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We analyze the nonequatorial charged particle dynamics around a rotating black hole in the presence of

an external magnetic field, the latter being given by Wald’s exact analytical solution to the Maxwell’s

equations in the Kerr background. At variance with the corresponding Schwarzschild case, the behavior of

the particle becomes here markedly charge-sign dependent, and the more so the more the Kerr parameter

increases. The interplay between the rotating black hole and the magnetic field is shown to provide a

mechanism both for selective charge ejection in axially collimated jetlike trajectories, and for selective

charge confinement into nonequatorial bound orbits around the hole; the possibility of such a confinement

allows the fate of an accreting particle to not necessarily be doomed: infall into the hole can be prevented,

and the neutrality of the Kerr source could therefore be preserved, while the charge is safely parked into

bound cross-equatorial orbits all around it.
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I. INTRODUCTION

A remarkable characteristic of the spacetimes of the
Kerr family is their allowing separation of the geodesic
Hamilton-Jacobi equation into a radial and an angular part,
when the metric is written in oblate spheroidal (‘‘Boyer-
Lindquist’’) coordinates [1]. The nontrivial existence of a
fourth constant of motion, which is related to the existence
of a Stäckel-Killing tensor [2–5], and the physical meaning
of which has been illustrated in [6], allows reduction of the
geodesic problem to quadratures. This fact obviously pro-
vides a notable simplification for both analytical and nu-
merical calculations; in particular, it allows a complete
characterization of the equatorial orbits, which are of
primary importance for astrophysical applications, e.g. in
relation to accretion disks. Nonequatorial motions are cer-
tainly not less important, though, and astrophysically in-
teresting as well, with applications, e.g., to the jet
phenomena and the sheaths of ionized matter enveloping
the accretion centers; these nonequatorial motions there-
fore deserve due attention as well. In the nonequatorial
case, yet, the analysis becomes more complex, since it
requires investigation of three-dimensional spatial struc-
tures instead of the simpler planar ones. Moreover, com-
plexity is bound to increase when further ingredients are
added to the curved spacetime environment where the test
particles move. A typical instance of that is represented by
the electromagnetic fields, the inclusion of which in the
analysis of the curved spacetime dynamics of charged
particles is interesting and important both theoretically
and astrophysically.

In regard to this instance, application of the exact ana-
lytical solutions for the Maxwell’s equations in a
Schwarzschild or Kerr background determined in [7–14]
has provided useful insight into the charged particle dy-

namics in the ‘‘magnetic field plus strong spacetime cur-
vature scenario’’ [15–28]. The obvious difficulties such as
the full three-dimensional analysis vs the restricted equa-
torial one, the nonseparability of the Hamilton-Jacobi
equation for the nongeodesic case, the notably more com-
plex equations of motion which have to be integrated and
which do not allow an analytical solution anymore have
so far suggested a softer approach to the nonequatorial
problem. In fact, past work on the nonequatorial
charged particle behavior in the external electromagnetic
fields given by the above mentioned exact analytical solu-
tions [7–14] has focused on the Schwarzschild case
[15,17,23,24,27,28], while the Kerr analysis has been lim-
ited to equatorial motions [16,17,19–21,25] or quasiequa-
torial motions [18,22] only.
We now wish to make a step further in the nonequatorial

analysis, with the rotation of the gravitational source taken
into account. Employing the solution determined by Wald
[9] for the uniform magnetic field in a Kerr background, in
Sec. II we write the nongeodesic equations of motion for
the full three-dimensional case explicitly. The identifica-
tion of a physically sensible set of initial data for their
numerical integration is the subject of Sec. III, while
Sec. IV illustrates and comments on the characteristics of
the trajectories thus obtained. A summary of the results and
the conclusions of the paper are found in the final Sec. V.
Notation and conventions: we employ G ¼ 1 ¼ c units

throughout, with the exception of the final formulas, where
the c factors are explicited and the places where the G
factors are to be inserted are explicitly indicated as well,
for the benefit of the reader. Apart from the specific Boyer-
Lindquist coordinate indices ft; r; #; ’g, generic Greek
indices are employed to identify four-dimensional
(‘‘spacetime’’) quantities, while generic Latin indices in-
dicate the three-dimensional (‘‘local three-space’’) ones.
Overdots indicate derivatives with respect to the proper
time �: _x� � dx�=d�, €x� � d2x�=d�2; D=d� represents*giovanni.preti@pd.infn.it
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the absolute derivative with respect to �; the four-velocity
u� � _x� is normalized according to u�u� ¼ �1 (metric
signature þ2); observers and observables are identified by
their respective four-velocities; hatted indices refer to tet-
rad quantities; and a tilde superscript indicates that the
corresponding quantity is a ‘‘per unit mass’’ term.

