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In this paper we study the effects of the generalized uncertainty principle (GUP) on canonical quantum

gravity of black holes. Through the use of modified partition function that involves the effects of the GUP,

we obtain the thermodynamical properties of the Schwarzschild black hole. We also calculate the

Hawking temperature and entropy for the modification of the Schwarzschild black hole in the presence

of the GUP.
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I. INTRODUCTION

The discovery of temperature and entropy of black holes
is one of the most important achievements in gravitational
physics. Since entropy is a statistical concern, it has been in
a great interest [1–3]. In the early seventies Bekenstein
proposed the quantization of black holes [1]. He showed
that the gravitational surface of a black hole is proportional
to its temperature and so the event horizon area is propor-
tional to the entropy. He concluded that the event horizon
of nonextremal black holes behaves like an adiabatic in-
variant, thus the event horizon should have discrete spec-
trum in the general relativity framework [2].

Similarities between these rules and thermodynamics
was first investigated by Hawking [3]. Later on he discov-
ered the evaporation of black holes by a series of semi-
classical calculations. It meant that the black holes like
black bodies emit thermal radiation proportional to their
gravitational surface. In addition the entropy is equivalent
to one-forth of the event horizon area. Hawking’s calcu-
lations introduced the relation between classical mechanics
of a black hole and its thermodynamics. These results led
to deeper correspondence between classical gravity, quan-
tum mechanics and statistical mechanics.

During these years the entropy of black holes has been
studied by different approaches, for example, by string
theory, loop quantum gravity and canonical gravity [4].
Although theses methods, involves curved geometry, we
can perform Hawking radiation calculations in a flat space.
Also, up to now these calculations have been done for
extremal and near extremal black holes [5].

The existence of a minimal length is one of the most
interesting predictions of the theories related to quantum
gravity [6,7]. From the perturbative string theory this
length is due to the fact that the strings cannot influence
through distances smaller than their size. One interesting
property of the existence of the minimal length is the
modification of the standard commutation relation between

position and momentum in usual quantum mechanics [8]
which is called the generalized uncertainty principle
(GUP). Noncommutativity between space-time coordi-
nates was first studied by Snyder [9–13].
The noncommutativity theory is of great interest be-

cause of its interesting predictions in particle physics, for
example, the mixture of IR/UV and nonlocality [14],
Lorenz violation [15], canonical noncommutative with
deformed rather than broken symmetries [16,17], Lie-
algebraic noncommutativity [18,19] and modern physics
at small scales [15,20]. Also in the past much attention
years has been paid to these fields (for applications of the
GUP and noncommutativity in minisuperspace dynamics
see [21–24]).
While studying the thermodynamics of a black hole, the

analysis of its temperature leads to many questions. When
the initial state of a black hole is a pure quantum one and
evolves to a mixed final state [25], first the black hole
attracts all the information behind its event horizon and
then disappears through thermal distribution. This causes
the violation of the unitarity principle and is associated
with the information loss assumption. The uncertainty
principle is one of the ways to escape this information
loss [26,27]. The Schwarzchild radius of a black hole
with the Plank mass is of the order of the Plank length.
Since this length is the wavelength of a particle with the
Plank mass, if the mass of the black hole becomes lower
than this mass, then we have a mass inside the volume
smaller than that allowed by the uncertainty principle.
Zeldovich proposed that black holes with masses smaller
than the Plank mass are related to stable elementary parti-
cles [28].
There are many questions about minimal length during

the study of black holes [29–32]. By investigation of the
space-time for string scattering with an increasing higher
orders in perturbation theory, the size of the string reduces
relative to the Schwarzchild radius of the collision region,
thus the production of black holes becomes impossible in
such a way but the length approach will make it possible
but complicated [33]. Recently string and loop quantum*s-jalalzadeh@sbu.ac.ir
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gravity theories have succeeded to account for the entropy-
event horizon area [29].

In this paper in Sec. II, we review a model to solve the
Wheeler-Dewitt equation of the Schwarzschild black hole
and derive its thermodynamics. In Sec. III, we examine
Hilbert space representation in the generalized uncertainty
principle framework. In Sec. IV, we study the
Schwarzschild black hole with the generalized uncertainty
relation and finally derive the thermodynamical properties
of the quantum black hole.

