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We consider the stochastic background of gravitational waves produced during the radiation-dominated

hot big bang as a constraint on the primordial density perturbation on comoving length scales much

smaller than those directly probed by the cosmic microwave background or large-scale structure. We place

weak upper bounds on the primordial density perturbation from current data. Future detectors such as

BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small

scales.
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I. INTRODUCTION

Recent cosmic microwave background (CMB) experi-
ments [1,2] and high-redshift galaxy surveys [3] are able to
probe the primordial density perturbation on cosmological
scales, �10–1000 Mpc. This yields a precise measure of
the primordial density contrast, 42

RðkCMBÞ ¼ 2:5� 10�9

for kCMB ¼ 0:002 Mpc�1 [1]. For much smaller scales,
free-streaming of relativistic particles in the very early
universe and Silk damping due to photon diffusion erases
the primordial density perturbation on comoving scales
much less than 10 Mpc [4]. The present distribution of
matter on smaller scales is the result of the subsequent
nonlinear evolution of the matter density and we are unable
to directly relate observational data to the primordial dis-
tribution of matter. Therefore for modes which are much
smaller than 10 Mpc the primordial density perturbation
remains undetermined.

One might assume that the primordial density perturba-
tion on small scales has the same value as on larger scales.
According to WMAP 5-year data [1,2] the spectral index
on CMB scales is smaller than 1 (ns ¼ 0:96þ0:014

�0:013), imply-

ing that the density contrast is slightly smaller on smaller
scales, but it is a huge extrapolation to assume that this is
the actual scale dependence all the way from CMB scales
down to comoving scales such as k�1 < 10 pc, for in-
stance, which are smaller than the comoving Hubble scale
at the epoch of big bang nucleosynthesis, T �MeV. The
only probes of such small scales at early times are expected
to be gravitational relics.

One process which allows us to put an upper bound on
density perturbations is the formation of primordial black
holes (PBHs) [5]. PBHs are produced when density fluc-
tuations with a large amplitude (��=� � 0:01� 0:1) enter
the horizon. Their typical mass is given by the horizon
mass when they were produced [6–9].

MPBHs � 1015
�

t

10�23 s

�
g; (1)

which can be related to the temperature if they formed in

the radiation-dominated era,

MPBHs � 1038
�
MeV

T

�
2
g: (2)

The fact that PBHs have not been observed to date limits
the initial mass fraction going into black holes, which can
be used to constrain the primordial density perturbation on
the corresponding scales [6]. For instance PBHs radiate
Hawking radiation and thus for MPBHs < 1015 g evapora-
tions are limited because of constraints from the standard
big bang nucleosynthesis (BBN), which is sensitive to the
baryon-photon ratio at the time, and also because of
bounds on the expected gamma-ray background. For heav-
ier PBHs (MPBHs > 1015 g), similar constraints come with
the fact that the present-day density of PBHs cannot exceed
the upper limit on the cold dark matter density [10].
Gravitational waves also give us a window onto density

perturbations in the very early universe. They can be
generated by violent events in the early universe such as
bubble collisions [11], cosmic strings [12], preheating after
inflation [13–16], or parametric decay of supersymmetric
condensates [17,18]. All of these mechanisms are highly
model dependent. Even gravitational waves from produced
from vacuum fluctuations of the metric during inflation
[19–21], though a generic prediction of inflation, have an
amplitude which is dependent upon the energy scale of
inflation.
In this paper we consider the bounds placed on the

primordial density perturbation from the generation of a
stochastic background of gravitational waves in the very
early universe. In the standard radiation-dominated hot big
bang, first-order density perturbations inevitably generate
gravitational waves at second (and higher) order [22–32].
Like the initial mass fraction of PBHs, the power spectrum
of induced gravitational waves is determined by the pri-
mordial density perturbation and thus can place bounds on
the amplitude of scalar perturbations. Indeed Saito and
Yokoyama [33] have recently pointed out that current
gravitational wave bounds are sufficient to rule out PBHs
as possible candidates for intermediate mass black holes.

