. (2.4). From this we find that a ¼ 1 and p ¼ � 2

3 , and

the metric is known through order R�2.
For the computation of the frame components of the

Weyl tensor we need

uv ¼ 1; ur ¼ 0; uA ¼ 0; (5.19a)

eva ¼ �a; era ¼ �a; eAa ¼ 1

r
�A

a ; (5.19b)

the components of the tetrad vectors in the light-cone
coordinates. Here �A

a :¼ �ab�
AB�b

B, and the factor of
r�1 compensates for factors of r in the angular components
of the metric. It is easy to show that the vectors are

orthonormal and parallel-transported along u� in the limit
r ! 0. We observe that while some components of the
Weyl tensor are ambiguous or go to zero in the limit r !
0, the frame components are well-behaved and have a well-
defined limit.
We continue with the determination of A3, A3A, and

A3AB. Here the potentials must scale as R�3, and
Eq. (2.12) implies that they must be constructed from
_Eab,

_Bab, Eabc, and Babc. The possible building blocks
are listed in Tables VIII and IX, and we express A3 as a

linear combination of _Eq and Eo, A3A as a linear combina-

tion of _Eq
A,

_Bq
A, E

o
A, and Bo

A, and A3AB as a linear combi-

nation of _Eq
AB,

_Bq
AB, Eo

AB, and Bo
AB. The numerical

coefficients are determined in two steps. First, we construct
an improved metric by appending the terms of order R�3,
and we substitute it into the vacuum field equations. (In this
step the v-dependence of the quadrupole tidal potentials
must be taken into account, again keeping in mind that the
v-derivatives are suppressed by a factor of order R�1

relative to the spatial derivatives. It is still possible mo-
mentarily to switch off the �-dependence of the metric by
adopting Eq

0 , B
q
0 , E

o
0 , and Bo

0 as the only nonvanishing

components of the tidal moments.) The first step leaves
two coefficients undetermined, a common multiplicative
factor in front of Eabc, and another common factor in front
ofBabc. These are determined in the second step, in which
we compute the frame components Ca0b0jc and Cabc0jd of

the covariant derivatives of theWeyl tensor in the limit r !
0, and demand that the results agree with Eqs. (2.6). The
metric is now known through order R�3.
We complete the computation of the metric with the

determination of A4, A4A, and A4AB. Here the potentials
must scale asR�4, and Eq. (2.12) implies that theymust be

constructed from €Eab,
€Bab, _Eabc,

_Babc, Eabcd, and Babcd.
That is not all, however, because at order R�4 we must
also include potentials that are generated by quadratic
combinations of Eab and Bab; the list of potentials is
long, and this makes the computations much more involved
than in the previous cases. The possible building blocks are
listed in Tables VIII, IX, X, XI, XII, and XIII. We express

A4 as a linear combination of €Eq, _Eo, Eh, Pm, P q, P h,Qm,
Qq, Qh, Gd, and Go. We express A4A as a linear combi-

nation of €Eq
A,

_Eo
A, E

h
A,

€Bq
A,

_Bo
A, Bh

A, P
q
A, P

h
A, Q

q
A, Q

h
A, G

d
A,

Go
A, H q

A, and H h
A. And we express A4AB as a linear

combination of €Eq
AB,

_Eo
AB, Eh

AB,
€Bq
AB,

_Bo
AB, Bh

AB, P q
AB,

P h
AB, Q

q
AB, Q

h
AB, G

d
AB, G

o
AB, H

q
AB, and H h

AB. In addition

to all this the angular components of the metric contain a
bilinear term proportional to A2ABA

AB
2 ¼ 1

9 ðEq
AB �Bq

ABÞ�
ðEqAB �BqABÞ, which can be simplified with the help of
Eqs. (B2). The many numerical coefficients that appear in
the metric at order R�4 are determined as we did previ-
ously. Substitution of the metric in the vacuum field equa-
tions determines all but two coefficients, the common
multiplicative factors in front of Eabcd and Babcd. These
are determined by computing the frame components
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Ca0b0jcd and Cabc0jde of the second covariant derivatives of

the Weyl tensor in the limit r ! 0, and demanding that the
results agree with Eqs. (2.7). The metric is now known
through order R�4, and the end result is displayed in
Eqs. (3.4). The quasi-Cartesian representation of
Eqs. (3.3) can be obtained directly from this.

This completes the derivation of the background metric.
An alternative derivation is presented in Appendix D.

VI. BLACK-HOLE METRIC: DERIVATION

We next turn to a derivation of the black-hole metric of
Eqs. (3.7), a vacuum perturbation of the Schwarzschild
solution

ds2 ¼ �fdv2 þ 2dvdrþ r2d�2; (6.1)

where f ¼ 1� 2M=r and d�2 ¼ �ABd�
Ad�B ¼

d�2 þ sin2�d�2. To construct the perturbation we rely

heavily on the formalism of Martel and Poisson [33], and
we implement the light-cone gauge of Preston and Poisson
[34]. The computations that lead to the black-hole metric
are extremely lengthy, and are presented in four highly
technical subsections. In Secs. VIA and VIB we construct
the linear piece of the metric perturbation, and in
Secs. VIC and VID we turn to the bilinear piece. The
results are collected in Sec. VI E.

A. Linear perturbation: Preparation

1. Form of the metric perturbation and considerations
of gauge

The metric of Eqs. (3.4) specifies the asymptotic con-
ditions (when r � 2M) for the metric of a tidally deformed
black hole. Focusing our attention on the linearly perturbed
piece of the metric, we write it as

gvv ¼ �f� r2eq1E
q þ 1

3
r3eq2

_Eq � 2

21
r4eq3

€Eq � 1

3
r3eo1E

o þ 1

6
r4eo2

_Eo � 1

12
r4eh1E

h þ bilinear; (6.2a)

gvr ¼ 1; (6.2b)

gvA ¼ � 2

3
r3ðeq4Eq

A � bq4B
q
AÞ þ

1

3
r4ðeq5 _Eq

A � bq5
_Bq
AÞ �

8

63
r5ðeq6 €Eq

A � bq6
€Bq
AÞ �

1

4
r4ðeo4Eo

A � bo4B
o
AÞ þ

1

6
r5ðeo5 _Eo

A � bo5
_Bo
AÞ

� 1

15
r5ðeh4Eh

A � bh4B
h
AÞ þ bilinear; (6.2c)

gAB ¼ r2�AB � 1

3
r4ðeq7Eq

AB � bq7B
q
ABÞ þ

5

18
r5ðeq8 _Eq

AB � bq8
_Bq
ABÞ �

1

7
r6ðeq9 €Eq

AB � bq9
€Bq
ABÞ � 1

6
r5ðeo7Eo

AB � bo7B
o
ABÞ

þ 3

20
r6ðeo8 _Eo

AB � bo8
_Bo
ABÞ � 1

20
r6ðeh7Eh

AB � bh7B
h
ABÞ þ bilinear; (6.2d)

where the undetermined radial functions eqnðrÞ, eonðrÞ, ehnðrÞ,
bqnðrÞ, bonðrÞ, and bhnðrÞ are all required to approach unity
when 2M=r ! 0. This ansatz for the metric is motivated by
the facts that (i) it reduces to the Schwarzschild metric
when the tidal fields are turned off; (ii) it reduces to the
(linear piece of the) background metric when M ! 0 (so
that the radial functions all become equal to unity); and
(iii) its expansion in terms of tidal potentials constitutes a
decomposition of the metric perturbation into a complete
basis of spherical-harmonic modes. An important aspect of
the metric is that its v-dependence is assumed to be slow
(with a time scale of the order of R) and contained in the
tidal moments; we rule out time-dependent processes that
take place over time scales comparable to 2M.

We write the black-hole metric as g�	 ¼ ĝ�	 þ p�	, in

which ĝ�	 is the Schwarzschild metric of Eq. (6.1) and p�	

is the tidal perturbation. In Eq. (6.2) the perturbation is
presented in the Preston-Poisson light-cone gauge, which
enforces the conditions pvr ¼ prr ¼ prA ¼ 0. The even-
parity sector of the perturbation is

pvv ¼ X
lm

hlmvvY
lm; (6.3a)

pvA ¼ X
lm

jlmv Ylm
A ; (6.3b)

pAB ¼ r2
X
lm

ðKlm�ABY
lm þGlmYlm

ABÞ; (6.3c)

where the reduced perturbations hlmvv, j
lm
v , Klm, and Glm

depend on v and r only. Preston and Poisson show that for
vacuum perturbations, the gauge can be refined to also
enforce Klm ¼ 0. This leaves hlmvv, j

lm
v , and Glm as non-

vanishing perturbations, and these can be read off from
Eqs. (6.2). The odd-parity sector of the perturbation is

pvA ¼ X
lm

hlmv Xlm
A ; (6.4a)

pAB ¼ X
lm

hlm2 Xlm
AB; (6.4b)

in which hlmv and hlm2 depend on v and r only; these also
can be read off from Eqs. (6.2).
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Preston and Poisson show that the residual gauge free-
dom that remains within the even-parity sector of the
perturbation is a family characterized by an arbitrary func-
tion almðvÞ—one function for each l and m. Under such a
gauge transformation the perturbations change according
to

hvv ! hvv þ lðlþ 1ÞM
r2

a� 2

�
1

2
lðlþ 1Þ � 1þ 3M

r

�
_a

þ 2r €a; (6.5a)

jv ! jv �
�
1

2
lðlþ 1Þ � f

�
aþ 2r2

lðlþ 1Þ €a; (6.5b)

G ! G� 2

r
aþ 4

lðlþ 1Þ _a; (6.5c)

where the lm label was omitted for ease of notation. In
addition, Preston and Poisson show that the residual gauge
freedom that remains within the odd-parity sector of the
perturbation is a family characterized by an arbitrary func-
tion �lmðvÞ—one function for each l and m. Under such a
gauge transformation the perturbations change according
to

hv ! hv � r2 _�; (6.6a)

h2 ! h2 � 2r2�: (6.6b)

We shall use the residual gauge freedom to specialize the
light-cone gauge to a horizon-locking gauge defined by the
requirements pvv ¼ pvr ¼ pvA ¼ 0 at r ¼ 2M. Since the
light-cone gauge already enforces pvr ¼ 0 everywhere, the
horizon-locking gauge requires

hlmvv ¼ jlmv ¼ 0 ¼ hlmv at r ¼ 2M: (6.7)

Because the residual gauge freedom is limited to two
functions almðvÞ and �lmðvÞ, it may seem doubtful that
the three conditions of Eq. (6.7) can be imposed.
Nevertheless, we shall see that the Einstein field equations
do allow the specialization of the light-cone gauge to the
horizon-locking gauge. We saw in Sec. IVA that the con-
ditions of Eq. (6.7) ensure that the horizon keeps its coor-
dinate description r ¼ 2M in the perturbed spacetime.

The horizon-locking gauge, together with the vacuum
field equations, imply the existence of a useful constraint
on the values of hlmv and hlm2 at r ¼ 2M. We examine the
perturbation equation Pr

lm ¼ 0 (in the notation of Martel

and Poisson) and evaluate it at r ¼ 2M. Making use of the
statement hlmv ¼ 0 returns

0 ¼ �ðl� 1Þðlþ 2Þ
8M2

@h2
@v

� @

@v

@hv
@r

: (6.8)

Integration with respect to v, keeping r anchored at r ¼
2M, yields

hlm2 ðv; r ¼ 2MÞ ¼ � 8M2

ðl� 1Þðlþ 2Þ
@hlmv
@r

��������r¼2M
: (6.9)

The constant of integration was set equal to zero to respect
the ansatz of Eqs. (6.2), which implies that there is no
v-independent term in the perturbation. We shall refer to
Eq. (6.9) as the horizon-locking constraint; it refers to the
odd-parity sector of the perturbation only.

2. Redefinition of tidal moments

In addition to making use of the residual gauge freedom,
the form of the metric perturbation can be adjusted by
redefining the tidal moments Eab, Eabc, Bab, and Babc

according to E ! E þ p1M _E þ p2M
2 €E þ � � � and B !

Bþ q1M
_Bþ q2M

2 €Bþ � � � . As we shall see below, these
redefinitions have the effect of inducing changes in the
radial functions eqn, eon, b

q
n, and bon.

