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The efficient placement of signal templates in source-parameter space is a crucial requisite for

exhaustive matched-filtering searches of modeled gravitational-wave sources, as well as other searches

based on more general detection statistics. Unfortunately, the current placement algorithms based on

regular parameter-space meshes are difficult to generalize beyond simple signal models with few

parameters. Various authors have suggested that a general, flexible, yet efficient alternative can be found

in randomized placement strategies such as random placement and stochastic placement, which enhances

random placement by selectively rejecting templates that are too close to others. In this article we explore

several theoretical and practical issues in randomized placement: the size and performance of the resulting

template banks; the very general, purely geometric effects of parameter-space boundaries; the use of

quasirandom (self-avoiding) number sequences; most important, the implementation of these algorithms

in curved signal manifolds with and without the use of a Riemannian signal metric, which may be difficult

to obtain. Specifically, we show how the metric can be replaced with a discrete triangulation-based

representation of local geometry. We argue that the broad class of randomized placement algorithms offers

a promising answer to many search problems, but that the specific choice of a scheme and its

implementation details will still need to be fine-tuned separately for each problem.
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I. INTRODUCTION

An international network of ground-based laser-
interferometric gravitational-wave (GW) detectors [1–3],
which operate in the high-frequency band between 10 and
103 Hz, has by now completed several rounds of science
data collection and analysis. Space-based detectors such as
LISA [4] will extend our reach to frequencies as low as
10�5 Hz, and to sources as far as redshifts of 20. The first
direct detections of GW sources will inaugurate the era
of GWastronomy, a novel mode of inquiry of the Universe
that will provide unique information about the properties
of relativistic objects such as black holes and neutron stars,
and allow precise tests of general relativity’s yet unproven
predictions.

Because GW signals come immersed in noisy detector
data, the statement that a GW source was detected is by its
nature probabilistic, and can be quantified with frequentist
false-alarm and false-dismissal probabilities [5], or with a
Bayesian odds ratio [6]. In an ideal world where the
statistical properties of detector noise are known exactly
and detector calibration is perfect, detection corresponds to
a simple mathematical statement about the data [7],
although actually evaluating that statement may require
considerable numerical computation. In the real world
where noise is non-Gaussian, nonstationary, and poorly
characterized, and where calibration is challenging, detec-
tion corresponds to a more complicated, heuristic process,
which involves expert judgment (such as the choice of
data-quality vetoes and multidetector coincidence win-
dows), and which is embodied in complex software pipe-

lines [8]. The validity and efficiency of the process are
evaluated empirically, by measuring the resulting back-
ground of spurious detection candidates, and by injecting
simulated GW signals and verifying their recovery. Indeed,
the day-to-day work of GW analysts is very much domi-
nated by the development and validation of such pipelines.
Searches for GW signals of known shape from well-

understood sources, such as the archetypical gravitational
two-body problem of compact-binary inspiral, merger, and
ringdown, occupy a privileged spot in the GW data-
analysis landscape because they are likely to yield the first
robust detections, although searches for unmodeled GW
bursts in coincidence with EM counterparts [9] are also a
contender. Furthermore, modeled-signal searches find a
straightforward mathematical realization in the simple
yet powerful technique of matched filtering [5]: roughly
speaking, the detector output is time-correlated with a set
of theoretical waveforms (templates), and a peak in one of
the correlation time series indicates that a GW signal of
that shape may be present in the data at the time of the
peak. Higher peaks correspond to higher detection confi-
dence, because stronger signals have smaller probability of
being simulated by random features in the noise.
The template placement problem arises because we are

interested in searching for GW sources with a range of
physical parameters (such as the component masses in a
binary), and because different parameters can yield con-
siderably different waveforms. Therefore we must choose a
finite number of templates to correlate with the detector
data; these templates must span the region of interest in
source parameter space; they must be placed ‘‘densely’’
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enough to avoid reducing detection confidence (the height
of the correlation peaks) by matching a true GW signal
with too different a template; yet they must be spaced as
‘‘sparsely’’ as possible to limit their total number and
therefore the computational cost of the search. The notion
of distance implied here by densely and sparsely is made
quantitatively precise by defining a noise-weighted dis-
tance � [Eq. (3) in Sec. II] in the linear space RNbig of all
possible detector outputs. The distance� between two GW
signals is directly related to the reduction in detection
confidence incurred by using one to match the other, and
the noise weighting encodes the different sensitivity of the
detector at different frequencies. Thus we wish to place
templates uniformly from the ‘‘point of view’’ of the
detector.

Now, a family of signal templates fhð�jÞg parametrized

smoothly by the source parameters �j realizes an

Nsmall-dimensional topological manifold H embedded in
RNbig . Thus the placement problem consists in selecting a

finite and discrete bank fhð�ðkÞÞg � H such that the
(RNbig-)distances of all possible incoming GW signals
(i.e., all the points in H ) from the nearest bank template

hð�ðkÞÞ satisfy certain properties. For instance, we may
constrain the average and variance of this distance, or we
may require that the distance may be no larger than a
maximum value. In the latter case, as emphasized by Prix
[10], template placement becomes an instance of the
sphere-covering problem: given the manifold H , we
wish to cover it with the smallest possible number of
spheres of fixed (�) radius, where the sphere centers sit

on H and correspond to the fhð�ðkÞÞg in the bank.
Qualitatively speaking, we want the spheres to cover the
manifold completely, so that we miss no signal; at the same
time we wish to reduce their overlap, so that we not waste
computational resources on testing templates that are al-
most duplicates.

The distance � endows H with a local Riemannian
structure, and therefore an Nsmall-dimensional metric ten-
sor gjk [11–13]. Template placement can then be reformu-

lated as the problem of covering H with spheres of fixed
geodetic radius. IfH is curved, the geodetic distance will
consistently overestimate the � distance, so the reformu-
lation is only faithful when curvature is negligible over the
typical sphere radius. GW analysts have generally been
happy to accept this approximation and thus work in the
familiar framework of differential geometry; so shall we.

IfH has no intrinsic curvature, and if a suitable change
of coordinates can be found that maps H to Euclidean
space,1 therefore mapping gjk to the identity matrix, we

can rely on a wealth of theoretical results about the cover-

ing properties of periodic lattices, and place sphere centers
(i.e., bank templates) at the lattice vertices: for instance, on
a square [17] or hexagonal [18,19] lattice on the Euclidean
plane, or on their generalization in higher-dimensional
Euclidean space [10]. If however no such change of coor-
dinates can be found, perhaps because the metric itself is
difficult to obtain or unreliable, or if H has significant
curvature, it becomes very hard to place templates along
any regular structure. In the case of two source parameters,
Arnaud et al. [20] and Beauville et al. [21] describe
algorithms that create curvature-conforming tilings by
propagating a locally hexagonal lattice while adjusting
for the change in the equal-distance contours. Such an
approach has not been attempted in higher-dimensional
spaces, where it appears very cumbersome.
A possible alternative is placing templates at the vertices

of suitably ‘‘grown’’ unstructured meshes, such as adap-
tively refined triangulations. We investigate such a strategy
in a separate article [22], and briefly in Sec. VII below.
Here we concentrate instead on the randomized sampling
strategy originally proposed by Allen [23] and later studied
by Babak [24], Messenger et al. [25], and Harry et al. [26].
In its simplest incarnation (pure random sampling), the
idea is to draw a set of points that are (pseudo-)randomly
distributed across H . Because of its very randomness,
such a covering can never be guaranteed to cover 100%
of H ; however, as shown by Messenger et al. [25], it can
achieve very high covering fractions with total numbers of
points that (in Euclidean space) are competitive with the
most efficient relaxed lattice coverings (i.e., lattices re-
scaled to cover a fraction <100% of space). To cover
curved manifolds, it is sufficient to know the metric deter-
minant, and adjust the local probability of random draws
accordingly. (Recently, Röver has suggested that the
Bayesian prior distribution for the source parameters can
be used to adjust the local template density in order to
minimize the expected number of draws until a matching
template is found [27].)
In this paper we extend the results of Ref. [25]: we

investigate the finer details of random coverings, such as
the variance of the covering fraction and the effects of
boundaries, and we provide further evidence that uniform
coverings of curved manifolds can be obtained in general
conditions, even without knowledge of the metric, but
using only the � distance. Specifically:
(i) We confirm that random coverings are more efficient

than could be naively expected, and we provide an
exact formula for the variance of the covering
fraction.

(ii) We extend Messenger et al.’s in-the-bulk results by
considering the effects of manifold boundaries in
reducing the covering fraction: we find that these
effects become overwhelming, and must be treated
carefully, as the manifold dimension increases. For
example, neglecting boundary effects, 11 000 ran-

1For instance, approximate but accurate mappings can be
found for the 2.5PN restricted inspiral signals from binaries of
spinless compact bodies [14,15] and for the continuous GW
signals from rapidly rotating neutron stars [16].
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dom spheres of radius 0.3 cover the 8-dimensional
unit cube with 95% covering fraction; including
boundary effects, 92 000 spheres are needed.

(iii) We show that quasirandom numbers (self-avoiding
deterministic sequences often used to reduce vari-
ance in Monte Carlo integration [28]) can be used
instead of pseudorandom numbers to improve the
efficiency of random coverings, although such a
substitution is most effective on quasiflat
manifolds.

(iv) We investigate stochastic placement strategies
[24,26] where the random distribution is tempered
by considering the distances between selected
points (e.g., rejecting draws that are too close to
another point in the bank): we quantify the effi-
ciency of these coverings, and examine their appli-
cation to curved manifolds without the use of the
metric.

(v) Last, we propose an alternative metricless place-
ment strategy, based on triangulating the curved
manifold to represent its local geometry as the set
of finite distances between neighboring triangula-
tion points.

