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We show the existence of a rather general class of closed cosmological models of Bianchi type IX that

do not exhibit recollapse but expand for all times. This is despite the fact that these models satisfy the

strong energy condition by a wide margin.
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In relativistic cosmology, the trichotomy of the
Friedmann-Robertson-Walker (FRW) models is of prime
importance. The spatial geometry determines the evolution
of the cosmological model: In the hyperboloidal (k ¼ �1)
or the spatially flat (k ¼ 0) case, the Universe exhibits an
initial singularity (‘‘big bang’’), and from that ‘‘moment’’
on, the Universe is forever expanding. In the case of a
closed cosmological model (k ¼ þ1) we observe a funda-
mentally different behavior: ‘‘[. . .] the dynamical equa-
tions of general relativity show that the spatially closed
3-sphere universe will exist for only a finite span of time.
[. . .] at a finite time after the big bang, the Universe will
achieve a maximum size [. . .], and then will begin to
recontract. [. . .] a finite time after recontraction begins, a
‘big crunch’ will occur.’’ The quotation is taken from [1].
The recollapse of closed FRW cosmologies holds because
the strong energy condition is imposed on the matter
(which is assumed to be a perfect fluid), i.e., �þ 3p �
0, where � is the energy density and p the pressure.

On this basis it would be tempting to view the recollapse
of the spatially closed FRW cosmologies satisfying the
strong energy condition as a paradigm for models with
less symmetries. That this belief is erroneous has been
demonstrated in [2]. At least in the case of cosmological
models of Bianchi type IX, into which the closed FRW
models are naturally embedded, there exists a rigorous
result by Lin and Wald [3]: Assuming the dominant energy
condition, i.e., jpij � � for the anisotropic pressures p1,
p2, and p3, and non-negative average principal pressure p,
i.e., 3p ¼ ðp1 þ p2 þ p3Þ � 0, then the ‘‘closed-universe-
recollapse conjecture’’ [2] holds. In the locally rotationally
symmetric (LRS) case with isotropic matter, it is sufficient
to require that �þ 3p � �� for an arbitrarily small � > 0;
see [4]. (Note that if p=� ! �1=3, models exist that
expand forever approaching the Einstein static universe
in the limit.)

In this paper, we approach the problem from a different
direction by investigating cases where closed-universe rec-
ollapse does not hold. We prove that there exist cosmo-
logical models (of Bianchi type IX) satisfying the strong

energy condition that do not recollapse but expand forever.
Two points are important to emphasize: (i) For these
models the strong energy condition is satisfied ‘‘by a
wide margin.’’ The assumption we make is that w ¼ p=�

is a constant, i.e., w ¼ const>�1=3; however, w< ð1�ffiffiffi
3

p Þ=3 � �0:244, hence the average pressure is not posi-
tive. (ii) We prove the existence of a typical class of models
that expand forever (where typical is understood in the
sense of an open set of initial data of the Einstein equa-
tions). An interesting observation is that these cosmologi-
cal models exhibit partial (i.e., directional) accelerated
expansion for late times.
As a matter of course, we do not propose the cosmo-

logical models we analyze as actual models of the
Universe. However, we want to emphasize that the matter
model we consider is not ‘‘exotic’’ [5], i.e., it satisfies all
the standard energy conditions (weak, strong, and domi-
nant), as opposed to certain exotic matter models in cos-
mology (e.g., phantom fields and dark energy, see for
instance [6,7]; the breaking of the energy conditions stems
from the aim to account for the accelerated expansion of
the Universe). The properties of the matter source we
consider in this paper resemble those of collisionless mat-
ter, elastic matter, and magnetic fields in regards to their
fundamental aspects [8,9]. Classes of models encompass-
ing these important examples (or a subset thereof) have
been the basis of previous work; see, e.g., [10]. Another ex-
plicit example, an example that satisfies our concrete as-
sumptions, is the anisotropic fluid model [11]. For the
models we consider the anisotropic pressures (parallel
and perpendicular pressure) are required to satisfy certain
bounds (that are compatible with the energy conditions). In
particular, the isotropic pressure (average pressure) de-
pends linearly on the energy density, as is usual for perfect
fluids, where the proportionality constant is strictly larger
than � 1

3 . Note, however, that the approach we take does

not require one to specify a concrete matter model as long
as the basic assumptions of [8,9] and the necessary bounds
on the anisotropic pressures are satisfied. Finally, note that
the restriction to matter sources of the general type of [8,9]
might yield a special case of the closed-universe-recollapse
conjecture and, in view of the results of this paper, lead to
specific bounds on the matter quantities.
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Let us briefly comment on the approach we take. We use
the dynamical systems approach to spatially homogeneous
cosmologies [12]. However, as we will see, it is essential to
avoid the standard Hubble-normalized variables—the re-
sults we present here are rather elusive in that approach.