II. THE MODEL

The Wheeler-Dewitt equation for a Schwarzschild black
hole where the Hamiltonian involves only coordinates and

momenta ða; paÞ i.e. H ¼ p2
a

2a þ 1
2a, can be obtained as

[34,35]

@
2G2

c6
a�s�1 d

da

�
as

d

da
c ðaÞ

�
¼

�
a� 2GM

c2

�
c ðaÞ; (1)

where a and P2
a ¼ � @

2G2

c6
a�s d

da ðas d
da c ðaÞÞ are phase co-

ordinates deduced from the phase space coordinates m and
Pm, by means of an appropriate canonical transformation
and also mðtÞ ¼ Mðt; rÞ and PmðtÞ ¼

R1
�1 drPMðt; rÞ. The

variable m can be defined as mass M of the hole when
Einstein’s equations are satisfied [34] and s is a factor
ordering parameter. In particular, if we choose s ¼ 2 and
identifying Rs ¼ 2GM

c2
, we have

@
2G2

c6
1

a

�
d2

da2
þ 2

a

d

da

�
c ðaÞ ¼ ða� RsÞc ðaÞ: (2)

Let us consider the following transformations

fc ðaÞ ¼ 1

a
UðaÞ � ¼ a� Rs; (3)

where the variable � indicates the gravitational degrees of
freedom of the Schwarzschild black hole, and define the
appropriate constants and consider the fact that the energy
of excitations associated with variable a is not positive
[35]. The physical reason is simply that the total energy of
the black hole is included and the ADM energy is equal to
zero. Then, the quantum Eq. (2) turns into

�
� ‘2pEp

2

d2

d�2
þ 1

2

Ep

‘2p
�2

�
Uð�Þ ¼ Rs

4‘p
EsUð�Þ; (4)

where Es ¼ Mc2 is the black hole ADM energy and ‘p ¼ffiffiffiffiffi
G@

c3

q
and Ep ¼

ffiffiffiffiffiffi
c5@
G

q
. It can easily be shown that Eq. (4)

agrees with the Beckenstein’s proposal [1] and represents a
quantum linear oscillator with energy levels of

RsðnÞ
4‘p

EsðnÞ ¼
�
nþ 1

2

�
Ep: (5)

Also according to above equation one can get the mass of

the black hole as

M2ðnÞ ¼ 2@c

G

�
nþ 1

2

�
: (6)

Black hole entropy

Details of the thermodynamical properties of a black
hole can be obtained from its partition function [35–37].
For a quantum mechanical system the Feynman’s path
integral approach is a useful method for determination of
the free energy and partition function. In this way, to
include the quantum effects [38,39] a corrected potential
in considered. In the case of the black hole with respect to
Eq. (4) the quantum equation is similar to the equation of a
one-dimensional harmonic oscillator with frequency of

@! ¼
ffiffiffiffiffi
3
2�

q
Ep, and the corrected potential

Vð�Þ ¼ 3Ep

4�‘2p

�
�2 þ �‘2pEp

12

�
; (7)

which leads to the following partition function [35,36]

ZQ ¼
ffiffiffiffiffiffiffi
2�

3

s
expð� �2E2

p

16� Þ
�Ep

: (8)

From the fact that the internal energy of a black hole is
equal to its gravitational energy, i.e.

�E ¼ �@ lnðZQÞ
@�

¼ Mc2; (9)

we get

E2
p

8�
�2 �Mc2�þ 1 ¼ 0: (10)

The positive solution for this equation when Ep � Mc2 is

� ¼ �H

�
1� 1

�HMc2

�
; (11)

where �H ¼ 8�Mc2

E2
p

¼ 1
kTH

, is the Hawking’s temperature.

The entropy of the black hole using the partition function
and internal energy is defined as

S

k
¼ lnZQ þ � �E: (12)

Putting the Hawking’s temperature in this equation we
obtain

S

k
¼ As

4‘2p

�
1� 1

8�

E2
p

ðMc2Þ2
�
2

� 1

2
ln

�
As

4‘2p

�
1� 1

8�

E2
p

ðMc2Þ2
�
2
�
� 1

2
lnð24Þ þ 1; (13)

where As ¼ 4�R2
s is the area horizon.
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In terms of the Bekenstein-Howking relation SBH=k ¼
As=4‘

2
p and ignoring terms of higher order, one can find the

logarithmic correction to the entropy as is acquired using
different procedures in [37,40]

S

k
¼ SBH

k
� 1

2
ln

�
SBH
k

�
þ OðS�1

BHÞ: (14)

This result has the interesting feature that the coefficient of
the first correction, the logarithmic one, agrees with the one
obtained in loop quantum gravity [41], as well as in string
theory [42]. The form of this correction was already
obtained from other papers by other considerations
[40,43,44].