II. EQUATIONS OF MOTION

The Kerr metric in usual Boyer-Lindquist coordinates
reads

ds2 ¼ �
�
1� 2Mr

�

�
dt2 þ �

�
dr2 þ�d#2 þ A

�
sin2#d’2

� 4aMrsin2#

�
dtd’; (1)

where

� ¼ r2 þ a2cos2#; (2)

� ¼ r2 þ a2 � 2Mr; (3)

A ¼ ðr2 þ a2Þ2 � a2�sin2#

¼ ðr2 þ a2Þ�þ 2Mra2sin2#; (4)

with M and a representing the mass and the specific
angular momentum of the gravitational source (condition
a > 0 is understood).

The field potential A� of the Wald solution [9] to the
Maxwell’s equations in the Kerr background, correspond-
ing to an asymptotically uniform magnetic field aligned
along the symmetry axis, is given by

At

A’

� �
¼ B0

gtt gt’
gt’ g’’

� �
a
1=2

� �
; Ar ¼ 0 ¼ A#; (5)

where B0 is the asymptotic modulus of the magnetic field.
From this field potential the following expression for the
electromagnetic field F�� ¼ 2@½�A�� is derived:

F�� ¼ B0

aM

�2

0 ftr ft# 0
�ftr 0 0 fr’
�ft# 0 0 f#’
0 �fr’ �f#’ 0

0
BBB@

1
CCCA; (6)

where

ftr ¼ ðr2 � a2cos2#Þð1þ cos2#Þ;
ft# ¼ rðr2 � a2Þ sin2#;

fr’ ¼
�
r�2

aM
þ aðr2 � a2cos2#Þð1þ cos2#Þ

�
sin2#;

f#’ ¼
�
�2

2aM
ðr2 þ a2Þ � ar½2ðr2 þ a2Þcos2#

þ a2sin4#�
�
sin2#:

Expression (6) can be inserted into the Lorentz equation:

D

d�
u� ¼ ~qF�

�u
� (7)

to obtain the dynamics of a particle u of massm and charge
q (recall ~q � q=m) in the presence of the given electro-
magnetic field. Because of the symmetries of the problem,
the t and ’ components of the momentum p� ¼ mu� þ
qA� are constants of the motion:

pt ¼ const � �E; p’ ¼ const � ‘; (8)

neither of which is relative to the particle alone, due to the
contributions coming from the field potential. In particular,
E and ‘ do not identify the energy and azimuthal angular
momentum of the particle with respect to a far-away ob-
server, as it happens with the simpler geodesic case instead.
The presence of the magnetic field (6) does not allow the

problem of determining the particle motion to be reducible
to quadratures, since the Hamilton-Jacobi equation is not
separable now, nor can recurse be made to an efficient
potential for the analytical characterization of the orbits.
A different path must therefore be followed: numerical
integration of the trajectories has to be done, and a char-
acterization of the charged particle behavior can be ob-
tained by individuating and examining some significative
examples, as we are going to see.
The dynamics of the charged particle is fully described

by the set consisting of the two first-order equations for the
variables t and ’ obtained from (8), and of the two second-
order equations for the variables r and # obtained from (7).
This set reads

_t ¼ 1

��

�
A

�
~E� 1

c
~qB0a

�
1� rM

�
ð2� sin2#Þ

��

� 1

c
2aMr

�
~‘� ~qB0sin

2#

�

�
A

2
� 2Mra2

���
; (9)

€rþ �M

�3
ðr2 � a2cos2#Þðc _tÞ2 � 2a�Msin2#

�3
ðr2

� a2cos2#Þc _t _’� 1

��
½ðr2 � a2cos2#ÞM

� ra2sin2#� _r2 � a2 sin2#

�
_r _#��r

�
_#2 þ �sin2#

�

�
�
Ma2sin2#

�2
ðr2 � a2cos2#Þ � r

�
_’2

¼ ~qB0

a�M

�3

�
�ðr2 � a2cos2#Þð1þ cos2#Þc _t

þ sin2#

�
r�2

aM
þ aðr2 � a2cos2#Þð1þ cos2#Þ

�
_’

�
;

(10)
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€#�Mra2 sin2#

�3
ðc _tÞ2 þ 2ðr2 þ a2ÞMra sin2#

�3
c _t _’