PHYSICAL REVIEW D 81, 023527 (2010)

1550-7998=2010=81(2)=023527(8) 023527-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.023527


If we could determine the amplitude and frequency of
these induced gravitational waves then we would be able to
determine the primordial density perturbation when the
corresponding scales crossed the Hubble scale during the
early hot big bang. Throughout this paper we will use the
following formula to relate the frequency of gravitational
waves at the present time to the temperature at Hubble-
crossing in the early radiation-dominated era [34]:

� ¼ c

�0

� 1:2� 10�8g1=6�
�

T

GeV

�
Hz; (3)

where g� is the effective number of degrees of freedom.We
are able to place upper bounds on the primordial density
perturbation from BBN and CMB constraints and as well
as current LIGO, VIRGO, and pulsar timing data. If we do
not detect gravitational waves with future pulsar timing
[35,36] and future detectors like Advanced LIGO [37],
Advanced VIRGO [38], LISA [39], BBO [40], and
DECIGO [41], the upper bounds on the primordial density
perturbation will become significantly tighter.

We emphasize that our bounds come from adopting the
standard, minimal cosmological model of adiabatic density
perturbations, in their growing mode, in a radiation-
dominated early universe from ultrahigh energies (�
1016 GeV) until matter domination when T < eV. The
quantitative constraints will be altered if one adopts non-
standard cosmological evolution [42,43] such as an early
matter-era (e.g., temporary domination of the energy den-
sity by massive, nonrelativistic particles) or a stiff-fluid-
dominated era (e.g., domination by the kinetic energy of a
coherent, fast-rolling scalar field). On general grounds one
expects an early era dominated by fluid ‘‘softer’’ than
radiation, P=� < 1=3, to dilute the fractional density of
gravitational waves whose wavelength is smaller than the
comoving Hubble scale (and thus behave like radiation),
while the fractional density of subhorizon gravitational
waves grows relative to matter which is stiffer than radia-
tion [44]. On the other hand the evolution of density
perturbations which give rise to gravitational waves is
also altered; see, for example, Ref. [34]. Nonadiabatic
modes in a multicomponent system can lead to large-scale
adiabatic density perturbations by the time of last scatter-
ing but arise from initial isocurvature perturbations, so are
not necessarily constrained by our analysis. One such
example is the curvaton scenario, where the gravitational
waves may be enhanced with respect to the adiabatic case
if the curvaton is subdominant when it decays [45]. Such
models need to be considered on a case by case basis.

This paper is organized as follows: in Sec. II we intro-
duce the basic equations used to determine the induced
gravitational wave background and define the effective
energy density of second-order gravitational waves. In
Sec. III we quantify the constraints placed on the primor-
dial density perturbation by a variety of experiments. We
present our conclusions in Sec. IV.

II. SECOND-ORDER GRAVITATIONALWAVES

In this section we will briefly review the generation of
induced gravitational waves. Details of the calculations
have been described previously [30,31].
The perturbed metric in the longitudinal gauge is

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ ½ð1� 2�Þ�ij

þ 2Fði;jÞ þ hij�dxidxj�; (4)

where � and � are scalar metric perturbation, Fi is a
transverse vector perturbation, and hij is a transverse and

trace-free tensor perturbation. The scalar metric perturba-
tions,� and�, are supported by density perturbations, and
in the absence of anisotropic stress we require� ¼ � [46].
We will find it convenient to use the Fourier transform

�ðxÞ ¼ 1

ð2�Þ3=2
Z

d3k�ke
ik:x; (5)

where, for an isotropic distribution, the power spectrum is
given by

h�k�k0 i ¼ 2�2

k3
�3ðkþ k0ÞP ðkÞ: (6)

On large scales (much larger than the Hubble scale) the
power spectrum of the primordial scalar perturbation is
commonly approximated by a power law