3. Even-parity sector, l ¼ 2

According to Eqs. (6.2) and Table VIII, the even-parity,
l ¼ 2 piece of the perturbation is described by

hvv ¼ �r2e1E þ 1

3
r3e2 _E � 2

21
r4e3 €E þ � � � ; (6.10a)

jv ¼ � 1

3
r3e4E þ 1

6
r4e5 _E � 4

63
r5e6 €E þ � � � ; (6.10b)

G ¼ � 1

3
r2e7E þ 5

18
r3e8 _E � 1

7
r4e9 €E þ � � � ; (6.10c)

in which en :¼ eqnðrÞ and E :¼ Eq
mðvÞ. For ease of notation

we have omitted the label lm ¼ 2m on the perturbation
functions; the radial functions do not depend onm. Under a
residual gauge transformation generated by the function

aðvÞ ¼ � 1
6 c1M

3E � 2
9 c2M

4 _E � 1
63 c3M

5 €E þ � � � , the ra-

dial functions change according to

EQ-TARGET;temp:intralink-;d6.11,d6.11a,d6.11b,d6.11c,d6.11d,d6.11e,d6.11f,d6.11g,d6.11h,d6.11i;316;360

e1 ! e1 þ c1
M4

r4
; (6.11a)

e2 ! e2 þ 2c1
M3

r3
þ 3c1

M4

r4
� 4c2

M5

r5
; (6.11b)

e3 ! e3 þ 7

2
c1

M3

r3
� 28

3
c2

M4

r4
� 14c2

M5

r5
þ c3

M6

r6
;

(6.11c)

e4 ! e4 � c1
M3

r3
� c1

M4

r4
; (6.11d)

e5 ! e5 þ 8

3
c2

M4

r4
þ 8

3
c2

M5

r5
; (6.11e)

e6 ! e6 þ 7

8
c1

M3

r3
� 1

2
c3

M5

r5
� 1

2
c3

M6

r6
; (6.11f)

e7 ! e7 � c1
M3

r3
; (6.11g)

e8 ! e8 � 2

5
c1

M3

r3
þ 8

5
c2

M4

r4
; (6.11h)

e9 ! e9 þ 28

27
c2

M4

r4
� 2

9
c3

M5

r5
: (6.11i)
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Here the residual gauge freedom was reduced from a func-
tional family characterized by an arbitrary function aðvÞ to
a three-parameter family (with parameters c1, c2, and c3).
This loss of generality is a choice that is motivated by the
observation that the even-parity, l ¼ 2 piece of the per-
turbed metric should be driven by a single function EðvÞ, so
that aðvÞ should involve only EðvÞ and its derivatives.
Below we shall seek choices for c1, c2, and c3 that enforce
the horizon-locking conditions e1 ¼ e2 ¼ e3 ¼ e4 ¼
e5 ¼ e6 ¼ 0 at r ¼ 2M.

Implementing the redefinition E ! E � 1
3p1M _E þ

2
21p2M

2 €E þ � � � in Eqs. (6.10) has the effect of changing

the identity of the radial functions e1 � � � e9. They become

EQ-TARGET;temp:intralink-;d6.12,d6.12a,d6.12b,d6.12c,d6.12d,d6.12e,d6.12f,d6.12g,d6.12h,d6.12i;52;587

e1 ! e1; (6.12a)

e2 ! e2 þ p1

M

r
e1; (6.12b)

e3 ! e3 þ 7

6
p1

M

r
e2 þ p2

M2

r2
e1; (6.12c)

e4 ! e4; (6.12d)

e5 ! e5 þ 2

3
p1

M

r
e4; (6.12e)

e6 ! e6 þ 7

8
p1

M

r
e5 þ 1

2
p2

M2

r2
e4; (6.12f)

e7 ! e7; (6.12g)

e8 ! e8 þ 2

5
p1

M

r
e7; (6.12h)

e9 ! e9 þ 35

54
p1

M

r
e8 þ 2

9
p2

M2

r2
e7: (6.12i)

Below we shall seek choices for p1 and p2 that enforce
e8 ¼ e9 ¼ 0 at r ¼ 2M; this does not alter the conditions
already imposed by the horizon-locking gauge. With all
these choices implemented, only e7 will be nonvanishing at
r ¼ 2M.

4. Even-parity sector, l ¼ 3

According to Eqs. (6.2) and Table VIII, the even-parity,
l ¼ 3 piece of the perturbation is described by

hvv ¼ � 1

3
r3e1E þ 1

6
r4e2 _E þ � � � ; (6.13a)

jv ¼ � 1

12
r4e4E þ 1

18
r5e5 _E þ � � � ; (6.13b)

G ¼ � 1

18
r3e7E þ 1

20
r4e8 _E þ � � � ; (6.13c)

in which en :¼ eonðrÞ and E :¼ Eo
mðvÞ. For ease of notation

we have omitted the label lm ¼ 3m on the perturbation
functions; the radial functions do not depend onm. Under a
residual gauge transformation generated by the function

aðvÞ ¼ � 1
36 c1M

4E � 1
72 c2M

5 _E þ � � � , the radial func-

tions change according to

e1 ! e1 þ c1
M5

r5
; (6.14a)

e2 ! e2 þ 5

3
c1

M4

r4
þ c1

M5

r5
� c2

M6

r6
; (6.14b)

e4 ! e4 � 5

3
c1

M4

r4
� 2

3
c1

M5

r5
; (6.14c)

e5 ! e5 þ 5

4
c2

M5

r5
þ 1

2
c2

M6

r6
; (6.14d)

e7 ! e7 � c1
M4

r4
; (6.14e)

e8 ! e8 � 5

27
c1

M4

r4
þ 5

9
c2

M5

r5
: (6.14f)

Here (as before) the residual gauge freedom was reduced
from a functional family to a two-parameter family. We
shall seek choices for c1 and c2 that enforce the horizon-
locking conditions e1 ¼ e2 ¼ e4 ¼ e5 ¼ 0 at r ¼ 2M.

Implementing the redefinition E ! E � 1
2p1M _E þ � � �

in Eqs. (6.13) has once more the effect of changing the
identity of the radial functions. They become

e1 ! e1; (6.15a)

e2 ! e2 þ p1

M

r
e1; (6.15b)

e4 ! e4; (6.15c)

e5 ! e5 þ 3

4
p1

M

r
e4; (6.15d)

e7 ! e7; (6.15e)

e8 ! e8 þ 5

9
p1

M

r
e7: (6.15f)

Below we shall seek a choice for p1 that enforces e8 ¼ 0 at
r ¼ 2M; this does not alter the conditions already imposed
by the horizon-locking gauge. With all these choices im-
plemented, only e7 will be nonvanishing at r ¼ 2M.

5. Even-parity sector, l ¼ 4

According to Eqs. (6.2) and Table VIII, the even-parity,
l ¼ 4 piece of the perturbation is described by

hvv ¼ � 1

12
r4e1E þ � � � ; (6.16a)

jv ¼ � 1

60
r5e4E þ � � � ; (6.16b)

G ¼ � 1

120
r4e7E þ � � � ; (6.16c)

in which en :¼ ehnðrÞ and E :¼ Eh
mðvÞ. For ease of notation

we have omitted the label lm ¼ 4m on the perturbation
functions; the radial functions do not depend onm. Under a
residual gauge transformation generated by the function
aðvÞ ¼ � 1

240 c1M
5E þ � � � , the radial functions change

according to
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e1 ! e1 þ c1
M6

r6
; (6.17a)

e4 ! e4 � 9

4
c1

M5

r5
� 1

2
c1

M6

r6
; (6.17b)

e7 ! e7 � c1
M5

r5
: (6.17c)

We shall seek a choice for c1 that enforces the horizon-
locking conditions e1 ¼ e4 ¼ 0 at r ¼ 2M. This leaves e7
as the only nonvanishing function at r ¼ 2M.

6. Odd-parity sector, l ¼ 2

According to Eqs. (6.2) and Table IX, the odd-parity, l ¼
2 piece of the perturbation is described by

hv ¼ 1

3
r3b4B� 1

6
r4b5

_Bþ 4

63
r5b6

€Bþ � � � ; (6.18a)

h2 ¼ 1

3
r4b7B� 5

18
r5b8

_Bþ 1

7
r6b9

€Bþ � � � ; (6.18b)

in which bn :¼ bqnðrÞ and B :¼ Bq
mðvÞ. For ease of nota-

tion we have omitted the label lm ¼ 2m on the perturba-
tion functions; the radial functions do not depend on m.
Under a residual gauge transformation generated by the

function �ðvÞ ¼ � 1
6 k1M

2Bþ 5
36 k2M

3 _B� 1
14 k3M

4 €Bþ
� � � , the radial functions change according to

b4 ! b4; (6.19a)

b5 ! b5 � k1
M2

r2
; (6.19b)

b6 ! b6 � 35

16
k2

M3

r3
; (6.19c)

b7 ! b7 þ k1
M2

r2
; (6.19d)

b8 ! b8 þ k2
M3

r3
; (6.19e)

b9 ! b9 þ k3
M4

r4
: (6.19f)

Here the residual gauge freedom was reduced from a func-
tional family characterized by an arbitrary function �ðvÞ to
a three-parameter family (with parameters k1, k2, and k3).
This loss of generality is a choice that is motivated by the
observation that the odd-parity, l ¼ 2 piece of the per-
turbed metric should be driven by a single function BðvÞ,
so that �ðvÞ should involve only BðvÞ and its derivatives.

Below we shall seek choices for k1, k2, and k3 that
enforce the horizon-locking conditions b4 ¼ b5 ¼ b6 ¼
0 at r ¼ 2M. Since b4 is gauge invariant, this will be
achieved if and only if b4 automatically vanishes at r ¼
2M. Using Eqs. (6.18) we find that the horizon-locking
constraint of Eq. (6.9) implies

b7ð2MÞ ¼ �Mb04ð2MÞ; (6.20a)

b8ð2MÞ ¼ � 3

5
Mb05ð2MÞ; (6.20b)

b9ð2MÞ ¼ � 4

9
Mb06ð2MÞ; (6.20c)

in which a prime indicates differentiation with respect to r.
The last equation will be used to determine k3.

Implementing the redefinition B ! B� 1
2q1M

_Bþ
4
21q2M

2 €Bþ � � � in Eqs. (6.18) has the effect of changing

the identity of the radial functions b4 � � � b9. They become

b4 ! b4; (6.21a)

b5 ! b5 þ q1
M

r
b4; (6.21b)

b6 ! b6 þ 21

16
q1

M

r
b5 þ q2

M2

r2
b4; (6.21c)

b7 ! b7; (6.21d)

b8 ! b8 þ 3

5
q1

M

r
b7; (6.21e)

b9 ! b9 þ 35

36
q1

M

r
b8 þ 4

9
q2

M2

r2
b7: (6.21f)

Below we shall seek choices for q1 and q2 that enforce
b8 ¼ b9 ¼ 0 at r ¼ 2M; this does not alter the conditions
already imposed by the horizon-locking gauge. With all
these choices implemented, only b7 will be nonvanishing at
r ¼ 2M.

7. Odd-parity sector, l ¼ 3

According to Eqs. (6.2) and Table IX, the odd-parity, l ¼
3 piece of the perturbation is described by

hv ¼ 1

12
r4b4B� 1

18
r5b5

_Bþ � � � ; (6.22a)

h2 ¼ 1

18
r5b7B� 1

20
r6b8

_Bþ � � � ; (6.22b)

in which bn :¼ bonðrÞ and B :¼ Bo
mðvÞ. For ease of nota-

tion we have omitted the label lm ¼ 3m on the perturba-
tion functions; the radial functions do not depend on m.
Under a residual gauge transformation generated by the

function �ðvÞ ¼ � 1
36 k1M

3Bþ 1
40 k2M

4 _Bþ � � � , the ra-

dial functions change according to

b4 ! b4; (6.23a)

b5 ! b5 � 1

2
k1

M3

r3
; (6.23b)

b7 ! b7 þ k1
M3

r3
; (6.23c)

b8 ! b8 þ k2
M4

r4
: (6.23d)

Here the residual gauge freedom was reduced to a two-
parameter family.
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Below we shall seek choices for k1 and k2 that enforce
the horizon-locking conditions b4 ¼ b5 ¼ 0 at r ¼ 2M.
Since b4 is gauge invariant, this will be achieved if and
only if b4 automatically vanishes at r ¼ 2M. Using
Eqs. (6.22) we find that the horizon-locking constraint of
Eq. (6.9) implies

b7ð2MÞ ¼ � 3

5
Mb04ð2MÞ; (6.24a)

b8ð2MÞ ¼ � 4

9
Mb05ð2MÞ; (6.24b)

in which a prime indicates differentiation with respect to r.
The last equation will be used to determine k2.