III. HILBERT SPACE REPRESENTATION IN THE
GUP FRAMEWORK

In this section, we briefly study the modified Heisenberg
algebra. In one dimension, deformation of the Heisenberg
algebra generated by X, P is given by

½X;P� ¼ i@ð1þ �P2Þ; � > 0 (15)

where � is the deformation parameter and this commuta-
tion relation can be seen in perturbative string theory [6].
The above equation by Kemf, Mangano, and collaborators
leads to the following relation [45,46]

�x�p � @

2
ð1þ �ð�pÞ2 þ �hPi2Þ; (16)

so that the canonical Heisenberg algebra is satisfied in the
limit � ! 0. By paying attention to the above equation the
uncertainty in momentum will be

�p ¼ �x

@�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�x

@�

�
2 � 1

�
� hPi2

s
: (17)

So the minimal uncertainty in position is hPi dependent,
that is

�xminðhPiÞ ¼ @
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �hPi2

q
: (18)

It is clear that the smallest uncertainty in position occurs
when hPi ¼ 0 and is equal to �xmin ¼ @

ffiffiffiffi
�

p
. This relation

says that it is impossible to consider any physical state as
the eigenstate of the position [45,46], therefor in the pres-
ence of �xmin, the definition of a state jc ni 2 D (D �
H from a Hilbert space) such that

lim
n!1ð�xminÞjc ni ¼ lim

n!1hc jðX� hc jXjc iÞ2jc i ¼ 0;

(19)

is impossible. It means that the eigenstates of the position
are no longer physical states and should be assumed as
formal states. Consequently in the GUP approach we can-
not work in the space configuration and have to use ‘‘qua-
siposition’’ states.

Equation (16) involves both the low and high energy
regions which are related to quantum mechanics and quan-
tum gravity limits, respectively. These limits as a sample of
applications of the GUP have been derived through string
theory [47,48]. The quantum mechanical limit is given by

�ð�pÞ2 þ �hpi2 � 1 � ð�pÞ2 þ hpi2 � 1

�
; (20)

Also the quantum gravity limit is of the form

�ð�pÞ2 þ �hpi2 � 1 � ð�pÞ2 þ hpi2 � 1

�
: (21)

A. Representation in momentum space

With respect to the lack of non vanishing minimal
uncertainty in momentum the Heisenbergh algebra can
be represented in momentum space wave function c ðpÞ ¼
hpjc i. On a dense domain in the Hilbert space X and P
play as operators such that [49–52]

Pc ðpÞ ¼ pc ðpÞ;
Xc ðpÞ ¼ i@

�
ð1þ �p2Þ @

@p
þ �p

�
c ðpÞ:

(22)

As can be seen X and P are symmetric and this represen-
tation is easily seen to respect the commutation relation
(15). The scalar product of two arbitrary wave functions on
the mentioned dense domain is given by

h�j�i ¼
Z þ1

�1
dp��ðpÞ�ðpÞ: (23)

It should be noted that in the presence of minimal uncer-
tainty in position the momentum operator is still self-
adjoint and also the functional analysis of the position
operator changes. Note that the definition of inner product
and representation of X and P operators in this paper are
different from the corresponding definition on Kemf,
Mangano, and collaborators [45,46]. In fact they used the
following representation for Hilbert Space of states

P :c ðpÞ ¼ pc ðpÞ X:c ðpÞ ¼ i@ð1þ �p2Þ@pc ðpÞ
(24)

And also

h�j�i ¼
Z þ1

�1
dp

1þ �p2
��ðpÞ�ðpÞ: (25)

B. Maximal localization states

As mentioned before when there is uncertainty in posi-
tion eigenstates the eigenstates of position are not physical
states therefor in order to gain information about position
we have to write the matrix elements of position operator in
another basis e.g. momentum basis. This leads to the study
of states which are called ‘‘maximal localization states’’.
As a result we consider the state jc ml

� i, maximally local-

QUANTUM BLACK HOLE IN THE GENERALIZED . . . PHYSICAL REVIEW D 81, 023528 (2010)

023528-3



ized around position � with the following properties

hc ml
� jXjc ml

� i ¼ �; (26)

and

ð�xÞjc ml
� i ¼ �xmin: (27)

Paying attention to the smallest uncertainty in position and
considering the standard deviation in uncertainty relation,
for any state in the Heisenbergh algebra we have

hc jðX� hXiÞ2 �
�jh½X;P�ij
2ð�pÞ2

�
2ðP� hPiÞ2jc i � 0; (28)

which immediately implies

�x�p � jh½X;P�ij
2

: (29)