þ a2 sin2#

2��
_r2 þ 2r

�
_r _#�a2 sin2#

2�
_#2 � sin2#

2�3

� ½ðr2 þ a2Þ�2 þ 2a2Mrsin2#ð2�þ a2sin2#Þ� _’2

¼ ~qB0

aM

�3

�
½�rðr2 � a2Þ sin2#�c _tþ sin2#

�ðr2 þ a2Þ�2

2aM

� arð2ðr2 þ a2Þcos2#þ a2sin4#Þ
�
_’

�
; (11)

_’ ¼ 1

��

�
2aMr

�
c ~E� ~qB0a

�
1� rM

�
ð2� sin2#Þ

��

þ
�

�

sin2#
� a2

��
~‘� ~qB0sin

2#

�

�
A

2
� 2Mra2

���
;

(12)

where the dimensional c factors have been explicited, and
the Kerr parameters M and a are expressed in units of
length (hence, in the above equations it is intended that
M ! GM=c2 wherever it appears, explicitly or implicitly,
and a ¼ �M, with � 2 ½0; 1�). The set of equations (9)–
(12) does not allow an analytical solution; it has to be
solved numerically, once a consistent set of initial data
and constants of motion is imposed. Discussion about this
issue is the subject of the next section.

III. PHYSICAL MEASUREMENTS

Recalling ~E � E=m and ~‘ � ‘=m, from Eqs. (8) we
have:

~E ¼ �ðgtt _tþ gt’ _’þ ~qAtÞ; (13)

~‘ ¼ gt’ _tþ g’’ _’þ ~qA’; (14)

neither of which is a particle-related quantity alone, due to
the contributions coming from field potential, as remarked
above. This implies that, if we wish to keep direct control
on the initial data relative to the particle, we cannot first fix

the values of ~E and ~‘, and from these derive the former, but
we must proceed the other way around, instead. The nor-
malization condition u�u� ¼ �1 for the particle four-

velocity u� ¼ f _t; _r; _#; _’g gives
_t� ¼ 1

�gtt
½gt’ _’

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2t’ _’2 � gttðgrr _r2 þ g## _#2 þ g’’ _’2 þ 1Þ

q
�;
(15)

from which we obtain, with c factors explicited,

~E� ¼ 1

c
½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2t’ _’2 � gttðgrr _r2 þ g## _#2 þ g’’ _’2 þ c2Þ

q

� ~qAt�; (16)

~‘� ¼ 1

�gtt
½�sin2# _’

� gt’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2t’ _’2 � gttðgrr _r2 þ g## _#2 þ g’’ _’2 þ c2Þ

q
�

þ ~qA’: (17)

The two couples of values thus found, f ~Eþ; ~‘þg and

f ~E�; ~‘�g, which the constants of motions (13) and (14)
can take, can be expressed in terms of the initial data

fr0; #0; _r0; _#0; _’0g. Choosing the former or the latter of
these two couples is in general not arbitrary. In fact,
(i) the absence of chronology violation regions in the

Kerr black hole spacetime (a � M) implies that the
condition _t > 0 holds everywhere;

(ii) the existence of an ergosphere for the Kerr solution,
in correspondence to gtt ¼ 0, implies that gtt is
negative outside the radius of the ergosphere:

rergð#;M;aÞ ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2cos2#

p
; (18)

and positive inside;
(iii) for a Kerr black hole spacetime the condition gt’ <

0 always holds.
Hence, putting all these points together, it follows that, if

r > rerg then f ~Eþ; ~‘þg is the only allowed choice, while if

r < rerg both the f ~Eþ; ~‘þg and the f ~E�; ~‘�g couples are

allowed.
In order to obtain physically realistic particle trajecto-

ries, the initial data characterizing the particle must obvi-
ously correspond to realistic physical quantities. Since the
initial ‘‘velocity’’ data required for the integration of
Eqs. (9)–(12), namely, the coordinate derivatives _r0 and
_#0, do not represent components of the physical velocity of
the particle, there is not an obvious physical criterion
telling us how to choose the values for these coordinate

derivatives so that the couple f _r0; _#0g thus selected would
actually correspond to a physically meaningful choice. To
this end, we must first refer to a set of physical measure-
ments for the components of the particle velocity, and then

we must express _r0 and _#0 as a function of them. It there-
fore becomes now necessary to introduce an observer,
located at the initial spacetime position of the particle,
who can operate the above measurements.
Let us consider a (wholly generic) observer k, who

wishes to make a physical measurement of the spatial
velocity of the particle u [29]. To begin with, k has to
assign a spatial velocity vector v to u. This is obtained by
projecting the four-velocity u of the particle on the rest
space of k, using the spatial projector PðkÞ�� ¼
��
� þ k�k�, and then expressing the result in terms of