Implementing the redefinition B ! B� 2
3q1M

_Bþ � � �
in Eqs. (6.22) has the effect of changing the identity of the
radial functions. They become

b4 ! b4; (6.25a)

b5 ! b5 þ q1
M

r
b4; (6.25b)

b7 ! b7; (6.25c)

b8 ! b8 þ 20

27
q1

M

r
b7: (6.25d)

Below we shall seek a choice for q1 that enforces b8 ¼ 0 at
r ¼ 2M; this does not alter the conditions already imposed
by the horizon-locking gauge. With all these choices im-
plemented, only b7 will be nonvanishing at r ¼ 2M.

8. Odd-parity sector, l ¼ 4

According to Eqs. (6.2) and Table IX, the odd-parity, l ¼
4 piece of the perturbation is described by

hv ¼ 1

60
r5b4Bþ � � � ; (6.26a)

h2 ¼ 1

120
r6b7Bþ � � � ; (6.26b)

in which bn :¼ bhnðrÞ and B :¼ Bh
mðvÞ. For ease of nota-

tion we have omitted the label lm ¼ 4m on the perturba-
tion functions; the radial functions do not depend on m.
Under a residual gauge transformation generated by the
function �ðvÞ ¼ � 1

240 k1M
4Bþ � � � , the radial functions

change according to

b4 ! b4; (6.27a)

b7 ! b7 þ k1
M4

r4
: (6.27b)

Here the residual gauge freedom was reduced to a one-
parameter family. The horizon-locking condition is b4 ¼ 0
at r ¼ 2M, and this will be achieved if and only if b4
automatically vanishes at r ¼ 2M. Using Eqs. (6.26) we
find that the horizon-locking constraint of Eq. (6.9) implies

b7ð2MÞ ¼ � 4

9
Mb04ð2MÞ; (6.28)

in which a prime indicates differentiation with respect to r.
This equation will be used to determine k1.

B. Linear perturbation: Field equations

1. Even-parity sector

We describe in detail the method by which the pertur-
bation equations are integrated in the quadrupole case l ¼
2; the same strategy is employed for the other multipoles.
We rely on the formalism of black-hole perturbation theory
outlined in Martel and Poisson [33]. The method unfolds in
a number of steps.
In the first step the forms hvv ¼ �r2e1ðrÞEð�vÞ þ � � � ,

jv ¼ � 1
3 r

3e4ðrÞEð�vÞ þ � � � , and G ¼
� 1

3 r
2e7ðrÞEð�vÞ þ � � � are inserted within the even-parity

field equations. Here � is a bookkeeping parameter that
reminds us that derivatives with respect to v are considered
to be small; in this first step the field equations are ex-

panded to order �0, and all terms in _E are neglected. In the
notation of Martel and Poisson, the equation Qvv ¼ 0 is
automatically satisfied, and the equations Qvr ¼ 0, Qrr ¼
0, and Qv ¼ 0 give rise to a system of three independent
differential equations for the three unknown radial func-
tions; the other field equations are related to these by the
Bianchi identities. The general solution to the system of
equations is easily obtained, and it depends on three inte-
gration constants. Imposing regularity at the event horizon
determines one constant, and removes all terms propor-
tional to logðr� 2MÞ from the radial functions. One of the
two remaining integration constants is an overall multi-
plicative factor that is chosen so that when r � 2M, the
functions e1, e4, and e7 all approach unity. The remaining
constant is equivalent to the parameter c1 that appears in
Eqs. (6.11); it characterizes the residual gauge freedom that
is still contained within the light-cone class of gauges. This
last constant can be selected by simultaneously enforcing
e1 ¼ e4 ¼ 0 at r ¼ 2M; this is the horizon-locking condi-
tion of Eq. (6.7). The functions e1, e4, and e7 are now
completely determined, and the constant c1 has been
chosen.
In the second step the forms

hvv ¼ �r2e1ðrÞEð�vÞ þ 1

3
r3e2ðrÞ _Eð�vÞ þ � � � ; (6.29a)

jv ¼ � 1

3
r3e4ðrÞEð�vÞ þ 1

6
r4e5ðrÞ _Eð�vÞ þ � � � ; (6.29b)

G ¼ � 1

3
r2e7ðrÞEð�vÞ þ 5

18
r3e8ðrÞ _Eð�vÞ þ � � � (6.29c)

are inserted within the even-parity field equations. The
functions e1, e4, and e7 are already known from the first
step, and the goal of the second step is to determine e2, e5,
and e8. The overdot still indicates differentiation with
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respect to v; the terms in _E are therefore of order �, and
higher derivatives are of order �2 and higher. In the second
step the field equations are expanded to order �, and all

terms in €E are neglected. As in the first step, the equations
Qvr ¼ 0, Qrr ¼ 0, and Qv ¼ 0 give rise to a system of
three independent differential equations for the three un-
known radial functions. The general solution is easily
obtained, and it depends on three integration constants.
As before, imposing regularity at the event horizon deter-
mines one of these, and removes all terms proportional to
logðr� 2MÞ from the radial functions. One of the two
remaining constants is equivalent to the parameter c2 that
appears in Eqs. (6.11); it characterizes the residual gauge
freedom that is still contained within the light-cone class of
gauges. The other constant is equivalent to the parameter
p1 that appears in Eqs. (6.12); it corresponds to a redefini-
tion of the quadrupole tidal moment E. The constant c2 is
selected by simultaneously enforcing e2 ¼ e5 ¼ 0 at r ¼
2M; this is once more the horizon-locking condition of
Eq. (6.7). The constant p1 is selected by also enforcing
e8 ¼ 0 at r ¼ 2M. The functions e2, e5, and e8 are now
completely determined, and the constants c2 and p1 have
been chosen.

In the third and last step Eqs. (6.10) are inserted within
the field equations, which are expanded to order �2. The
general solution to the system of differential equations for
e3, e6, and e9 is easily obtained, and as always it depends
on three integration constants. The two that remain after
imposing regularity at the event horizon are equivalent to
the parameters c3 and p2 that appear in Eqs. (6.11) and
(6.12). The constant c3 is selected by simultaneously en-
forcing e3 ¼ e6 ¼ 0 at r ¼ 2M. The constant p2 is se-
lected by also enforcing e9 ¼ 0 at r ¼ 2M. The functions
e3, e6, and e9 are now completely determined, and the
constants c3 and p2 have been chosen.

The task of solving the linearized field equations in the
even-parity, l ¼ 2 sector is now completed, and we pro-
ceed in the same fashion for the l ¼ 3 and l ¼ 4 sectors.
The radial functions obtained here are listed in Table XIV.

2. Odd-parity sector

Essentially the same strategy is adopted for the odd-
parity sector of the metric perturbation. We describe the
details for the quadrupole (l ¼ 2) sector.

In the first step we insert the expressions hv ¼
1
3 r

3b4ðrÞBð�vÞ þ � � � and h2 ¼ 1
3 r

4b7ðrÞBð�vÞ þ � � �
within the odd-parity field equations, which are expanded
to order �0. In the notation of Martel and Poisson, the Pv ¼
0 and Pr ¼ 0 equations give rise to a system of two
differential equations for the two unknowns b4 and b7.
The general solution to this system depends on three con-
stants of integration. The first is determined by demanding
regularity at r ¼ 2M. The second is an overall multiplica-
tive factor that is chosen so that b4 and b7 approach unity
when r � 2M. The third and final constant of integration

is equivalent to the parameter k1 that appears in Eq. (6.19);
it characterizes the residual gauge freedom that is still
contained within the light-cone class of gauges. We find
that b4 automatically vanishes at r ¼ 2M, and we set the
value of k1 by imposing the first horizon-locking constraint
of Eqs. (6.20). The functions b4 and b7 are now completely
determined, and the constant k1 has been chosen.
In the second step we insert the expressions

hv ¼ 1

3
r3b4ðrÞBð�vÞ � 1

6
r4b5ðrÞ _Bð�vÞ þ � � � ; (6.30a)

h2 ¼ 1

3
r4b7ðrÞBð�vÞ � 5

18
r5b8ðrÞ _Bð�vÞ þ � � � (6.30b)

within the odd-parity field equations, which are expanded
to order �. As in the first step, the general solution to the
system of differential equations for b5 and b8 depends on
three constants of integration. The first is determined by
imposing regularity at r ¼ 2M. The second constant is
equivalent to the gauge parameter k2 that appears in
Eqs. (6.19), and the third is equivalent to the parameter
q1 that appears in Eqs. (6.21); this corresponds to a rede-
finition of the quadrupole tidal moment B. We find that b5
automatically vanishes at r ¼ 2M, and we choose k2 so
that the second horizon-locking constraint of Eqs. (6.20) is
satisfied. Finally, we choose q1 so that b8 also vanishes at
r ¼ 2M. The functions b5 and b8 are now completely
determined, and the constants k2 and q1 have been chosen.
In the third and final step we insert Eqs. (6.18) within the

odd-parity field equations, which are now expanded to
order �2. As before the general solution to the system of
differential equations for b6 and b9 depends on three con-
stants of integration. The first is set by imposing regularity
at r ¼ 2M. The second is equivalent to the gauge parame-
ter k3 that appears in Eqs. (6.19), and the third is equivalent
to the parameter q2 that appears in Eqs. (6.21). We find that
b6 automatically vanishes at r ¼ 2M. We choose k3 so that
the third of Eqs. (6.20) is satisfied, and q2 so that b9 also
vanishes at r ¼ 2M. The functions b6 and b9 are now
completely determined, and the constants k3 and q2 have
been chosen.
The task of solving the linearized field equations in the

odd-parity, l ¼ 2 sector is now completed, and we proceed
in the same fashion for the l ¼ 3 and l ¼ 4 sectors. The
radial functions obtained here are listed in Table XIV.

3. Light-cone gauge and horizon-locking condition

The perturbation obtained in this section is presented in
the light-cone gauge introduced in Sec. VIA. The gauge is
completely fixed: The residual gauge freedom that was
initially left over was removed by imposing the horizon-
locking conditions of Eqs. (6.7) and (6.9). In terms of the
even-parity radial functions, this means that eq1 , e

q
2 , e

q
3 , e

q
4 ,

eq5 , e
q
6 , e

o
1 , e

o
2 , e

o
4 , e

o
5 , e

h
1 , and eh4 all vanish at r ¼ 2M. In

terms of the odd-parity radial functions, we have that bq1 ,
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bq2 , b
q
3 , b

q
4 , b

q
5 , b

q
6 , b

o
1 , b

o
2 , b

o
4 , b

o
5 , b

h
1 , and bh4 all vanish at

r ¼ 2M. In addition, the freedom described in Sec. VIA to
redefine the tidal moments was exploited to force eq8 , e

q
9 ,

eo8 , b
q
8 , b

q
9 , and bo8 also to vanish at r ¼ 2M. With these

conditions, the only radial functions that do not vanish at
r ¼ 2M are eq7 , e

o
7 , e

h
7 , b

q
7 , b

o
7 , and bh7; their values at r ¼

2M are listed in the caption of Table XIV.

C. Bilinear perturbation: Preparation

1. Form of the metric perturbation and considerations
of gauge

We next move on to the bilinear piece of the perturbed
metric, which is generated by the linear quadrupole terms.
The relevant pieces of the perturbed metric are

gvv ¼ �fþ linearþ 1

15
r4ðpm

1 P
m þ qm1 Q

mÞ þ 2

15
r4gd1G

d þ 2

7
r4ðpq

1P
q þ qq1Q

qÞ þ 2

3
r4go1G

o

� 1

3
r4ðph

1P
h þ qh1Q

hÞ þ � � � ; (6.31a)

gvr ¼ 1; (6.31b)

gvA ¼ linear� 8

75
r5gd2G

d
A þ 8

21
r5hq2H

q
A þ 4

105
r5ðpq

2P
q
A þ 11qq2Q

q
AÞ þ

2

5
r5go2G

o
A þ r5hh2H

h
A

� 2

15
r5ðph

2P
h
A þ qh2Q

h
AÞ þ � � � ; (6.31c)

gAB ¼ r2�AB þ linearþ 8

225
r6�ABðpm

3 P
m þ qm3 Q

mÞ þ 32

225
r6�ABg

d
3G

d � 16

105
r6�ABðpq

3P
q þ qq3Q

qÞ

� 3

14
r6ðpq

4P
q
AB � qq4Q

q
ABÞ þ

3

7
r6hq3H

q
AB � 8

45
r6�ABg

o
3G

o þ r6go4G
o
AB þ 2

45
r6�ABðph

3P
h þ qh3Q

hÞ
þ r6ðph

4P
h
AB þ qh4Q

h
ABÞ þ r6hh3H

h
AB þ � � � : (6.31d)

The bilinear metric perturbation is decomposed into multi-
pole moments, and with the help of Tables X, XI, XII, and
XIII, it can be expressed as in Eqs. (6.3) and (6.4), in terms
of scalar, vector, and tensor harmonics. The metric of
Eq. (6.31) includes all the tidal potentials that can contrib-
ute at bilinear order, including P q, H h

A, G
o
AB, P

h
AB, Q

h
AB,

and H h
AB that were missing from Eqs. (3.4). All radial

functions are required to approach unity as r ! 1, except
for pq

1 , g
o
4 , p

h
4 , q

h
4 , h

h
2 , and hh3 , which are expected to

approach zero as a power of 2M=r.
The form of the metric perturbation can be altered by a

residual gauge transformation that preserves the light-
cone nature of the coordinate system. Because the gauge
freedom was completely exhausted in the linear problem
(by enforcing the horizon-locking conditions), the freedom
that is left over in the bilinear problem is purely bilinear—
the coordinate shifts are necessarily proportional to
EE, BB, or EB. Under these circumstances the treatment
of bilinear gauge transformations is identical to the linear
treatment, and the residual gauge freedom is described
by Preston and Poisson [34]. In this context the residual
gauge freedom is wider than in the linear problem: We
can no longer enforce the tracefree condition�ABpAB ¼ 0,
which was maintained in the linear problem.