It is clear that if the state jc i obeys�x�p ¼ jh½X;P�ij
2 then it

will obey�
X� hXi þ h½X;P�i

2ð�pÞ2 ðP� hPiÞ
�
jc i ¼ 0: (30)

By solving the above equation we determine the differen-
tial equation governing the maximal localization states

�
i@ð1þ�p2Þ@p��þ i@�pþ i@

1þ�ð�pÞ2
2ð�pÞ2 p

�
c ðpÞ ¼ 0:

(31)

Thus the maximal localization states are given by

c ml
� ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
�

p
�

s
ð1þ �p2Þ�1 exp

��i�

@
ffiffiffiffi
�

p tan�1ð ffiffiffiffi
�

p
pÞ
�
:

(32)

In the nondeformed case the plane waves in momentum
space or Dirac �-function in position space are maximal
localized states, but here having deformation c ml

� ðpÞ can
be considered as a generalization of plane waves.

C. Transformation to quasiposition wave functions

In order to investigate the probability of a state being in a
maximally localized state around position �, we consider
the scalar product of arbitrary states j�i on the states jc ml

� i
so that �ð�Þ ¼ hc ml

� j�i is called the quasiposition wave

function. Any wave function in the momentum represen-
tation can be transformed into its quasiposition counterpart
by the following generalized Fourier transformation (this
result is similar to Ref. [23,45])

�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
�

p
�

s Z þ1

�1
dp

1þ �p2

	 exp

�
i�

@
ffiffiffiffi
�

p tan�1ð ffiffiffiffi
�

p
pÞ
�
�ðpÞ: (33)

Note that in the limit � ! 0 the usual wave function
�ð�Þ ¼ h�j�i is determined and the above equation re-
duces to a plane wave in the momentum space.

IV. QUANTUM BLACK HOLE WITH THE
GENERALIZED UNCERTAINTY RELATION

The commutation relation (15) leads us to the general-
ized uncertainty relation (GUR) (16) [45,46,49–53].
According to Eq. (22) the position and momentum opera-
tors are then represented in momentum space by

fX ¼ i@½ð1þ �p2Þ@pþ �p�; P ¼ p: (34)

The Wheeler-DeWitt equation for the Schwarzschild black
hole (4) with the GUR then becomes

�
� @

2

‘2p

�
ðð1þ �p2Þ@pÞ2 þ 2�pðð1þ �p2Þ@pÞ

þ 2�2p2 þ �

�
þ ‘2p

@
2
p2

�
c ðpÞ ¼ Rs

2‘pEp

Esc ðpÞ; (35)

where p is canonical momenta conjugate to �. The exact
solution of Eq. (35) is given in [49,50]

RsðnÞ
4‘p

EsðnÞ ¼ Ep

��
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
�@2

2‘2p

�
2

vuut

þ
�
n2 þ nþ 1

2

�
�@2

2‘2p

�
: (36)

and also for the mass of black hole we have

M2ðnÞ ¼ 2@c

G

��
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
�@2

2‘2p

�
2

vuut

þ
�
n2 þ nþ 1

2

�
�@2

2‘2p

�
: (37)

Now, we define

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �p2

p ; s ¼
ffiffiffiffi
�

p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �p2
p ;

2� ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�2

s
;

(38)

the normalized energy eigenfunctions are

c nðpÞ ¼ 2��ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ �Þ ffiffiffiffi

�
p

2��ðnþ 2�Þ

s
c�þ1C�

nðsÞ; (39)

where n ¼ 0; 1; 2; . . . and C�
nðsÞ is the Gegenbauer poly-

nomial

A. BINA, S. JALALZADEH, AND A. MOSLEHI PHYSICAL REVIEW D 81, 023528 (2010)

023528-4



C�
nðsÞ ¼ ð�1Þn

2nn!

�ð2�þ nÞ�ð2�þ1
2 Þ

�ð2�Þ�ð2�þ1
2 þ nÞ ð1� s2Þ1=2�� dn

dsn
ð1� s2Þ�þn�1=2: (40)

Also one can write (39) as [54]

c nðpÞ ¼ 2��ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ 1Þ ffiffiffiffi

�
p

2��ðnþ 2�Þ

s
c�þ1�ðnþ 2�ÞFð�n; nþ 2�; 1=2þ �;�1=2sþ 1=2Þ

�ðnþ 1Þ�ð2�Þ : (41)

Note that using Eq. (33), one can acquire c nð�Þ also
according to the Eqs. (20), (21), and (37) we conclude
that in quantum gravity regime the mass of a black hole
is proportional with the quantum number n in contrast,
according to Eq. (6) with ordinary scales of energy in
standard quantization of black holes, that mass is propor-
tional to

ffiffiffi
n

p
that it agrees with Beckenstein’s proposal [1].