k’s proper time. The components of v therefore read

v� � �PðkÞ��u
�

ðu�k�Þ ¼ u�

~�
� k�; (19)
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where

~� ¼ �u�k
� (20)

is the energy of u as measured in the local rest frame of k.
The components (19) do not provide the components of the
particle velocity as physically measured by the observer k
yet. To obtain them, a tetrad projection is required:

v{̂ ¼ �{̂
�g��v

�; (21)

where the �{̂
� are the components of the tetrad vectors of

k. The tetrad components (21) do finally provide us with
the required physically meaningful quantities, namely, the
measured components of the particle velocity. It is worth
remarking that all of them—which obviously satisfy
v{̂ � v{̂—have the correct dimensions of a velocity,
namely LT�1. This property is in general not shared by
the contravariant components v� defined in Eq. (19), in-
stead, nor by their covariant counterparts v�. It is also
worth noting that the speed of u as physically measured

by k, namely v ¼ ffiffiffiffiffiffiffiffiffi
v{̂v

{̂
p

, can be obtained directly from
(19) as v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

v�v
�

p
, since projection (21) does obviously

not alter the modulus of v. Thus, we immediately see that
the locally measured energy (20) coincides with the locally

measured Lorentz factor ~� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
.

Thus far, we have been dealing with an entirely generic
observer k; now, we specify this observer to be the Kerr
zero-angular-momentum observer (ZAMO), whose four-
velocity has components

k� ¼ ��
t þ!��

’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt þ!2g’’

q

(where ! ¼ �gt’=g’’ is the angular speed of inertial

dragging), and whose tetrad frame is given by

�t̂ ¼
@t þ!@’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gtt þ!2g’’

q ; �r̂ ¼ @rffiffiffiffiffiffiffi
grr

p ;

�#̂ ¼ @#ffiffiffiffiffiffiffiffiffi
g##

p ; �’̂ ¼ @’ffiffiffiffiffiffiffiffiffi
g’’

p :

(22)

Equations (19) and (21) then allow expressing the proper
time derivatives of the coordinates in terms of the physi-
cally meaningful particle velocity, as measured by the
ZAMO, according to

_r ¼ ~�
vr̂ffiffiffiffiffiffiffi
grr

p ; _# ¼ ~�
v#̂ffiffiffiffiffiffiffiffiffi
g##

p ;

_’ ¼ ~�ffiffiffiffiffiffiffiffiffi
g’’

p
�
v’̂ � c

gt’ffiffiffiffi
�

p
sin#

�
;

(23)

where the final expression follows from v�k� � 0.
We have thus finally reached our aim; in fact, we are

now in possession of all of the elements allowing us to
proceed with an integration of the charged particle trajec-

tories based on a physically meaningful choice for the
initial data, established according to the following steps:
(i) First, we fix the initial spacetime location of the

particle ft0; r0; #0; ’0g, with the obvious condition

r0 >Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
; note that the particular choice

of both t0 and ’0 is not influential, due to the
symmetries of the problem.

(ii) We fix the initial physical velocity of the particle, as
measured by the colocated ZAMO fvr̂0;v#̂0;v’̂0g,
with the obvious condition v0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
r̂0þv2

#̂0
þv2

’̂0

q
<c.

(iii) Then, from the set fr0; #0; vr̂0; v#̂0; v’̂0g fixed above,
we obtain the coordinate derivatives f _r0; _#0; _’0g, by
using Eqs. (23).

(iv) Then, from the set fr0; #0; _r0; _#0; _’0g thus estab-
lished, we derive the values (16) and (17) for the

conserved quantities ~E and ~‘.
(v) Finally, the whole set ft0; r0; #0; ’0; _r0; _#0; ~E; ~‘g thus

determined is employed in the numerical integration
of the equations of motion (9)–(12).

Illustration and discussion of the resulting charged particle
behavior is the subject of the next section.

