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Inspired by the Randall-Sundrum framework we consider a number of phenomenologically relevant

model-building questions on a slice of compactified AdSd for d > 5. Such spaces are interesting as they

enable one to realize the weak scale via warping. We perform the Kaluza-Klein (KK) reduction for

gravitons and bulk vectors in these spaces, and for the case of AdS6 consider the KK spectrum of gauge

scalars. We further obtain the KK towers for bulk fermions on a slice of AdS7 and AdS9 and show that the

Randall-Sundrum approach to flavor generalizes to these spaces with the localization of chiral zero-mode

fermions controlled by their bulk Dirac mass parameters. However, for the phenomenologically interest-

ing case where the transverse radius is R�1 � TeV, we show that bulk standard model fields are not viable

due to a resulting volume suppression of the gauge-coupling constants. A similar suppression occurs for

the case of UV localization. Thus it seems that the standard model fields should be confined to the infrared

brane in such spaces. Sterile fields and extended gauge sectors may propagate in the bulk, with the gauge-

coupling volume suppression experienced by the latter motivating a weak coupling to standard model

fields. We also discuss some issues regarding the effective 4D theory description in these spaces.

DOI: 10.1103/PhysRevD.81.024006 PACS numbers: 04.50.Cd

I. INTRODUCTION

Though a remarkably successful theory, the standard
model (SM) of particle physics is almost certainly incom-
plete. There are two main reasons, one theoretical and the
other experimental, that lead us to suspect that new physics
will appear at the TeV scale. The direct sensitivity of the
Higgs mass to UVeffects (the hierarchy problem) makes it
difficult to take the SM seriously as a successful theory
beyond the TeV scale. A likely scenario is that some
mechanism is responsible for stabilizing the weak scale,
and the expectation is that this mechanism will manifest
itself in the form of new particles with �TeV masses. On
the experimental side there is now a growing body of
evidence suggesting that the matter density of the
Universe is dominated by an unknown particle or particles,
referred to as dark matter (DM). Curiously the requisite
behavior of the DM can be obtained by a �102 GeV
particle which interacts with weak scale strength with the
SM fields.

One promising possibility is that nature is supersymmet-
ric, in which case there should exist �TeV scale particles
whose UV sensitive contributions to the Higgs mass via
loop effects approximately cancel the UV sensitive con-
tributions of SM particles. Supersymmetric extensions of
the SM can also motivate the unknown DM density, as the
imposition of an extended symmetry (R parity) on super-
symmetric models renders the lightest new particle abso-
lutely stable. Furthermore, the coupling constant relations
dictated by supersymmetry mandate weak scale interaction
strengths for some of the supersymmetric particles.

An alternative solution to the hierarchy problem can
occur if nature possesses extra spatial dimensions. In par-
ticular, if nature admits a nonfactorizable geometry, the
weak scale may be realized as a redshifted, or warped,
incarnation of Planck scale sized input parameters [1]. In
this case the breakdown of the SM at the TeV scale would
be manifest by the existence of TeV scale Kaluza-Klein
(KK) excitations of the graviton, and of the SM fields, if the
latter propagate in the bulk. Interestingly, if SM fermions
propagate in the bulk, theories of flavor can also be con-
structed by employing the wave function overlap of the SM
fermions in the extra space [2,3]. The existence of extra
spatial dimensions can also motivate a DM candidate if a
subgroup of an isometry of the extra space is conserved in
the low energy theory. This is precisely what happens in
models with universal extra dimensions (UED models) [4],
where all the SM fields propagate in the bulk of an ex-
tended spacetime and a remnant discrete symmetry, known
as KK parity,1 renders the lightest KK particle a good DM
candidate [6].
If the Randall-Sundrum (RS) scenario is realized in

nature it is possible that additional spatial dimensions exist
beyond the warped extra dimension. As discussed in [7],
from a string theoretic perspective one may obtain the
AdS5 RS model from a stack of parallel D3-branes in
type-IIB string theory [8], though additional compact di-
mensions will be present. Interestingly, one may realize
AdS7 with additional compact dimensions from a stack of
parallel M5-branes in M theory [8]. It has also been noted
that AdS6 (with additional compact dimensions) is the
near-horizon limit of the Type I’ D4/D8-brane system
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1KK parity may also be imposed on RS models by gluing
together multiple warped throats [5].
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[9]. It is important to ask how these extra dimensions, if
present, may modify our understanding of the RS model
and what new features may emerge.

In a recent work we have considered the generalization
of the RS model to the higher dimensional space AdS5 �
T2 [10]. In that work we were primarily motivated by the
observation that UED models and RS models are, in some
sense, complementary. RS models motivate the weak/
Planck hierarchy, the existence of TeV scaled particles
(in the form of KK excitations) and can shed light on the
flavor puzzle. However, the warped geometry breaks trans-
lational invariance along the extra dimension in a maximal
fashion so that the KK particles are not stable and do not
admit a good DM candidate. UED models, on the other
hand, motivate a stable DM candidate but do not shed any
light on the weak/Planck hierarchy, nor do they provide
any insight into the flavor structure of the SM.2 The pres-
ence of the UEDDM candidate at the weak scale is also not
motivated within UED models, as one obtains the TeV
scale DM particle simply by assuming that the weak scale
is similar to the KK scale; two scales which are otherwise
independent.3 In [10] we showed that the extended space
AdS5 � T2 permits the complementary features of the RS
and UED frameworks to be unified, with the warped di-
rection motivating the weak/Planck hierarchy and admit-
ting a description of flavor while KK parity emerges as a
remnant symmetry of the extra toroidal dimensions.
Interestingly, the AdS5 warping also motivates the connec-
tion between the weak scale and the UED KK scale, with
the warping inducing an effective KK scale on the torus of
order �TeV, even if the toroidal scale is R�1 �MPl. This
motivates the connection between the weak scale and the
DM scale usually assumed in UED models.

In the present work we extend the program undertaken
in [10] and consider the promotion of the RS model to a
higher dimensional slice of compactified AdSd for d > 5.
Our motivations are ultimately phenomenological, and we
seek to determine the extent to which the complementary
features of UED and RS models can be combined in these
higher dimensional warped spaces. However, there is also a
theoretical aspect to our work, as we generalize many
familiar RS expressions to these higher dimensional
warped spaces. We find that, as one would expect, the RS
realization of the weak scale via spacetime warping carries
over to a slice of AdSd for d > 5when the Higgs boson is a
ðd� 1Þ-dimensional field localized on the IR brane. We
further find that the RS approach to flavor also carries over
to AdS7 and AdS9, with the coupling between two chiral
zero-mode fermions and a brane localized scalar being
exponentially sensitive to the fermion bulk mass parame-
ters such that hierarchical Yukawas are expected in the 4D

theory. However, for the phenomenologically interesting
case of R�1 � 1 TeV, the effective 4D gauge coupling
between a chiral zero-mode fermion and the zero mode
of a bulk gauge field experiences volume suppression and,
if the IR brane scale is�TeV, the effective gauge coupling
in the 4D theory is significantly suppressed. The severity of
this suppression increases with d, though already for d ¼ 7

it is of order �10�15=2. Consequently, bulk SM fermions
and gauge fields are not viable for both AdS7 and AdS9.
The appealing RS approach to flavor is therefore viable
only on a slice of AdS5 or, as shown in [10] for the case of
AdS5 � T2, for certain spaces of the form AdS5 �Md�5.
If the SM matter fields propagate in the transverse

dimensions of AdSd, one therefore expects them to be
localized at either the UV or IR brane. We shall show
that in the former case a similar suppression of the effective
4D couplings is found for R�1 � TeV so that only IR
localization is viable. The main model-building feature
of the AdSd spaces seems to be their ability to combine
the warped explanation for the weak/Planck hierarchy with
the KK parity found in UED models, so these spaces admit
only a partial unification of the appealing complementary
features of UED and RS models. The main experimental
signature for the AdSd spaces in this instance is the ob-
servation of warped KK gravitons in addition to UED KK
modes. Such a signature also occurs when the ðd�
1Þ-dimensional UED model is realized by embedding the
SM fields on the IR brane of AdS5 � Td�5, as discussed in
[10]. However, as we shall show, the graviton KK towers
on AdSd and AdS5 � Td�5 differ so that if a ðd�
1Þ-dimensional UED scenario is discovered, one would
be able to experimentally determine if the UED model is
embedded in either of these distinct warped spaces by
carefully studying the graviton KK spectrum.
Fermions which are sterile with respect to the SM gauge

group may propagate in the bulk, with such a scenario
considered already for AdS7 in the context of a brane
localized UED model in [13]. Extended gauge sectors
may also propagate in the bulk, and the resulting volume
suppression of the gauge coupling can motivate a very
weak coupling for such sectors with SM fields. For ex-
ample, if the SM is localized on the IR brane of AdS6, to
realize an embedding of the minimal UED model on the IR
brane and simultaneously motivate the weak/Planck hier-
archy, the gauge group extensionGSM � GX withGX in the
bulk permits the GX-symmetry breaking to occur on the IR
brane at the weak scale and yet remain experimentally
viable. Such a scenario may offer an interesting way to
employ, for example, a weakly coupled symmetry which
plays a custodial role and is broken at the weak scale.
Before proceeding we note that works based on higher

dimensional warped spaces exist already in the literature;
see, for example, [14–17]. It is known, for instance, that in
AdS7 the cancellation of boundary anomalies [17] neces-
sarily constrains the boundary symmetries and field con-

2Flavor structures may be viable in UED variants like split-
UED [11].

3We note that the possibility of TeV scale extra dimensions
was considered in the seminal work of [12].
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tent. The combination of warped and universal extra di-
mensions has been previously considered on a slice of
AdS7 [13], and the graviton KK tower for AdS7 was also
studied in [7]. Some matters regarding moduli stabilization
via bulk scalar fields in higher dimensional warped spaces
were considered in [18], and the Casimir force was studied
in [19,20], where, in the latter, it was noted that the con-
tribution from the transverse extra dimensions resembles
that of UED models. A study of DM candidates that result
from approximate isometries of warped throats in compac-
tified string models has also appeared [21].