P ðkÞ ¼ 4

9
42

R

�
k

k�

�
ns�1

; (7)

where the numerical factor 4=9 comes from the relation
between scalar metric perturbation in the longitudinal and
comoving gauges on large scales in a radiation-dominated
era [46].
In the second-order perturbed Einstein field equations

we see the effect of first-order perturbations as a source
term (Sij) for second-order tensor perturbations. After

putting all first-order perturbation terms to the right-hand
side of the Einstein field equation, we have

h00ij þ 2Hh0ij þ k2hij ¼ STTij ; (8)

where STTij indicates the transverse–trace-free part of the

source term. If we neglect first-order tensor and vector
perturbations in comparison with first-order density per-
turbations, the right-hand side of this equation is the trans-
verse and trace-free part quadratic in first-order scalar
perturbations. This behaves like a source term for induced
gravitational waves [30,31]

Sij ¼ 2�@i@j�� 2�@i@j�þ 4�@i@j�þ @i�@j�

� @i�@j�� @i�@j�þ 3@i�@j�

� 4

3ð1þ wÞH 2
@ið�0 þH�Þ@jð�0 þH�Þ

� 2c2s
3wH

½3H ðH���0Þ þ r2��@i@jð���Þ;
(9)
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where w ¼ P=� is the equation of state and c2s ¼ P0=�0 is
the adiabatic sound speed.

These equations are written in the real space but in order
to derive the power spectrum of gravitational waves we
need to transform to Fourier space [30]

hijðx; �Þ ¼
Z d3k

ð2�Þ3=2 e
ik:x½hkð�ÞeijðkÞ þ �hk �eijðkÞ�;

(10)

where eijðkÞ and �eijðkÞ are the polarization tensors. The

two polarization tensors eijðkÞ and �eijðkÞ can be given in

terms of the orthonormal basis

eijðkÞ ¼ 1ffiffiffi
2

p ½eiðkÞejðkÞ � �eiðkÞ �ejðkÞ�;

�eijðkÞ ¼ 1ffiffiffi
2

p ½eiðkÞ �ejðkÞ þ �eiðkÞejðkÞ�;
(11)

where e and �e are unit vectors orthogonal to one another
and k:

eik
i ¼ �eik

i ¼ ei �e
i ¼ 0: (12)

The gravitational waves have a power spectrum in
Fourier space

hhkð�Þhk0 ð�Þi ¼ 1

2

2�2

k3
�3ðkþ k0ÞP hðk; �Þ: (13)

The effective density of a stochastic background of gravi-
tational waves, on scales much smaller than the Hubble
scale, is given by [21]

�GW ¼ 1

32�G
h _hij _hiji ¼ k2

32�Ga2

Z
dðlnkÞP hðk; �Þ:

(14)

The fraction of the critical energy density in gravitational
waves per logarithmic range of wave number k in the
radiation era is thus

�GWðk; �Þ ¼ 1

12

�
k

H

�
2
P hðk; �Þ: (15)

After the radiation-dominated era, the density of gravita-
tional waves on sub-Hubble scales then redshifts exactly as
any noninteracting relativistic particle species and in the
present-day we have

�GW;0ðkÞ ¼
��;0

12

�
k

H

�
2
P hðk; �Þ; (16)

where we neglect additional numerical factors due to the
detailed thermal history, such as the heating of photons by
the annihilation of other relativistic particle species
[43,47]. The present density of photons is ��;0 ’ 4:8�
10�5 where, here, and throughout this paper, we take H0 ’
72 km s�1 Mpc�1 for the present value of the Hubble rate.