According to Preston and Poisson, the residual gauge
freedom in the even-parity sector of the metric perturbation
is described by

hvv ! hvv þ 2r €aþ 2

�
1� 3M

r

�
_a� 2 _bþ 2M

r2
b; (6.32a)

jv ! jv þ fa� b� r2 _c; (6.32b)

K ! K þ 2 _aþ lðlþ 1Þ
r

a� 2

r
bþ lðlþ 1Þc; (6.32c)

G ! G� 2

r
a� 2c; (6.32d)

where aðvÞ, bðvÞ, and cðvÞ are the generators of the gauge
transformation. The transformation is specific to each lm
mode, and the complete gauge transformation is obtained
by summing over the relevant multipoles (l ¼
f0; 1; 2; 3; 4g).
The residual gauge freedom in the odd-parity sector of

the metric perturbation is described by

hv ! hv � r2 _�; (6.33a)

h2 ! h2 � 2r2�; (6.33b)

where �ðvÞ is the generator of the gauge transformation.
This transformation also is specific to each lm mode, and
the complete gauge transformation is obtained by summing
over the relevant multipoles (l ¼ f2; 4g).
As we did in the linear problem, we shall exploit the

residual gauge freedom to specialize the light-cone gauge
to a horizon-locking gauge defined by the requirements

GEOMETRYAND DYNAMICS OF A TIDALLY DEFORMED . . . PHYSICAL REVIEW D 81, 024029 (2010)

024029-29



hlmvv ¼ jlmv ¼ 0 ¼ hlmv at r ¼ 2M: (6.34)

These conditions, together with the field equations, give
rise to the same horizon-locking constraint as in the linear
problem:

hlm2 ðv; r ¼ 2MÞ ¼ � 8M2

ðl� 1Þðlþ 2Þ
@hlmv
@r

��������r¼2M
: (6.35)

This comes about for the following reason: In the notation
of Martel and Poisson [33], we find that while Pr

lm is no

longer identically zero in the bilinear problem (because the
linear, quadrupole piece of the metric perturbation pro-
duces an effective energy-momentum tensor for the bi-
linear metric perturbation), its value turns out to be zero
at r ¼ 2M; the derivation leading to Eq. (6.35) is therefore
the same as the one leading to Eq. (6.9) in the linear
problem.

In addition to this first set of horizon-locking constraints,
another set arises as a consequence of the even-parity
perturbation equations, in particular, the Qrr

lm equation

(again in the notation of Martel and Poisson). When eval-
uated at r ¼ 2M, this equation implies

@vK
lmðv; r ¼ 2MÞ ¼ 4MQrr

lmðv; r ¼ 2MÞ (6.36)

when we also impose the horizon-locking conditions
hlmvv ¼ jlmv ¼ 0 at r ¼ 2M. The right-hand side of this
equation is not zero, and the bilinear Qrr

lm can be computed

from the linear pieces of the metric perturbation.
Calculation reveals that the contributions to Qrr

lm that origi-

nate from terms involving _Eab and _Bab in the linear per-
turbation vanish at r ¼ 2M, so that Qrr

lmðr ¼ 2MÞ comes

entirely from terms that involve Eab and Bab. The end
result is that Qrr

lmðr ¼ 2MÞ is equal to a quantity quadratic

in Eab and Bab that is differentiated with respect to v.
Equation (6.36) can therefore be integrated with respect to
v, and this gives rise to conditions on the value of Klm at
r ¼ 2M. A detailed examination of Eq. (6.36) shows that
these are equivalent to the horizon-locking constraints

pm
3 ¼ qm3 ¼ pq

3 ¼ qq3 ¼ ph
3 ¼ qh3 ¼

5

16
(6.37)

and

gd3 ¼ go3 ¼ � 5

16
(6.38)

on the value of the radial functions at r ¼ 2M.

2. Redefinitions

In addition to making use of the residual gauge freedom,
the form of the metric perturbation can be adjusted by
redefining the black-hole mass parameter M and the tidal
moments Eab, Bab, Eabc, and Babc. We consider the
changes

M ! Mþ 1

15
m1M

5EpqEpq þ 1

15
m2M

5BpqBpq;

(6.39a)

Eab ! Eab � 2

7
m3M

2EphaEp
bi �

2

7
m4M

2BphaBp
bi;

(6.39b)

Bab ! Bab þ 4

7
m5M

2EphaBp
bi; (6.39c)

Eabc ! Eabc � 2m6M�pqhaEp
bB

q
ci; (6.39d)

Babc ! Babc; (6.39e)

where the parameters mn are dimensionless constants, and
where the factors of 1

15 ,
2
7 ,

4
7 , and 2 were inserted for

convenience. The redefinition of M formally introduces a
time dependence in the black-hole mass parameter; this
can be ignored at the level of accuracy maintained in this
work, because according to the first of Eqs. (6.39), _M ¼
OðM5=R5Þ. The impact of the redefinitions on the radial
functions will be examined below. We observe that there is
no need to consider a change such as Eabcd ! Eabcd þ
m9EhabEcdi þm10BhabBcdi, because this redefinition does

not involve M; this ambiguity can be resolved at the level
of the background metric.
The redefinitions of Eqs. (6.39) are compatible with the

parity rules spelled out in Sec. II C. The rules forbid, for
example, the presence of an EB term in the shift in Eab, and
the presence of E2 and B2 terms in the shift in Bab.
Similarly, a shift in Babc is ruled out, because the combi-
nations of E andB that could be involved would violate the
parity rules.

3. Even-parity sector, l ¼ 0

It is easy to pick out the monopole piece of the bilinear
metric perturbation from Eqs. (6.31); it involves the tidal
moments Pm :¼ EpqEpq andQm :¼ BpqBpq. Examining

the gauge transformation of Eqs. (6.32), we find that the
changes for l ¼ 0 concern hvv and K only, and that those
are generated by two functions of time, _aðvÞ and bðvÞ.
Restricting the gauge freedom as we have done in the linear
problem, we write _a ¼ 1

15M
4ðc1Pm þ d1QmÞ and b ¼

1
15M

5ðc2Pm þ d2QmÞ, with cn, dn denoting dimensionless

constants. Neglecting time derivatives, substitution within
Eqs. (6.32) and comparison with Eqs. (6.31) reveals that the
gauge transformation produces the following changes in
the radial functions:

ERIC POISSON AND IGOR VLASOV PHYSICAL REVIEW D 81, 024029 (2010)

024029-30



pm
1 ! pm

1 þ 2c1
M4

r4
� 6c1

M5

r5
þ 2c2

M6

r6
; (6.40a)

pm
3 ! pm

3 þ 15

4
c1

M4

r4
� 15

4
c2

M5

r5
; (6.40b)

qm1 ! qm1 þ 2d1
M4

r4
� 6d1

M5

r5
þ 2d2

M6

r6
; (6.40c)

qm3 ! qm3 þ 15

4
d1

M4

r4
� 15

4
d2

M5

r5
: (6.40d)

The redefinition ofM in Eqs. (6.39) produces an additional
change in both pm

1 and qm1 :

pm
1 ! pm

1 þ 2m1

M5

r5
; (6.41a)

qm1 ! qm1 þ 2m2

M5

r5
: (6.41b)

Below we shall use the horizon-locking condition pm
1 ¼ 0

at r ¼ 2M to determine c1, leaving pm
1 and pm

3 dependent

on c2 and m1. We shall next impose the horizon-locking
constraint pm

3 ¼ 5=16 at r ¼ 2M to determine m1. These

conditions leave c2 undetermined, and this is chosen so as
to simplify the form of the radial functions. Similarly, we
shall use the horizon-locking condition qm1 ¼ 0 at r ¼ 2M
to determine d1, leaving qm1 and qm3 dependent on d2 and
m2. We shall next impose the horizon-locking constraint
qm3 ¼ 5=16 at r ¼ 2M to determine m2. These conditions

leave d2 undetermined, and this is chosen so as to simplify
the form of the radial functions.

4. Even-parity sector, l ¼ 1

The dipole piece of the bilinear perturbation involves the
tidal potentials Gd and Gd

A defined in Table XII. The gauge
transformation for l ¼ 1 concerns hvv, jv, and K only. It is
generated by three functions of time, which we write as
a ¼ 2

15 c1M
5Gd, b ¼ 2

15 c2M
5Gd, and c ¼ 2

15 c3M
4Gd, with

cn denoting dimensionless constants. (There is an abuse of
notation here. The functions a, b, and c are specific to each
mode l ¼ 1, m ¼ f0; 1c; 1sg; the notation Gd therefore
refers to each harmonic component of the bilinear tidal
moment, as listed in Table XII.) Neglecting time deriva-
tives, substitution within Eqs. (6.32) and comparison with
Eqs. (6.31) reveal that the gauge transformation produces
the following changes in the radial functions:

gd1 ! gd1 þ 2c2
M6

r6
; (6.42a)

gd2 ! gd2 �
5

4
ðc1 � c2ÞM

5

r5
þ 5

2
c1

M6

r6
; (6.42b)

gd3 ! gd3 þ
15

8
c3

M4

r4
þ 15

8
ðc1 � c2ÞM

5

r5
: (6.42c)

Below we shall use the horizon-locking conditions gd1 ¼
gd2 ¼ 0 at r ¼ 2M to determine c2, leaving gdn dependent
on c1 and c3. We shall next impose the horizon-locking

constraint gd3 ¼ �5=16 at r ¼ 2M to determine c1. These
conditions leave c3 undetermined, and this is chosen so as
to simplify the form of the radial functions.