The layout of the present work is as follows. In Sec. II
we consider the Einstein equations and graviton KK tower
for AdSd, and in Sec. III we obtain the KK tower for bulk
vectors in said spaces. Relative to AdS5 the spaces AdSd
for d > 5 admit additional modes in the form of metric and
gauge boson polarizations in the transverse space. As an
example of these modes we detail the KK spectrum for
gauge scalars in Sec. III for the d ¼ 6 case of AdS6, with
six being the lowest dimensionality which admits such
modes. We derive the KK spectra for bulk fermions on a
slice of AdS7 and AdS9 in Sec. IV and show that in each
case a single localizable chiral zero mode appears in the
spectrum. In Sec. V we combine a number of these ingre-
dients and consider the realization of the weak scale via
warping with an IR brane localized Higgs boson, the
mechanism of 4D flavor via fermion wave function overlap
with an IR brane Higgs for AdS7 and AdS9, and the
coupling of bulk vectors to bulk fermions in these spaces.
Finally, we comment on the range of validity of the effec-
tive 4D theory description and the case of UV localization
in Sec. VI before concluding in Sec. VII. In four appen-
dixes we provide additional information which comple-
ments the analysis, including our conventions for bulk
fermions in 7D and 9D.

II. GRAVITY ON AdSd

We consider the metric defined by the d-dimensional
spacetime interval

ds2 ¼ e�2�ðyÞ½���dx
�dx� � �abdx

adxb� � dy2

� GMNdx
MdxN; (1)

where M, N ¼ 0; 1; 2; 3; 5; 6; . . . ; d label the full
d-dimensional space; �, � ¼ 0, 1, 2, 3 label the 4D sub-
space; and the extra dimensions are labeled by xa, with a,
b ¼ 5; 6; . . . ; ðd� 1Þ, and xd ¼ y (the latter being the
warped direction). The extra dimensions are compact
with xa 2 ½��R;�R�, y 2 ½��rc; �rc�, and the points
xa ¼ ��R (y ¼ ��rc) identified. For simplicity we take
equal radii in the xa directions and we shall, at times, refer
to these as the ‘‘transverse’’ extra dimensions. As in the RS
model the warped direction is orbifolded as S1=Z2 with the
Z2 action defined by the identification Z2: y ! �y. The
transverse directions must also be orbifolded to ensure the

absence of massless gravi-vectors. For much of what fol-
lows we need not specify this orbifolding, though for
completeness we note that for odd ðd� 5Þ we shall use

ðT2=Z2 � . . .� T2=Z2Þ � S1=Z2; (2)

where there are ðd� 6Þ=2 factors of T2=Z2 in the brackets.
For even ðd� 5Þ the last factor of S1=Z2 in (2) is not
present and there are ðd� 5Þ=2 factors of T2=Z2. We
provide additional details regarding this orbifolding as
appropriate in the text.
We take as sources a cosmological constant � and two

codimension-one branes with tensions V0;L, the resulting

Einstein equations being

ffiffiffiffi
G

p �
RMN � 1

2
GMNR

ðdÞ
�
¼ � 1

4Md�2�

� ffiffiffiffi
G

p
GMN�

þ �
�M
M�

�N
N

ffiffiffiffi
�G

p
�G �M �NfV0�ðyÞ

þ VL�ðy� �rcÞg
�
: (3)

Here M� (RðdÞ) is the d-dimensional Planck scale (Ricci
scalar), �G �M �N denotes the induced five-dimensional metric
at the brane locations with brane Lorentz indices �M, �N ¼
0; 1; 2; 3; 5; 6; . . . ; ðd� 1Þ, and G ¼ j detðGMNÞj (similarly
for �G). The Einstein equations give

ðd� 1Þðd� 2Þ�
02

2
¼ � 1

4Md�2�
�; (4)

ðd� 2Þ�00 ¼ 1

4Md�2�
fV0�ðyÞ þ VL�ðy� �rcÞg; (5)

with solution

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��

2ðd� 1Þðd� 2ÞMd�2�

s
jyj � kjyj; (6)

so the warp factor may be written as e�� ¼ e�kjyj.
Calculating the second derivative of � and comparing with
(5) requires the tunings

V0 ¼ �VL ¼ 8ðd� 2ÞkMd�2� ; (7)

and the effective 4D Planck scale is given by

M2
Pl ¼

2

ðd� 3Þ
Md�2�
k

ð2�RÞd�5f1� e�ðd�3Þk�rcg: (8)

We note that the solution (6) requires �< 0, and we also
define a new (conformal) variable by kz ¼ eky to write (1)
as

ds2 ¼ 1

ðkzÞ2 ½���dx
�dx� � �abdx

adxb � dz2�: (9)

We refer to this metric, sourced by a negative cosmological
constant, as AdSd. Strictly speaking, the compactification
of the transverse dimensions breaks some of the isometries
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usually present in AdSd (see [22]), and our space is the
compactification of AdSd by the action of the discrete
translation isometries xa � xa þ 2�R. For brevity we refer
to this simply as AdSd with the implied compactification
understood.

We display the approximate value of the 7D gravity
scale M� in Table I for4 d 2 ½5; 9�. Throughout this work
we take R�1 � TeV, as this is the interesting region to be
explored by the LHC and is also the compactification scale
for UED models which permits the lightest KK particle to
be a suitable DM candidate. We also take the IR brane
scale as �TeV so the hierarchy between the fundamental
gravity scale M� and the weak scale results from warping.
For the phenomenologically interesting case of R�1 �
TeV with k�M�, Eq. (8) gives ðM�=TeVÞ � 1030=ðd�3Þ.
As can be seen in Table I, M� decreases with increasing d
for R�1 � TeV due to the relatively large transverse vol-
ume. The IR brane scale is e�k�rcM� so that the value of
krc required to realize the weak scale on the IR brane also
decreases with d. We also show this in the table. One
observes that, as opposed to the RS value of krc �
Oð10Þ, no hierarchy is required for larger values of d
with krc �Oð1Þ readily obtained.

Graviton KK spectrum

The masses and wave functions of the KK gravitons are
found by making the metric replacement G�� ¼
e�2���� ! e�2�ð��� þ �h��Þ, where � ¼ 2M�ðd�2Þ=2

� .

The KK expansion for h�� is

h��ðx�; xa; zÞ ¼
X
~n

hð ~nÞ��ðx�ÞgðnaÞþ ðxaÞfð ~nÞh ðzÞ; (10)

where5 ~n ¼ ðna; nÞ ¼ ðn5; n6; . . . ; nd�1; nÞ and gðnaÞþ ðxaÞ
are even-parity wave functions on the transverse space.
Working in the gauge @�h�� ¼ h�� ¼ 0 the expansion (10)

leads to

½z2@2z � ðd� 2Þz@z þm2
h; ~nz

2 �m2
naz

2�fð ~nÞh ¼ 0; (11)

where we write the KK masses as mh; ~n and useP
a@

2
ag

ðnaÞþ ¼ �m2
nag

ðnaÞþ . The profiles obey the orthogonal-

ity conditions

Z dz

ðkzÞðd�2Þ f
ðna;nÞ
h fðna;mÞ

h ¼ �nm;

Z
½�adx

a�gðnaÞþ gðnbÞþ ¼ �nanb ;

(12)

and the solutions to (11) are

fð ~nÞh ðzÞ ¼ ðkzÞ�h

N~n

�
J�h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h; ~n �m2
na

q
z

�

þ �~nY�h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h; ~n �m2
na

q
z

��
; (13)

where N~n is a normalization factor, �ð ~nÞ
h is a constant, and

the order of the Bessel functions is

�h ¼ 1
2ðd� 1Þ: (14)

Equation (13) is the generalization of the RS (AdS5) result
and as such reduces to known expressions in the literature;
the d ¼ 5, 6, 7 cases reproduce theAdS5;6;7 results found in
Refs. [24,14,7], respectively.6 Note that for d > 5 the
profiles along the warped direction differ from the d ¼ 5
RS result, with both the order of the Bessel functions and
the power of the prefactor (kz) increasing. That the warped
wave functions for AdSd do not match those of AdS5 for
mna ¼ 0 is to be expected. Although AdS5 can be em-

bedded in AdSd for d > 5, the embedding is such that the
AdS5 warped direction differs from that of AdSd, as we
discuss in Appendix A.

The constants �ð ~nÞ
h are determined by the boundary

conditions @zf
ð ~nÞ
h jz� ¼ 0, where z� ¼ z0;L ¼ k�1,

ek�rck�1, and the KK masses mh; ~n follow from �~nðz0Þ ¼
�~nðzLÞ, which to a good approximation gives

J�h�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h; ~n �m2
na

q
zL

�
¼ 0: (15)

For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h; ~n �m2
na

q
� jð�h � 1Þ2 � 1=4je�k�rck the KK

masses may be approximated by

TABLE I. Approximate value of the 7D gravity scale M� and
the warping parameters krc for AdSd in the phenomenologically
interesting case of R�1 � TeV with k�M�. Note that M�
decreases with increasing d and that Oð1Þ values of krc are
allowed for larger d.

d 5 6 7 8 9

�M�=TeV 1015 1010 1015=2 106 105

�krc 11 7.3 5.5 4.4 3.7

4We note that the more extreme case of d ¼ 32 gives M� �
TeV. In such a scenario the KK copies of SM fields would act as
the extra sectors discussed already in connection with the
hierarchy problem in, e.g., [23]. We do not consider such large
values of d in this work and instead restrict our attention to d <
10.

5We emphasize that na (n) labels the quantized momenta in
the compact xa (z) directions. We shall, on occasion, also denote
fð ~nÞh as fðna;nÞh .