Black hole entropy with the GUR

When there is not any deformation in the system, the
coordinates and momenta variables xi and pj are canoni-

cally conjugate i.e. fxi; pjg ¼ �ij, fxi; xjg ¼ fpi; pjg ¼ 0,

thus the thermodynamics of the system is calculated by
using the following partition function

Z ¼ 1

2�@

Z
e��Hðx;pÞdxdp: (42)

In the more general deformed case with the following
generalized commutation relations

½Xi; Pj� ¼ i@fijðX; PÞ; ½Pi; Pj� ¼ i@hijðX; PÞ;
½Xi; Xj� ¼ i@gijðX; PÞ:

(43)

where operators Xi and Pj are new coordinates and mo-

mentum variables, respectively, and fij, gij and hij are the

deformation functions that obey properties like bilineary,
Libniz rules, and Jacobi identity. In the classical limit @ !
0 the above relations reduce to the deformed Poisson
brackets

fXi; Pjg ¼ fijðX; PÞ; fPi; Pjg ¼ hijðX;PÞ;
fXi; Xjg ¼ gijðX; PÞ:

(44)

These relations are antisymmetric, bilinear and obey the
Libniz rules and Jacobi identity [52,55]. Then the partition
function for deformed case can be interpreted in terms of X

and P [56] as

Zdeformed ¼ 1

2�@

Z
e��HðX;PÞ dXdP

J
: (45)

According to Eq. (15), gðX; PÞ ¼ hðX; PÞ ¼ 0 and
fX; Pg ¼ fðX; PÞ ¼ 1þ �P2, therefore the partition func-
tion of the quantum black hole becomes

ZGUP ¼ 1

2�@

Z
dX exp½��VðXÞ�

Z
dP

expð� �c‘p
2@ P2Þ

1þ �P2
:

(46)

Now by inserting the modified potential (7), the corrected
partition function will be

ZGUP
Q ¼ ‘p

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3�Ep�

s
exp

�
�
�
�2E2

p

16�
þ c‘p�

2@�

��
�

�
1

2
;
c‘p�

2@�

�
:

(47)

For the case of
c‘p�

2@� 
 1 the above equation leads to

ZGUP
Q ¼

ffiffiffiffiffiffiffi
2�

3

s
expð� �2E2

p

16� � @�
c‘p�

Þ
�Ep

: (48)

Now similar to the nondeformed case we put, �E ¼
� @ lnðZGUP

Q
Þ

@� ¼ Ep
2

8� �þ 1
� � @

c‘p�
2 � ¼ Mc2. Hence, the tem-

perature of the quantum black hole in the GUP framework
in term of the Hawking temperature becomes

� ¼ �H

�
1� 1

�HMc2
þ MEp

ð�HMc2 � 1Þð�HMc2 � 2Þ�
�
:

(49)

The entropy is accounted for as before and by using the
obtained temperature, it is given as follows

SGUP
k

¼ As

4‘2p

�
1� 1

�HMc2

�
2 þ As

4‘2p

�
1� 1

�HMc2

�
MEp

ð�HMc2 � 2Þð�HMc2 � 1Þ�

� 1

2
ln

�
As

4‘2p

�
1� 1

�HMc2

�
2 þ As

4‘2p

�
1� 1

�HMc2

�
MEp

ð�HMc2 � 2Þð�HMc2 � 1Þ�
�

� 2Ep�

c2

�
�H

�
1� 1

�HMc2

���1 � 1

2
lnð24Þ þ 1: (50)
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Finally the definition of GUP Hawking-Bekenstein entropy

SGUPBH

k
¼ SBH

k

�
1þ E3

p

8�M2c6
�

�
; (51)

leads to

SGUP

k
¼ SGUPBH

k
� 1

2
ln

�
SGUPBH

k

�
� 2Mc2

�
SGUPBH

SBH
� 1

�

þ OðSGUP�1
BH Þ: (52)

As the log-type correction is similar to the existing results
that are derived from other methods [29,31,32]. It is shown
that this result has the same form as the nondeformed case,
again the logarithmic correction to the entropy appears
with a �1=2 factor and it is clear that we get the non-
deformed entropy in the limit � ! 0. As we can see, these
thermodynamical quantities are modified due to the pres-
ence of the deformation parameter �. In particular the
GUP lessens the value of the entropy, which can be under-
stood from the fact that GUP reduces the accessible physi-
cal states. Similar results can be reached by surveying
noncommutativity [36,57].