III. CONSTRAINTS ON PRIMORDIAL DENSITY
PERTURBATIONS

In the standard cosmological scenario, second-order
gravitational waves are generated during the radiation-
dominated era after inflation. Nonlinear interactions can
in principle lead to density perturbations integrated over a
range of scales contributing to the gravitational wave am-
plitude on a given wave number, k, but in practice the
second-order gravitational waves are primarily produced
when first-order density perturbations on the similar on
same scale, �k, come inside the Hubble scale during the
radiation era [30].
Assuming a power-law spectrum for the primordial

density perturbation, Eq. (7), the energy density of
second-order gravitational waves, relative to the critical
density at the present time, which were produced during
the radiation-dominated era (� > 10�15 Hz), can be writ-
ten as

�gw;0ðkÞ ¼ Frad��;0 44
R ðkÞ; (17)

where, for modes which are well inside the horizon at the
end of the radiation-dominated era (k�eq � 1), we have

[30]

Frad ¼ 8

3

�
2162

�3

�
8:3� 10�3fns (18)

and fns is weakly dependent on the spectral tilt. fns � 1 if
the density perturbation is scale invariant [30], but be-
comes slightly smaller than 1 for a red spectrum (e.g, fns �
0:97 for ns ¼ 0:9) and bigger than one for a blue spectrum
(e.g, fns � 1:05 for ns ¼ 1:1).
It is also possible to consider the spectrum of gravita-

tional waves generated by density perturbations with a
sharply peaked power spectrum [30,33]. Considering a
delta-function power spectrum, PðkÞ ¼ ð4=9Þ�2

RðkpÞ�
�ðlnðk=kpÞÞ, the resulting gravitational wave spectrum is

described by a sharply rising spectrum for k < kp [33]

�gw;0ðkÞ ¼ 29��;0 44
R ðkpÞ

�
k

kp

�
2
; (19)

with an abrupt cutoff for k > 2kp.

In the following numerical estimates we take Frad � 30
in Eq. (17) corresponding to an approximately scale-
invariant spectrum of scalar perturbations, ns � 1. This is
expected to be a conservative lower bound on Frad for the
blue spectra with ns > 1 required to produce a detectable
background of gravitational waves on scales much smaller
than the CMB scale. In the rest of this section we show how
Eq. (17) enables us to use constraints on the stochastic
background of gravitational waves generated during the
radiation era, �gw;0ðkÞ, to place upper bounds on the

primordial density perturbation on the corresponding
scales, �2

RðkÞ. In addition Eq. (19) indicates how observa-

tional constraints on �gw;0ðkÞ at a given wave number k
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also places a weaker bound on the primordial density
perturbation, �2

RðkpÞ / ðkp=kÞ, at higher wave numbers,

kp > k. Our results are presented graphically in Figure 1.

A. Cosmological density constraints

1. Constraint from BBN

If the energy density carried by gravitational waves at
the time of primordial BBN were large, the abundance of
the light nuclei produced would be altered with respect to
the predictions of standard BBN. Hence, BBN can be used
to constrain the total energy carried by gravitational waves
at the time of nucleosynthesis (T ’ 1 MeV) [48].

Primordial abundance of the light elements, usually
quoted as a bound on the effective number of relativistic
species at the time of BBN, gives the 95% C.L. upper
bound on a primordial gravitational wave background [37]

�gw;0 < 1:5� 10�5: (20)

Substituting this bound into Eq. (17) gives

42
R <0:1

�
Frad

30

��ð1=2Þ
: (21)

This denotes the upper bound on the primordial density
perturbation on the Hubble scale at the time when the
gravitational waves are generated.

Although Eq. (21) is only a weak limit on the primordial
density perturbation, it applies across a wide range of
length scales. It applies on scales which are smaller than
the Hubble scale at the epoch of BBN, which from Eq. (3)
corresponds to frequencies � > 10�10 Hz today, and scales

which are larger than the Hubble scale at the start of the
radiation-dominated era. This is model dependent, but in
an inflationary cosmology this would be the Hubble scale
at the end of reheating after inflation, which could be as
large as �� 108 Hz for T � 1016 GeV. If inflation occurs
at lower energy scales the reheating temperature could be
much lower.
The relationship between the primordial density pertur-

bation on the CMB scale, 42
RðkCMBÞ, and on an arbitrary

scale, 42
RðkÞ, can be written as

42
R ðkÞ ¼ 42

RðkCMBÞ �
�

k

kCMB

�
�ns�1

; (22)

where �ns describes the effective tilt between the scale k and
CMB scales, where 42