6For string theoretic realizations there may be additional
winding modes present in the spectrum. These can be phenom-
enologically important (see [7]), though we do not consider them
here.
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m2
h; ~n ’ �2

�
nþ �h

2
� 3

4

�
2
e�2k�rck2 þm2

na : (16)

Considering the purely warped KK modes (na ¼ 0), one
observes that as d increases the mass of the KK modes
increases and the relative KK spacing, ðmh;nþ1 �
mh;nÞ=mh;n, decreases. Thus the purely warped KK grav-

itons on a slice of AdSd are discernible from those of the
RS model. The AdSd KK gravitons also differ from those
found in spaces of the form AdS5 �Md�5, given that
purely warped gravitons in the latter match those of the
RS model. The purely warped AdSd gravitons with n > 0
couple to IR brane localized stress-energy sources with
coupling ��1

� � M�1
Pl , as in the RS model. In particular,

one finds �� ’ e�ðd�3Þk�rc=2MPl, which is �TeV for the
parameters we consider.

III. BULK VECTORS ON AdSd

In this section we consider a bulkUð1Þ gauge field in the
AdSd background. As our ultimate purpose is to determine
the viability of modeling a SM gauge boson by such a state,
the vector modesM ¼ � should have even parity to ensure
a zero mode. The action for AM is

SA ¼ � 1

4

Z
ddx

ffiffiffiffi
G

p fGMPGNQFMNFPQg; (17)

and we work with the conformal coordinates defined by (9)
. The mixing between the vector mode and the gauge-scalar
modes may be decoupled by introducing a bulk gauge
fixing term,

SGF ¼ � 1

2	

Z
ddx

1

ðkzÞd�4

�
��
@�A
 þ 	ðkzÞd�4

�
�X

�a

@ �aðKA �aÞ
��

2
; (18)

where we use the index �a to denote a, z so that
P

�a ¼P
�a¼a;z, and we define the quantity K ¼ KðzÞ by

K��
 ¼ ffiffiffiffi
G

p
G �a �aG�
: (19)

Varying the action SA þ SGF gives the bulk equations of
motion,

ffiffiffiffiffiffiffiffi�G
p

G�
G��@�F
� þX
�a

���@ �a½K@ �aA��

þ 1

	

1

ðkzÞd�4
��
���@�@�A
 ¼ 0; (20)

��
@
@�Aa þ 	@a

�
ðkzÞd�4

X
�b

@ �bðKA �bÞ
�

� 1

K

X
�b

@ �b½
ffiffiffiffi
G

p
GaaG

�b �bFa �b� ¼ 0; (21)

��
@
@�Az þ 	@z

�
ðkzÞd�4

X
�b

@ �bðKA �bÞ
�

� 1

K

X
a

@a½
ffiffiffiffi
G

p
GaaGzzFza� ¼ 0; (22)

where the first equation describes the vector modes and the
remaining (d� 4) equations are mixed and describe the
gauge scalars. Taking suitable combinations of (21) and
(22) gives

��
@
@�GA � 	

K

X
�a

@ �afK@ �aGAg ¼ 0; (23)

��
@
@�Fza þ
X
�b

@z

�
1

K
@ �b½

ffiffiffiffi
G

p
GaaG

�b �bF �ba�
�

þ @a

�
1

K

X
b

@b½
ffiffiffiffi
G

p
GbbGzzFzb�

�
¼ 0; (24)

where GA ¼ ðkzÞd�4
P

�b@ �bðKA �bÞ. Note that the states de-
scribed by Eq. (23) have decoupled and are, in fact, the
Goldstone modes. The ðd� 5Þ equations (24) remain
mixed and describe the physical gauge scalars.

A. KK decomposition of the vector mode

We expand the vector modes A� as

A�ðx�; xa; zÞ ¼
X
~n

Að ~nÞ
� ðx�ÞgðnaÞþ ðxaÞfð ~nÞA ðzÞ; (25)

and the profiles fð ~nÞA ðzÞ must satisfy the following orthogo-
nality relations:

Z dz

ðkzÞd�4
fðna;nÞA fðna;mÞ

A ¼ �mn; (26)

and the equation of motion:

½z2@2z � ðd� 4Þz@z þm2
~nz

2 �m2
naz

2�fð ~nÞA ¼ 0: (27)

The solution to (27) is

fð ~nÞA ðzÞ ¼ ðkzÞ�A

Nð ~nÞ
A

�
J�A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z

�

þ �ð ~nÞ
A Y�A

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z

��
; (28)

where Nð ~nÞ
A is a normalization constant and the order of the

Bessel functions is

�A ¼ 1
2ðd� 3Þ: (29)

Equation (28) generalizes the wave function for a bulk
vector in the AdS5 RS background to a higher dimensional
slice of AdSd. As such the d ¼ 5 case reduces to that of

[25]. The constants �ð ~nÞ
A are determined by the boundary

conditions @zf
ð ~nÞ
A jz� ¼ 0 and are found to be
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�ð ~nÞ
A ðz�Þ ¼ �

J�A�1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z��

Y�A�1½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z��

; (30)

with the KK masses m~n determined by solving �ð ~nÞ
A ðz0Þ ¼

�ð ~nÞ
A ðzLÞ. As with the KK gravitons, the wave function

along the warped direction for a bulk vector differs from
the RS result for d > 5 with both the order of the Bessel
functions and the power of the prefactor (kz) increasing
with d. The mass of the purely warped KK vectors (na ¼
0) also increases with d while the relative spacing of the
KK modes ðmnþ1 �mnÞ=mn decreases. Thus the vector
KK tower for d > 5 is discernible from its RS counterpart.
The KK action for the vector modes is finally given by

X
~n

Z
d4x

�
� 1

4
��
���Fð ~nÞ

��F
ð ~nÞ

� � 1

2	
ð��
@�A

ð ~nÞ

 Þ2

þ 1

2
m2

~n�
�
Að ~nÞ

� Að ~nÞ



�
; (31)

which reduces to the usual RS expression for d ¼ 5. We
note that for d > 5 the massless zero-mode gauge boson
has wave function

fð0ÞA ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðd� 5Þ

2

s
½1� e�ðd�5Þk�rc��1=2 ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðd� 5Þ

2

s
;

(32)

which remains finite for rc ! 1 and differs from the d ¼ 5

case, for which fð0ÞA ðzÞ / r�1=2
c . This difference has been

noted already in [16].

B. Gauge-scalar modes in AdS6

For d > 5 a bulk vector has ðd� 5Þ additional degrees of
freedom in the form of polarizations along the transverse
directions. These, combined with the polarization in the
warped direction, give rise to ðd� 5Þ KK towers of physi-
cal gauge scalars and a single KK tower of Goldstone
modes; see e.g. [26] for studies of gauge scalars in UED
models. We shall not determine the KK towers of gauge
scalars for arbitrary d in what follows, but instead, as an
example, provide the KK spectrum of scalar modes for
AdS6. The value d ¼ 6 is the smallest number of spacetime
dimensions which admits a KK tower of physical gauge
scalars. For AdS6 we take the transverse direction x5 to be
orbifolded as S1=Z0

2, where the action of the orbifold
symmetry is Z0

2: x
5 ! �x5. The ðZ0

2; Z2Þ parities of a
bulk AdS6 gauge boson are

A�: ðþ;þÞ; A5: ð�;þÞ; Az: ðþ;�Þ: (33)

The parities for the scalar modes are fixed by the demand
that A� be even and are such that A5;z do not possess zero

modes. For AdS6 the equations of motion (23) and (24)
reduce to

fz2@2z � 2z@z � ½��
@
@� � @25�z2gGA ¼ 0; (34)

fz2@2z � 2z@z � ½��
@
@� � @25�z2 þ 2gF5z ¼ 0; (35)

where GA ¼ ðkzÞ2½@5ðKA5Þ þ @zðKAzÞ�. We KK expand
the scalar modes as

GAðx�; x5; zÞ ¼
X
~n

mG; ~nA
ð ~nÞ
G ðx�Þgðn5Þþ ðx5Þfð ~nÞG ðzÞ;

Fz5ðx�; x5; zÞ ¼
X
~n

mS; ~nA
ð ~nÞ
S ðx�Þgðn5Þ� ðx5Þfð ~nÞS ðzÞ;

(36)

wheremGðSÞ; ~n is the mass for the ~nth KKmode and g
ðn5Þ� are

the usual even/odd-parity wave functions for the S1=Z2

orbifold. The 4D fields satisfy

��
@
@�A
ð ~nÞ
G ¼ �m2

G; ~nA
ð ~nÞ
G ;

��
@
@�A
ð ~nÞ
S ¼ �m2

S; ~nA
ð ~nÞ
S ;

(37)

and the orthogonality relations are

Z dz

ðkzÞ2 f
ðn5;mÞ
S;G fðn5;nÞS;G ¼ �mn; (38)

Z
dx5g

ðm5Þ� g
ðn5Þ� ¼ �m5n5 : (39)

Using @25g
ðn5Þ� ¼ �m2

n5g
ðn5Þ� and Eq. (37) in the equations of

motion gives

fz2@2z � 2z@z þ ðm2
G; ~n �m2

n5Þz2gfð ~nÞG ¼ 0; (40)

fz2@2z � 2z@z þ ðm2
S; ~n �m2

n5Þz2 þ 2gfð ~nÞS ¼ 0; (41)

which have solutions

fð ~nÞG ðzÞ ¼ ðkzÞ3=2
Nð ~nÞ

G

�
J3=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

G; ~n �m2
na

q
z

�

þ �ð ~nÞ
G Y3=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

G; ~n �m2
na

q
z

��
; (42)

fð ~nÞS ðzÞ ¼ ðkzÞ3=2
Nð ~nÞ

S

�
J1=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

G; ~n �m2
na

q
z

�

þ �ð ~nÞ
S Y1=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

G; ~n �m2
na

q
z

��
: (43)

From (33) one obtains the boundary conditions along the
warped direction for A5;z as

A5j ¼ 0; @zAzj ¼ 0; (44)

which lead to

�ð ~nÞ
S ðz�Þ ¼ �ð ~nÞ

G ðz�Þ ¼ �
J1=2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S; ~n �m2
na

q
z��

Y1=2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

S; ~n �m2
na

q
z��

; (45)
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and the KK masses follow from enforcing �ð ~nÞ
S ðz0Þ ¼