Overall, we find that even flexible placement strategies
such as random, stochastic, and unstructured-mesh cover-
ings cannot be made into recipes of general applicability,
but need to be tailored to the circumstances of different
template families and searches. Much as the simple mathe-
matical formalism of matched-filtering GW searches has
made way to complex processes and pipelines, so must
template placement ultimately evolve from a problem of
mathematics to one of engineering. On the other hand, we
expect that the general methods and results discussed in
this paper would apply also to the larger class of GW
searches that use more general detection statistics than
the matched-filtering SNR (2), but that still require the
placement of (generalized) templates according to notion
of distance. Examples include stack-slide [29], Hough-
transform [30], F -statistic [31], and global-correlation
[16] searches for periodic GWs.

We note also that not all matched-filtering searches rely
on template banks. The broad family of Monte Carlo
methods, which include Markov Chain Monte Carlo, ge-
netic algorithms, and nested sampling (see [32] for a LISA-
centric review), conceptualize searches as the randomized
exploration of template–signal correlation across parame-
ter space, rather than its evaluation at a set of predeter-
mined points. However, as we argue in Sec. VIII, the
systematic exploration of parameter space enabled by ran-
dom and stochastic banks, as well as the scaling properties
derived here and in Refs. [25,26], may find applications in
designing or guiding Monte Carlo searches.

This paper is organized as follows. In Sec. II, we recall
key formulas from the theory of matched filtering, and

emphasize their geometric interpretation. In Sec. III, we
introduce the sphere-covering problem. In Sec. IV, we
study the properties of random coverings. In Sec. V, we
examine the effects of boundaries. In Sec. VI, we quantify
the improved efficiency possible with quasirandom se-
quences and stochastic placement. In Sec. VII, we explore
the use of unstructured meshes for metricless placement. In
Sec. VIII, we summarize our conclusions, and discuss
future directions of investigation. In the Appendix, we
describe the numerical procedures used throughout this
work.

II. KEY MATCHED-FILTERING FORMULAS

Matched-filtering searches for GW signals are based on
the systematic comparison of the measured detector output

swith a bank of theoretical signal templates fhð�ðkÞÞg. Here
we develop only the formulas that we need later, but a few
useful starting points in the vast literature on this subject
are Refs. [5,7,33–37].
Inner product. A crucial mathematical construct is the

symmetric inner product hg1; g2i between two real signals
(detector outputs over a fixed time period) g1ðtÞ and g2ðtÞ.
This product is essentially the cross-correlation between
g1ðtÞ and g2ðtÞ, weighted to emphasize the frequencies
where detector sensitivity is better. We follow Cutler and
Flanagan’s conventions [36] and define

hg1; g2i ¼ 2
Z þ1

�1
~g1

�ðfÞ ~g2ðfÞ
SnðjfjÞ df

¼ 4Re
Z þ1

0

~g1
�ðfÞ ~g2ðfÞ
SnðfÞ df; (1)

where the tildes denote Fourier transforms, the stars com-
plex conjugates, and SnðfÞ the one-sided power spectral
density of detector noise. We can then define the signal-to-
noise ratio (SNR) � of detector output s after filtering by

template hð�ðkÞÞ � hðkÞ as

�ðhðkÞÞ ¼ hs; hðkÞi
rmshn; hðkÞi ¼

hs; hðkÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhðkÞ; hðkÞi

q ; (2)

where n denotes detector noise, and rmshn; hðkÞi represents
the rms average of that inner product over all possible noise
realizations (see, e.g., [5]). It is convenient to think of
Eq. (2) as the SNR of s after filtering by the normalized

template ĥðkÞ � hðkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhðkÞ; hðkÞi

q
. If s consists solely of

Gaussian and stationary detector noise, then � is a normal
random variable with mean zero and variance one. If

instead a signal equal to AĥðkÞ is present in s in addition
to noise, then � is a normal random variable with mean A
and again variance one. We claim a detection of a signal

with source parameters �ðkÞ whenever �ðhðkÞÞ is greater
than a chosen threshold ��. Such a detection scheme is
Neyman–Pearson optimal in the sense that it maximizes
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the probability of correct detection for a given probability
of false detection.

Distance. Henceforth, we shall restrict our consideration
to normalized signals, and drop the caret that we just used
to denote them. Given two such signals, we can use the
inner product to define a distance between them,

�ðg1; g2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg1 � g2; g1 � g2i=2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hg1; g2i

q
:

(3)

This distance is a proper metric, since it is semidefinite
positive (and vanishes only for g1 ¼ g2), symmetric, and it
satisfies the triangle inequality,

�ðg1; g2Þ � �ðg1; g3Þ þ�ðg3; g2Þ: (4)

As mentioned in the Introduction, we think of signals as
points in the metric space RNbig of all possible detector
outputs; Nbig is large but finite, because the response of the

detector and the frequency content of prospective GW
signals are band-limited, and thus can be represented by
a finite number of samples (or equivalently Fourier coef-
ficients, or coefficients over some other basis). Fur-
thermore, a signal family fhð�Þg (e.g., the GW signals
from neutron-star binaries over a given range of masses)
that is smoothly parametrized by the source parameters �j

realizes an Nsmall-dimensional topological manifold em-
bedded in RNbig . The inner product endows this manifold
with a Riemannian structure, and the distance between
nearby points on it is then approximated by a metric tensor
gkl,

�2ðhð�jÞ; hð�j þ d�jÞÞ � � 1

2

d2hhð�jÞ; hð�0
jÞi

d�0
kd�

0
l

���������j

d�kd�l

¼ gklð�jÞd�kd�l: (5)

One criterion to choose the bank templates fhð�ðkÞÞg from
the continuous family fhð�Þg is to require that for every
signal in fhð�Þg, the nearest bank template be at most at a
distance �max. This ensures that the SNR is reduced at
worst2 by a factor MM ¼ 1� �2

max, known as the mini-
mum match.3 With this criterion, template placement can
be seen as an instance of the covering problem, the subject
of the rest of this paper.

Extrinsic parameters. It is sometimes possible to factor
out certain source parameters (known as extrinsic) from the

template placement problem: this happens when the SNR
can be maximized analytically or numerically over the
appropriate range of the extrinsic parameters, so it is not
necessary to explicitly place templates over a discrete set
of their values. Two examples are the time of arrival
and initial phase of binary inspiral signals. Extrinsic pa-
rameters are usually welcome, because they reduce the
computational cost of searches; on the other hand, they
complicate the geometric interpretation of template place-
ment, because the distance between two signals is normally
a function of all source parameters, so we need a prescrip-
tion to choose representative values of the extrinsic
parameters.
If we denote the extrinsic parameters collectively as �,

and the intrinsic (nonextrinsic) parameters as �, the logic
of matched-filtering detection would suggest using the
minmax prescription

�ðhð�1Þ; hð�2ÞÞ¼?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�min

�1

max
�2

hhð�1; �1Þ; hð�2; �2Þi
r

:

(6)

If we think of hð�1; �1Þ as the GW signal to be detected,
and of hð�1; �1Þ as the nearest template, then max�2

rep-

resents the ‘‘automatic’’ maximization of SNR over the
extrinsic parameters, while min�1

would conservatively

ensure that the minimum match is achieved even in the
least favorable case. Unfortunately, Eq. (6) does not yield a
true distance: it is not symmetric, and it does not satisfy the
triangular inequality.
An alternative is to choose the extrinsic parameters as

arbitrary smooth functions of the intrinsic parameters,

�ðhð�1Þ; hð�2ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hhð�1; �1ð�1ÞÞ; hð�2; �2ð�2ÞÞi

q
;

(7)

and verify that it yields an acceptable distribution of
�2-maximized SNRs over all �1. (For instance, we may
choose �ð�Þ to locally maximize the determinant of the
full metric gjk.) Throughout the rest of this paper, we shall

assume that a sensible distance along the lines of (7) can be
defined whenever extrinsic parameters are present.

III. THE COVERING PROBLEM: PERIODIC
LATTICES

Prix [10] discusses template placement as an instance of
the sphere-covering problem. See that paper and Ref. [25]
for a general introduction. Here we focus on essential
formulas and new insights. We adopt the notation of
Ref. [25].
Thickness. The problem of covering d-dimensional

Euclidean space Ed with a regular periodic lattice is well
known in the mathematical literature [40]: it consists in
finding the lattice with the smallest number of points per
unit volume such that, if a d-dimensional sphere of fixed
radius r is placed with its center at each lattice point, the

2Because SNR is inversely proportional to luminosity dis-
tance, the horizon distance to which a given source can be
detected is reduced at worst by a factor MM. It follows that if
sources are distributed uniformly around the detector, the rate of
event detection will be reduced by a factor not worse than MM3.

3However, at least in the case of binary inspiral signals,
interpolation across a sparse cubic-lattice bank can be used to
retrieve a fraction of SNR larger than the bank’s nominal MM
[15,38,39]. The gains possible with this technique are not re-
flected in our analysis, which is concerned with the general
covering problem rather than with specific cases.
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spheres cover Ed completely. A typical quantity used to
evaluate the efficiency of such a covering is the thickness
�, defined (for a subvolume Vm of Ed) as

� ¼ NVdr
d

Vm

; (8)

where N is the number of lattice points (and therefore
spheres), Vd the volume of the d-dimensional unit-radius
sphere, and r the required sphere radius. The unit-sphere
volume Vd can be expressed in terms of the gamma func-

tion as Vd ¼ �d=2=�ðd=2þ 1Þ; its values for d up to 20 are
given in Table I.