R is directly observed for

42
RðkCMBÞ ¼ 2:5� 10�9 for kCMB ¼ 0:002 Mpc�1 [1].

In terms of frequency we have

�n s ¼ 1þ
logð 42

R
ð42

RðkCMBÞÞÞ
logð �

�CMB
Þ ; (23)

where �CMB � 10�18 Hz. Therefore (21) can be inter-
preted as a constraint on the value of the effective spectral
index, �ns, across a wide range of scales.
According to WMAP5 data [1], the spectrum of primor-

dial density perturbations is red (ns less than unity) on
CMB scales but, except for the constraints from PBHs, we
have no restrictions on the value of �ns on scales much
smaller than 1 Mpc. We obtain the tightest constraint on �ns
from a bound such as Eq. (21) applied to the smallest
possible wavelength. For � ’ 108 Hz from (21) and (23)
we find

�n s < 1:29� 1

52
log10

�
Frad

30

�
: (24)

Equation (24) corresponds to the maximum possible reheat
temperature after inflation. However if we consider a
smaller reheat temperature, for instance T ’ 108 GeV cor-

responding to � ’ 1 Hz, we get �ns < 1:44� 1
36 log10ðFrad

30 Þ.

2. Constraint from CMB

A very similar bound on the effective energy density of
primordial gravitational waves can be obtained around the
time of last scattering of the cosmic microwave back-
ground. Again a limit on the number of massless neutrino
species [49] can be translated into a bound on the gravita-
tional wave background [50]. Unlike the BBN constraint,
however, the CMB constraint depends upon the nature of
inhomogeneous perturbations about the average density.
For a gravitational wave background produced from a
Gaussian random field of primordial density perturbations
on small scales, we expect the effective energy density on
long wavelengths (on scales of order 100 Mpc) to be
independent of the density perturbations on this scale.

FIG. 1 (color online). Constraints on the primordial density
perturbation, �2

R, obtained from gravitational waves produced

during the radiation era, using Eq. (17). Black lines denote
current constraints from gravitational waves detectors and
BBN. Green/dark grey lines denote constraints expected from
future gravitational waves detectors. Diagonal lines show the
bounds on�2

R obtained using Eq. (19) for wave numbers kp > k.

WMAP gives a direct measurement (shown in red/grey) of the
primordial density perturbation on very low frequencies.
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Thus long wavelength perturbations of the gravitational
wave background are nonadiabatic and Smith et al [50]
give a 95% C.L. bound

�gw;0 < 1:3� 10�5; (25)

for a ‘‘homogeneous’’ gravitational wave background.
This is marginally stronger than the BBN constraint (20).
It gives effectively the same constraint on the primordial
density perturbation (21), and the effective spectral index
(24), but extends to longer wavelengths �10�15 Hz, cor-
responding to scales inside the Hubble scale at the time of
last scattering.

Future data from CMB experiments such as Planck and
the proposed CMBPol mission are expected to improve the
CMB bound. For Planck the expected bound corresponds
to �gw;0 < 2:7� 10�6 [50] which would bound

42
R <0:04

�
Frad

30

��ð1=2Þ
: (26)

B. Constraints from ground-based detectors

1. Current LIGO/VIRGO

We can obtain a tighter constraint on the primordial
density perturbation on scales probed by direct detectors,
such as the Laser Interferometer Gravitational Wave
Observatory (LIGO) [37] and gravitational wave detector
at the European gravitational observatory (VIRGO) [38].
LIGO’s maximum sensitivity is around a frequency, � ¼
100 Hz. The latest results from the LIGO S5 science run
give a bound on the energy density of gravitational waves
on this scale [51]

�gw;0 < 6:9� 10�6: (27)

Hence from Eq. (17) the constraint on the density pertur-
bation on the LIGO/VIRGO scale is