�ð ~nÞ
S ðzLÞ. Using the following KK expansions of A5;z,

A5ðx�; x5; zÞ ¼
X
~n

Að ~nÞ
5 ðx�Þgðn5Þþ ðx5Þfð ~nÞ5 ðzÞ;

Azðx�; x5; zÞ ¼
X
~n

Að ~nÞ
z ðx�Þgðn5Þ� ðx5Þfð ~nÞz ðzÞ;

(46)

one finds that fð ~nÞ5 ðzÞ ¼ fð ~nÞG ðzÞ and fð ~nÞz ðzÞ ¼ fð ~nÞS ðzÞ, while
the 4D fields are related as

mS; ~n

Nð ~nÞ
G

Að ~nÞ
G ¼ � mn5

Nð ~nÞ
G

Að ~nÞ
5 þ ðm2

S; ~n �m2
n5Þ1=2

Nð ~nÞ
S

Að ~nÞ
z ; (47)

mS; ~n

Nð ~nÞ
S

Að ~nÞ
S ¼ ðm2

S; ~n �m2
n5Þ1=2

Nð ~nÞ
G

Að ~nÞ
5 þ mn5

Nð ~nÞ
S

Að ~nÞ
z : (48)

Combining the above gives the effective 4D action for the
gauge scalars,

X
~n

1

2

Z
d4xf��
@�A

ð ~nÞ
G @
A

ð ~nÞ
G � 	m2

S; ~nðAð ~nÞ
G Þ2

þ ��
@�A
ð ~nÞ
S @
A

ð ~nÞ
S �m2

S; ~nðAð ~nÞ
S Þ2g; (49)

and by adding (49) to the d ¼ 6 case of the vector KK
action (31), one obtains the complete KK action for a bulk
vector in AdS6. Observe that in the unitary gauge 	 ! 1
the modes Að ~nÞ

G become infinitely heavy and disappear from

the spectrum so that, as advertised, these are the Goldstone

modes which are ‘‘eaten’’ by the massive KK vectors Að ~nÞ
� ,

~n � 0. The modes Að ~nÞ
S are the physical gauge scalars

which remain in the spectrum in the unitary gauge.

IV. BULK FERMIONS

In RS models the KK decomposition of a bulk 5D
vectorial fermion produces a single chiral massless mode
[2]. Being vectorial, a RS fermion may possess a bulk
mass,7 and by varying this mass over order-one values
(in units of k), the chiral mode is readily localized towards
either the UV or IR brane [2,3]. By localizing the lighter
(heavier) SM fermions towards the Planck (TeV) brane,
one may generate the observed SM fermion mass hierar-
chies with order-one Yukawa couplings [3,27], and thus the
RS framework provides a mechanism by which to con-
struct theories of flavor. We are interested in considering
the generalization of the RS approach to flavor for AdSd
with d > 5. The vectorial nature of bulk RS fermions
persists only in spacetimes with an odd number of dimen-
sions; for even d the minimal fermion is chiral with respect
to the d-dimensional chiral projection operators and there-
fore does not admit a bulk mass. The RS approach to flavor
is thus expected to generalize only for odd values of d, and

we consider the simplest cases of odd d > 5 in what
follows and obtain the KK spectrum for a bulk fermion
on a slice of AdS7 and AdS9. We then consider the cou-
pling of these bulk fermions, including the localizable
chiral modes, to an IR brane scalar and a bulk vector in
Sec. V.
We point out that a bulk fermion on a slice of AdS7 was

considered already in [13]. In that work the bulk fermion
acquired an effective bulk mass by coupling to a bulk
scalar with a nonvanishing background profile. The
Yukawa coupling of the chiral zero-mode fermion to brane
fields was then considered. Our analysis differs as we
admit a mass for the bulk fermion and obtain the entire
fermion KK spectrum, not just the zero-mode profile as
was done in [13]. We then consider the Yukawa coupling of
two such bulk fields to a brane scalar and the coupling of a
bulk fermion to a bulk gauge boson. Our results and
notation provide a transparent generalization of the famil-
iar RS expressions.

A. AdS7: Fermion orbifold parities

Before proceeding to discuss bulk AdS7 fermions, we
specify the action of the orbifold symmetries acting in the
extra dimensions. We write the index of the toroidal trans-
verse dimensions as a, b ¼ 5, 6, with the metric defined by

ds2AdS7 ¼ e�2�ðyÞ½���dx
�dx� � �abdx

adxb� � ðdyÞ2
� GMNdx

MdxN: (50)

The extra dimensions xa, y are orbifolded via

ðT2=Z0
2Þ � ðS1=Z2Þ; (51)

with the action of Z0
2, Z2 defined by

Z2: y ! �y; Z0
2: x

a ! �xa: (52)

A bulk field in the above background is, in general, speci-
fied by two parities ðZ0

2; Z2Þ ¼ ðP0; PÞ, where P0, P ¼ �,
and we note that the orbifolding (51) ensures there are no
massless gravi-vectors in the spectrum. The action of the
orbifold symmetries on a bulk fermion � is

Z0
2: �ðx�; xa; yÞ ! �0ðx�;�xa; yÞ

¼ iP0�5�6�ðx�; xa; yÞ; (53)

Z2: �ðx�; xa; yÞ ! ~�ðx�; xa;�yÞ ¼ iP�7�ðx�; xa; yÞ;
(54)

and our conventions for the 7D gamma matrices �M may
be found in Appendix B, where we also discuss some
general properties of 7D fermions. We shall work with P ¼
�1 and P0 ¼ þ1 so that the ðZ0

2; Z2Þ parities of the com-
ponents of � are7Which must be odd under the Z2 orbifold symmetry.
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� ¼
c�Rðþ;�Þ
c�Lð�;�Þ
cþLðþ;þÞ
cþRð�;þÞ

0
BBB@

1
CCCA; (55)

and cþL is the only field which is even under both sym-
metries. Regardless of which values are used for P0, P,
there is always only one component of � which is even
under both Z0

2 and Z2; the selection of different values for
P0, P simply determines which component is even. The
action of the orbifold symmetries on a Dirac mass bilinear
is

Z0
2:

��� ! þ ���; (56)

Z2:
��� ! � ���; (57)

so that a bulk fermion may only have a Dirac mass if the
mass is odd under the action of Z2, as in the RS model.

B. AdS7: Fermion KK spectrum

The action for a bulk fermion in the AdS7 background is

S� ¼
Z

d7x
ffiffiffiffi
G

p �
i

2
���MeMM@M�� i

2
ð@M ��Þ�MeMM�

�mD
���

�
; (58)

where eMM ¼ ðkzÞ�M
M. We have already dropped the spin

connection terms, which arise from the use of the covariant
derivativeDM ¼ @M þ!M, and cancel in the above. After
rescaling the field � ! ðkzÞ3� and integrating by parts,
one has

S� ¼
Z

d7x

�
i ����@��þ i ���7@7�þ i ���a@a�

�mD

kz
���

�
: (59)

We define the four component spinors cþ ¼ ðcþL; cþRÞT
and c� ¼ ðc�L; c�RÞT in terms of the component fields,

�þ ¼ ð0; 0; cþL; cþRÞT; �� ¼ ðc�R; c�L; 0; 0ÞT;
(60)

and KK expand these four component fields as

cþðx�; xa; zÞ ¼ cþLðx�; xa; zÞ þ cþRðx�; xa; zÞ
¼ X

~n

fc ð ~nÞ
L ðx�ÞgðnaÞþL ðxaÞfð ~nÞþLðzÞ

þ c ð ~nÞ
R ðx�ÞgðnaÞþR ðxaÞfð ~nÞþRðzÞg;

c�ðx�; xa; zÞ ¼ c�Lðx�; xa; zÞ þ c�Rðx�; xa; zÞ
¼ X

~n

fc ð ~nÞ
L ðx�ÞgðnaÞ�L ðxaÞfð ~nÞ�LðzÞ

þ c ð ~nÞ
R ðx�ÞgðnaÞ�R ðxaÞfð ~nÞ�RðzÞg;

where c�L;R ¼ PL;Rc�. The wave functions obey the

following orthogonality relations,

Z
dzðf�ðna;mÞ

þL;R fðna;nÞþL;R þ f�ðna;mÞ
�L;R fðna;nÞ�L;R Þ ¼ �mn; (61)

Z
½�adx

a�g�ðnaÞ�L gðnbÞ�L ¼
Z
½�adx

a�g�ðnaÞ�R gðnbÞ�R ¼ �nanb ;

(62)

and the explicit form of the toroidal wave functions gðnaÞ�L;R

is given in Appendix D 1. With mna given by

mna ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n25 þ n26

q
R

; (63)

the equations of motion for the wave functions along the
warped direction may be written as�

	@z � c

z

�
fð ~nÞ�R �mnaf

ð ~nÞ
	R ¼ �m~nf

ð ~nÞ
	L; (64)

�
	@z � c

z

�
fð ~nÞ�L �mnaf

ð ~nÞ
	L ¼ �m~nf

ð ~nÞ
	R; (65)

wherem~n are the KK masses and the dimensionless mass c
is defined by mD ¼ ck. The equations of motion (64) and
(65) may be separated as

ðz2@2z 	 c� c2 þ ðm2
~n �m2

naÞz2Þfð ~nÞ�L;R ¼ 0; (66)

and, noting the parities (55), one may use the equations of
motion to obtain the boundary conditions,

fð ~nÞ�L;Rjz� ¼ 0; (67)

�
@z þ c

z

�
fð ~nÞþL;Rjz� ¼ 0: (68)

The solutions to the above are

fð ~nÞ�L;RðzÞ ¼
ffiffiffiffiffi
kz

p

Nð ~nÞ
��

�
J��

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z

�

þ �ð ~nÞ
� Y��

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z

��
; (69)

where the order of the Bessel functions is �� ¼ jc� 1
2 j

and the equations of motion require that the normalization
constants satisfy

Nð ~nÞ
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m~n

m~n �mna

s
Nð ~nÞ

� : (70)