V. CONCLUSION

In summary, we first introduced a model for quantum
black holes and showed that its Wheeler-Dewitt equation is
similar to the equation of a one-dimensional harmonic
oscillator. We then reviewed the thermodynamical proper-

ties of quantum black holes for which the logarithmic
correction of the entropy with a �1=2 factor appeared.
Next we presented the Hilbert space in the generalized
uncertainty principle framework and obtained the relevant
generalized Fourier transformation which gives the quasi-
position wave function from momentum space. In the next
step we studied the quantum black hole in this framework
and obtained its wave functions and energy eigenvalues
and argued that in a quantum gravity regime the mass of a
black hole is proportional to the integer n, in contrast to
ordinary scales of energy in standard quantization of black
hole where the mass is proportional to

ffiffiffi
n

p
. Finally we

determined the thermodynamical properties in this sce-
nario by introducing the relevant Bekenstein-Hawking en-
tropy in the GUP framework and concluded that again the
logarithmic correction of the entropy appears with the
factor �1=2 and also the value of the entropy diminishes
which can be comprehended from the fact that the GUP
reduces the available physical states.
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Marcianò, and R.A. Tacchi, Mod. Phys. Lett. A 22,
1779 (2007).

A. BINA, S. JALALZADEH, AND A. MOSLEHI PHYSICAL REVIEW D 81, 023528 (2010)

023528-6



[20] R. J. Szabo, Phys. Rep. 378, 207 (2003).
[21] A. Bina, K. Atazadeh, and S. Jalalzadeh, Int. J. Theor.

Phys. 47, 1354 (2008); N. Khosravi, S. Jalalzadeh, and
H. R. Sepangi, J. High Energy Phys. 01 (2006) 134; N.
Khosravi, H. R. Sepangi, and M.M. Sheikh-Jabbari, Phys.
Lett. B 647, 219 (2007).

[22] B. Vakili and H. R. Sepangi, Phys. Lett. B 651, 79 (2007);
Babak Vakili, Phys. Rev. D 77, 044023 (2008); Int. J.
Mod. Phys. D 18, 1059 (2009).

[23] Marco Valerio Battisti and Giovanni Montani, Phys. Lett.
B 656, 96 (2007); Phys. Rev. D 77, 023518 (2008).

[24] Marco Valerio Battisti and Giovanni Montani, Int. J. Mod.
Phys. A 23, 1257 (2008); Marco Valerio Battisti, Phys.
Rev. D 79, 083506 (2009).

[25] S. Hawking, Commun. Math. Phys. 87, 395 (1982).
[26] D. N. Page, Phys. Rev. Lett. 44, 301 (1980); G. ’t Hooft,

Nucl. Phys. B256, 727 (1985); A. Mikovic, Phys. Lett. B
304, 70 (1993).

[27] Y. Aharonov, A. Casher, and S. Nussinov, Phys. Lett. B
191, 51 (1987); T. Banks, A. Dabholkar, M. R. Douglas,
and M. OLoughlin, Phys. Rev. D 45, 3607 (1992).

[28] Y. B. Zeldovich, in Proc. 2nd Seminar in Quantum
Gravity, edited by M.A. Markov and P. C. West
(Plenum, New York, 1984).

[29] A. J.M. Medved and E. C. Vagenas, Phys. Rev. D 70,
124021 (2004).

[30] Giovanni Amelino-Camelia, Michele Arzano, and Andrea
Procaccini, Phys. Rev. D 70, 107501 (2004); Rong-Jia
Yang and Shuang Nan Zhang, Phys. Rev. D 79, 124005
(2009).

[31] Giovanni Amelino-Camelia, Michele Arzano, Yi Ling,
and Gianluca Mandanici, Classical Quantum Gravity 23,
2585 (2006).

[32] Zhao Ren and Zhang Sheng-Li, Phys. Lett. B 641, 208
(2006); M.M. Akbar and Saurya Das, Classical Quantum
Gravity 21, 1383 (2004); Li Xiang and X.Q. Wen,
arXiv:0901.0603v2.

[33] S. Hossenfelder, Phys. Lett. B 598, 92 (2004).
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