5. Even-parity sector, l ¼ 2

The quadrupole piece of the bilinear perturbation in-
volves the tidal potentials P q and Qq, as well as their
vectorial and tensorial counterparts; these are defined in
Tables X and XI. The residual gauge transformation is
generated by a ¼ 2

7M
5ðc1P q þ d1QqÞ, b ¼ 2

7M
5ðc2P q þ

d2QqÞ, and c ¼ 2
7M

4ðc3P q þ d3QqÞ, in which P q and

Qq stand for the harmonic components of the tidal mo-
ments listed in Tables X and XI. Neglecting time deriva-
tives, substitution within Eqs. (6.32) and comparison with
Eqs. (6.31) reveal that the gauge transformation produces
the following changes in the radial functions:

pq
1 ! pm

1 þ 2c2
M6

r6
; (6.43a)

pq
2 ! pq

2 þ 15ðc1 � c2ÞM
5

r5
� 30c1

M6

r6
; (6.43b)

pq
3 ! pq

3 �
45

4
c3

M4

r4
� 15

4
ð3c1 � c2ÞM

5

r5
; (6.43c)

pq
4 ! pq

4 þ
8

3
c3

M4

r4
þ 8

3
c1

M5

r5
; (6.43d)

qq1 ! qm1 þ 2d2
M6

r6
; (6.43e)

qq2 ! qq2 þ
15

11
ðd1 � d2ÞM

5

r5
� 30

11
d1

M6

r6
; (6.43f)

qq3 ! qq3 �
45

4
d3

M4

r4
� 15

4
ð3d1 � d2ÞM

5

r5
; (6.43g)

qq4 ! qq4 �
8

3
d3

M4

r4
� 8

3
d1

M5

r5
: (6.43h)

The redefinitions of Eqs. (6.39) produce the additional
changes

pq
1 ! pq

1 þm3

M2

r2
f2; (6.44a)

pq
2 ! pq

2 þ 5m3

M2

r2
f; (6.44b)

pq
4 ! pq

4 �
4

9
m3

M2

r2

�
1� 2M2

r2

�
; (6.44c)

qq1 ! qq1 þm4

M2

r2
f2; (6.44d)

qq2 ! qq2 þ
5

11
m4

M2

r2
f; (6.44e)

qq4 ! qq4 þ
4

9
m4

M2

r2

�
1� 2M2

r2

�
: (6.44f)

Below we shall use the horizon-locking conditions pq
1 ¼

pq
2 ¼ 0 at r ¼ 2M to determine c2, leaving pq

n dependent
on c1, c3, and m3. We shall next impose the horizon-
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locking constraint pq
3 ¼ 5=16 at r ¼ 2M to determine c1

and the additional condition pq
4 ¼ 0 at r ¼ 2M to deter-

minem3. These conditions leave c3 undetermined, and this
is chosen so as to simplify the form of the radial functions.
Similarly, we shall use the horizon-locking conditions
qq1 ¼ qq2 ¼ 0 at r ¼ 2M to determine d2, leaving qqn de-

pendent on d1, d3, and m4. We shall next impose the
horizon-locking constraint qq3 ¼ 5=16 at r ¼ 2M to deter-

mine d1 and the additional condition qq4 ¼ 0 at r ¼ 2M to
determine m4. These conditions leave d3 undetermined,
and this is chosen so as to simplify the form of the radial
functions.

6. Even-parity sector, l ¼ 3

The octupole piece of the bilinear perturbation involves
the tidal potentials Go, Go

A, and Go
AB, which are defined in

Table XII. The residual gauge transformation is generated
by a ¼ 2

3 c1M
5Go, b ¼ 2

3 c2M
5Go, and c ¼ 2

3 c3M
4Go, in

which Go stands for the harmonic components of the tidal
moments listed in Table XII. Neglecting time derivatives,
substitution within Eqs. (6.32) and comparison with
Eqs. (6.31) reveal that the gauge transformation produces
the following changes in the radial functions:

go1 ! go1 þ 2c2
M6

r6
; (6.45a)

go2 ! go2 þ 5ðc1 � c2ÞM
5

r5
� 10c1

M6

r6
; (6.45b)

go3 ! go3 � 45c3
M4

r4
� 15

2
ð6c1 � c2ÞM

5

r5
; (6.45c)

go4 ! go4 � 4c3
M4

r4
� 4c1

M5

r5
: (6.45d)

The redefinitions of Eqs. (6.39) produce the additional
changes

go1 ! go1 þm6

M

r

�
1�M

r

�
f2; (6.46a)

go2 ! go2 þ
5

4
m6

M

r

�
1� 4M

3r

�
f; (6.46b)

go4 ! go4 þ
1

3
m6

M

r

�
fþ 4M3

5r3

�
: (6.46c)

Below we shall use the horizon-locking conditions go1 ¼
go2 ¼ 0 at r ¼ 2M to determine c2, leaving gon dependent

on c1, c3, and m6. We shall next impose the horizon-
locking constraint go3 � 5=16 at r ¼ 2M to determine c1,
and the additional condition go4 ¼ 0 at r ¼ 2M to deter-
minem6. These conditions leave c3 undetermined, and this
is chosen so as to simplify the form of the radial functions.

7. Even-parity sector, l ¼ 4

The hexadecapole piece of the bilinear perturbation
involves the tidal potentials P h and Qh, as well as their
vectorial and tensorial counterparts; these are defined in

Tables X and XI. The residual gauge transformation is
generated by a ¼ � 1

3M
5ðc1P h þ d1QhÞ, b ¼

� 1
3M

5ðc2P h þ d2QhÞ, and c ¼ � 1
3M

4ðc3P q þ d3QqÞ,
in which P h and Qh denote the harmonic components of
the tidal moments listed in Tables X and XI. Neglecting
time derivatives, substitution within Eqs. (6.32) and com-
parison with Eqs. (6.31) reveal that the gauge transforma-
tion produces the following changes in the radial functions:

ph
1 ! ph

1 þ 2c2
M6

r6
; (6.47a)

ph
2 ! ph

2 þ 10ðc1 � c2ÞM
5

r5
� 20c1

M6

r6
; (6.47b)

ph
3 ! ph

3 � 150c3
M4

r4
� 15ð10c1 � c2ÞM

5

r5
; (6.47c)

ph
4 ! ph

4 þ 4c3
M4

r4
þ 4c1

M5

r5
; (6.47d)

qh1 ! qh1 þ 2d2
M6

r6
; (6.47e)

qh2 ! qh2 þ 10ðd1 � d2ÞM
5

r5
� 20d1

M6

r6
; (6.47f)

qh3 ! qh3 � 150d3
M4

r4
� 15ð10d1 � d2ÞM

5

r5
; (6.47g)

qh4 ! qh4 þ 4d3
M4

r4
þ 4d1

M5

r5
: (6.47h)

Below we shall use the horizon-locking conditions ph
1 ¼

ph
2 ¼ 0 at r ¼ 2M to determine c2, leaving ph

n dependent
on c1 and c3. We shall next impose the horizon-locking
constraint ph

3 ¼ 5=16 at r ¼ 2M to determine c1. These
conditions leave c3 undetermined. We shall find that ph

4 �
0 at r ¼ 2M, but that its value is independent of c3, which
is chosen so as to simplify the form of the radial functions.
Similarly, we shall use the horizon-locking conditions
qh1 ¼ qh2 ¼ 0 at r ¼ 2M to determine d2, leaving qhn de-
pendent on d1 and d3. We shall next impose the horizon-
locking constraint qh3 ¼ 5=16 at r ¼ 2M to determine d1.
These conditions leave d3 undetermined. We shall find that
qh4 � 0 at r ¼ 2M, but that its value is independent of d3,
which is chosen so as to simplify the form of the radial
functions.

8. Odd-parity sector, l ¼ 2

The quadrupole piece of the bilinear perturbation in-
volves the tidal potentials H q

A and H q
AB defined in

Table XIII. The residual gauge transformation is generated
by � ¼ 3

7 k1M
4H q, in which H q stands for the harmonic

components listed in Table XIII. Neglecting time deriva-
tives, substitution within Eqs. (6.33) and comparison with
Eqs. (6.31) reveal that the gauge transformation produces
the following changes in the radial functions:
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hq2 ! hq2 ; (6.48a)

hq3 ! hq3 � 2k1
M4

r4
: (6.48b)

The redefinitions of Eqs. (6.39) produce the additional
changes

hq2 ! hq2 þm5

M2

r2
f; (6.49a)

hq3 ! hq3 þ
4

9
m5

M2

r2

�
1� 6M2

r2

�
: (6.49b)

The horizon-locking constraint of Eq. (6.35) gives rise to

hq3ð2MÞ ¼ � 4

9
M

dhq2
dr

��������r¼2M
: (6.50)

We shall verify that the horizon-locking condition
hq2ð2MÞ ¼ 0 is automatically satisfied, and use Eq. (6.50)
to determine k1. We shall then choosem5 so that h

q
3ð2MÞ ¼

0.

9. Odd-parity sector, l ¼ 4

The hexadecapole piece of the bilinear perturbation
involves the tidal potentials H h

A and H h
AB defined in

Table XIII. The residual gauge transformation is generated
by � ¼ 1

6 k1M
4H h, in which H h denotes the harmonic

components listed in Table XIII. Neglecting time deriva-
tives, substitution within Eqs. (6.33) and comparison with
Eqs. (6.31) reveal that the gauge transformation produces
the following changes in the radial functions:

hh2 ! hh2 ; (6.51a)

hh3 ! hh3 � 2k1
M4

r4
: (6.51b)

The horizon-locking constraint of Eq. (6.35) gives rise to

hh3ð2MÞ ¼ � 1

3
M

dhh2
dr

��������r¼2M
: (6.52)

We shall verify that hh2ð2MÞ ¼ 0, and use Eq. (6.52) to
determine k1. We shall find that hh3 does not vanish at r ¼
2M, but that its value is gauge invariant.

D. Bilinear perturbation: Field equations

1. General strategy

The solution to the bilinear problem requires a general-
ization of the perturbation formalism employed in the
linear problem. The perturbed metric takes the schematic
form g ¼ ĝþ �p1 þ �2p2 þOð�3Þ, in which ĝ stands for
the Schwarzschild metric, �p1 is the linear perturbation
calculated previously, and �2p2 the bilinear perturbation
that we now wish to obtain; ��R�2 is a perturbative
bookkeeping parameter. While �p1 is linear in the tidal

moments Eab and Bab, �
2p2 involves terms of the sche-

matic form EE, EB, and BB; those are decomposed into
multipole moments and expressed in terms of the poten-
tials Pm, P q, P h, Qm, Qq, Qh, Gd, Go, H q, and H o.
Notice that the bilinear problem involves the quadrupole
tidal moments Eab and Bab only; at order �

2 �R�4 there
is no need to involve the octupole and hexadecapole mo-
ments that also appear in the linear perturbation.
The Einstein tensor for the perturbed metric takes

the schematic form G½ĝ� þ �G1½p1� þ �2G1½p2� þ
�2G2½p1� þOð�3Þ, where G½ĝ� ¼ 0 is the Einstein tensor
of the Schwarzschild metric, and �G1½p1� ¼ 0 is the first-
order perturbation created by the linear perturbation �p1.
The remaining terms appear at second order. The first
contribution, �2G1½p2�, is the Einstein tensor generated
entirely from the second-order perturbation �2p2; G1 is
the same linear differential operator that was encountered
in the linear problem. The second contribution, �2G2½p1�,
is generated by the first-order perturbation, and it origi-
nates in the nonlinearities of the vacuum field equations.
The bilinear perturbation problem consists of finding

solutions to the field equations

G1½p2� ¼ �G2½p1�: (6.53)

These have the same formal structure as the linear field
equations G1½p1� ¼ 0, except for the fact that there is a
source term on the right-hand side. The problem is trac-
table because the differential operator on the left-hand side
is the same as in the linear problem, and because the source
term on the right-hand side can be computed directly from
the known solution �p1. Notice than time derivatives of
Eab and Bab can be ignored when computing G1½p2� and
G2½p1�; these contribute at orderR�5 and higher, and they
do not affect the field equations at order �2 �R�4.
The strategy to solve the bilinear field equations is the

same as in the linear problem. First p2 is decomposed in
scalar, vector, and tensor harmonics, a task that was already
accomplished in Eqs. (6.31). Second, the linear differential
operator G1½p2� is allowed to act on the perturbation, and
the result is again decomposed in spherical harmonics.
Third, the effective source term �G2½p1� is computed
and decomposed in spherical harmonics. And fourth, the
perturbation equations are integrated, one mode at a time.
In practice we rely on the Martel-Poisson perturbation
formalism [33] to implement this strategy.

2. Even-parity sector

The even-parity sector of the perturbation p2 involves
the terms in Pm, P q, P h,Qm,Qq,Qh, Gd, and Go; these
are decomposed as in Eqs. (6.3). The source terms
�G2½p1� are computed from p1 (which, we recall, involves
the potentials Eq and Bq only), and these also are decom-
posed as in Eqs. (6.3). In the notation of Martel and
Poisson, the reduced source functions are denoted Qvv,
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Qvr, Qrr, Qv, Qr, Q[, and Q], in which we suppress the
use of the lm labels. Examination of p2 and calculation of
�G2½p1� reveal that the relevant multipoles are l ¼
f0; 1; 2; 3; 4g.

The perturbation equations for l ¼ 0 decouple into two
sets, the first proportional to Pm and involving the radial
functions pm

1 and pm
3 , the second proportional to Qm and

involving the radial functions qm1 and qm3 . For each set of

equations the general solution depends on three integration
constants; these were denoted fc1; c2; m1g and fd1; d2; m2g
in Eqs. (6.40) and (6.41). The constants cn and dn are
chosen so as to enforce the horizon-locking condition
pm
n ¼ qmn ¼ 0 at r ¼ 2M. The constants m1 and m2 are

chosen so as to simplify the form of the radial functions;
we use this freedom to remove terms proportional to x�5 in
pm
1 =f and qm1 =f, and terms proportional to x�4 in pm

3 =f
and qm3 =f. The end results are listed in Table XV.