The KK masses are fixed by enforcing �ð ~nÞ
� ðz0Þ ¼ �ð ~nÞ

� ðzLÞ,
where

�ð ~nÞ
� ðz�Þ ¼ �

J��ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z�Þ

Y��ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na

q
z�Þ

; (71)
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and, similar to the RS case [3], they may be approximated
as

m2
~n ¼ m2

n;na ’
�
nþ c

2
� 1

2

�
k2�2e�2k�rc þm2

na ; (72)

for large n. Putting the above together, the bulk fermion
action reduces to the canonical KK form

S� ¼ X
~n

Z
d4xfi �c ð ~nÞ��@�c

ð ~nÞ �m~n
�c ð ~nÞc ð ~nÞg: (73)

Our primary interest is in the spectrum of massless
modes, as this will determine the viability of employing
a bulk 7D fermion. Consider first the case with mna ¼
na ¼ 0, for which Eqs. (64) and (65) have the solution

fðn;0Þ�L;R / z	c. However, the boundary conditions (67) force

fðn;0Þ�L;R ¼ 0, and furthermore, for na ¼ 0 one has gðna¼0Þ
þR ¼

0 as cþR. Thus the only nonvanishing mode is fð0;0ÞþL / z�c

with the normalized wave function

ðkzÞ3fð0;0ÞþL ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1=2� cÞ

ðkzLÞð1�2cÞ � 1

s
ðkzÞ3�c; (74)

where for completeness we retain the factor of ðkzÞ3 pre-
viously scaled out. This is identical to the usual RS profile
[2,3] modulo the replacement ðkzÞ2 ! ðkzÞ3 for the factor
scaled out in the above decomposition. One can easily
show that no massless modes obtain when mna � 0 so

the chiral mode (74) is the only massless mode in the
spectrum.

C. AdS9: Fermion orbifold parities

As it will be helpful in what follows to be able to
distinguish between the different transverse directions,
we use a slightly different notation for the transverse
coordinate labels in this section and write the index of
the toroidal dimensions as a, a0 ¼ 5, 6 and b, b0 ¼ 7, 8,
with the metric defined by

ds2AdS9 ¼ e�2�ðyÞ½���dx
�dx� � �aa0dx

adxa
0

� �bb0dx
bdxb

0 � � ðdyÞ2
� GMNdx

MdxN: (75)

The extra dimensions xa;b, y are orbifolded via

ðT2=Z0
2Þ � ðT2=Z00

2 Þ � ðS1=Z2Þ; (76)

with the action of the orbifold symmetry defined by (51)
and

Z00
2 : x

b ! �xb: (77)

The action of the orbifold symmetries on a bulk fermion�
is

Z2: �ðx�; xa; xb; yÞ ! ~�ðx�; xa; xb;�yÞ
¼ iPG7�ðx�; xa; xb; yÞ; (78)

Z0
2: �ðx�; xa; xb; yÞ ! �0ðx�;�xa; xb; yÞ

¼ iP0G5G6�ðx�; xa; xb; yÞ; (79)

Z00
2 : �ðx�; xa; xb; yÞ ! �0ðx�; xa;�xb; yÞ

¼ iP00G7G8�ðx�; xa; xb; yÞ; (80)

where the three parities P, P0, P00 all take the values �1.
Here GM are the 9D Dirac matrices; our conventions for
which may be found in Appendix C, where we also discuss
some general properties of 9D fermions. We shall work
with P ¼ �1, P0 ¼ þ1, and P00 ¼ �1, so the ðZ2; Z

00
2 ; Z

0
2Þ

parities for the components of � ¼ ðc #; c "ÞT are

�# ¼
c 1Lð�;�;þÞ
c 1Rð�;�;�Þ
c 2Rð�;þ;þÞ
c 2Lð�;þ;�Þ

0
BBB@

1
CCCA; �" ¼

c 3Rðþ;�;þÞ
c 3Lðþ;�;�Þ
c 4Lðþ;þ;þÞ
c 4Rðþ;þ;�Þ

0
BBB@

1
CCCA;

(81)

and c 4L is the only completely even field. Regardless of
which values are used for the parities P, P0, P00, only one
component of� is even under Z2, Z

0
2, and Z

00
2 ; the selection

of different parities simply determines which component is
completely even. The action of the orbifold symmetries Z0

2,
Z2 on a Dirac mass bilinear is again given by Eqs. (56) and
(57), while the action of Z00

2 is

Z00
2 :

��� ! þ ���: (82)

D. AdS9: Fermion KK spectrum

The action for a bulk fermion in the AdS9 background is

S� ¼
Z

d9x
ffiffiffiffi
G

p �
i

2
��GMeMM@M�� i

2
ð@M ��ÞGMeMM�

�mD
���

�
; (83)

where eMM ¼ ðkzÞ�M
M and we have already dropped the spin

connection terms which cancel in the above. After rescal-
ing the field� ! ðkzÞ4� and integrating by parts, one has

S� ¼
Z

d9x

�
i ��GM@M��mD

kz
���

�
: (84)

We define the four component spinors c � ¼ ðc �L; c �RÞT ,
with � ¼ 1, 2, 3, 4, in terms of the component fields

� ¼ ðc 1L; c 1R; c 2R; c 2L; c 3R; c 3L; c 4L; c 4RÞT; (85)

and the KK expansion for the four component fermions is
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c �ðx�; xa;b; zÞ ¼ c �Lðx�; xa;b; zÞ þ c �Rðx�; xa;b; zÞ
¼ X

~n

fc ð ~nÞ
L ðx�ÞgðnaÞ�L ðxaÞhðnbÞ�L ðxbÞfð ~nÞ�LðzÞ

þ c ð ~nÞ
R ðx�ÞgðnaÞ�R ðxaÞhðnbÞ�R ðxbÞfð ~nÞ�RðzÞg:

The wave functions obey the following orthogonality rela-
tions,

X4
�¼1

Z
dzf�ðm;na;nbÞ

�L fðn;na;nbÞ�L ¼ �mn; (86)

Z
½�adx

a�g�ðnaÞ�L g
ðna0 Þ
�L ¼ �nana0 ; (87)

Z
½�bdx

b�h�ðnbÞ�L h
ðnb0 Þ
�L ¼ �nbnb0 ; (88)

and similarly with the replacement L ! R. The explicit

forms of gðnaÞ�L;R, h
ðnbÞ
�L;R are given in Appendix D 2. In terms

of the masses

mna ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n25 þ n26

q
R

; mnb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n27 þ n28

q
R

; (89)

the equations of motion for the warped direction wave
functions are�

�@z � c

z

�
fð ~nÞ3R �mnbf

ð ~nÞ
2R �mnaf

ð ~nÞ
1R ¼ �m~nf

ð ~nÞ
1L ; (90)

�
�@z � c

z

�
fð ~nÞ4R �mnbf

ð ~nÞ
1R þmnaf

ð ~nÞ
2R ¼ �m~nf

ð ~nÞ
2L ; (91)

�
@z � c

z

�
fð ~nÞ1R þmnbf

ð ~nÞ
4R þmnaf

ð ~nÞ
3R ¼ �m~nf

ð ~nÞ
3L ; (92)

�
@z � c

z

�
fð ~nÞ2R þmnbf

ð ~nÞ
3R �mnaf

ð ~nÞ
4R ¼ �m~nf

ð ~nÞ
4L ; (93)

wherem~n are the KK masses and the dimensionless mass c

is again defined by mD ¼ ck. The wave functions fð ~nÞ�L;R

must also satisfy the four equations obtained by replacing

fð ~nÞ�L $ fð ~nÞ�R in (90)–(93). Noting the parities (81), one may
use the equations of motion to obtain the boundary con-
ditions,

fð ~nÞ�L;Rjz� ¼ 0 for � ¼ 1; 2; (94)

�
@z þ c

z

�
fð ~nÞ�L;Rjz� ¼ 0 for � ¼ 3; 4: (95)

Equations (90)–(93) may be separated as

ðz2@2z þ c� c2 þ ~m2
~nz

2Þfð ~nÞ�L;R ¼ 0 for � ¼ 1; 2; (96)

ðz2@2z � c� c2 þ ~m2
~nz

2Þfð ~nÞ�L;R ¼ 0 for � ¼ 3; 4; (97)

where we define ~m2
~n � m2

~n �m2
na �m2

nb . The solutions are

fð ~nÞ�L;RðzÞ ¼
ffiffiffiffiffi
kz

p

Nð ~nÞ
�L;R

fJ��ð ~m~nzÞ þ �ð ~nÞ
� Y��ð ~m~nzÞg

for � ¼ 1; 2;

(98)

fð ~nÞ�L;RðzÞ ¼
ffiffiffiffiffi
kz

p

Nð ~nÞ
�L;R

fJ�þð ~m~nzÞ þ �ð ~nÞ
� Y�þð ~m~nzÞg

for � ¼ 3; 4;

(99)

where the order of the Bessel functions is �� ¼ jc� 1
2 j

and we have used the equations of motion. The normaliza-
tion constants are not independent and may be expressed in
terms of a single constant, as given in Appendix D 3. The

KK masses m~n are found by solving �ð ~nÞ
� ðz0Þ ¼ �ð ~nÞ

� ðzLÞ,
with the constants �ð ~nÞ

� ðz�Þ given by

�ð ~nÞ
� ðz�Þ ¼ �

J��ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na �m2

nb

q
z�Þ

Y��ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

~n �m2
na �m2

nb

q
z�Þ

: (100)

The spectrum contains a single chiral massless mode with
the profile

ðkzÞ4fð0Þ4LðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1=2� cÞ

ðkzLÞð1�2cÞ � 1

s
ðkzÞ4�c; (101)

which matches the RS result modulo the replacement
ðkzÞ2 ! ðkzÞ4 for the scale factor. For large n the KK
masses may be approximated as [3]

m2
~n ’

�
nþ c

2
� 1

2

�
k2�2e�2k�rc þm2

na þm2
nb ; (102)

and putting the above together, the bulk fermion action
reduces to the canonical KK form.
Before proceeding to consider the coupling of bulk

fermions in AdS7;9 to bosons, we note that, relative to the

RS model, the order of the Bessel functions in the fermion
profiles (98) and (99) has not changed as a result of having
increased d from the RS value of d ¼ 5 to d ¼ 7, 9. This
differs from the explicit d dependence found earlier for
bulk vectors and gravitons. As noted already for the zero
modes, the power of the factor initially scaled out of the
fermion wave functions does increase with d so the fer-
mion profiles do display some d dependence.