The thickness is a pure number: it is the ratio between
the total volume of the spheres used in the covering and the
total covered volume. The best possible case is a covering
with � ¼ 1, where the spheres do not intersect, and each

point of Ed is inside one and only one sphere; of course it is
impossible to reach this limit for d > 1. Mathematicians
have worked out theoretical limits for the thinnest possible
coverings, such as the CFR bound [40]

�>
d

e
ffiffiffi
e

p ’ d

4:4817
: (9)

The most efficient known lattice coverings for d � 20 are
listed with their� in columns 2 and 3 of Table II. Note that
the authors of Ref. [25] usually report values for the
normalized thickness � ¼ �=Vd rather than for �, as we
do.
Partial covering. A useful generalization of the problem

is to allow a fraction of space to remain uncovered, and
define an effective thickness that depends not only on the
choice of lattice, but also on the percentage of the volume
that it covers. In the language of template banks, this
means that the maximum-distance criterion will not be
achieved for a fraction (usually small) of the possible
incoming GW signals. As noticed in Ref. [25], the effective
thickness of partial regular coverings (even for rather large
covering fractions) improves dramatically compared to
complete coverings, especially as d increases. This means
that in a complete covering most of the lattice density is
needed to reach the ‘‘hardest’’ few percent of the volume;
by contrast, even a simple Zd (simple hypercubic) lattice
can efficiently cover 95% or 99% of space. See columns 4–

TABLE I. Volume of the d-dimensional unit-radius sphere.
Interestingly, Vd is maximum for d ¼ 5.

d Vd d Vd d Vd d Vd

1 2.00 6 5.17 11 1.88 16 0.24

2 3.14 7 4.72 12 1.34 17 0.14

3 4.19 8 4.06 13 0.91 18 0.08

4 4.93 9 3.30 14 0.60 19 0.05

5 5.26 10 2.55 15 0.38 20 0.03

TABLE II. A comparison of thickness as function of d for the most efficient known complete coverings (column 2), for partial and
complete ðAdÞ� coverings (columns 4–7), for partial and complete Zd coverings (columns 8–11), and for random coverings (columns
12–15). In this table, thicknesses are computed in the limit Vm ! 1, neglecting any boundary effects. See also [41,42]. All values were
computed using the technique discussed in the Appendix, except the partial-covering ðAdÞ� thicknesses for d > 8, which are taken
from Ref. [25], and reported here for completeness.

d Complete Partial, ðAdÞ� lattice Partial, Zd lattice Random

�100% best known �ðAdÞ�
90% �ðAdÞ�

95% �ðAdÞ�
99% �ðAdÞ�

100% �Zd

90% �Zd

95% �Zd

99% �Zd

100% �90% �95% �99% �100%

1 1.00 Z � ðA1Þ� 0.90 0.95 0.99 1.00 0.90 0.95 0.99 1.00

2 1.21 A2 � ðA2Þ� 0.90 0.97 1.09 1.21 0.98 1.13 1.36 1.57

3 1.46 ðA3Þ� 0.97 1.07 1.21 1.46 1.16 1.38 1.82 2.72

4 1.77 ðA4Þ� 1.05 1.18 1.38 1.77 1.40 1.74 2.44 4.93

5 2.12 ðA5Þ� 1.16 1.32 1.57 2.12 1.72 2.20 3.30 9.20

6 2.46 L6c1 1.30 1.49 1.80 2.55 2.11 2.79 4.43 17.4

7 2.90 L7c 1.45 1.69 2.07 3.06 2.60 3.56 5.96 33.5

8 3.14 L8c 1.63 1.92 2.38 3.67 3.23 4.53 7.99 64.9

9 4.27 L9c 1.85 2.18 2.73 4.39 4.00 5.76 10.6 127 (any d)
10 5.15 L10c 2.09 2.50 3.32 5.25 4.97 7.33 14.2 249 2.3 3.0 4.6 1
11 5.51 L11c 2.45 2.83 3.77 6.28 6.16 9.31 18.9 491

12 7.47 L12c 2.67 3.34 4.27 7.51 7.67 11.9 25.0 973

13 7.76 L13c 3.10 3.82 5.01 8.98 9.50 15.0 33.0 1930

14 8.83 L14c 3.54 4.37 5.81 10.73 11.8 19.1 43.5 3860

15 11.00 L15c 4.20 4.96 6.87 12.82 14.7 24.2 57.0 7700

16 15.31 ðA16Þ� 4.71 5.88 7.76 15.31 . . . . . . . . . . . .
17 12.36 A17 5.36 6.63 9.16 18.29 . . . . . . . . . . . .
18 21.84 ðA18Þ� 6.16 7.80 10.76 21.84 . . . . . . . . . . . .
19 21.23 A19 6.99 8.95 12.49 26.08 . . . . . . . . . . . .
20 20.37 A20 . . . . . . . . . 31.14 . . . . . . . . . . . .
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11 of Table II for the partial-covering thicknesses of Zd and
ðAdÞ� lattices. (The latter are the d-dimensional general-
ization of body-centered cubic lattices, whereas the Ad
lattices are the generalization of face-centered cubic latti-
ces. Here the star denotes a reciprocal lattice. A2 is the
hexagonal lattice, and is its own reciprocal. See Ref. [40]
for details.)

In this context, a better index of covering efficiency is
not the complete-covering thickness �100%, but the varia-
tion of � as a function of the covering fraction. The left
panel of Fig. 1 shows this function for ðAdÞ� lattices with
d ¼ 2–8. The right panel shows the isotropic dilation
factor that must be applied to a complete covering to
achieve a lower covering fraction with the same thickness.
Thus we could say (for instance) that an ðA8Þ� covering is
�2:3 times more efficient at an 80% covering fraction than
at 100%, where the factor 2.3 is the ratio of the thicknesses,
which is also equal to the eighth power of the dilation
factor.

Curved manifolds. So far we have considered the cover-
ing problem for Euclidean space, and equivalently for flat
manifolds H that can be mapped to Ed by a coordinate
change. What about curved manifolds? For these, the
metric gkl is a function of position on the manifold, and
the efficiency of lattice coverings that are periodic with
respect to the coordinates drops considerably. This is be-
cause of three different effects, illustrated in Fig. 2: the
variation of the determinant of the metric, the variation in
the ratio of its eigenvalues, and the variation in the orien-
tation of its eigenvectors. This distinction is somewhat
academic at this point, but it will acquire a deeper meaning
in later sections.
Let us first consider the effects of metric-determinant

variation. We may refer to the right panel of Fig. 1 to
gain a quantitative understanding in the case of ðAdÞ�
lattices. Suppose that one such lattice was arranged

to provide 100% covering around the point �̂i where
jgklj is minimum: around a different point �i, the lattice

Position-dependent
metric determinant

Position-dependent
metric eigenvalues

Position-dependent
metric eigenvectors

FIG. 2. Three ways in which manifold curvature disturbs a lattice covering laid out periodically along manifold coordinates. Left:
variation in the metric’s determinant causes spheres with the same geodesic-distance radius to have different coordinate radii. Center:
variation in the ratio of the metric’s eigenvalues maps geodesic-distance spheres into coordinate ellipses. Right: variation in the
metric’s eigenvectors changes the orientation of coordinate ellipses. Because of all three effects, the covering fraction comes to depend
on the position in the manifold.
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FIG. 1. Efficiency of partial coverings. Left: thickness of ðAdÞ� coverings as a function of the covering fraction, for d ¼ 2–8. Right:
isotropic dilation factor between a complete covering and partial covering of the same thickness, for the covering fraction given on the
horizontal axis.
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will be in effect dilated isotropically by a factor

ðjgklð�iÞj=jgklð�̂iÞjÞ1=2d; the corresponding reduction in
the covering fraction can be read off from Fig. 1.
Changes of a few tens % in jgklj are already very
damaging.

Let us now consider the effects of variation in the ratio of
metric eigenvalues. This can be interpreted as a local
dilation and contraction of space along orthogonal axes,
as displayed in the left panel of Fig. 3 for an ðA2Þ�
(hexagonal) covering. The covering becomes insufficient
along one direction, and inefficient along the other. The
right panel of Fig. 3 shows how the dilation-contraction
affects the covering-fraction-thickness curve. The worsen-
ing covering performance can always be seen from two
opposite viewpoints: either as a loss of efficiency (i.e., an
increase in thickness) for the same covering fraction, or a
decrease in covering fraction for the same thickness.

In fact, the thickness of a periodic lattice can be made
arbitrarily large even while keeping jgklj unchanged. The
reason is that the points of periodic lattices lie on hyper-
planes, since they can all be obtained as linear combina-
tions with integer coefficients of d independent vectors
[40]. Consider now the transformation given by a simulta-
neous contraction inside the hyperplanes defined by d� 1
of those vectors, and a dilation in the orthogonal direction.
(Arrange the dilation-contraction factors to cancel out in
jgklj.) Much like what happened in Fig. 1, the transforma-
tion increases the sphere radius needed to cover the space
between hyperplanes, but also the superposition of the
spheres along directions contained in the hyperplanes.