The perturbation equations for l ¼ 1 involve the dipole
potentialsGd and the three radial functions gdn. The general
solution to the set of coupled differential equations for the
radial functions depends on three integration constants;
these were denoted fc1; c2; c3g in Eqs. (6.42). The constants
c1 and c2 can be chosen so as to enforce the horizon-
locking condition gdn ¼ 0 at r ¼ 2M. This leaves c3 un-
determined, and it can be chosen so as to simplify the form
of the radial functions; we use this freedom to remove a
term proportional to x�5 in gd2=f. The end results are

displayed in Table XV.
The perturbation equations for l ¼ 2 decouple into two

sets, the first proportional to P q and involving the four
radial functions pq

n, the second proportional to Qq and
involving the four radial functions qqn. For each set of
differential equations the general solution depends on
five integration constants; one can be eliminated by remov-
ing all terms proportional to logðr� 2MÞ from the radial
functions, and the others correspond to fc1; c2; c3; m3g and
fd1; d2; d3; m4g in Eqs. (6.43) and (6.44). The constants c1,
c2, and m3 are chosen so as to enforce the horizon-locking
condition pq

n ¼ 0 at r ¼ 2M, while d1, d2, and m4 are
chosen to enforce qqn ¼ 0 at r ¼ 2M. This leaves c3 and
d3 undetermined, and those are chosen so as to simplify the
form of the radial functions; we use this freedom to remove
terms proportional to x�5 in both pq

2=f and qq2=f. The end
results are listed in Table XV.

The perturbation equations for l ¼ 3 involve the octu-
pole potentials Go and the four radial functions gon. The
general solution to the set of coupled differential equations
for the radial functions depends on five integration con-
stants; one can be eliminated by removing all terms pro-
portional to logðr� 2MÞ from the radial functions, and
the remaining constants were denoted fc1; c2; c3; m6g in
Eqs. (6.45) and (6.46). The constants c1, c2, and m6 can
be chosen so as to enforce the horizon-locking condition
gon ¼ 0 at r ¼ 2M. This leaves c3 undetermined, and it can
be chosen so as to simplify the form of the radial functions;

we use this freedom to remove a term proportional to x�5

in go2=f. The end results are displayed in Table XV.

The perturbation equations for l ¼ 4 decouple into two
sets, the first proportional to P h and involving the four
radial functions ph

n, the second proportional to Qh and
involving the four radial functions qhn. For each set of
differential equations the general solution depends on
five integration constants; one can be eliminated by remov-
ing all terms proportional to logðr� 2MÞ from the radial
functions, and another must be set so that the radial func-
tions (except for ph

4 and q
h
4) approach unity as r ! 1. The

remaining three are denoted fc1; c2; c3g and fd1; d2; d3g in
Eqs. (6.47). The constants c1 and c2 are chosen so as to
enforce the horizon-locking condition ph

1 ¼ ph
2 ¼ ph

3 ¼ 0
at r ¼ 2M, and we find that the value of ph

4 at r ¼ 2M is
independent of c3 (and therefore gauge invariant); we
choose c3 so that a term proportional to x�5 is removed
from ph

2=f. Similarly, d1 and d2 are chosen so as to enforce
the horizon-locking condition qh1 ¼ qh2 ¼ qh3 ¼ 0 at r ¼
2M, and we find that the value of qh4 at r ¼ 2M is inde-
pendent of d3 (and therefore gauge invariant); we choose
d3 so that a term proportional to x�5 is removed from qh2=f.
The end results are listed in Table XV.

3. Odd-parity sector

The odd-parity sector of the perturbation p2 involves
the terms in H q and H o; these are decomposed as in
Eq. (6.4). The source terms �G2½p1� are computed from
p1 and also decomposed as in Eq. (6.4). In the notation of
Martel and Poisson, the reduced source functions are de-
noted Pv, Pr, and P, in which we suppress the use of the lm
labels. Examination of p2 and calculation of �G2½p1�
reveal that the relevant multipoles are l ¼ f2; 4g.
The perturbation equations for l ¼ 2 involve the poten-

tials H q and the radial functions hq2 and hq3 . The general

solution to the set of coupled differential equations for the
radial functions depends on three integration constants;
one can be eliminated by removing all terms proportional
to logðr� 2MÞ from the radial functions, and the others
correspond to fk1; m5g in Eqs. (6.48) and (6.49). We ob-
serve that hq2 ¼ 0 at r ¼ 2M, and we use Eq. (6.50) to set

the value of k1. Finally, we choose m5 to enforce the
additional condition that hq3 ¼ 0 at r ¼ 2M. The end re-

sults are listed in Table XV.
The perturbation equations for l ¼ 4 involve the poten-

tials H h and the radial functions hh2 and hh3 . The general

solution to the set of coupled differential equations for the
radial functions depends on three integration constants.
One of these can be eliminated by removing all terms
proportional to logðr� 2MÞ from the radial functions,
and another must be set so that both hh2 and hh3 approach

zero as r ! 1. The remaining constant is denoted k1 in
Eq. (6.51). We observe that hh2 ¼ 0 at r ¼ 2M, and we use
Eq. (6.50) to set the value of k1. The end results are listed in
Table XV.
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E. Conclusion

The linear piece of the metric perturbation was com-
puted in Secs. VIA and VIB, and the bilinear piece was
computed in Secs. VIC and VID. The calculation is com-
plete, and after collecting results we obtain the black-hole
metric of Eqs. (3.7). The quasi-Cartesian representation of
the metric can immediately be constructed from this, and
the expressions are given in Eqs. (3.5).
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APPENDIX A: DECOMPOSITION OF TIDAL
POTENTIALS IN SPHERICAL HARMONICS

We wish to express the angular version of the tidal
potentials listed in Tables I, II, III, IV, V, and VI as
expansions in scalar, vector, and tensor harmonics.
Before we proceed we record the useful identities

�AB ¼ �abc�
a
A�

b
B�

c; (A1a)

�A
B�b

B ¼ ��a
A�ap

b�p; (A1b)

DADB�
a ¼ DBDA�

a ¼ ��a�AB: (A1c)

These quantities were all introduced in Sec. II E of the
main text.

The general structure of the even-parity tidal potentials
is

AðlÞ ¼ Ak1k2���kl�
k1�k2 � � ��kl ; (A2a)

AðlÞ
a ¼ �a

cAck2���kl�
k2 � � ��kl ; (A2b)

AðlÞ
ab ¼ 2�a

c�b
dAcdk3���kl�

k3 � � ��kl þ �abAðlÞ; (A2c)

in which Ak1k2���kl is a constant STF tensor of rank l. It is

not difficult to show that these satisfy the eigenvalue
equations

r2�cdDcDdAðlÞ þ lðlþ 1ÞAðlÞ ¼ 0; (A3a)

r2�cdDcDdA
ðlÞ
a þ ½lðlþ 1Þ � 1�AðlÞ

a ¼ 0; (A3b)

r2�cdDcDdA
ðlÞ
ab þ ½lðlþ 1Þ � 4�AðlÞ

ab ¼ 0; (A3c)

where Da is a projected differential operator that acts as
follows on arbitrary tensor fields: DaTb1b2��� :¼
�a

p�b1
q1�b2

q2 � � �@pTq1q2���.

The transformed potentials are

AðlÞ ¼ Ak1k2���kl�
k1�k2 � � ��kl ; (A4a)

AðlÞ
A ¼ �a

AAak2���kl�
k2 � � ��kl ; (A4b)

AðlÞ
AB ¼ 2�a

A�
b
BAabk3���kl�

k3 � � ��kl þ�ABAðlÞ; (A4c)

and we wish to expand them in the even-parity harmonics
of Eqs. (2.20). These satisfy the eigenvalue equations

�CDDCDDY
lm þ lðlþ 1ÞYlm ¼ 0; (A5a)

�CDDCDDY
lm
A þ ½lðlþ 1Þ � 1�Ylm

A ¼ 0; (A5b)

�CDDCDDY
lm
AB þ ½lðlþ 1Þ � 4�Ylm

AB ¼ 0; (A5c)

which are in a close correspondence with Eqs. (A3).

We begin with AðlÞ, which we decompose as

A ðlÞ ¼ X
m

AðlÞ
m Ylm; (A6)

in terms of harmonic components AðlÞ
m . There are 2lþ 1

real terms in the sum, and the 2lþ 1 independent compo-
nents ofAk1k2���kl are in a one-to-one correspondence with
the coefficients AðlÞ

m . Returning to the original representa-
tion of Eq. (A2), we find after differentiation that

DAAðlÞ ¼ l�a
AAak2���kl�

k2 � � ��kl , and we conclude that

A ðlÞ
A ¼ 1

l
DAAðlÞ ¼ 1

l

X
m

AðlÞ
m Ylm

A : (A7)

This is the decomposition of AðlÞ
A in vectorial, even-parity

harmonics; this equation is valid for l � 0. An additional
differentiation using the last of Eqs. (A1) reveals that

DADBAðlÞ ¼ �l�ABAðlÞ þ lðl�
1Þ�a

A�
b
BAabk3���kl�

k3 � � ��kl . From this we conclude that

A ðlÞ
AB ¼ 2

lðl� 1Þ
�
DADB þ 1

2
lðlþ 1Þ�AB

�
AðlÞ

¼ 2

lðl� 1Þ
X
m

AðlÞ
m Ylm

AB: (A8)

This is the decomposition ofAðlÞ
AB in tensorial, even-parity

harmonics; this equation is valid for l � f0; 1g.
We next examine the odd-parity potentials. Their gen-

eral structure is

BðlÞ
a ¼ �apq�

pBq
k2���kl�

k2 � � ��kl ; (A9a)

BðlÞ
ab ¼ ð�apq�pBq

dk3���kl�
d
b þ �bpq�

pBq
ck3���kl�

c
aÞ

��k3 � � ��kl ; (A9b)

and they satisfy the eigenvalue equations

r2�cdDcDdB
ðlÞ
a þ ½lðlþ 1Þ � 1�BðlÞ

a ¼ 0; (A10a)

r2�cdDcDdB
ðlÞ
ab þ ½lðlþ 1Þ � 4�BðlÞ

ab ¼ 0; (A10b)

the same as in the even-parity case. The potentials become
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BðlÞ
A ¼ �a

A�apq�
pBq

k2���kl�
k2 � � ��kl ; (A11a)

BðlÞ
AB ¼ ð�a

A�apq�
pBq

bk3���kl�
b
B

þ�b
B�bpq�

pBq
ak3���kl�

a
AÞ�k3 � � ��kl (A11b)

after transformation to angular coordinates. We wish
to decompose these in the odd-parity harmonics of
Eqs. (2.21), which satisfy the eigenvalue equations

�CDDCDDX
lm
A þ ½lðlþ 1Þ � 1�Xlm

A ¼ 0; (A12a)

�CDDCDDX
lm
AB þ ½lðlþ 1Þ � 4�Xlm

AB ¼ 0; (A12b)

the same as in the even-parity case.

We once more begin with BðlÞ :¼ Bk1���kl�
k1 � � ��kl

and its decomposition

B ðlÞ ¼ X
m

BðlÞ
m Ylm: (A13)

Differentiating the first expression, multiplying this by the
Levi-Civita tensor, and involving the second of Eqs. (A1)

returns �A
BDBBðlÞ ¼ �l�a

A�apq�
pBq

k2���kl�
k2 � � ��kl .

From this we conclude that

B ðlÞ
A ¼ 1

l
ð��A

BDBÞBðlÞ ¼ 1

l

X
m

BðlÞ
m Xlm

A : (A14)

This is the decomposition of BðlÞ
A in vectorial, odd-parity

harmonics; this equation is valid for l � 0. After a second

differentiation we get ��A
CDBDCBðlÞ ¼ l�ABBðlÞ þ lðl�

1Þ�a
A�apq�

pBq
bk3���kl�

b
B�

k3 � � ��kl , and after symmetri-

zation of the indices we obtain

B ðlÞ
AB ¼ � 1

lðl� 1Þ ð�A
CDB þ �B

CDAÞDCBðlÞ

¼ 2

lðl� 1Þ
X
m

BðlÞ
m Xlm

AB: (A15)

This is the decomposition of BðlÞ
AB in tensorial, odd-parity

harmonics; this equation is valid for l � f0; 1g.