V. COUPLING TOA BRANE SCALAR ANDA BULK
GAUGE FIELD

We have seen that localizable chiral zero-mode fermi-
ons, familiar from RS models, may also be obtained in
AdS7 and AdS9. In this section we consider an IR brane
scalar to show that the RS warped realization of the weak
scale also carries over to AdSd and, by coupling two bulk
fermions to such a brane scalar, we show that forAdS7;9 the
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RS approach to flavor also generalizes. We then consider
the coupling of a bulk fermion to a bulk gauge field for
AdS7;9 and show that, in the phenomenologically interest-

ing case of R�1 � TeV, the effective 4D coupling for the
zero modes experiences volume suppression. After these
considerations we shall comment on the model-building
possibilities in AdSd and contrast these with spaces where
the transverse directions are external to the warping,
AdS5 �Md�5, with an emphasis on the AdS5 � T2 case
[10].

Consider a ðd� 1Þ-dimensional scalar � localized on
the IR brane of a slice of AdSd with the usual quartic
potential:

S� ¼
Z

ddx
ffiffiffiffi
�G

p �
G

�M �N@ �M�
y@ �N�

� 


Md�5�
ð�2 � v2

0M
d�5� Þ2

�
�ðy� �rcÞ

¼
Z

dd�1x

�
�

�M �N@ �M�
y@ �N�

� 


eð5�dÞk�rcMd�5�

�
�2 � v2

0M
d�5�

eðd�3Þk�rc

�
2
�
; (103)

where ½�� ¼ ðd� 3Þ=2 and the vacuum expectation value
(VEV) is written in terms of the dimension-one parameter
½v0� ¼ 1. The barred quantities denote the restriction to the

brane at y ¼ �rc, and we have rescaled � !
eðd�3Þk�rc=2�. The vacuum value of � is h�ð0Þi ¼
v0M

ðd�5Þ=2
� eð3�dÞk�rc=2 and the natural scale for v0 is v0 �

k. Noting that the zero mode has the wave function�ð0Þ ¼
�ð0ÞðxÞ=ð2�RÞðd�5Þ=2, the VEV for the 4D field is

h�ð0Þi ¼ v � v0

ek�rc

�
M�2�R
ek�rc

�ðd�5Þ=2
; (104)

where, in the case of electroweak symmetry breaking, v�
246 GeV would be the electroweak scale. The d ¼ 5 case
of (104) reproduces the usual RS expression for the VEVof
an IR brane scalar, while for d > 5 it generalizes the RS
expression to AdSd. We are working with the phenomeno-
logically interesting case of R�1 � TeV, and as
e�k�rcM� � TeV, the factor in brackets in (104) is
Oð1–10Þ. In particular, for e�k�rcM�2�R� 1 the weak
scale is v� e�k�rcv0 so that, as in the RS model, the
weak scale is realized via the warped suppression of the
order �k input parameter8 v0.

The RS approach to flavor also carries through to AdS7
and AdS9, with the Yukawa Lagrangian between two bulk
fermions �1;2 and an IR brane scalar being

SYuk ¼ � 
Y

Mðd�3Þ=2
�

Z
ddx

ffiffiffiffi
�G

p
��1�2�ðz� zLÞ

¼ �
Z

d4xc ð0Þ
1 c ð0Þ

2 ½m12 þ 
y�
ð0Þ� þ . . . ; (105)

where the dots denote terms containing modes with ~n > 0
and the fermion mass is m12 ¼ 
yv, with the effective 4D

Yukawa coupling between the zero modes defined as9


y ¼ 
Y

e�k�rcM�

�
ek�rc

M�2�R

�ðd�5Þ=2
fð0Þ1 ðzLÞfð0Þ2 ðzLÞ;

d ¼ 5; 7; 9:

(106)

For d ¼ 5 this reproduces the familiar expression for the
effective 4DYukawa coupling in RSmodels [2,3] while the
d ¼ 7, 9 cases generalize the RS result and show that the
RS approach to flavor holds for the warped spaces AdS7
and AdS9.
We may also consider the coupling between a bulk

fermion and a bulk gauge boson in AdS7;9:

S�;A ¼ gd

Mðd�4Þ=2
�

Z
ddx

ffiffiffiffi
G

p
eMM

���M�AM

¼ g4
Z

d4x �c ð0Þ
L ��c ð0Þ

L Að0Þ
� þ . . . :; (107)

where gd is a dimensionless bulk gauge coupling and for
d ¼ 7 (d ¼ 9) the gamma matrices are the 7D (9D) Dirac
matrices given in Appendix B (Appendix C). In the last
line we have retained only the terms with the chiral mode
and defined the 4D gauge coupling as

g4 ¼ gd

Mðd�4Þ=2
�

1

ð2�RÞðd�5Þ=2
Z

dzf�ð0ÞþL f
ð0Þ
þLf

ð0Þ
A : (108)

Using the vector zero-mode profile for d > 5 (32) gives

g4 ’ gdM�
�

2kðd� 5Þ
Mðd�2Þ

� ð2�RÞðd�5Þ

�
1=2 � gd

M�
MPl

; (109)

where we have used the leading order expression for the 4D
Planck mass via (8). One readily observes a volume sup-
pression of the effective 4D couplings. For example, with
k�M� and R�1 � 1 TeV one has

ek�rc ’ M�
TeV

’
�

d� 3

2ð2�Þd�5

�
1=ðd�3Þ �

�
MPl

TeV

�
2=ðd�3Þ

;

(110)

and provided d is not too large, this gives MPl �
eðd�3Þk�rc=2 TeV so that

8We note that Eq. (104) seems to indicate that for RM� �Oð1Þ
the 4D Higgs VEV is h�ð0Þi � v0e

�ðd�3Þk�rc=2. However, as we
show in Sec. VI, the effective 4D quartic coupling for the IR
brane Higgs becomes nonperturbative in this region of parameter
space, so it is not clear that this deduction can be trusted.

9The numerical subscripts here label the different fermion
fields �1;2 and not different spinor components.
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g4 � gde
ð5�dÞk�rc=2 ¼ gd �

�
e�k�rc � 10�15=2 for AdS7
e�2k�rc � 10�10 for AdS9:

(111)

From the above considerations we may surmise the
following. The RS realization of the weak scale via space-
time warping carries over to a slice ofAdSd for d > 5when
the Higgs boson is a ðd� 1Þ-dimensional field localized on
the IR brane. The RS approach to flavor also carries over to
AdS7 and AdS9, with the coupling between two chiral
zero-mode fermions and a brane localized scalar sensitive
to the fermion bulk mass parameters such that hierarchical
Yukawas are expected in the 4D theory. However, for the
phenomenologically interesting case of R�1 � 1 TeV the
effective 4D gauge coupling between a chiral zero-mode
fermion and the zero mode of a bulk gauge field experi-
ences volume suppression. The severity of this suppression
increases with d, though already for d ¼ 7 it is of order

�10�15=2. A similar volume suppression is known to occur
for models with large extra dimensions [28].

Consequently, bulk SM fermions and gauge fields are
not viable for both AdS7 and AdS9. The appealing RS
approach to flavor is therefore successful only on a slice
of AdS5 or, as shown in [10] for the case of AdS5 � T2, for
certain spaces of the form AdS5 �Md�5. If SM matter
fields propagate in the transverse dimensions of AdSd, one
expects them to be localized at either the UVor IR brane,
with the weak scale realized via warping in the latter case.
Actually, as we shall show in Sec. VI, for R�1 � TeV the
effective 4D couplings are highly suppressed for UV lo-
calization so that only IR brane localization of the SM is
viable.

Note that fermions which are sterile with respect to the
SM gauge group may propagate in the bulk, with such a
scenario considered already for AdS7 in the context of a
brane localized UED model in [13]. We further note that
extended gauge sectors can also propagate in the bulk and
the gauge-coupling volume suppression can motivate a
very weak coupling for such sectors. As an example, con-
sider the localization of the SM on the IR brane of AdS6.
This would realize an embedding of the minimal UED
model on the IR brane and simultaneously motivate the
weak/Planck hierarchy. With the gauge group extension
GSM �GX, the GX symmetry could be broken on the IR
brane at a scale of �TeV and yet remain experimentally
viable if it propagates in the bulk. The effective couplings

in the 4D theory would be of order g6M�=MPl �
g6e

�k�rc=2 � 10�5g6 and are therefore automatically sup-
pressed. Such a scenario may offer an interesting way to
employ, for example, a weakly coupled symmetry which
plays a custodial role and is broken at the weak scale.