For models of Bianchi type IX the metric can be written
as

ds2 ¼ �dt2 þ gijðtÞ!̂i!̂j; (1)

where f!̂1; !̂2; !̂3g is a symmetry-adapted coframe satis-
fying d!̂1 ¼ �!̂2 ^ !̂3 (and cyclic permutations). The
Einstein equations comprise evolution equations for the
metric, @tgij ¼ �2gilk

l
j, and for the extrinsic curvature

kij; see, e.g., [12]. The Gauss constraint reads 3Rþ
ðtrkÞ2 � kijk

j
i ¼ 2�, where � ¼ �T0

0 is the energy den-

sity associated with the energy-momentum tensor T�
� and

3R the scalar three-curvature. In the vacuum case or or-
thogonal perfect fluid case the metric is diagonal, i.e.,
gijðtÞ ¼ diagðg11ðtÞ; g22ðtÞ; g33ðtÞÞ; in the LRS case we

have g22ðtÞ � g33ðtÞ. We restrict ourselves to diagonal
metrics even if the matter source is anisotropic.

In the diagonal case, an anisotropic matter source is
characterized by an energy-momentum tensor with Ti

j ¼
diagðp1; p2; p3Þ. The ‘‘isotropic pressure’’ p is the average
of the anisotropic pressures p1, p2, and p3, i.e., trT ¼ 3p.
Define w and wi, i ¼ 1, 2, 3, according to

p ¼ w�; pi ¼ wi�; (2)

obviously, w1 þ w2 þ w3 ¼ 3w. Matter that is consistent
with LRS symmetry satisfies w2 ¼ w3. For perfect fluids,
w1 ¼ w2 ¼ w3 ¼ w, where w is typically assumed to be a
constant. In this paper we consider anisotropic matter that
generalizes perfect fluid matter: We assume that the energy
density and the isotropic pressure satisfy a linear equation
of state, w ¼ const, where the strong energy condition is
supposed to hold, i.e., w>�1=3. The rescaled anisotropic
pressures, w1, w2, and w3, are assumed to be functions of
the metric via ðs1; s2; s3Þ, where
sk ¼ gkkðg11 þ g22 þ g33Þ�1 ðno sum over kÞ; (3)

obviously, s1 þ s2 þ s3 ¼ 1. The functions

wk ¼ wkðs1; s2; s3Þ (4)

are such that there exists an isotropic state of the matter
where w1 ¼ w2 ¼ w3 ¼ w, and remain bounded (and take
limits) under extreme conditions (when one or more of the
si are zero). In particular, there exists a constant v� such
that w1ð0; s2; s3Þ ¼ w2ðs1; 0; s3Þ ¼ w3ðs1; s2; 0Þ ¼ v�.
There exist excellent examples for matter models of this
type, e.g., collisionless matter, elastic matter, or magnetic
fields; for a detailed discussion we refer to [9].

Let us define the Hubble scalar H as H ¼ �trk=3 and
the shear tensor ð�1; �2; �3Þ as the traceless part of the
extrinsic curvature, i.e., kii ¼ �H � �i (no sum over i);
�1 þ �2 þ �3 ¼ 0. Furthermore, we introduce the ‘‘den-

sitized metric’’ ðn1; n2; n3Þ by nk ¼ gkkðdetgÞ�1=2; note
that nk > 0. Then the Einstein equations can be expressed
as evolution equations for H, ð�1; �2; �3Þ, and ðn1; n2; n3Þ
plus one constraint, which can be used to express � in
terms of the other variables; this leads to the fact that the
matter enters the equations only via w and w1, w2, w3.
In the LRS case, which we will focus on henceforth,

there exists a plane of rotational symmetry, which we
choose to be spanned by the second and the third frame
vectors. Accordingly, n2 ¼ n3 and �2 ¼ �3 as well as
s2 ¼ s3; consistently, the matter satisfies w2 ¼ w3. Let
� :¼ �2 and let s :¼ s2; then

ð�1; �2; �3Þ ¼ ð�2�;�;�Þ;
ðs1; s2; s3Þ ¼ ð1� 2s; s; sÞ: (5)

Equation (3) implies s ¼ ð2þ n2=n1Þ�1, so that s 2
ð0; 1=2Þ. Finally we abbreviate the rescaled anisotropic
pressure in the plane of rotational symmetry by u; more
specifically,

uðsÞ :¼ w2ð1� 2s; s; sÞ: (6)

The Einstein equations can then be expressed in the vari-
ables H, �, n1, and n2, where uðsÞ appears in these
equations.
In the dynamical system approach to cosmology the

Einstein equations are expressed in terms of normalized
variables. We define the ‘‘dominant variable’’ D, see, e.g.,
[4], by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ n1n2

3

r
; (7a)

and we introduce normalized variables according to

�D ¼ �

D
; r ¼ n1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21
D2

þ n22
9D2

s
; (7b)

in addition we use the variable

s ¼
�
2þ n2

n1

��1
: (7c)

Further, we define a normalized energy density �D ¼
�=ð3D2Þ, and we replace the cosmological time t by a
rescaled time variable � through

d

d�
¼ 1

D

d

dt
: (8)

Henceforth, a prime denotes differentiation with respect to
�.
The evolution equation for H is

H0 ¼ � 1

D
ðH2 þ qDD

2Þ; (9)

where qD is given by qD ¼ 2�2
D þ ð1=2Þð1þ 3wÞ�D.