APPENDIX B: DETERMINANT OF THE HORIZON
METRIC

The horizon metric of Eq. (4.3) can be expressed as
�AB ¼ 4M2�AB þ pAB. The metric determinant is given
by

ffiffiffiffi
�

p ¼ 4M2 sin�ð1þ 1
2"þ 1

8 "
2 � 1

4"
A
B"

B
A þ � � �Þ,

where "AB :¼ 1
4M

�2�ACpCB and " ¼ "AA. Evaluating

this gives

ffiffiffiffi
�

p ¼ 4M2 sin�

�
1þ 8

45
M4ðPm þQmÞ � 32

45
M4Gd

� 16

21
M4ðP q þQqÞ þ 8

9
M4Go þ 2

9
M4ðP h þQhÞ

� 1

9
M4ðEq

AB þBq
ABÞðEqAB þBqABÞ þOð5Þ

�
; (B1)

where the indices on Eq
AB and Bq

AB are raised with �AB.
This convention will be used consistently below: All in-
dices on tidal potentials will be lowered with �AB and
raised with �AB.
The identities

Eq
abE

qab ¼ Eq
ABE

qAB ¼ 8

5
Pm � 48

7
P q þ 2P h; (B2a)

Eq
abB

qab ¼ Eq
ABB

qAB ¼ � 16

5
Gd þ 4Go; (B2b)

Bq
abB

qab ¼ Bq
ABB

qAB ¼ 8

5
Qm � 48

7
Qq þ 2Qh (B2c)

can be established by direct computation, by making use of
the definitions of the tidal potentials provided in Tables I,
II, III, IV, V, and VI. Inserting them into our expression forffiffiffiffi
�

p
returns the simple expression displayed in Eq. (4.4).

APPENDIX C: CALCULATION OF TIDAL
HEATING

In this appendix we provide calculational details regard-
ing the heating of the black hole by the tidal interaction.
The results derived here are used in various places in
Sec. IVD.
To a degree of accuracy that is sufficient for our pur-

poses, the inverse to the horizon metric of Eq. (4.3) is

�AB ¼ 1

4
M�2�AB þ 1

6
ðEqAB þBqABÞ þM�2Oð3Þ:

(C1)

It is understood that on the right-hand side of this equation,
upper-case Latin indices are raised with �AB.
We use �AB to raise indices on the shear tensor of

Eq. (4.8). This yields

�AB ¼ � 1

12
ð _EqAB þ _BqABÞ � 1

60
Mð _EoAB þ _BoABÞ � 1

420
M2ð _EhAB þ _BhABÞ � 1

45
M2�ABð _Pm þ _QmÞ þ 4

45
M2�AB _Gd

þ 2

21
M2�ABð _P q þ _QqÞ � 1

9
M2�AB _Go � 1

36
M2�ABð _P h þ _QhÞ þ 1

42
M2 _P hAB � 5

63
M2 _QhAB þ 13

126
M2 _H hAB

þM�3Oð6Þ: (C2)

To arrive at this result we made use of the identity AACAC
B ¼ 1

2�ABACDACD satisfied by any symmetric-tracefree
tensor AAB on the unit two-sphere, as well as Eqs. (B2) from Appendix B. We emphasize that while indices on �AB are
raised with the physical horizon metric �AB, indices on all tidal potentials are raised with �AB.
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To evaluate the right-hand side of Eq. (4.12) we use
Eqs. (4.8) and (C2) to construct �AB�

AB, which we inte-
grate over the horizon with the help of Eq. (4.4). The shear
tensor is expressed as a multipole expansion, and its square
consists of products of multipole moments. Some of
these products involve moments of the same order. For
example, �AB�

AB contains the term 1
9M

4ð _Eq
AB þ _Bq

ABÞ�ð _EqAB þ _BqABÞ, which is a product of quadrupole mo-
ments; such terms survive an angular integration and con-
tribute to the right-hand side of Eq. (4.12). Other products
involve moments of different orders, and those integrate to
zero.

To evaluate an angular integral such as
R _Eq

AB
_EqABd�,

where d� :¼ sin�d�d�, we recall the definition _Eq
AB ¼

_Eq
ab�

a
A�

b
B and deduce the identity

_Eq
AB

_EqAB ¼ _Eq
ab

_Eqab. We

next substitute the expression for _Eq
ab found in Table I and

carry out the integration. These steps are repeated for all
other relevant products of multipole moments, and we
obtain

1

4�

Z
_Eq
AB

_EqABd� ¼ 8

5
_Eab

_Eab; (C3a)

1

4�

Z
_Bq
AB

_BqABd� ¼ 8

5
_Bab

_Bab; (C3b)

1

4�

Z
_Eo
AB

_EoABd� ¼ 8

21
_Eabc

_Eabc; (C3c)

1

4�

Z
_Bo
AB

_BoABd� ¼ 128

189
_Babc

_Babc: (C3d)

All other integrations vanish, or contribute to the right-
hand-side of Eq. (4.12) at order ðM=RÞ9 and beyond.

The general solution to Eq. (4.13) is

_AðvÞ ¼ e�0v _Að0Þ � 8�
Z v

0
F ðv0Þe�0ðv�v0Þdv0: (C4)

After three integration by parts this becomes

�0

8�
_AðvÞ ¼ e�0v

�
�0

8�
_Að0Þ �F ð0Þ � 1

�0

_F ð0Þ

� 1

�2
0

€F ð0Þ
�
þF ðvÞ þ 1

�0

_F ðvÞ þ 1

�2
0

€F ðvÞ

þ 1

�2
0

Z v

0

d3F
dv03 e

�0ðv�v0Þdv0: (C5)

The last term can be neglected, because ��3
0 d3F =dv3 is of

order ðM=RÞ9 and beyond the accuracy maintained in the
computation of the flux function. The first collection of
terms, those that depend on the initial conditions at v ¼ 0,
grow exponentially over a short time scale of order ��1

0 ¼
4M. We do not expect the black-hole area to behave in this
way; we expect instead that the tidal interaction will pro-
duce a slow growth over a much longer time scale. To
eliminate the run-away solution we demand that the solu-
tion satisfy the initial condition

�0

8�
_Að0Þ ¼ F ð0Þ þ 1

�0

_F ð0Þ þ 1

�2
0

€F ð0Þ þOð9Þ: (C6)

Under this restriction, Eq. (C5) reduces to

�0

8�
_AðvÞ ¼ F ðvÞ þ 1

�0

_F ðvÞ þ 1

�2
0

€F ðvÞ þOð9Þ; (C7)

and this is just Eq. (4.15). Notice that Eq. (C7) is compat-
ible with the initial conditions of Eq. (C6).
It is unusual, when dealing with horizons, to impose

initial conditions on solutions to differential equations, as
we have done in Eq. (C6). The reason, of course, is that
event horizons are always identified by final conditions.
We chose to proceed in this way because our horizon is not
necessarily an event horizon, as we explained in Sec. IVA.
We also explained that the horizon becomes an event
horizon when the tidal interaction switches off in the
remote future. Under this condition we may impose the

final condition that _A ¼ 0 when v ¼ 1. The exact solu-
tion to Eq. (4.13) is then

_AðvÞ ¼ 8�
Z 1

v
F ðv0Þe��0ðv0�vÞdv0; (C8)

and this leads once more to Eq. (C7) after three integrations
by parts.

APPENDIX D: ALTERNATIVE DERIVATION OF
THE BACKGROUND METRIC

In this appendix we give a brief sketch of an alternative
derivation of the background metric of Eqs. (3.3). The
derivation described in Sec. V relied on Zhang’s observa-
tion [18] that the metric of a vacuum region of spacetime
around a timelike geodesic � is a functional of two sets of
tidal moments Ea1a2���al andBa1a2���al ; these are STF tensors
that depend on proper time on the world line, and they are
related to components of the Weyl tensor (and its deriva-
tives) evaluated on the world line. Here we provide a
precise definition of the light-cone coordinates and con-
struct the metric systematically through order ðr=RÞ4; we
recover the metric of Eqs. (3.3) and therefore confirm the
validity of Zhang’s observation. Our development follows
the general methods developed in Ref. [2].

1. Formal definition of light-cone coordinates

As in Sec. II A we consider a timelike geodesic �
described by the parametric relations z�ð�Þ, with � denot-
ing proper time. On � we install an orthonormal tetrad

ðu�0
; e�

0
a Þ of parallel-transported vectors. (We use primed

indices to refer to points on the world line; unprimed
indices will refer to points off the world line.) For the
time being we do not assume that � is situated in a vacuum
region of spacetime; this assumption will be incorporated
at a later stage. To assign light-cone coordinates ðv; xaÞ to a
point x off the world line we locate the unique future-
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directed null geodesic segment 	 that begins at x and ends
at a point x0 on the world line. (The construction requires
that x be in the normal convex neighborhood of x0; the
coordinates are defined in this neighborhood only.) The
advanced-time coordinate v is the value of the proper-time
parameter � at this point: x0 ¼ zð� ¼ vÞ. And the quasi-
Cartesian coordinates xa are defined by

xa :¼ �ea�0��0 ðx; x0Þ; (D1)

where ea�0 :¼ �abg�0	0e	
0

b and ��0
:¼ r�0

� is Synge’s

world function �ðx; x0Þ [30,71] differentiated with respect
to its second argument. The points x and x0 are related by
the condition �ðx; x0Þ ¼ 0, which indicates that the points
are linked by a null geodesic segment.

We define

r :¼ ���0u�
0

(D2)

and state without proof that r is an affine parameter on	; it
decreases as the null geodesic approaches the world line.
(The proof of this statement is contained in Ref. [2].) The

completeness relation g�
0	0 ¼ �u�

0
u	

0 þ �abe�
0

a e	
0

b and

the identity ��0
��0 ¼ 2� ¼ 0 imply that r2 ¼ �abx

axb.
It is useful to introduce

�a :¼ xa=r; (D3)

and we use the completeness relation to write

��0 ¼ rðu�0 ��ae�
0

a Þ: (D4)

This is a decomposition of the displacement vector

��0 ðx; x0Þ in the tetrad ðu�0
; e�

0
a Þ. The vector

‘� :¼ ��=r (D5)

is future-directed and tangent to null geodesic segment 	.
Here �� :¼ r�� is the world function �ðx; x0Þ differenti-
ated with respect to its first argument.

Suppose now that the point x is moved to a neighboring
point xþ �x. The coordinates of the new point will be vþ
�v and xa þ �xa, and to calculate the coordinate displace-
ments we must locate the new point x0 þ �x0 on the world
line, which is linked to xþ �x by a new geodesic segment

	þ �	. Using �x�
0 ¼ u�

0
�v and expanding �ðxþ

�x; x0 þ �x0Þ ¼ 0 to first order in the displacements, it is
easy to show that �v ¼ �‘��x

�, so that

@�v ¼ �‘�: (D6)

The definition of the coordinates xa in terms of the world

function then implies that �xa ¼ �ðea�0��0
	0u	

0 Þ�v�
ea�0��0

	�x
	, so that

@�x
a ¼ ðea�0��0

	0u	
0 Þ‘� � ea	0�	0

�: (D7)

Here ��0
	0 :¼ r�0r	0� is the second covariant derivative

of the world function with respect to x0, while �	0
� :¼

r	0r�0� denotes a mixed derivative with respect to each
argument.