IV. THE NONEQUATORIAL TRAJECTORIES

In order to deal with astrophysically realistic data, we
assume the gravitational source to be represented by a
supermassive galactic black hole of mass M ¼ 108M�,
and take for the magnetic field the value B0 ¼ 10�13 T,
which represents the estimated [30] upper limit for the
strength of large scale homogeneous magnetic fields. As
for the charged particles, we focus our analysis on elec-
trons and positrons, since their charge-to-mass ratio, ~q ¼
�1:78� 1011 C=kg, is the maximal one, thereby implying
the maximal reactivity to the presence of the magnetic
field.
The flat spacetime behavior of charged particles im-

mersed in a uniform magnetic field along the z axis is quite
simple, and well known; recall, in particular, that the axial
freestreaming allows no possible charge confinement away
from the equatorial plane (or from planes parallel to it,
obviously). In a curved spacetime endowed with the cor-
responding Wald magnetic field (6), the situation changes
remarkably. Already in the (relatively) simple case of a
Schwarzschild background, the combination of the space-
time curvature with the external magnetic field can give
rise to a complex structure of both cross-equatorial mag-
netically bottled orbits and axially collimated jet trajecto-
ries [28], suggestive of realistic astrophysical situations.
And if we add rotation to the source?
On the one hand, rotation is a matter of gravity, hence a

quantitative modification of the Schwarzschild results is
obviously expected. On the other hand, the gravitomag-
netic field couples to the magnetic one in such a way as to
remove the symmetries of the orbital motions with respect
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to the sign of the particle charge [9], characterizing the
Schwarzschild case; hence, we should also expect a re-
markable qualitative change with respect to the latter.

Let us therefore begin to explore how a charged particle
behaves in its nonequatorial motion around a Kerr black
hole immersed in the Wald magnetic field.

Our initial approach is illustrated by Fig. 1, showing the
evolution of the zenithal distance #ð�Þ of the charged
particle, which is here an electron ejected radially (initial
velocity v0 � vr̂0 ¼ 0:9c) from the surroundings of the
black hole (initial position r0 ¼ 6M, #0 ¼ 0:5 rad); the
extremal Kerr case is shown in comparison with the cor-
responding Schwarzschild and flat spacetime ones. The
zenithal distance rapidly decreases, and the electron ulti-
mately escapes in an axially collimated jetlike trajectory.
The collimation effect, which is (obviously) already
present in the flat spacetime case, becomes less rapid due
to the gravitational attraction (as it is apparent from com-
paring between the Schwarzschild and the flat spacetime
cases), but this attraction is counterbalanced and eventually
overcome by the effects determined by the increasing
rotation of the source (as the extremal Kerr case shows,
in comparison with the other two).

A visualization of the trajectory of our electron is pro-
vided in Fig. 2, which shows the ðx; zÞ section of its orbit in
its early-time evolution (the time scale is one-fifth of that
of Fig. 1). The axial collimation effect due to the magnetic
field is made evident by the comparison with the trajectory
(dashed line) which the electron would follow in the ab-
sence of the latter. It can also be observed that, although the
flat (dotted line) and the extremal Kerr cases are qualita-
tively similar, quantitative differences do occur; in particu-
lar, enhanced escape velocity is observed in the latter case,
as Fig. 1 already implied.

The effects of an increasing Kerr parameter can be
appreciated in Fig. 3, which—in correspondence to the

three values, a ¼ 0 (Schwarzschild), a ¼ 0:5M, and a ¼
M (extremal Kerr)—illustrates the early-time evolution of
the above electron orbit [Fig. 3(a)], its # evolution on a
longer time scale [Fig. 3(b)], and the distance covered in
the axial direction on a still longer time scale [Fig. 3(c)].
Again, it can be observed that the trajectories are qualita-
tively similar (jetlike escape, with no significant differ-
ences in the gyroradii), but in all three graphics there is an
evident quantitative difference in the escape velocities,
which confirms the role of an increasing Kerr parameter
in favoring the ejection of our charged particle.
So far, we have dealt with an electron. What about

positrons?
In a Schwarzschild background, we should not worry

about the difference in the charge sign, since the electron/
positron cases are specular (opposite ~qþ opposite v’̂0 !
same behavior). But the gravitomagnetism which charac-
terizes the Kerr case couples to the external magnetic field,
causing a notable change in the charged particle behavior,
depending on which of the two charges is considered. This

extremal Kerr

flat

Schwarzschild

neutral particle

103 5 103 104
sec

0.5

0.35

0.2

0.05

rad

FIG. 1 (color online). Evolution of the zenithal distance # for
an initially radially ejected electron with r0 ¼ 6M, vr̂0 ¼ 0:9c,
and #0 ¼ 0:5 rad, subject to the Wald field around an extremal
(a ¼ M) Kerr black hole, and comparison with the correspond-
ing Schwarzschild and flat spacetime cases.