IV. THE COVERING PROBLEM: RANDOM
COVERINGS

In Euclidean space, a random covering is obtained by
choosing N points randomly and uniformly distributed

across the region to be covered. Such an arrangement can
never be guaranteed to cover 100% of points in all of its
realizations; random coverings however generate very ef-
ficient partial coverings of Ed—indeed, for sufficiently
high d, the most efficient partial coverings [25].
Effective thickness. We can use probabilistic reasoning

to characterize � for a random covering. Assume that the
probability of choosing any point in Ed is the same; given a
(generic) reference point P, the probability that a sphere of
radius r with a randomly chosen center will contain P is

pin ¼ Vdr
d=Vm < 1; (10)

the ratio of the volume of a sphere to the manifold volume
to be covered. The probability that N randomly centered
spheres will not contain P is then

pN ¼ ð1� Vdr
d=VmÞN < 1; (11)

so the probability that at least one of the N spheres covers
P is pC ¼ 1� pN . Taking the logarithm, if the spheres are
small enough compared to Vm (more precisely, for Vm and
N ! 1 with constant Vm=N),

logð1� pCÞ ¼ N logð1� Vdr
d=VmÞ ’ �NVdr

d=Vm

¼ �� (12)

[according to definition (8)]. Thus the effective thickness is
a function of the probability that a generic point is covered,

�random
pC

’ log

�
1

1� pC

�
: (13)

As shown in the rightmost ‘‘Random’’ section of Table II,
�random

100% ¼ 1, �random
99% ¼ 4:6, �random

95% ¼ 3:0, and

�random
90% ¼ 2:3, independently of the dimension d. These

numbers assume the limit r ! 0, not just because of the
approximation in Eq. (12), but also to cancel out boundary

⇒

0 20 40 60 80 100
0

1

2

3

4

Covering fraction [%]

 T
hi

ck
ne

ss
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random
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FIG. 3. Left: effect of dilating space along the x direction and contracting along y, for a d ¼ 2 hexagonal covering. The dilation-
contraction factor is 2, so the determinant of the transformation is 1. The spheres centered on the lattice points are now too far apart
along the x direction, too close along y. The new lattice realizes a covering with the larger radius (i.e., maximum template distance) of
the dashed circle. Notice that the Voronoi cells (i.e., the sets of points closer to a given lattice point than to any other lattice point) of the
stretched lattice are not the stretched Voronoi cells of the original lattice. Right: reduction in covering fraction (for a fixed thickness) or
increase in thickness (for a fixed covering fraction) for the dilation-contraction of the left panel, shown here also for a d ¼ 2 cubic
covering. As we shall see in Sec. IV, random coverings are not affected.
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effects. As we shall see below, these become critical for
large d, or when one or more dimensions have extents
comparable to r. Strictly speaking, �random

95% is a function

of pC (the probability that a generic point is covered), and
not of the covering fraction C, which is a random variable
that depends on the particular realization of the covering.
However, we shall see shortly that the average of C over
realizations is just pC, while its variance vanishes in the
limit of N ! 1 (and therefore of r ! 0).

Equation (13) yields an estimate of the number of ran-
dom points needed to achieve a given pC. For instance, for
pC ¼ 95%,

N ¼ �random
95%

�
Vm

Vdr
d

�
’ log

�
1

1� 0:95

��
Vm

Vdr
d

�

’ 3:0

�
Vm

Vdr
d

�
: (14)

Let us also establish (for future use) an expression for the
probability that at least one of N randomly chosen points
falls inside a region of volume VR. Following the same line
of reasoning as above, for N � 1 we find

pinside ¼ 1� ð1� VR=V
mÞN ¼ 1�

�
1��

N

VR

Vdr
d

�
N

’ 1� exp

�
��

VR

Vdr
d

�
: (15)

Average and variance of the covering fraction.
Following Messenger et al. [25], let us now confirm that
the average covering fraction is pC; extending their deri-
vation, we shall also obtain an exact expression for the
variance of the covering fraction.

We define the characteristic function fðPÞ to be one for
points that are covered in a realization of the covering, and
zero for points that are left uncovered. The covering frac-
tion is then C ¼ ð1=VmÞ

R
fðPÞdVm (where P is parame-

trized by �i, and dVm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj
p

d�i) and its expectation
value is

E½C	 ¼ 1

Vm

Z
E½fðPÞ	dVm ¼ 1

Vm

Z
pCdVm ¼ pC: (16)

The computation of the variance is more involved:

E½C2	 � E½C	2 ¼ 1

V2
m

ZZ
E½fðPÞfðP0Þ	dVmdV

0
m � p2

C

¼ 1

Vm

Z
ðE½fðP0ÞfðPÞ	 � p2

CÞdVm: (17)

If points P0 and P are separated by a distance larger than 2r
(twice the covering radius), no sphere can cover both, so
the probability that P0 is covered and the probability that
P is covered are uncorrelated, E½fðP0ÞfðPÞ	 ¼ p2

C.

Switching to a set of Euclidean, spherical coordinates
centered in P0, we then have

E½C2	 � E½C	2 ¼ Sd
Vm

Z
�<2r

�d�1ðE½fð0Þfð�Þ	 � p2
CÞd�;
(18)

where Sd is the surface of the d-dimensional unit sphere.
We define pbothð�Þ � E½fð0Þfð�Þ	 to be the probability
that two points separated by distance � are both covered.
Looking at the left panel of Fig. 4, we conclude that
pboth ¼ 1� ð1� p2Z2

Þð1� p2
Z1
Þ, where p2Z2

is the proba-

bility of having at least one covering point in either of the
regions labeled Z2, while p

2
Z1
is the probability of having at

least one point in both the regions labeled Z1. Now, the
volumes of Z1 and Z2 can be expressed in terms of the
volume covered by the portion of a d-dimensional sphere
(of radius r, the covering radius) that is cut by parallel
hyperplanes at (signed) distances h1 and h2 from the center
(see again the left panel of Fig. 4),

Vk
dðh1; h2; rÞ ¼ Vd�1r

d
Z arcsinðh2=rÞ

arcsinðh1=rÞ
cosdð�Þd�; (19)

we then have

VZ2
ð�Þ ¼ Vk

dð�=2; r; rÞ; VZ1
ð�Þ ¼ rdVd � 2VZ2

ð�Þ:
(20)

Using Eq. (15) to express p2Z2
and pZ1

, after some ma-

nipulation we find

r

h1 h2

ρ
Z1 Z1

Z2 Z2

C

B

A

FIG. 4. Left: typical geometry that enters the computation of the variance of the covering fraction and of boundary effects. The basic
ingredient is the volume of the slice of a sphere cut by parallel hyperplanes. Right: boundary effects. The probability that a generic
point is covered scales with the ‘‘available’’ manifold volume within a distance smaller than the covering radius.
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pbothð�Þ ¼ 1� 2expð��Þ
þ exp

�
�2�þ 2�

Vd�1

Vd

Z �=2

arcsinð�=2rÞ
cosdð�Þd�

�
;

(21)

and finally

E½C2	 � E½C	2 ¼ d�

N

Z 2

0
yd�1½pbothðryÞ � p2

C	dy; (22)

where we have used the fact that �=N ¼ Vdr
d=Vm and

that Sd ¼ dVd. Note that Eq. (22) does not depend on the
covering radius r. Table III gives a few numerical values
for this expression, which can be used instead of the
‘‘guesstimate’’ of Ref. [25], E½C2	 � E½C	2 � pCð1�
pCÞ=ð2dNÞ. The two expressions share the initial decrease
of variance with increasing d, and the dominant 1=N
scaling.

Maximum distance. Another obvious indicator of the
performance of random coverings is the maximum dis-
tance rw of a point in the covered manifold region from
the nearest covering point. This quantity coincides with the
radius of the largest empty sphere that can be fit among the
covering points, and again it is a random variable that
depends on the particular covering realization. The authors
of Ref. [25] make another guesstimate for the probability
distribution of rw: in a given realization of a random bank
in d dimension, with N templates and a covering radius r
the probability that maximum distance is smaller than �r

would be

pðrw < �rÞ ’ ½1� expð�ð �r=rÞdÞ	2dN: (23)

The guesstimate fits reasonably the results of low-
dimensional numerical experiments with random cover-
ings at 90% covering percentage. Anyway, since this
probability distribution is based on the same approxima-
tion used for the guesstimate of the variance of the cover-
ing fraction, it must be used cum grano salis: it may not
provide, as claimed, 10%-accurate predictions at higher d,
or with different covering fractions. Still, the Monte Carlo
simulations presented in Ref. [25] do indicate that the
mean and variance of rw decrease with increasing d, but
it is not clear whether they tend asymptotically to zero (a
complete covering in every realization).
Curved manifolds. If we leave Euclidean space, the

proper definition of random is that the probability for
each point in the covering to lie within a manifold sub-
region should be proportional to the volume of that sub-
region. The derivation that led to Eqs. (13) and (14) can
then be reproduced verbatim, with the caveat that rmust be
small enough compared to the curvature scale for Vdr

d to
be a good approximation to the volume of a sphere of
radius r (it is hard to do without this assumption, which
we shall maintain to be valid in the rest of this paper).
In coordinate space, random manifold points are

distributed with local density proportional to
ffiffiffiffiffiffiffiffiffijgklj

p
. To

achieve this in practice, we may for instance use a rejection
method whereby points �i are chosen uniformly in
coordinate space, and then accepted with probabilityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj
p

=ðmax�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj
p Þ. The computational cost of

this procedure will be dominated by the estimation of the

total manifold volume through the integration of
ffiffiffiffiffiffiffiffiffijgklj

p
,

and by its local evaluation. Thanks to the modulation of
(coordinatewise) density, and to the fact that random cover-
ings are distributed along no preferred hyperplanes, and
with no preferred length scales, random coverings on
curved manifolds avoid all three problems illustrated in
Fig. 2, and achieve the same thickness (for the same cover-
ing fraction) as in Euclidean space.

V. BOUNDARY EFFECTS FOR RANDOM
COVERINGS

The analysis of Messenger et al. [25], as well as our
discussion so far, have dealt with the thickness of coverings
in the bulk, and neglected boundary effects. Unfortunately,
these can be very important, and can be difficult to correct
in practice. For random coverings, it is relatively easy to
understand their origin and estimate their magnitude. As
illustrated for points A and C in the right panel of Fig. 4, at
distances <r from the boundary, the probability that a
generic point is covered is smaller than farther away in
the bulk; this is because the probability scales with the

TABLE III. Variance of the covering fraction [Eq. (22)], be-
fore scaling by 1=N. Clearly the covering fraction converges
very quickly to pC for even moderate N. The dependence on d is
mild.

d 50% 80% 90% 95% 99%

1 0.1534 0.1913 0.1340 0.0800 0.0189

2 0.1421 0.1578 0.1003 0.0540 0.0099

3 0.1351 0.1389 0.0826 0.0413 0.0062

4 0.1306 0.1274 0.0723 0.0343 0.0045

5 0.1276 0.1201 0.0661 0.0303 0.0036

6 0.1255 0.1152 0.0620 0.0278 0.0030

7 0.1240 0.1119 0.0594 0.0261 0.0027

8 0.1229 0.1096 0.0576 0.0250 0.0025

9 0.1222 0.1079 0.0563 0.0243 0.0024

10 0.1216 0.1068 0.0554 0.0238 0.0023

11 0.1212 0.1059 0.0548 0.0234 0.0023

12 0.1210 0.1053 0.0543 0.0232 0.0022

13 0.1207 0.1049 0.0540 0.0230 0.0022

14 0.1206 0.1046 0.0537 0.0228 0.0022

15 0.1205 0.1043 0.0535 0.0227 0.0022

16 0.1204 0.1041 0.0534 0.0227 0.0022

17 0.1203 0.1040 0.0533 0.0226 0.0021

18 0.1203 0.1039 0.0532 0.0226 0.0021

19 0.1202 0.1038 0.0532 0.0225 0.0021

20 0.1202 0.1038 0.0531 0.0225 0.0021
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manifold volume contained within a radius r from the
point.