42
R <0:07

�
Frad

30

��ð1=2Þ
: (28)

This is a slightly tighter bound than that currently obtained
from BBN and the CMB, Eq. (21), however unlike the
BBN and CMB bound it only applies to LIGO/VIRGO
scales. The corresponding constraint on �ns on this scale
comes from Eq. (23)

�n s < 1:37� 1

40
log10

�
Frad

30

�
: (29)

2. Advanced LIGO/VIRGO

Advanced LIGO/VIRGO will give us an improved con-
straint on a stochastic background of gravitational waves
on the same scales [38,52]. The smallest density of gravi-
tational waves which could be detected by Advanced
LIGO/VIRGO is 103 times smaller than current LIGO/
VIRGO bounds. Considering the smallest detectable en-

ergy density �gw;0 < 10�9 in Eq. (17) returns

42
R <8� 10�4

�
Frad

30

��ð1=2Þ
: (30)

Equation (23) gives the expected constraint on �ns from
Advanced LIGO/VIRGO (taking � ¼ 100 Hz)

�n s < 1:27� 1

40
log10

�
Frad

30

�
: (31)

C. Constraints from LISA

The Laser Interferometer Space Antenna (LISA) is the
first gravitational wave detector planned in space and is the
most sensitive detector currently planned. Assuming
LISA’s instrumental noise is well behaved [53], it could
detect a stochastic background of gravitational waves at a
level �gw;0 � 10�11 at frequencies �LISA � 10�3 Hz

[39,54]. However the sensitivity of LISA leads to many
potential overlapping sources and hence the problem of
source confusion. In particular the astrophysical back-
ground from unresolved extragalactic white-dwarf binaries
is expected to limit LISA’s ability to distinguish a primor-
dial gravitational wave background to [53,55]

�gw;0 < 10�10: (32)

The corresponding upper bound on the primordial density
perturbation on LISA scales comes from (17):

42
R <3� 10�4

�
Frad

30

��ð1=2Þ
: (33)

The constraint on �ns on LISA scales comes from Eq. (23):

�n s < 1:34� 1

30
log10

�
Frad

30

�
: (34)

This is a slightly weaker bound on the effective spectral
index compared with Advanced LIGO, as LISA is sensitive
on length scales much larger than LIGO scales.

D. Constraints from BBO/DECIGO

The Big Bang Observer (BBO) [40] and the DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO)
[41] are ambitious proposals for future space-based ob-
servatories to detect cosmological gravitational waves.
They should be able to detect a stochastic background of
gravitational waves down to an effective energy density
�gw;0 � 10�16 at �BBO � 1 Hz. This waveband is chosen

to avoid the confusion noise due to white-dwarf binary
mergers which cuts off above 0.2 Hz. The designs of BBO
and DECIGO are based on the requirement to identify and
remove the remaining foregrounds from neutron star and
black hole binaries [56].
If induced gravitational waves during the radiation era

are not detected with BBO/DECIGO, then we will be able
to place a tight constraint on the primordial density pertur-
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bation and hence �ns on this scale (1 Hz). From (17) and
(23) we obtain

42
R <3� 10�7

�
Frad

30

��ð1=2Þ
; (35)

and hence

�n s < 1:11� 1

36
log10

�
Frad

30

�
: (36)

E. Constraints from pulsar timings

Analysis of pulse data from pulsars shows that they are
very stable clocks. Measurement of timing residuals,
which is the difference between the observed time of
arrival and predicted time of arrival, can in principle be
used to directly detect gravitational waves passing between
the pulsar and the observer [35,36]. The data from current
observations of an array of pulsars places an upper bound
on the stochastic background of gravitational waves, with
periods comparable to the total observation time span. This
is typically 1–10 years, and corresponds to 10�8–10�9 Hz.
For � ¼ 10�8 Hz, the constraint on the present density of
gravitational waves is [36]

�gw;0 < 4� 10�8: (37)

Substituting (37) in (17), gives us the current constraints on
the primordial density perturbation:

42
R <5� 10�3

�
Frad

30

��ð1=2Þ
: (38)

The constraint on �ns comes from (17):

�n s < 1:63� 1

20
log10

�
Frad

30

�
: (39)

Saito and Yokoyama [33] have recently used similar
constraints, on the induced gravitational wave background
from pulsar timing arrays, to rule out the large amplitude of
primordial density perturbations required to produce any
significant number of primordial black holes in the inter-
mediate mass range, 4� 102M� 	 MPBH 	 5� 103M�,
corresponding to 8� 1035 g 	 MPBH 	 1037 g, which
from Eq. (2) would have formed at temperatures T �
3–10 MeV.

Future pulsar timing will give a better constraint. If
gravitational waves are not detected, the upper limit, based
on timing 20 pulsars over 5 years, would be�gw;0 < 10�10

[36]. From (17), the future constraint on the primordial
density perturbation in five years time for � ¼ 10�8 Hz
would be

42
R <3� 10�4

�
Frad

30

��ð1=2Þ
: (40)

The future constraint on �ns would then be

�n s < 1:50� 1

20
log10

�
Frad

30

�
: (41)

IV. CONCLUSION

Despite remarkable recent progress in astronomical ob-
servations mapping density perturbations on large scales
(10–1000 Mpc) in our Universe, we know little about the
primordial distribution of matter on much smaller scales.
This is due to Silk damping and free-streaming of relativ-
istic particles in the early universe, and subsequent non-
linear evolution of matter perturbations at much later
times. The only constraints on these scales come from
gravitational relics of the very early universe. Previous
work has focussed on the possible formation of primordial
black holes from large over-densities.
In this paper we have shown how limits on a stochastic

background of gravitational waves can be used to place
limits on density perturbations in the early radiation-
dominated era of the standard hot big bang cosmology.
BBN and CMB limits on a primordial gravitational wave

background places only a weak constraint on the amplitude
of primordial density perturbations, 42

R < 0:1, but this

applies across a wide range of frequencies, from
10�15 Hz to frequencies as high as 108 Hz, depending on
the maximum temperature at the start of the radiation-
dominated era. By contrast, gravitational wave detectors
such as LIGO and VIRGO place slightly tighter bounds,
currently 42

R < 0:07, but only over a narrower range

determined by the frequency response of the detector.
Future gravitational wave experiments offer the prospect

of much tighter bounds on, or a detection of, a stochastic
gravitational wave background and hence the primordial
density perturbation on small scales. A space-based ex-
periment such as LISA could detect gravitational waves
produced by density perturbations 42

R � 10�4, and future

data from pulsar timing arrays could have similar sensitiv-
ity. The most ambitious current proposed gravitational
wave observatories including BBO and DECIGO offer
the prospect of detecting gravitational waves as small as
42

R � 10�7.

If gravitational wave background is not detected by
these experiments it would imply that the primordial power
spectrum remains close to scale invariant, or decreases in
power on small scales, �ns < 1:29, which provides a valu-
able new constraint on models for the origin of structure.
Nonetheless it remains a challenge to design an experiment
that could detect gravitational waves produced by primor-
dial density perturbations of the same power, 42

R � 10�9,

as seen on the largest scales in the Universe today.
We have assumed the simplest expansion history of the

Universe, being radiation dominated from very early times,
corresponding to temperatures as high as 1016 GeV. If the
early universe has a more complicated history, the con-
straints may be altered. A period of inflation is expected to
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dilute preexisting gravitational waves on sub-Hubble
scales, without generating a significant additional back-
ground [57]. On the other hand although an early matter-
dominated era before BBN, such as the reheating or pre-
heating after inflation, would also dilute any gravitational
waves that had already been generated, it could itself
produce significant tensor metric perturbations on scales
that reenter the Hubble scale during an early matter-
dominated era [34]. We leave a more detailed investigation

of constraints on the primordial density perturbation in
more general cosmological scenarios to future work.
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