3M 4M 5M 6M

6M

12M

14M

8M

10M

x

z
2 103sec, a M

FIG. 2 (color online). ðx; zÞ section of the orbit of an initially
radially ejected electron (same initial data as in Fig. 1), moving
in the Wald field around an extremal (a ¼ M) Kerr black hole,
compared with the trajectory in the corresponding ‘‘flat space-
time plus uniform magnetic field’’ case (dotted line), and with
the behavior in the absence of the Wald field (dashed line).
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change is not limited to quantitative differences in the same
qualitative behavior, but also lets remarkable qualitative
differences emerge. Both Figs. 4 and 5 refer to the same
situation, namely, an electron or a positron with the same
initial data in the same ‘‘KerrþWald magnetic field’’
environment, but the time scales are different: a shorter
one for Fig. 4, and a longer one for Fig. 5. The former is

already able to show the charge-dependent behavior of the
two particles: with respect to the corresponding flat space-
time cases (dotted lines), axial acceleration is obtained for
the electron, while the proton gets axially decelerated,
instead. The trajectories are qualitatively similar, though,
and this may naively lead one to think that the final out-
come will be analogous to the one of Figs. 1–3, namely, a

a M

a 0.5M

a 0

2.8M 2.9M 3M

6M

7M

9M

8M

x

z

a

a M

a 0.5M

a 0

103 5 103 104

0.5

0.35

0.2

0.05

sec

ra
d

b

a M

a 0.5M

a 0

104 5 104 105

102

4 102

8 102

s

z
M

c

FIG. 3 (color online). (a) ðx; zÞ section of the orbit of an initially radially ejected electron (same initial data as in Fig. 1) moving in the
Wald field around a Kerr source, for different values of the Kerr parameter a (dotted line: Schwarzschild case; dashed line: a ¼ 0:5M;
solid line: extremal Kerr); plot for 0 � � � 103 sec . (b) Evolution of the zenithal distance #, for the three cases considered in (a).
(c) Distance covered in the axial direction, for the three cases considered in (a).
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jetlike escape, for both of the two cases. A look at the
longer-time evolution of the trajectories will immediately
correct such an impression. Indeed, as Fig. 5 clearly shows,
the final outcome of the two trajectories is dramatically

different: while the electron does succeed in its axially
collimated escape away from the black hole, the positron
gets magnetically entrapped in its surroundings instead,
oscillating across the equatorial plane while precessing
around the axis, without infalling into the horizon.
The above examples show that the combined effect of

the magnetic and the gravitomagnetic fields can provide a
natural mechanism for charge separation, selective charge
confinement around the black hole, and selective charge
ejection from the regions close to it. Do these particle
behaviors crucially depend on the initial direction of the
charged particle motion? In fact, we have so far been
dealing with initially radially outgoing particles only;
one might therefore reasonably think that an initial injec-
tion of the particles toward the black hole would rather
easily prevent escape, instead, and easily lead to infall
through the horizon as well. In order to see what happens
when injection takes the place of ejection, we can invert the
direction of the initial velocity v0 � vr̂0 while keeping all
the other initial data unchanged with respect to the cases
shown in Figs. 4 and 5. The results are illustrated in Figs. 6
and 7. The former shows the case of an initially radially
infalling electron, which not only avoids being swallowed
by the hole, but also does not even get so close to it as to
trespass its ergosphere, as Fig. 6(b) shows. After a few
rebounds back and forth in the magnetic field, our electron
finally succeeds in escaping away, following an axially
collimated jetlike trajectory in the negative-z direction,
shown in Fig. 6(a). Figure 7 provides the correspondent
of Fig. 6 (same initial data, same environment), but for the
case of a positron. Again, the particle avoids being swal-
lowed by the hole, and again it does not even cross its
ergosphere [cf. Fig. 7(b)], but while the electron succeeded
[cf. Fig. 6(a)], after a transient oscillatory phase, to escape
the magnetogravitational trap, getting ultimately enrouted
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FIG. 5 (color online). 3D plots of the orbit for the electron and
positron of Fig. 4.
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FIG. 4 (color online). ðx; zÞ section of the orbit for an electron
and a positron in the Wald field around an extremal Kerr black
hole, and comparison with the corresponding flat spacetime case
(dotted lines). Initial data as in Fig. 1; plots for 0 � � �
103 sec .
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FIG. 6 (color online). Initially radially ingoing electron in the
Wald field around an extremal Kerr black hole, with initial data
r0 ¼ 6M, vr̂0 ¼ �0:9c, and #0 ¼ 0:5 rad. (a) ðx; zÞ section of
the orbit; (b) corresponding radial position of the particle with
respect to the ergosphere. Time scales: �max¼1:5�104 sec (a),
�max ¼ 1:3� 104 sec (b).
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into an axially collimated ejection, the positron gets en-
trapped around the hole [cf. Fig. 7(a)] instead, yet with-
out—once again, as in the case of Fig. 5—infalling into it.