Covering probability. To obtain the covering probability
for the points on a boundary, we recall Eq. (15) for the
probability of having at least one covering point in a region

of volume VR, and obtain pbound;d�1 ¼ 1� expð�=2Þ ¼
1� ð1� pCÞ1=2 for the center of a half sphere on a

(d� 1)-dimensional boundary, pbound;d�2 ¼ 1�
expð�=4Þ ¼ 1� ð1� pCÞ1=4 for the center of a quarter
sphere at a (d� 2)-dimensional boundary, and so on. It
is only slightly harder to compute the covering probability
for points in the bulk at distance � from a (d� 1)-
dimensional hypersurface,

pbulkð�Þ ¼ 1� expð��Vk
dð�r; �; rÞ=Vdr

dÞ
¼ 1� ð1� pCÞVk

d
ð�r;�;rÞ=Vdr

d

: (24)

This function is shown in the left panel of Fig. 5 for pC ¼
95% and d ¼ 2–20.

There are two simple strategies to correct for boundary
effects: extending the bulk covering across the boundary,
and adding a supplementary covering on the boundary. We
now examine each in turn.

A. First strategy: Extend the bulk covering across
the boundary

Looking at the left panel of Fig. 5, we see that the
covering probability for points in the bulk decreases sig-
nificantly only at distance � < r=2 from the (d� 1)-
dimensional boundary. If we choose to extend the bulk
covering to a distance r=2 beyond the boundary, we see
that the total number of covering points must increase by a
factor ’ ð1þ ðS=VÞ 
 r=2Þ, where S is the hypersurface of
the covered hypervolume V, at least for sufficiently smooth
hypersurfaces. At any given dimension, the ratio S=V
achieves the minimum possible value for a hypersphere,
where S=V ¼ d=R (for a hypercube, S=V ¼ 2d=L). Thus
the increase in the number of points incurred by extending

the covering has a lower bound ’ ð1þ dr=DÞ, where D is
the linear spatial extent of the covered volume. The less
symmetric the covered volume, the more important the
boundary effects, which can be dominated by the dimen-
sion of shortest extent; of course if this extent is much
smaller than the covering radius, the covering problem is
effectively one of a lower dimension.
We tested these theoretical predictions à laMonte Carlo,

by repeatedly generating random coverings for the
d-dimensional hypercube. For all the tests in this paper
we employed a Mersenne-twister pseudorandom number
generator [43], which has extremely long period and is
expected to generate uncorrelated sequences of points (i.e.,
d-uples of reals) up to 623 dimensions. (Linear congruen-
tial generators [28], by contrast, tend to generate d-uples
that lie on hyperplanes, which would affect covering per-
formance much as it does for periodic lattices.) We gen-
erated coverings of

NE ¼ �random
95% ð1þ 2�Þd

�
1

Vdr
d

�
(25)

random points, uniformly distributed in the hypercube
½��; 1þ �	d (with � ¼ r or r=2); we then estimated the
covering fraction by drawing 10 000 (target-signal) points
uniformly across the hypercube ½0; 1	d. The resulting NE

and covering fractions are shown in Table IV. For each d,
we chose r so that a bulk-only covering would have be-
tween 100 and 100 000 points (which are representative
values for the template banks used in GW searches).
Clearly the number of points in the extension across the
boundary grows dramatically with d.
This of course would be true also for periodic-lattice

coverings, which have ‘‘overflow.’’ Consider for instance
the covering of ½0; 1	8 with Z8 and r ¼ 0:3. Because

�Z8

95%

�
1

V8 
 0:38

�
’ 4:53

�
1

4:059
 0:38

�
’ 17 011

¼ ð3:38Þ8; (26)
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FIG. 5. Probability of covering a point at a distance � from a (d� 1)-dimensional boundary with a sphere from: left—a random bulk
covering with pC ¼ 95%; center—a random boundary covering with pS ¼ 77%; right—either covering. As in the main text, here r is
the covering radius.
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we need to choose between a covering of 38 ¼ 6561 points
with poor coverage near the sides, or a much more expen-
sive covering of 48 ¼ 65 536 points. Boundary effects are
certainly less important when r is smaller, but the overall
numbers are much larger. For instance, for r ¼ 0:05 we
need to choose between 20 and 21 points to each side. Now,
ð21=20Þ8 ’ 1:48, but 208 ¼ 2:56
 1010.

To apply the extension strategy on a curved manifold,
we need to determine how far the covering must be ex-
tended in coordinate space to achieve the proper bordering,
which requires knowledge of the metric. For GW template
banks, we need also to worry that a waveform with pa-
rameters outside the original region of interest may not be
physical, or may not even exist. For this reason algorithms
such as the square-lattice placement of Ref. [17] place
templates on the boundary first, and then in the bulk.
This is just the second strategy that we consider next.

B. Second strategy: Add a lower-dimensional covering
on the boundary

This scheme is generally easier to implement than the
extension across boundaries, and it is a natural fit for the
metricless, mesh-based placement methods described later
in this paper. Now, how many points must be placed on a
(d� 1)-dimensional boundary to achieve uniform cover-
ing throughout the bulk? To answer this question, assume
we lay down a boundary covering with covering probabil-
ity pS, and compute the probability of covering a generic
bulk point with at least one sphere from the boundary
covering:

psurfð�Þ ¼ 1� ð1� pSÞð1�ð�=rÞ2Þðd�1Þ=2
for � < r; (27)

this function is shown in the center panel of Fig. 5 for pS ¼
0:78, and can be obtained easily by realizing that a (d� 1)-
dimensional boundary covering with radius r becomes a
covering with radius r0 on a (d� 1)-dimensional surface
parallel (at least locally) to the boundary. The new radius r0
can be determined using the Pythagorean theorem (see
Fig. 4), and the relation between the covering probabilities

using Eq. (15) with VR ¼ Vðd�1Þðr0Þðd�1Þ.
Close to the boundary, the combined covering probabil-

ity from the bulk and the boundary coverings will then be

pbulkþsurfð�Þ ¼ 1� ð1� pbulkð�ÞÞð1� psurfð�ÞÞ: (28)

If we choose pS ¼ 1� expð��=2Þ, the points on the
boundary get the same covering probability as those in
the bulk, pbulkþsurfð0Þ ¼ 1� expð��Þ ¼ pC. Close to the
boundary,

pbulkþsurfð�Þ ¼ 1� expð��Cð�ÞÞ;
with Cð�Þ ¼ Vk

dð�r; �; rÞ=Vdr
d þ 1

2
ð1� ð�=rÞ2Þðd�1Þ=2:

(29)

As expected, pbulkþsurf is pC for � ¼ r, and larger for 0<
�< r.
In principle it is possible to apply the same strategy to

boundaries of dimension lower than d� 1, but the best
arrangement will vary from case to case. Consider, for
example, the 1-dimensional edges of a 3-dimensional

TABLE IV. Number of additional templates and resulting covering fraction with the covering-extension strategy for a ½0; 1	d
hypercube, as a function of dimension d and covering-sphere radius r. The required covering fraction is 95% for all runs. Columns 4
and 5 (6 and 7) show the number of covering points and the achieved covering fraction, to 1% accuracy, for a border of width � ¼ r
(� ¼ r=2). Columns 8 and 9 show the same information for a bulk-only covering; column 10 shows the theoretical covering fraction
for a bulk-only covering obtained by considering only (d� 1)-dimensional effects, which suggests that (d� 2)- and lower-
dimensional boundaries become important as d increases. See the Appendix for details about numerical methods.

d Covering sphere Bulkþ border, � ¼ r Bulkþ border, � ¼ r=2 Bulk only

r Vdr
d N cov.% N cov.% N cov.% cov.% (theory)

1 10�3 2:00
 10�3 1500 95% 1499 95% 1497 95% 95%

0.01 2:00
 10�2 152 92–96% 151 92–96% 149 92–96% 95%

2 0.01 3:14
 10�4 9920 95% 9727 95% 9535 95% 95%

0.05 7:85
 10�3 461 ’ 95% 420 ’ 95% 381 ’ 94% 94%

3 0.05 5:24
 10�4 7615 95% 6623 95% 5721 93% 94%

0.10 4:19
 10�3 1235 95% 951 95% 715 92% 92%

4 0.05 3:08
 10�5 142 207 95% 118 062 95% 97 129 93% 93%

0.10 4:93
 10�4 12 588 95% 8887 95% 6070 91% 92%

0.20 7:90
 10�3 1457 95% 786 95% 379 ’ 88% 90%

6 0.15 5:89
 10�5 245 650 95% 117 718 95% 50 892 87% 90%

0.20 3:31
 10�4 68 201 95% 27 046 95% 9057 84% 89%

0.30 3:77
 10�3 13 341 95% 3838 94% 795 78% 87%

8 0.30 2:66
 10�4 483 175 95% 91 768 95% 11 249 74% 86%

0.40 2:66
 10�3 124 112 95% 16 621 95% 1126 66% 85%

0.50 1:59
 10�2 48 372 95% 4842 93% 188 ’ 57% 84%
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cube: after placing a random covering in the bulk and on
the 2-dimensional sides as we have just outlined, the cover-
ing probability on the edges is 1� ð1� p3Þð1� p2Þ2 ¼
1� expð�ð3=4Þ�Þ, where p3 ¼ 1� expð��=4Þ is the
probability of an edge point being covered by at least
one point from the bulk, while p2 ¼ 1� expð�ð�=2Þ=2Þ
is the probability of it being covered by a point from one of
the sides shared by the edge. So an additional one-
dimensional covering must be placed on the edge with
pE ¼ 1� expð�ð�=4ÞÞ to achieve a covering probability
1� expð��Þ on the edges. Notice that to set pE we have
used the information that two sides that share an edge are
orthogonal, which will not be the case in general. To apply
the boundary-covering strategy on a curved manifold, we
need to compute the determinant of the metric on the
hypersurface in terms of the d� 1 parameters that define
it.