2. Metric

We begin with a computation of the inverse metric, with
components

gvv ¼ g�	@�v@	v; (D8a)

gva ¼ g�	@�x
a@	v; (D8b)

gab ¼ g�	@�x
a@	x

b: (D8c)

Using Eq. (D6) and the fact that ‘� is a null vector we
immediately find that gvv ¼ 0. With Eq. (D7) we get

gva ¼ ea�0��0
	‘

	, and we simplify this with the help of

Eq. (D5) and the identity ��0
	�

	 ¼ 1
2r�0 ð�	�

	Þ ¼
r�0

�. With Eqs. (D1) and (D3), this is gva ¼ �a. To
obtain the components

gab ¼ ea�0eb	0g�	��0
��

	0
	 � ðea�0��0

	0u	
0 Þ�b

� ðeb�0��0
	0u	

0 Þ�a (D9)

requires a much longer computation, and the result will be
expressed as an expansion in powers of r.
We rely on the known expansions (see, for example,

Ref. [72])

��0	0 ¼ g�0	0 � 1

3
R�0�0	0�0��0

��0

þ 1

12
R�0�0	0�0;�0�

�0
��0

��0 �
�
1

60
R�0�0	0�0;�0�0

þ 1

45
R�0�0�0�0R�0

�0�0	0

�
��0

��0
��0��0 þ � � � ;

(D10)

��0	 ¼ g	
0
	

�
�g�0	0 � 1

6
R�0�0	0�0��0

��0

þ 1

12
R�0�0	0�0;�0�

�0
��0

��0 �
�
1

40
R�0�0	0�0;�0�0

þ 7

360
R�0�0�0�0R�0

�0�0	0

�
��0

��0
��0��0 þ � � �

�

(D11)

for the derivatives of the world function, in which

g	
0
	ðx; x0Þ is the parallel propagator [30,71]. We

make the substitutions in Eq. (D9) and express ��0
as in

Eq. (D4).
The end result of a lengthy computation is
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gvv ¼ 0; (D12a)

gva ¼ �a; (D12b)

gab ¼ �ab þ 1

3
r2ðPab þ Pa�b þ Pb�aÞ � 1

12
r3ð2 _Pab þ _Pa�b þ _Pb�aÞ � 1

12
r3ð2Qab þQa�b þQb�aÞ

þ 1

60
r4ð3 €Pab þ €Pa�b þ €Pb�aÞ þ 1

30
r4ð3 _Qab þ _Qa�b þ _Qb�aÞ þ 1

60
r4ð3Sab þ Sa�b þ Sb�aÞ

þ 1

60
r4ð3Uab þUa�b þUb�aÞ þ 1

45
r4ð3Vab þ Va�b þ Vb�aÞ þOðr5Þ: (D12c)

The inverse metric is expressed in terms of the potentials

EQ-TARGET;temp:intralink-;dd13,dd13a,dd13b,dd13c,dd13d,dd13e,dd13f,dd13g,dd13h,dd13i,dd13j,dd13k,dd13l,dd13m,dd13n;52;621

Pab ¼ Ra0b0 � ðRacb0 þ Rbca0Þ�c þ Racbd�
c�d ¼ Pba; (D13a)

Pa ¼ Ra0c0�
c � Racd0�

c�d ¼ Pab�
b; (D13b)

P ¼ Rc0d0�
c�d ¼ Pa�

a; (D13c)

Qab ¼ �Ra0b0jc�c þ ðRacb0jd þ Rbca0jdÞ�c�d � Racbdje�c�d�e ¼ Qba; (D13d)

Qa ¼ �Ra0c0jd�c�d þ Racd0je�c�d�e ¼ Qab�
b; (D13e)

Q ¼ �Rc0d0je�c�d�e ¼ Qa�
a; (D13f)

Sab ¼ Ra0b0jcd�c�d � ðRacb0jde þ Rbca0jdeÞ�c�d�e þ Racbdjef�c�d�e�f ¼ Sba; (D13g)

Sa ¼ Ra0c0jde�c�d�e � Racd0jef�c�d�e�f ¼ Sab�
b; (D13h)

S ¼ Rc0d0jef�c�d�e�f ¼ Sa�
a; (D13i)

Uab ¼ ðRa0m0R
m
bc0 þ Rb0m0R

m
ac0 þ Ramb0R

m
0c0 þ Rbma0R

m
0c0Þ�c þ ð2Ra0c0Rb0d0 þ Ramc0R

m
db0

þ Rbmc0R
m
da0 � 2Ra0b0R0c0d � Ramb0R

m
cd0 � Rbma0R

m
cd0 � Racm0R

m
bd0 � Rbcm0R

m
ad0 � RacbmR

m
0d0

� RbcamR
m
0d0Þ�c�d þ ð�Ra0c0Rbde0 � Rb0c0Rade0 þ RacmdR

m
be0 þ RbcmdR

m
ae0 þ Racb0Rd0e0

þ Rbca0Rd0e0 þ RacbmR
m
de0 þ RbcamR

m
de0Þ�c�d�e ¼ Uba; (D13j)

Ua ¼ ðRa0m0R
m
cd0 þ Rcma0R

m
0d0Þ�c�d � ðRacm0R

m
de0 þ RacdmR

m
0e0Þ�c�d�e ¼ Uab�

b; (D13k)

Vab ¼ PacP
c
b � PaPb ¼ Vba; (D13l)

Va ¼ PacP
c � PaP; (D13m)

V ¼ PcP
c � P2; (D13n)

which are defined in terms of the frame components of the Riemann tensor (and its derivatives) evaluated on the world line.
We adopt the notation introduced in Sec. II A, and an overdot indicates differentiation with respect to proper time. For

example, _Pab :¼ _Ra0b0 � ð _Racb0 þ _Rbca0Þ�c þ _Racbd�
c�d, where, for example, _Ra0b0 :¼ R�0�0	0
0;�0e�

0
a u�

0
e	

0
b u


0
u�

0
.

Notice that the derivative operator acts on the Riemann tensor only. The fact that the tetrad is parallel-transported on

the world line implies that the right-hand side can also be written as ðR�0�0	0
0e�
0

a u�
0
e	

0
b u


0 Þ;�0u�
0
, and we find that _Ra0b0 ¼

dRa0b0=d�. To avoid ambiguities with second derivatives of the Riemann tensor, we always differentiate with respect to

proper time in the last step; for example, _Ra0b0jc :¼ R�0�0	0
0;�0�0e�
0

a u�
0
e	

0
b u


0
e�

0
c u�

0
.

The inverse of Eqs. (D12) is calculated using the techniques introduced in Sec. VA. We obtain

gvv ¼ �1� r2Pþ 1

3
r3 _Pþ 1

3
r3Q� 1

12
r4 €P� 1

6
r4 _Q� 1

12
r4Sþ 1

3
r4V þOðr5Þ; (D14a)

gva ¼ �a þ �c
a

�
� 2

3
r2Pc þ 1

4
r3 _Pc þ 1

4
r3Qc � 1

15
r4 €Pc � 2

15
r4 _Qc � 1

15
r4Sc � 1

15
r4Uc þ 2

15
r4Vc þOðr5Þ

�
; (D14b)

gab ¼ �ab þ �a
c�b

d

�
� 1

3
r2Pcd þ 1

6
r3 _Pcd þ 1

6
r3Qcd � 1

20
r4 €Pcd � 1

10
r4 _Qcd � 1

20
r4Scd � 1

20
r4Ucd

þ 2

45
r4Vcd þOðr5Þ

�
; (D14c)
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where �ab :¼ �ab ��a�b. We recognize the structure of
Eqs. (5.7), with a clear decomposition of the metric into
longitudinal and transverse pieces.

3. Decomposition of the Weyl tensor

At this stage we demand that the Ricci tensor, its first
derivatives, and its second derivatives, all vanish on the
world line �. This implies that the Riemann tensor R�0	0�0�0

and its derivatives are equal to theWeyl tensorC�0	0�0�0 and

its derivatives. The symmetries of the Weyl tensor, the
Bianchi identities, and the Ricci identities then imply
that the Weyl tensor (and its derivatives) can be expressed
in terms of the tidal moments Eab, Eabc, Eabcd, Bab, Babc,
and Babcd; these were defined in Sec. II A.

The frame components of the Weyl tensor on the world
line are given by

Ca0b0 ¼ Eab; (D15a)

Cabc0 ¼ �abpBp
c; (D15b)

Cabcd ¼ ��abp�cdqEpq: (D15c)

The last equation can also be written as

Cabcd ¼ �acEbd � �adEbc � �bcEad þ �bdEac; (D16)

by making use of the general identity �abp�cdq ¼
�acð�bd�pq � �bq�dpÞ � �adð�bc�pq � �bq�cpÞ þ
�aqð�bc�pd � �bd�cpÞ.

The frame components of the first spatial derivatives of
the Weyl tensor are

Ca0b0jc ¼ Eabjc; (D17a)

Cabc0jd ¼ �abpBp
cjd; (D17b)

Cabcdje ¼ ��abp�cdqEpq
je; (D17c)

where Eabjc :¼ Ca0b0jc and Babjc :¼ 1
2 �apqC

pq
b0jc. These

are related to the tidal moments by

Eabjc ¼ Eabc þ 1

3
ð�acp _Bp

b þ �bcp
_Bp

aÞ; (D18a)

Babjc ¼ 4

3
Babc � 1

3
ð�acp _Ep

b þ �bcp _Ep
aÞ: (D18b)

The frame components of the (symmetrized) second
spatial derivatives of the Weyl tensor are

Ca0b0jðcdÞ ¼ EabjðcdÞ; (D19a)

Cabc0jðdeÞ ¼ �abpB
p
cjðdeÞ; (D19b)

CabcdjðefÞ ¼ ��abp�cdqEpq
jðefÞ; (D19c)

where EabjðcdÞ :¼ Ca0b0jðcdÞ and BabjðcdÞ :¼
1
2 �apqC

pq
b0jðcdÞ. These are related to the tidal moments by

EabjðcdÞ ¼ 2Eabcd þ 1

3
ð�acp _Bp

bd þ �adp
_Bp

bc þ �bcp
_Bp

ad þ �bdp
_Bp

acÞ þ 4

21
�ab

€Ecd

� 1

7
ð�ac

€Ebd þ �ad
€Ebc þ �bc

€Ead þ �bd
€EacÞ þ 11

21
�cd

€Eab � 4

3
ðEabEcd �BabBcdÞ þ 2

3
ðEacEbd �BacBbdÞ

þ 2

3
ðEadEbc �BadBbcÞ � 22

21
�abGcd þ 19

42
ð�acGbd þ �adGbc þ �bcGad þ �bdGacÞ þ 20

21
�cdGab

� 4

21
ð�ab�cd þ �ac�bd þ �ad�bcÞG; (D20a)

BabjðcdÞ ¼ 10

3
Babcd � 1

4
ð�acp _Ep

bd þ �adp _Ep
bc þ �bcp _Ep

ad þ �bdp _Ep
acÞ þ 4

21
�ab

€Bcd

� 1

7
ð�ac

€Bbd þ �ad
€Bbc þ �bc

€Bad þ �bd
€BacÞ þ 11

21
�cd

€Bab � 4

3
ðEabBcd þBabEcdÞ þ 2

3
ðEacBbd þBacEbdÞ

þ 2

3
ðEadBbc þBadEbcÞ � 22

21
�abHcd þ 19

42
ð�acHbd þ �adHbc þ �bcHad þ �bdHacÞ þ 20

21
�cdHab

� 4

21
ð�ab�cd þ �ac�bd þ �ad�bcÞH: (D20b)

We introduced the notation

Gab :¼ EapEp
b �BapBp

b; (D21a)

G :¼ EpqEpq �BpqBpq; (D21b)

Hab :¼ EapBp
b þBapEp

b; (D21c)

H :¼ 2EpqBpq: (D21d)

4. Metric in irreducible form

The decomposition of the Weyl tensor and its derivatives
in terms of the tidal moments is substituted within Pab, Pa,
P, Qab, Qa, Q, Sab, Sa, S, Uab, Ua, Vab, Va, and V. All of
this is next substituted within our previous expression for
the metric tensor. The manipulations required to simplify
the expressions are extremely lengthy (on the order of 35
pages of small handwriting). We find that the terms that are
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linear in the Weyl tensor and its derivatives group them-
selves automatically into the irreducible tidal potentials
introduced in Tables I and II.

The organization of the terms that are quadratic in the
Weyl tensor requires more work. For example, our initial
expression for the quadratic terms in gvv is

gquadraticvv ¼ 1

21
r4ðEpqEpq �BpqBpqÞ

þ 2

21
r4ð2EapEp

b þ 5BapBp
bÞ�a�b

� 1

3
r4ðEabEcd þBabBcdÞ�a�b�c�d

þ 2

3
r4�cpqEp

aBq
b�

a�b�c: (D22)

To write this in terms of irreducible tidal potentials we
write a product of unit radial vectors such as �a�b�c�d

as the STF decomposition

�a�b�c�d ¼ �habcdi þ 1

7
ð�ab�hcdi þ �ac�hbdi

þ �ad�hbci þ �bc�hadi þ �bd�haci

þ �cd�habiÞ þ 1

15
ð�ab�cdþ �ac�bd

þ �ad�bcÞ; (D23)

and we make the substitution within the metric function.
Looking at the term EabEcd�

a�b�c�d, for example,

we obtain EabEcd�
habcdi þ 4

7 EpaEp
b�

habi þ 2
15 EpqEpq,

which can be expressed in the equivalent form
EhabEcdi�a�b�c�d þ 4

7 EphaEp
bi�

a�b þ 2
15 EpqEpq. Ac-

cording to the definitions listed in Table III, this is P h þ
4
7P

q þ 2
15P

m, a superposition of hexadecapole, quadru-

pole, and monopole tidal potentials.
Proceeding in a similar way with gva and gab, we

eventually arrive at Eqs. (3.3).
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