The main model-building feature of the AdSd spaces
seems to be the ability to combine the warped explanation
for the weak/Planck hierarchy with the KK parity found in
UED models. In UED models KK parity is a residual from

an underlying spacetime isometry. The transverse space in
AdSd admits such an isometry so that KK parity may
remain viable when the SM fields propagate in the trans-
verse space. In particular, if the SM fields are localized on
the ðd� 1Þ-dimensional IR brane of AdSd, one obtains a
geometrical motivation for both the weak/Planck hierarchy
and the existence of stable dark matter. The main experi-
mental signature for theAdSd spaces in this instance would
be the observation of warped KK gravitons in addition to
the UED KKmodes. Such a signature also occurs when the
ðd� 1Þ-dimensional UED model is realized by embedding
the SM fields on the IR brane ofAdS5 � Td�5, as discussed
in [10]. However, the graviton KK towers on AdSd differ
from AdS5 � Td�5 so that if a ðd� 1Þ-dimensional UED
scenario is discovered, one would be able to experimen-
tally determine if the UED model is embedded in either of
these distinct warped spaces by carefully studying the
graviton KK spectrum.
We note that for RM� �Oð1Þ one hasM� �MPl and the

volume suppression observed in (109) disappears.
Although the transverse KK modes disappear from the
low energy spectrum in this limit, this case may be inter-
esting unto itself. However, as we show in the next section,
it is not clear at present what the correct description of the
IR brane (including the localized Yukawa coupling) should
be in this instance. It should also be stated that while the
transverse KK (or dark matter) scale in AdSd is set by R

�1,
there is no a priori connection between this scale and the
weak scale. Thus the usual ‘‘weakly interacting massive
particle’’ paradigm requires the transverse radius to be
stabilized at R�1 � TeV 
 M�. As we will show below,
such a condition is, in any case, necessary for the validity
of the effective theory description we have employed. This
situation is to be contrasted with AdS5 � T2 [10], where
the underlying geometry also motivates the weak/Planck
hierarchy (via warping) and dark matter (via KK parity as
an isometry remnant). In that case the transverse KK scale
is automatically warped to the IR brane scale, so that once
the weak/Planck hierarchy is established via warping, the
dark matter scale is also �TeV, even if the transverse
radius is stabilized at R�1 �M�.

VI. VALIDITY OF THE EFFECTIVE 4D
DESCRIPTION

Throughout the present work we have assumed a trans-
verse compactification scale of R�1 � TeV. There are two
reasons for having restricted our attention to this case. The
first reason is phenomenological, as the new KK modes
associated with the transverse space in AdSd will be ac-
cessible to colliders only for R�1 of order TeV, and the
lightest transverse KK mode may also be a good DM
candidate for a TeV scale compactification. The second
reason is theoretical, as the effective 4D theory description
on the IR brane breaks down for R�1 > TeV when the IR
brane scale is �TeV. We briefly demonstrate the latter
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point in what follows. To this end we use AdS7 as an
example and consider a noninteracting 6D scalar field
localized on the IR brane:

S� ¼ 1

2

Z
d7x

ffiffiffiffi
�G

p
fG �M �N@ �M�@ �N��m2

��
2g�ðy� �rcÞ

¼ 1

2

Z
d6xe�4k�rc

�
�

�M �N@ �M�@ �N�� m2
�

e2k�rc
�2

�

¼ 1

2

Z
d6x

�
�

�M �N@ �M�@ �N�� m2
�

e2k�rc
�2

�
; (112)

where the barred quantities denote brane restriction. To
obtain the last line we have rescaled the field� ! e2k�rc�
to bring the kinetic term in the x� directions into a canoni-
cal form. With the KK expansion

�ðx�; xaÞ ¼ X
na

�ðnaÞðx�ÞgðnaÞðxaÞ; (113)

where the profiles obey @2ag
ðnaÞ ¼ �m2

nag
ðnaÞ with mna �

R�1, the action reduces to the standard KK form:

S� ¼ 1

2

X
na

Z
d4xf���@��

ðnaÞ@��ðnaÞ �m2
�;na

ð�ðnaÞÞ2g:

(114)

The KK masses are

m2
�;na

¼ m2
�e

�2k�rc þm2
na ; (115)

where the bare mass is warped down asm�e
�k�rc while the

KKmassmna is not. As the effective transverse KK scale in

the 4D theory is not warped, it may lie below the cutoff of
the 7D theory and yet exceed the warped down cutoff on
the IR brane; that is, R may lie in the range M� > R�1 >
�IR. Let us add a series of higher order interaction terms
for the scalar to consider this matter further:

Sint ¼
X1
q¼2

Z
d7x

ffiffiffiffi
�G

p �

2q

M4q�6
�

�2q

�
�ðy� �rcÞ

¼ X1
q¼2

Z
d6xe�6k�rc

�

2q

M4q�6
�

e4qk�rc�2q

�

¼ X1
q¼2


2q

½e�k�rcM��4q�6

Z
d6x�2q; (116)

where 
2q is a dimensionless coupling and we have per-

formed the rescaling necessary to return the kinetic term to
a canonical form to obtain the second line. The brane cutoff
is warped down to �IR ¼ e�k�rcM�, exactly as occurs in
RS models. One may expect that for R�1 >�IR the IR
brane theory could be trusted, provided one neglects all KK
modes whose mass exceeds the brane cutoff. However, the
effective description on the brane breaks down even when
these states are discarded, as is seen by considering the
interactions involving only the zero modes. In the effective
4D theory these are

Sint ¼
X1
q¼2

1

�2q�4
IR


2q

½e�k�rcM�ð2�RÞ�2q�2

Z
d4x�ð0Þ2q

þ . . . : (117)

As an example, consider M� � ½2�R��1, a relationship
which, from the 7D perspective, appears within the range
of validity of the effective theory description as R�1 <M�.
However, in the 4D theory the coupling of the zero-mode

quartic interaction �ð0Þ4 is �
4e
2k�rc , and if the 7D cou-

plings assume ‘‘natural’’ values of order 
2q 2 ½10�2; 1�,
this 4D coupling is severely nonperturbative. A similar
enhancement is found for the higher order interaction
terms. Thus it is not enough to simply discard the higher
KK modes whose mass exceeds the IR brane cutoff; the
effective theory description has broken down even for the
zero modes. We deduce that the usual constraint R�1 <
M�, required to ensure the validity of the effective theory
description, is inadequate to ensure that the effective 4D
theory on the IR brane is sensible on a slice of AdS7. This
result holds more generally on a slice of AdSd.
The effective description of the 4D theory on the IR

brane does make sense, provided the transverse radius is
less than the IR brane cutoff, R�1 <�IR ¼ e�k�rcM�. This
motivates the assumed value of R�1 & e�k�rcM� � TeV
employed in the text. One may understand why the validity
of the effective theory description requires R�1 <�IR

rather than simply R�1 <M� as follows. Consider two
points with separation �xa � R in the transverse space.
When localized on one of the branes, this corresponds to a
physical separation of

j�sj ¼
�
�xa � R for UV localization

e�k�rc�xa � e�k�rcR for IR localization:

(118)

Within the present effective theory description, one may
only talk sensibly about proper distances satisfying
�s�1 & k, which translates into R�1 & k for UV localiza-
tion and R�1 & e�k�rck for IR localization. With k�M�
the latter relation gives R�1 & �IR as promised. As the IR
brane theory breaks down for R�1 >�IR, the effective
theory description employed in this work remains valid
for the entire space only for R�1 <�IR.
The relation R�1 & e�k�rcM� may seem strange, as in

the limit rc ! 1 the effective description breaks down for
any finite R. However, this behavior is understood, as in the
rc ! 1 limit the spacetime has a conical singularity,
which is observed by noting that at the horizon the proper
radius in the transverse directions shrinks to zero as
e�k�rcR. The resolution of this singularity requires knowl-
edge of the UV completion; for example, the slice of AdSd
may emerge from a more fundamental string theory. The
presence of this singularity is known already in the litera-
ture and has been discussed in [29], where a supergravity
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embedding of AdS6 was considered to flush out possible
ways to resolve it.

Before concluding, we briefly consider the case of UV
brane localization with R�1 � TeV to show that the result-
ing effective 4D couplings can be highly suppressed. If the
brane scalar � is instead localized on the UV brane of
AdS7, Eq. (117) becomes

SUVint ¼ X1
q¼2

1

M2q�4
�


2q

½M�ð2�RÞ�2q�2

Z
d4x�ð0Þ2q þ . . . ;

(119)

and with e�k�rcM�2�R� 1 and 
2q � 1 the effective

zero-mode coupling, for a given value of q, is

� e�2ðq�1Þk�rcM4�2q
� : (120)

As expected, the UV brane cutoff is �UV ¼ M� while the
effective dimensionless coupling is of order e�ð2q�2Þk�rc ,
which, even for the zero-mode quartic coupling case of
q ¼ 2, is highly suppressed with e�2k�rc � 10�15. A simi-
lar suppression holds more generally for AdSd, and thus
the SM cannot be localized on the UV brane for the
phenomenologically interesting case of R�1 � TeV. We
also note that the effective coupling for the interaction

�ð0Þ2�ðnaÞ2 between two zero modes and two na � 0 KK
modes is �e�2k�rc (� 1) in the case of UV (IR) localiza-
tion when 
4 �Oð1Þ. It is easy to understand why the
effective quartic couplings on the IR brane can be Oð1Þ
while those on the UV brane must be highly suppressed.
The running of the quartic coupling will receive contribu-
tions from loops containing transverse KK mode scalars
and, if the relevant effective 4D couplings are of order
unity, will rapidly become nonperturbative. This is okay on
the IR brane, where the cutoff is warped down to
e�k�rcM� � TeV so that a rapid approach to the nonper-
turbative regime is consistent with the expectation that the
IR brane theory will break down at the TeV scale.
However, on the UV brane the description is expected to
be valid up to the fundamental scale M�. This requires the
effective 4D couplings to be highly suppressed to ensure a
slow running and to avoid a breakdown of the theory at
scales E 
 M�. In this way we observe that the theory
automatically generates couplings that are appropriate for,
and consistent with, the expected domain of validity of the
effective theory description when R�1 & e�k�rcM�.