How do the two strategies compare? For a ½0; l	d hyper-
cube, the points on the (d� 1)-dimensional boundary
covering would be

NS ¼
�
�

2

�
2dld�1

Vd�1r
d�1

; (30)

to be compared with the extension points

NE � Nbulk ¼ �
ldð1þ 2ðr=2Þ=lÞd � ld

Vdr
d

’ �
drld�1

Vdr
d

(31)

(where we assume r � l). Thus NE=NS ¼ Vd�1=Vd,
which is �1 to very high d. This result is correct also for
more general geometries, as long as the bordering volume
scales as the hypersurface times r=2. However, the two
strategies will in general have different distributions of rw
(the radius of the largest empty sphere that can be fit among
the covering points), since these depend on d.

VI. SELF-AVOIDING COVERINGS

As pointed out by Messenger et al. [25] and as discussed
above, for sufficiently high d, random partial coverings
become more efficient (i.e., have lower �) than the best-
known periodic lattices. In addition, they conform natu-
rally to curved manifold geometries, given only a knowl-
edge of the metric’s determinant. However, each point in a
random covering is placed independently of every other
point, so it is natural to ask whether random coverings can
be improved by making them self-avoiding, while preserv-
ing their random, unstructured character. In this section we
consider two ways to introduce self-avoidance: the use of
quasirandom sequences and the stochastic schemes that
accept each random draw only after considering its dis-
tance from the points already accepted into the covering.

A. Quasirandom sequences

Quasirandom sequences, also known as low-discrepancy
sequences [28], are designed to cover multidimensional
regions more uniformly than pseudorandom n-tuples,
although they may not appear as random (i.e., their
deterministic nature is manifest). They are sometimes
used to improve the convergence of multidimensional
Monte Carlo integration. A conceptually simple example
is Halton’s sequence [28], shown in Fig. 6. Quasirandom
sequences can be used as slot-in replacements for pseudo-
random numbers in random coverings.
Effective thickness. Numerical experimentation with the

more sophisticated and widely adopted Sobol sequences
[44] shows that their effective thickness in (bulk) Ed does
significantly improve on the random-covering value, but it
grows closer to the latter as d increases (see Table Vand the
left panel of Fig. 7). Indeed, the quasirandom thickness
may approach the random-covering value asymptotically
as d ! 1, but a proof (or disproof) remains to be found. In

0 0 0.0 0.0
1 1 0.1 0.5
2 10 0.01 0.25
3 11 0.11 0.75
4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.375
7 111 0.111 0.875

enumerate base-2 reverse,
add point

decimal

pseudo-random

quasi-random
(Halton, base 2-3)

FIG. 6. Halton’s quasirandom sequence. Left: to obtain the n-th number in the sequence, write n as a base-b number (here 2), reverse
the digits, add a radix point at the left, and interpret the resulting string as a number 2 ½0; 1Þ. This algorithm fills a succession of finer
and finer Cartesian grids, spreading out the points maximally on each, since the most rapidly changing b-ary digit of n controls the
most significant digit of the placement [28]. Right: the combination of base-2 and -3 Halton sequences fills the unit square more
uniformly than the same number of (pseudo-)randomly placed points.
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addition, the thickness of quasirandom coverings appears
relatively stable under dilations along one axis.

Curved manifolds and boundary effects. To use quasi-
random coverings on curved manifolds, their density can

be locally modulated in proportion to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj

p
, using a

variant of the rejection method discussed in Sec. IV.
Unfortunately, such a process tends to destroy the self-
avoidance of quasirandom sequences, resulting in effective
thicknesses close to the random-covering values (see right
panel of Fig. 7). Thus the utility of quasirandom coverings
appears limited to flat or almost flat manifolds. As for
boundary effects, the geometrical analysis of Sec. V still
applies, so the same covering strategies can be carried over,
using empirically determined relations between thickness
and covering percentage such as those plotted in the left
panel of Fig. 7.

B. Stochastic placement

Another approach to enforcing self-avoidance in random
coverings is to assemble a covering by accepting or reject-
ing each random draw depending on already accepted
points; such algorithms have been called stochastic.
Harry and colleagues [26] describe a destructive process
whereby an overdense covering is first generated; a point P
is then chosen randomly from it, and all points closer to P
than a distance �r are removed (with r the covering radius,
and � 2 ½0; 2	); this is repeated until all remaining points
have relative distances larger than �r. The resulting cover-
ing has slightly better thickness than a random covering
with the same covering fraction. By contrast, Babak [24]
implements a constructive process that begins drawing
random templates, and rejects all new points that are closer
than a given distance from already accepted points. In our
analysis below we set this distance to the multiple �r of the
covering radius. (An important difference between the
methods of Refs. [24,26] is that Harry and colleagues use
distances computed from a local metric, whereas Babak
uses� distances, so his covering spheres can span multiple
disconnected regions across parameter space.)
Equivalence of destructive and constructive processes.

The constructive and destructive processes are exactly
equivalent: it is possible to formulate them in such a way

that for the same input (a random sequence fPðjÞg of Nd

candidate points) they would produce the same covering.

Let us see why. In the destructive process, let fPðjÞg be
the points in the overdense covering, and consider them
for inclusion in the thinned covering in the order

TABLE V. Numerically determined effective thickness of
Sobol quasirandom coverings of bulk Euclidean space (no
boundary effects). See Appendix for details on the numerical
experiment. The same setup was used for Fig. 7.

d �90% �95% �99%

2 1.6 2.0 2.9

3 1.7 2.1 3.0

4 1.8 2.2 3.2

6 1.9 2.5 3.6

random 2.3 3.0 4.6
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FIG. 7. Left: effective thickness as a function of covering fraction for Sobol quasirandom coverings of bulk Ed, for d ¼ 2, 4, and 6, as
compared to the theoretical expectation for random coverings. (As a control, we used the same ‘‘experimental’’ setup to evaluate the
random-covering thickness for d ¼ 2, 4, and 6, which matches the theoretical expectation very accurately, and is not shown here.)
Right: deterioration of quasirandom covering thickness on curved manifolds. We estimate the effect of applying a rejection method in

the presence of a varying
ffiffiffiffiffiffiffiffiffijgklj

p
by extracting random subsets of 1=2, 1=5, and 1=10 of all points from a Sobol covering of E2, and

evaluating the resulting thickness. Already for a range of variation �10 in
ffiffiffiffiffiffiffiffiffijgklj

p
, the thickness grows very close to its random-

covering value for the same covering fraction.
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j ¼ 1; 2; . . . ; Nd. In the constructive process, use the same
order to evaluate each point for inclusion. In both cases,

once a PðjÞ is accepted, its presence rules out accepting all

PðkÞ (with k > j) closer than �r to PðjÞ. It is immaterial

whether all such PðkÞ are discarded immediately (as in the
destructive process) or as they are ‘‘called up’’ (as in the
constructive process). Thus the final set of accepted points
is the same in both cases. Furthermore, the set of all the
distances that must be computed is the same: it consists of

the distances between each accepted PðkÞ and all accepted

PðjÞ with k > j, and of the distances between each dis-

carded PðkÞ and all accepted PðjÞ up to the first Pðj0Þ closer
than �r.

Effective thickness. The choice of � is important. Setting
� ¼ 2 yields a solution of the sphere-packing problem
[40], so for � close to 2 not all covering fractions can be
achieved, because there is a limit to the number of solid
impenetrable spheres that can be fit in a given volume. A
key quantity that can be determined empirically is the
average number of draws � that are needed to accept a
point: it is defined as � ¼ Nd=N, where Nd is the total
number of draws, and N ’ �stoch

X% Vm=ðVdr
dÞ is the number

of points of the final covering. Table VI shows the empiri-
cally estimated thickness and the � factor for stochastic
coverings of bulk E2–4 at different values of �. The thick-
ness improves (but � increases) for higher �; the gains are
diminishing at higher covering fractions, and at higher d.
This confirms the general tendency that in higher dimen-
sions it becomes progressively harder to improve the thick-
ness of pure random distributions.