As remarked by Wald [9], a Kerr black hole in the
uniform field (6) would, at variance with a Schwarzschild
one, be subject to a selective charge accretion process from
the surrounding ionized interstellar medium, leading the
hole to evolve into a Kerr-Newman source. Although this
evolution can be expected in general, the above examples
have shown that an accreting charge is not necessarily
doomed to infall across the horizon. In fact, the very
magnetic interaction driving the selective accretion process
is also able to confine the charge around the hole, prevent-
ing the latter from swallowing it, and thereby from building
up electric charge itself. Thus, the neutrality of the Kerr
source could be preserved, while a sort of ‘‘ionosphere’’
could form around it, where charges of the one sign are
preferentially confined into, while the charges of the oppo-
site sign can be efficiently pushed away from the regions
close to the hole, along axially collimated jetlike
trajectories.

These observations can be made more quantitative by
evaluating the ‘‘jetlike escape vs magnetic entrapment’’
condition as a function of the initial velocities and of the
initial zenithal distance characterizing our charged parti-
cles, in correspondence to various values of the Kerr pa-
rameter, in order to put into evidence the effects of the
source rotation on the charged particle dynamics. The
results of these evaluations are illustrated in Figs. 8 and 9.

In Fig. 8, the cases of initially radial ejections of both
electrons (a) and positrons (b) are considered; for each
given value of the Kerr parameter � � a=M, the boundary
in the fvr̂0; #0g plane is shown which separates the escape
trajectories (allowed below the corresponding � curves)
from the magnetically confined ones (above them). As can
easily be observed, at fixed initial data for the particle an
increasing � favors the possibility of jetlike escape in the
case of the electron [cf. Fig. 8(a)], while this possibility is
hindered in the case of the positron [cf. Fig. 8(b)]. In

particular, it is worth remarking that the whole of
Fig. 8(b) actually fits in the lower-right corner of
Fig. 8(a); this testifies the fact that in any case (with the
obvious exception of the� ¼ 0 one) escape is always more
problematic for positrons than for electrons, and much
more so the more the rotation of the black hole increases.
Thus, to the ðvr̂0; #0Þ dependence of the magnetic confine-
ment—characterizing either charge, cf. Figs. 8(a) and 8(b),
and which could lead to the formation of a sort of iono-
sphere from whose open polar caps the more energetic
particles of either charge can evade in axially collimated
jetlike trajectories, in analogy to the Schwarzschild case
[28]—here a rotation-induced effect is added, leading to a
markedly charge-selective version of the same process: on
equal initial terms, electrons ultimately dominate in the jet
outcome, and positrons in the cross-equatorial magnetic
trapping.
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FIG. 7 (color online). As in Fig. 6, but for a positron. Time
scales: �max ¼ 105 sec (a), �max ¼ 2� 105 sec (b).
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FIG. 8 (color online). Maximum escape initial zenithal dis-
tance #0 as a function of the initial velocity, for initially radial
ejections of (a) electrons and (b) positrons, both starting from
r0 ¼ 6M, in correspondence to different values of the parameter
� ¼ a=M (evaluations made with integration parameter 0 �
� � 5� 105 sec ). Magnetically trapped orbits are found in
correspondence to initial data within the region above each
line, while escape trajectories (jetlike orbits) for values below.
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To complete the picture delineated by Fig. 8, we now
shift our attention from the initially radial trajectories

considered so far, with different initial zenithal distances,
to the case of charged particles originally orbiting around
the black hole in the equatorial plane, from which they are
suddenly expelled by a vertical perturbation. This situation
has a natural realistic counterpart in the orbital motions
within accretion disks and in the powerful disk winds
which can eject ionized particles at relativistic speed
away from these same accretion disks. In correspondence
to three representative values of the Kerr parameter (a ¼
0:1M, a ¼ 0:5M, and a ¼ 1M), Fig. 9 shows the region in
the ðv’̂0; v#̂0Þ plane—bounded from above by the v0 ¼ c

curve—for initial data internal to which particle escape is
found, both for the case of electrons (curves identified by
the filled circles) and of positrons (curves with empty
circles). The nonsymmetry of the curves with respect to
v’̂0 ¼ 0 is a consequence of the rotation of the black hole