VII. CONCLUSION

In this work we have extended the program begun in
[10] for AdS5 � T2 and considered the promotion of the
RS model to a higher dimensional slice of AdSd for d > 5.
Such spaces are interesting, as they admit a generalized
version of the warped realization of the weak scale em-
ployed in the RS model. Our primary motivation was to
determine the viability of combining the phenomenologi-
cally appealing features of RS and UED models in such

spaces. We have performed the KK reduction for gravitons,
bulk vectors and, for the case of AdS6, the gauge scalars.
We also obtained the KK spectra for bulk fermions on a
slice of AdS7;9 and showed that the RS approach to flavor

generalizes to these spaces with the localization of chiral
zero-mode fermions controlled by their bulk Dirac mass
parameters. However, for the phenomenologically interest-
ing case where the transverse radius is R�1 � TeV, we find
that bulk standard model fields are not viable due to a
resulting volume suppression of the gauge-coupling con-
stants. A similar suppression occurs for UV localization so
that, when propagating in the transverse directions, the SM
fields should be confined to the IR brane, consistent with
the warped realization of the weak/Planck hierarchy. The
main experimental signature of the AdSd spaces in this
instance is the observation of warped KK gravitons in
addition to the usual UED KK modes.
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APPENDIX A: EMBEDDING AdSd�1 IN AdSd

The Poincare parametrization of the AdSd metric is

ds2AdSd ¼
1

ðkzÞ2 ½���dx
�dx� � �abdx

adxb � dz2�; (A1)

and although the geometry is nonfactorizable, it may be
expressed in terms of an embedded AdSd�1 by changing
coordinates to

xd�1 ¼ Z cos�; z ¼ Z sin�; (A2)

to obtain

ds2AdSd ¼
1

sin2�2
½ds2AdSd�1

� k�2d�2�; (A3)

where the AdSd�1 metric is

ds2AdSd�1
¼ 1

ðkZÞ2
�
���dx

�dx� � Xd�2

a¼5

ðdxaÞ2 � dZ2

�
:

(A4)

Thus the warped direction for the embedded AdSd�1 dif-
fers from that of the originalAdSd [30]. One can repeat this
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process to obtain an embedding of AdS5 in AdSd.
Consequently, the warped profiles in the KK decomposi-
tion of bulk fields on a compactified slice of AdSd are not
expected to reduce to the familiar AdS5 expressions.

APPENDIX B: FERMIONS IN 7D

The generators of the 7D Lorentz group SOð1; 6Þ for the
spin 1=2 representation are

SMN ¼ �MN

2
¼ i

4
½�M;�N�; (B1)

where the 7D gamma matrices satisfy

f�M;�Ng ¼ 2�MNI; (B2)

and �MN ¼ diagð1;�1;�1; . . .Þ. Note that in 7D the mini-
mum dimensionality of the matrices satisfying the Clifford
algebra (B2) is 8� 8 so that fermions are described by
spinors with eight components. We employ the 7D general-
ization of the Weyl representation for the � matrices. For
M ¼ 0, 1, 2, 3, 4, 5, 6 we have

�M ¼ 0 �M

��M 0

� �
; (B3)

where

�0 ¼ ��0 ¼ �0�0; �i ¼ � ��i ¼ �0�i; (B4)

�5 ¼ � ��5 ¼ i�0�5; �6 ¼ � ��6 ¼ �0; (B5)

and for definiteness we employ the Weyl representation of
the Dirac gamma matrices

�0 ¼ 0 1
1 0

� �
; �i ¼ 0 �i

��i 0

� �
; �5 ¼ �1 0

0 1

� �
:

(B6)

In 4D the projection operators PR;L ¼ 1
2 ð1� �5Þ project

out the right- and left-chiral components of a Dirac spinor.
These operators may be generalized to 7D as

P7
R;L ¼ 1

2ð1� i�0�1�2�3Þ: (B7)

The final gamma matrix is

�7 ¼ i �� � i�0�1�2�3�5�6 ¼ i
�I 0
0 I

� �
; (B8)

which may be used to define the projection operators

P� ¼ 1
2ð1� ��Þ: (B9)

Thus one may label the components of the 7D spinor with
their 6D chirality (� ) and their 4D chirality ðR; LÞ as

� ¼ ðc�R; c�L; cþL; cþRÞT: (B10)

APPENDIX C: FERMIONS IN 9D

The generators of the 9D Lorentz group SOð1; 8Þ for the
spin 1=2 representation are

SMN ¼ �MN

2
¼ i

4
½GM;GN�; (C1)

with

fGM;GNg ¼ 2�MNI: (C2)

In 9D fermions are described by spinors with 16 compo-
nents. We employ a generalized Weyl representation of the
G matrices, which, for M � 9, may be written in terms of
the 7D Dirac matrices as

G M ¼ 0 	M

�	M 0

� �
; (C3)

where

	0 ¼ �	0 ¼ �0�0; 	i ¼ � �	i ¼ �0�i;

	5 ¼ � �	5 ¼ �0�5;
(C4)

	6 ¼ � �	6 ¼ �0�6; 	7 ¼ � �	7 ¼ �0�7;

	8 ¼ � �	8 ¼ �0:
(C5)

In 4D the projection operators PR;L ¼ 1
2 ð1� �5Þ project

out the right- and left-chiral components of a Dirac spinor.
These operators may be generalized to 9D as

P9
R;L ¼ 1

2ð1� iG0G1G2G3Þ; (C6)

and the 6D projection operators P� ¼ 1
2 ð1� ��Þ also gen-

eralize to the 9D operators

P9� ¼ 1
2ð1�G0G1G2G3G5G6Þ: (C7)

The final gamma matrix is

G 9 ¼ i �G � G0G1G2G3G5G6G7G8 ¼ i
�I8�8 0

0 I8�8

� �
;

(C8)

which may be used to define the projection operators

P";# ¼ 1
2ð1� �GÞ: (C9)

Thus one may label the components of the 9D spinor with
their 8D chirality ð"; #Þ as

� ¼ c #
c "

� �
; (C10)

and one can further label the components of c ";# by their

6D chirality (� ) and their 4D chirality ðR; LÞ as
c # ¼ ðc #þL; c #þR; c #�R; c #�LÞT;
c " ¼ ðc "�R; c "�L; c "þL; c "þRÞT:

(C11)

The above notation clearly labels the components of � in
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terms of their various lower dimensional chiral properties.
It is, however, somewhat cumbersome, and we employ a
simpler notation in the text; see (85).

APPENDIX D: FERMION WAVE FUNCTIONS

1. Toroidal wave functions: AdS7

The fermion wave functions on the toroidal dimensions

may be written in terms of gðnaÞþð�Þ, the usual expansions for
the even (odd) KK modes on the T2=Z0

2 orbifold:

gðnaÞþ ðxaÞ ¼ 1ffiffiffi
2

p
�R

�
1ffiffiffi
2

p
�
�na0

cos

�
n5x

5 þ n6x
6

R

�
; (D1)

gðnaÞ� ðxaÞ ¼ 1ffiffiffi
2

p
�R

sin

�
n5x

5 þ n6x
6

R

�
; (D2)

where na ¼ ðn5; n6Þ. For AdS7 with toroidal compactifica-
tion the T2 profiles must satisfy

ð@5 � i@6ÞgðnaÞþL;R ¼ 	mnag
ðnaÞþR;L; (D3)

ð@5 	 i@6ÞgðnaÞ�L;R ¼ �mnag
ðnaÞ�R;L; (D4)

and may be written as

gðnaÞþL ðxaÞ ¼ gðnaÞ�R ðxaÞ ¼ gðnaÞþ ðxaÞ; (D5)

gðnaÞþR ðxaÞ ¼ gðnaÞ�L ðxaÞ ¼
n5 þ in6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n25 þ n26

q gðnaÞ� ðxaÞ: (D6)

2. Toroidal wave functions: AdS9

The wave functions along xa must satisfy

ð@5 � i@6ÞgðnaÞ�L;R ¼ 	mnag
ðnaÞ
�R;L for � ¼ 1; 4; (D7)

ð@5 	 i@6ÞgðnaÞ�L;R ¼ �mnag
ðnaÞ
�R;L for � ¼ 2; 3; (D8)

giving

gðnaÞ1L ðxaÞ ¼ gðnaÞ2R ðxaÞ ¼ gðnaÞ3R ðxaÞ ¼ gðnaÞ4L ðxaÞ ¼ gðnaÞþ ðxaÞ;
(D9)

gðnaÞ1R ðxaÞ ¼ gðnaÞ2L ðxaÞ ¼ gðnaÞ3L ðxaÞ ¼ gðnaÞ4R ðxaÞ

¼ n5 þ in6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n25 þ n26

q gðnaÞ� ðxaÞ; (D10)

where we express the solutions in terms of (D1) and (D2).
Similarly the wave functions along xb satisfy

ð@7 � i@8ÞhðnbÞ�R;L ¼ �mnbh
ðnbÞ
�L;R

for ð�;�Þ ¼ ð1; 2Þ; ð3; 4Þ;
(D11)

ð@7 	 i@8ÞhðnbÞ�R;L ¼ 	mnbh
ðnbÞ
�L;R

for ð�;�Þ ¼ ð2; 1Þ; ð4; 3Þ;
(D12)

where nb ¼ ðn7; n8Þ. The solutions are

hðnbÞ2L ðxbÞ ¼ hðnbÞ2R ðxbÞ ¼ hðnbÞ4L ðxbÞ ¼ hðnbÞ4R ðxbÞ ¼ gðnbÞþ ðxbÞ;
(D13)

hðnbÞ1L ðxbÞ ¼ hðnbÞ1R ðxbÞ ¼ hðnbÞ3L ðxbÞ ¼ hðnbÞ3R ðxbÞ

¼ n7 � in8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n27 þ n28

q gðnbÞ� ðxbÞ; (D14)

with gðnbÞ� ðxbÞ given by (D1) and (D2) with the replacement
na, x

a ! nb, x
b.

3. Normalization factors in AdS9

The equations of motion require the normalization fac-

tors for fð ~nÞ�L;R to be related, and one can show that they may

be expressed in terms of a single normalization factor Nð ~nÞ
�

via

Nð ~nÞ
1L;R ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~nðm~n þmnbÞ

q
m~n þmna þmnb

Nð ~nÞ
� ; (D15)

Nð ~nÞ
2L;R ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~nðm~n þmnbÞ

q
m~n �mna þmnb

Nð ~nÞ
� ; (D16)

Nð ~nÞ
3L;R ¼ Nð ~nÞ

4L;R ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m~nðm~n þmnbÞ
m2

~n �m2
na �m2

nb

vuut Nð ~nÞ
� : (D17)
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