Instead of keeping � constant, it is also possible to vary
it while points are being added to the covering; in particu-

lar, by decreasing � / N�1=d
a (where Na is the number of

points accepted so far) we can keep the number of attempts

needed to accept a new point roughly constant. This can be
understood as follows. The probability of a new point of
being accepted is proportional to the fraction of the mani-
fold left uncovered by the covering spheres of radius �r,
and therefore to 1� pC, where pC is the (average) cover-
ing fraction attained so far for a covering radius �r. Since
Nað�rÞdVd ¼ �ðpCÞVm, the covering fraction can be kept
constant by changing � so thatNa�

d remains constant. The
initial value of � is arbitrary, but it must correspond to an
initial sphere volume ð�rÞdVd � Vm if we are to produce a
sequence with thickness�var�

X% appreciably different from a

pure random covering.
The thickness of such coverings is slightly worse than

the thickness of the constant-� coverings that yield the
same average � (see Table VII). However, variable-�
coverings are interesting because they are scale free, just
as random and quasirandom coverings: that is, they are
independent of the covering radius used to build them.
Thus they can be produced in advance and stored, and
then used as a poor man’s version of quasirandom sequen-
ces. To generate a covering with covering fraction X% and
covering radius r, we would simply use the first N ¼
�var�

X% Vm=ðVdr
dÞ points in the sequence. However, their

thickness is not stable under dilations, but converges to
the thickness of pure random coverings.
Computational cost. In principle we obtain the greatest

covering efficiency by setting � as high as allowed by the
desired covering fraction, and accepting a correspondingly
large �. In the practice of matched filtering, however, we
must balance the computational cost of placing a template
with the cost of using it to filter the detector data. The latter
is proportional to N, but the former is proportional to the
number of distances that need to be computed in the
stochastic process, which is & �N2=2. (This estimate in-
cludes N 
 N=2 distances between accepted points, and
ð�� 1ÞN 
 N=2 distances between discarded and ac-
cepted points. The second number is an upper limit be-
cause each discarded point could have been eliminated

TABLE VI. Effective thickness of stochastic coverings of bulk
Ed, for d ¼ 2, 3, 4 and for different choices of covering fraction
and acceptance radius �. The factor � is the ratio between the
number of proposed and accepted points. For comparison, the
last row shows the effective thickness of random coverings, for
which � and � are formally 0 and 1.

d � �80% �80% �90% �90% �95% �95% �99% �99%

2 0.5 1.41 1.2 1.90 1.3 2.33 1.4 3.10 1.7

0.6 1.33 1.3 1.76 1.5 2.13 1.6 2.78 2.1

0.7 1.24 1.4 1.61 1.7 1.93 1.9 2.46 2.6

0.8 1.20 1.6 1.52 2.0 1.77 2.4 2.17 3.6

0.9 1.12 1.9 1.42 2.4 1.62 3.1 1.97 5.8

1.0 1.07 2.2 1.32 3.1 1.50 4.5 1.80 � 11
1.1 1.02 2.7 1.24 4.4 1.41 � 8 1.66 � 60

3 0.8 1.3 1.5 1.7 1.8 2.1 2.2 2.8 3.0

1.0 1.2 2.2 1.5 3.2 1.8 4.6 2.2 � 12
4 0.8 1.4 1.35 1.9 1.5 2.4 1.75 3.4 2.3

1.0 1.3 2.2 1.7 3.1 2.0 4.5 2.7 � 12
Random 0 1.61 1 2.3 1 3.0 1 4.6 1

TABLE VII. Effective thickness of scale-free (variable-�) sto-
chastic coverings of bulk Ed, for different choices of covering
fraction and acceptance factor �.

d � �80% �90% �95% �99%

2 2.0 1.15 1.57 1.99 2.91

3.0 1.05 1.42 1.74 2.50

4.0 1.01 1.35 1.66 2.32

10.0 0.94 1.19 1.43 1.89

3 2.0 1.23 1.70 2.14 3.20

3.0 1.14 1.55 1.95 2.9

4.2 1.11 1.50 1.87 2.6

12.0 1.05 1.39 1.68 2.3

4 2.0 1.3 1.8 2.3 3.4

4.5 1.2 1.7 2.1 3.0

15.0 1.2 1.6 2.0 2.8
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after comparing it with one of several accepted points; but
the number of these neighbors is generally small compared
toN.) The cost of computing distances may be negligible if
these can be derived reliably from an analytic metric, or
from a numerically obtained metric that is constant across
H . On the other hand, the cost may be considerable if each
distance requires the actual generation of templates, either
to take their � distance directly, or to compute numerical
metrics at different points in H . If the placement cost is
dominated by generating templates as opposed to comput-
ing with them (e.g., taking their � distances), then its
scaling can be attenuated to ��N by storing all templates
as they are generated. Alternatively, the total number of
distances that need to be computed can be made to scale as
�d�N if it is possible to compare source parameters to
decide which templates are likely to be neighbors. It is also
true that placement cost is not an issue when detectors are
stable enough that noise can be considered stationary
[remember that noise levels affect distances through
Eq. (1)]; in that case, the bank can be placed once and
reused across a long data set, so that the total computa-
tional cost would be dominated by the filtering.

Curved manifolds. It would appear prima facie that the
rejection process implicit in stochastic algorithms could
replace the local density modulation of random draws
needed by random coverings to cover curved H uni-
formly. This is correct, but there are two caveats. First,
the stochastic process can become very inefficient on
curved manifolds, since the average number of draws

needed to accept a point is not �, but an average of �

ðmax�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj
p Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj

p
across H . Second, the cov-

ering fraction of the final covering will not be uniform, but

it will slightly favor the regions where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgklð�iÞj

p
is lowest.

Thus, if the determinant of the metric is available across
H , we recommend combining the stochastic process with
the nonuniform generation of random points.

VII. METRIC-LESS, MESH-BASED RANDOM
COVERINGS OF CURVED MANIFOLDS

Throughout this paper, we have assumed that we could
transfer the covering strategies formulated for Ed to curved

manifoldsH using the pointwise knowledge of
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
. (A

possible exception are ‘‘straight’’ stochastic coverings of
curved curved manifolds, which however can be very
inefficient, as discussed above.) We now turn to the case

where
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
is not available. In the context of template

placement, this may happen when we do not have a (semi-)
analytical expression for the metric, because the waveform
equations cannot be differentiated with respect to source
parameters (e.g., the waveforms may be generated from the
numerical solution of differential equations); the next re-
course would be to take the numerical derivatives of Eq. (3)
for small source-parameter displacements, but this too can

prove difficult because of numerical noise or computa-
tional cost.
In this section we show how a discrete data structure

consisting of a triangulation of coordinate (parameter)
space and of the � distances measured along the triangu-
lation’s edges can be used in lieu of a metric to build
properly density-modulated random coverings. (By con-
trast, Beauville and colleagues [21] describe the use of a
refined triangulation to interpolate equal-distance contours
across two-dimensional parameter space to guide the
placement of a locally hexagonal lattice.)
Triangulations. To triangulate coordinate space, we de-

compose it into simplexes (the d-dimensional analogues of
triangles) such that their union covers the coordinate-space
region of interest, and their intersection has zero
d-dimensional volume. If the triangulation T is dense
enough that the Riemannian distances measured in H
along the triangulation edges are smaller than a scale �
at which the curvature of H is negligible, then the image
of T in RNbig follows H closely (see Fig. 8), and the
Riemannian distances are approximated well by the �
distances between neighboring vertices in T. In the follow-
ing, we shall make this crucial assumption. We shall also

assume that
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
is almost constant across each triangle;

this condition depends of course on the choice of coordi-
nates as well as the intrinsic geometry of H .
By construction, we may now approximate the volume

of a region of H by the sum of the volumes of all
simplexes within the region, as computed using the
Cayley–Menger determinant formula [45] and the � edge
lengths. The triangular inequality (4) for � guarantees that
all simplexes have well-defined volumes. Furthermore, the
ratio between the � volume of a simplex in H and its
Euclidean volume in coordinate spaces approximatesffiffiffiffiffiffiffiffiffiffi
jgjkj

q
, although in practice this calculation can suffer

from numerical noise.

C'

A C

A'

B'

B

∆ dist.

Riemannian
distance

parameter
space

signal
manifold

FIG. 8. Mapping of a parameter-space triangulation T onto the
signal manifold H . If the � edge lengths are smaller than the
characteristic curvature scale � of the manifold, the image of T
will lie close to H .
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More formally, we see that the triangulation, together
with the � edge lengths, carries the same information as
the metric: if we assume that gjk is constant across a

simplex, consistently with our assumption of local flatness,
we can recover gjk by solving the distance equations

�2
A ¼ gjk�‘

j
A�‘

k
A; A ¼ 1; . . . ; dðdþ 1Þ=2; (32)

where A enumerates the simplex edges, the �A are their �

lengths, and the �‘jA are the components of vectors that lie
along the edges in coordinate space.

Random coverings. Thus armed with an estimate of the
global volume of the region of interest in H , and of the

local
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
, we are now able to generate a properly

density-modulated random covering of H by a rejection
method. There is however a better algorithm that achieves
the same result without discarding any random draw and
without actually inverting Eq. (32) to compute the full
metric:

(i) To draw each new covering point, randomly select
one of the simplexes in T in such a way that the
probability of choosing each simplex is proportional
to its � volume, then pick a point randomly in
coordinate space within the chosen simplex.

(ii) To select the simplex, form an NT-dimensional
vector given by the cumulative sum of the � vol-
umes of all simplexes (arbitrarily ordered),

WJ ¼
XJ
I¼1

VI; (33)

then draw a random number x uniformly distributed
in [0, WNT

], and choose the first simplex for which

WJ > x.
(iii) To pick a point uniformly within the chosen sim-

plex, simple algorithms such as the following can
be used. Begin by considering the d-dimensional
unit simplex, which in Rdþ1 is embedded in the
d-dimensional hyperplane y1 þ y2 þ � � � þ
ydþ1 ¼ 1, and has vertex coordinates yba ¼ �b

a

(for a, b ¼ 1; . . . ; dþ 1). A random point in the
unit simplex can be generated by drawing dþ 1
random numbers ra uniformly in [0, 1], and com-
bining them as xa ¼ lnðraÞ=ðlnðr1Þ þ � � � þ
lnðrdþ1ÞÞ. This point can then be mapped to a point
in an arbitrary d-dimensional simplex by the affine
transformation �j ¼ x1v

1
j þ � � � þ xdþ1v

dþ1
j ,

where the va
j are the coordinates of the a-th vertex

of that simplex. For details see Refs. [46,47].