and of the presence of the Larmor gyromotion; more
relevant for our analysis—and evident at a glance—is the
fact that there is always less room for positrons to escape
than for electrons: the latter are ejected more easily, while
the former tend to get nonequatorially entrapped around
the black hole. The separation of these behaviors is ob-
served to become more pronounced the more the Kerr
parameter increases, as a comparison of Fig. 9 from top
to bottom clearly shows, in accord with our previous
observations.
Even if, for the reasons discussed in the Introduction and

in Sec. II, an analytically detailed description of the orbits
is not feasible for the problem we have been examining in
this paper, the elements drawn from the illustrative cases
presented above let us nonetheless outline a physically
consistent picture of the relevant aspects which character-
ize the nonequatorial dynamics of our charged particles. It
is now useful to summarize these aspects, drawing the
conclusions from our analysis.

V. SUMMARY

The behavior of charged particles in electromagnetic
fields when a strong spacetime curvature is present repre-
sents an interesting subject of enquiry, both from the purely
theoretical and also from the astrophysical point of view.
As such, it has been the subject of a series of papers [15–
28], which have analyzed the charged particle dynamics
around a Schwarzschild or a Kerr black hole immersed in
the magnetic fields obtained in [7–14] as exact analytical
solutions of the Maxwell’s equations in the respective
curved spacetime backgrounds. The studies for the
Schwarzschild case have considered both equatorial and
nonequatorial motions, but analysis of the charged particle
dynamics around a Kerr source has been made for the
restricted equatorial case [16,17,19–21,25] and the quasie-
quatorial case [18,22] only. This work has therefore aimed
at providing an introductory extension to the full nonequa-
torial problem, by focusing on the nonequatorial trajecto-
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FIG. 9. Escape vs magnetic entrapment conditions, in terms of
the initial angular velocities v’̂0 and v#̂0, for electrons and

positrons emerging from the equatorial plane, at r0 ¼ 6M and
with vr̂0 ¼ 0, in correspondence to different values of the Kerr
parameter a (evaluations made with integration parameter 0 �
� � 2� 105 sec ). Escape is obtained in correspondence to
fv’̂0; v#̂0g couples inside the closed contour, bounded from

above by the v0 ¼ c curve, and from below by the curve with
filled/empty circles (electron/positron cases, respectively).
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ries of charged particles moving in the Wald magnetic field
[9] around a Kerr black hole.

Use of Wald’s exact solution allows the nongeodesic
equations of motion to be written explicitly in the fully
analytical form (9)–(12); however, their complexity does
not allow analytical solutions: numerical ones must be
sought, once a physically consistent set of initial data for
the charged particle is individuated. Discussion of this
issue has occupied Sec. III, while Sec. IV has provided a
collection of illustrative examples which have progres-
sively introduced us to the characterization of the charged
particle dynamics, providing us with useful insight into the
problem we wished to explore.

We have seen that the rotation of the source determines a
marked difference between the behavior of the particles
according to the sign of their charge, due to the coupling
between the gravitomagnetism of the Kerr hole and the
external magnetic field. In particular, we have seen that the
charges of the one sign (the electrons, in our case) can more

easily succeed in escaping away from the inner region,
close to the hole, being efficiently boosted into axially
collimated jetlike trajectories. The charges of the other
sign (the positrons, in our case), on the contrary, are far
more easily confined into cross-equatorial magnetically
bottled orbits surrounding the Kerr black hole. The fact
that such a ‘‘confinement without infall’’ is possible also
shows that an accreting charge is not necessarily doomed
to being swallowed by the hole, which in turn is therefore
not necessarily doomed to evolve into a charged source.
The existence of such a mechanism for charge separa-

tion, able to lead both to selective charge confinement and
to selective charge ejections, does represent not only an
interesting subject of theoretical enquiry, but also an in-
triguing ingredient worth taking into account when the
astrophysics of a rotating black hole immersed in a mag-
netic field and surrounded by ionized matter (see, e.g.,
[31]) is considered.
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[27] J. Kovář, Z. Stuchlı́k, and V. Karas, Classical Quantum

Gravity 25, 095011 (2008).
[28] G. Preti, Int. J. Mod. Phys. D 18, 529 (2009).
[29] F. de Felice and C. J. S. Clarke, Relativity on Curved

Manifolds (Cambridge University Press, New York, 1990).
[30] J. D. Barrow, P. G. Ferreira, and J. Silk, Phys. Rev. Lett.

78, 3610 (1997).
[31] J. H. Krolik, Active Galactic Nuclei (Princeton University

Press, Princeton, NJ, 1998).

GIOVANNI PRETI PHYSICAL REVIEW D 81, 024008 (2010)

024008-10