Locally, this random covering is uniform: the assumption
that the coordinates are distorted only by an affine trans-
formation on the typical length-scale of a simplex edge

ensures that
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
is locally constant. Globally, by draw-

ing points with density proportional to the � volume of

simplexes, we correct for the variation of
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
at larger

scales. We can even estimate how many points we should
draw to achieve a covering X% for covering radius r: from
Eq. (8) that is of course N ¼ �random

X% WNT
=ðVdr

dÞ. To cor-

rect for boundary effects, we may generate boundary cov-
erings guided by the lower-dimensional triangulation
consisting of the faces of the full-dimensional simplexes
that lie on the boundary.
Generating triangulations. It is of course pointless to

discuss the advantages of triangulation-guided coverings if
we cannot prescribe a convenient procedure to build ap-
propriately dense triangulations of coordinate space. We
propose a solution based on the incremental refinement of
an initial sparse triangulation, which may be generated
randomly. The refinement can be stopped when the trian-
gulation satisfies a criterion based on the � edge lengths
(for instance, if we have an estimate of the curvature scale
�, we may require that all edge lengths be safely below it).
The scale � can be seen as a tuning parameter: the validity
of an estimate for � can be checked a posteriori by
measuring the covering fraction of the final coverings
and its variation across parameter space.
The actual details of the refinement process depend on

what kind of triangulation we maintain. Consider for in-
stance the Delaunay triangulation of a set of points [28].
This is the unique triangulation such that the circumsphere
of each simplex contains no other point; it has the property
of (maximally) avoiding ‘‘skinny’’ simplexes with small
angles, and therefore it is a good choice to model terrains
(for d ¼ 2) or other hypersurfaces given a set of sample
points. To refine a Delaunay triangulation, we can itera-
tively choose one of its simplexes on the basis of its� edge
lengths, or of its � volume, place a new point at the
barycenter, or randomly within the simplex, and retriangu-
late (see Fig. 9). Efficient incremental algorithms exist that
can adjust the triangulation to link the new point while
preserving the Delaunay property (see, e.g., [28]).
We have experimented with modifying these algorithms

so that they would create triangulations that are Delaunay
with respect to �-wise (rather than coordinatewise) cir-
cumspheres. Such triangulations minimize the number of
simplexes needed to approximate H faithfully but they
suffer from a chicken-and-egg problem, because the local
assessment of the Delaunay property is only reliable when
the� edge lengths are already below the curvature scale �,
which was the whole point of refining the triangulation. An
alternative to iterative Delaunay triangulations are longest-
edge partition algorithms [48], which refine an initial
triangulation by iteratively placing a new point on the
longest one-dimensional edge, and dividing all the sim-
plexes that share that edge. Again it may be useful to
evaluate the longest edge with respect to � distances.
Refined-triangulation coverings. We note that it may be

possible to use the very points of a refined triangulation as
the points of a covering: in this case we would want to stop
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the refinement by comparing the population of edge
lengths with the covering radius r. We investigate such
algorithms in a separate paper [22], but we note here that
the numbers of edges in a triangulation (and thus the
number of � distances to compute) grows very rapidly
with d, so triangulation-guided random coverings are still
the better option if � � r and if coordinates can be found

such that the variation of
ffiffiffiffiffiffiffiffiffiffi
jgjkj

q
across scales �� is small.

If �� r, both triangulation-based approaches would still
require fewer distance computations than straight stochas-
tic placement, but the additional bookkeeping needed for
the triangulation itself could become overwhelming, espe-
cially in higher dimensions.

VIII. CONCLUSIONS AND FUTURE PROSPECTS

Past and current searches for modeled GW sources have
largely relied on filtering detector data with carefully dis-
tributed banks of theoretical signal templates.
Furthermore, even bankless Monte Carlo searches (as en-
visaged for the space-based detector LISA [32]) can benefit
from the exhaustive a priori modeling of the posterior
probability surface made possible by homogeneously dis-
tributed banks. The notion of a Riemannian metric in
parameter space [11–13] allows placement methods based
on periodic lattices [17,19], which however are limited in
practice to simple signal models with very few source
parameters. Thus, future searches could greatly benefit
from more generic and robust placement methods that
are suited to signal models with complex parameter de-
pendencies and with a moderate number of parameters.

Template placement for generic signal families can be
seen as an instance of the sphere-covering problem in
Euclidean and Riemannian spaces. Working from this
angle, Messenger et al. [25] examined the promise of
random coverings, while Babak [24] and Harry et al.
[26] studied stochastic coverings that combine random
draws with the enforcement of a minimum distance be-
tween pairs of points. In this article we have developed a
deeper understanding of both kinds of coverings: specifi-
cally, we have derived analytically the variance of the
covering fraction for random coverings, and examined
the effects of boundaries; we have studied the self-avoiding

coverings generated by quasirandom sequences; we have
proved the equivalence of Harry et al.’s destructive sto-
chastic coverings with Babak’s constructive variant, and
considered their effective thickness and computational
cost; last, we have proposed a general technique to distrib-
ute coverings on curved signal manifolds using only the
distances between the points of a parameter-space trian-
gulation, removing the need for the Riemannian metric,
which may be difficult to obtain.
Overall, our study confirms that randomized (random

and stochastic) coverings compare very favorably to
lattice-based coverings, especially for higher-dimensional
parameter spaces, where randomized coverings provide
greater simplicity and flexibility with comparable thick-
nesses. Furthermore, unlike lattices, randomized coverings
generalize straightforwardly from Euclidean to
Riemannian signal manifolds; the required modulation of
local density can be achieved by computing the determi-
nant of the metric, but also by metricless methods such as
straight stochastic algorithms that compare � distances,
and by triangulation-based algorithms.
Indeed, stochastic and triangulation approaches may be

combined fruitfully: if the signal manifold has significant
foldings (i.e., distinct parameter-space regions that corre-
spond to very similar signals with small � distances), a
sufficiently refined triangulation-based covering would
separately populate each duplicate region, and (as shown
by Babak [24]) a subsequent stochastic stage could recog-
nize the foldings and generate a list of nonlocal mappings.
Such a list would be a very useful input to Monte Carlo
searches that need to jump between isolated peaks on the
likelihood surface [32]. Furthermore, as pointed out by
Babak [49], the initial stage of Monte Carlo searches
(before the chains latch onto a candidate signal) can be
seen as filtering by yet another flavor of random banks, so
some of the methods and estimates developed in this paper
and in Refs. [25,26], as well as our discussion of boundary
effects, could be useful in that context.
Among the topics that we would like to flag for future

investigation are the distance statistics of random and
stochastic coverings, and especially the distribution of
the maximum distance �max; the possible mitigation of
boundary effects with stochastic coverings, which natu-

FIG. 9. Three phases in the refined triangulation of E2, performed by placing new points at the barycenters of existing triangles.
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rally overpopulate the bulk regions near the boundaries;
and the broad class of triangulation-based algorithms. It
would also be interesting to investigate whether the inter-
polation of SNR across lattice-based template banks
[15,38,39] can be extended to the products of randomized
placement.

As a final message, we wish to convey our belief, formed
through the numerical experimentation carried out for this
work, that the holy grail of a generally applicable template-
placement algorithm is likely to remain unattainable: even
general strategies such as random and stochastic coverings
must be chosen, adapted, and carefully tuned for the spe-
cific search at hand. In every case, we first need to ask:
which signals? what noise? what computational resources?
The answer to these questions will guide the solution of
what is arguably a problem of engineering applied to
science.
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APPENDIX: NUMERICAL PROCEDURES

In this section we briefly describe the numerical proce-
dures used to empirically determine covering fractions and
effective thicknesses throughout this paper.

Computing the thickness of partial periodic-lattice cov-
erings. We work with the Voronoi cell of a lattice vertex,
defined as the locus of points that are closest to that vertex
than to any other (e.g., a hexagon centered on each vertex
for the hexagonal lattice). We cover the Voronoi cell with a
uniform distribution of points, and collect the vector �i of
their distances from the center. The X-th percentile of �i is
then the radius of the sphere covering that achieves a
covering fraction of X%, and the corresponding thickness
is

�X% ¼ Vdð�X%Þd=Vcell; (A1)

where the Voronoi-cell volume Vcell is given by the deter-

minant of the generator matrix [40]. This technique was
used to generate the numbers of Table II and Figs. 1 and 3.
Verifying the covering fraction of random coverings with

boundary effects. As we do in the other two procedures
described below, we begin by laying a very dense set of M
target points uniformly distributed across the region of Ed

to be covered, typically the hypercube ½0; 1	d (which of
course has Vm ¼ 1). We then place a random covering ofN
points throughout ½0; 1	d, or throughout the larger hyper-
cube ½��; 1þ �	d, with � ¼ r=2 or r, and verify what
fraction of target points are covered (i.e., lie at a distance
<r from the closest covering point). This technique was
used to generate Table IV.
Computing the thickness of quasirandom coverings in

the bulk. Again we lay a dense target set in ½0; 1	d; we then
place a covering ofN points throughout a larger region that
contains the hypercube. We compute the vector �i of
distances from the target points to the nearest point in the
covering, and define

�i ¼ N0Vdð�iÞd=Vm; (A2)

where N0 is the number of covering points that fall within
½0; 1	d. By definition, Eq. (A2) gives the thickness of a
covering of Vm with N0 points and covering radius �i; by
our very experiment, if we set �i to its X-th percentile,
such a covering achieves a covering fraction equal to X%.
The X-th percentile of �i is then the thickness of that
covering. Boundary effects are avoided if the covering
region is larger than ½0; 1	d by at least maxi�i on every
side. This technique was used to generate the numbers of
Table V and Fig. 7.
Computing the thickness of stochastic coverings in the

bulk.We lay a dense target set on ½0; 1	d, pick r and �, and
place a stochastic covering with those parameters over a
larger region that contains the hypercube. We then examine
the covering points one by one, and keep a running tally Ck

of the number of target points that have been covered by
the first k covering points. The thickness for covering
fraction X% is obtained from

�X% ¼ k0Vdr
d=Vm; (A3)

where we find the k such that Ck is X% of M, and set k0
equal to the number of covering points (among the first k)
that fall within the hypercube. This technique was used to
generate the numbers of Table VI. (By contrast, the tech-
nique described in the paragraph above was used for the
scale-free stochastic covering of Table VII.)
The last two techniques are equivalent, except that the

first requires the a priori choice of the number of covering
points, the second of the covering radius.
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