This leads to an important remark: Eq. (9) implies that H
is decreasing if H ¼ 0, i.e., H0jH¼0 ¼ �qDD

�1 < 0;

SIMONE CALOGERO AND J. MARK HEINZLE PHYSICAL REVIEW D 81, 023520 (2010)

023520-2



therefore, a cosmological model with Hð�0Þ> 0 at some
time �0 satisfies Hð�Þ> 0 8 � � �0. Consequently, by
proving the existence of models that satisfy Hð�Þ> 0 for
all sufficiently large �, we prove the existence of models
with H > 0 and thus positive expansion for all times.

It is not difficult to prove that the transformation (7)
between the ‘‘metric variables’’ H, �, n1, n2 and the
dynamical systems variables D, �D, r, s is one to one on
the set H > 0. (This is sufficient for our purposes, see the
previous remark.)

Expressed in the variables D, �D, r, and s, the Einstein
evolution equations split into a decoupled equation for D,

D0 ¼ �DðHDð1þ qDÞ þ �Dð1�H2
DÞÞ; (10)

and a system of coupled equations for the normalized
variables (7b) and (7c),

r0 ¼ r

�
2HDðqD �HD�DÞ � 54�Ds

2

1� 4sþ 13s2

�
; (11a)

�0
D ¼ �ð2� qDÞHD�D � ð1�H2

DÞð1��2
DÞ

þ 1
3N

2
1D þ 3�DðuðsÞ � wÞ; (11b)

s0 ¼ �12sð12 � sÞ�D; (11c)

where qD ¼ 2�2
D þ 1

2 ð1þ 3wÞ�D, and HD ¼ HDðr; sÞ
and N1D ¼ N1Dðr; sÞ are functions of r and s, see (13).
The Gauss constraint reads

�2
D þ 1

12N
2
1Dðr; sÞ þ�D ¼ 1; (12)

it is used to solve for �D. The functions HDðr; sÞ and
N1Dðr; sÞ are

HD :¼ H

D
¼ HDðr; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

1� 2sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sþ 13s2

p
s

; (13a)

N1D :¼ n1
D

¼ N1Dðr; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sþ 13s2

p
s

; (13b)

in particular, HDðr; sÞ and N1Dðr; sÞ are well defined and
regular on the preimage of the set Rþ � Rþ. [We refrain
from going into details in this paper, since we merely use
that (13) is well behaved for sufficiently small r; however,
we may refer to [8].]

More common than (7) is the Hubble-normalized ap-
proach, see, e.g., [12], where the Hubble scalar H is
employed instead of D to construct scale-invariant varia-
bles and a simpler set of normalized variables is used
instead of (7b) and (7c). Although the resulting equations
are simpler than (11), we do not have a choice; we will see
that the Hubble-normalized approach necessarily fails to
uncover our results.

The dynamical system (11) completely describes the
dynamics of locally rotationally symmetric cosmological
models of Bianchi type IX in their expanding phase (H >
0). In other words, each solution of (11) yields an LRS
Bianchi type IX model in its expanding phase, and con-
versely, the expanding phase of each model is represented

by a solution of (11). The main advantage of the system
(11) over other representations of the Einstein equations
lies in its extendability: The system (11) possesses a regu-
lar extension to its boundaries �D ¼ �1, s ¼ 0, s ¼ 1

2 ,

and r ¼ 0.
The function uðsÞ in (11b) encodes the properties of the

matter model. For isotropic matter we have uðsÞ � w; for
anisotropic matter, uðsÞ represents the rescaled anisotropic
pressure in the plane of local rotational symmetry, cf. (6);
recall that s 2 ½0; 1=2�. Fromw2ðs1; 0; s3Þ ¼ v� we obtain
uð0Þ ¼ v�, cf. (5) and (6). The value of u at s ¼ 1=2 is not
independent; to see this recall first that w1 þ 2w2 ¼ 3w;
now, s ¼ 1=2 corresponds to ðs1; s2; s3Þ ¼ ð0; 1=2; 1=2Þ, so
w1ð0; 1=2; 1=2Þ þ 2w2ð0; 1=2; 1=2Þ ¼ 3w; hence,
w1ð0; s2; s3Þ ¼ v� results in v� þ 2uð1=2Þ ¼ 3w.
Summarizing,

uð0Þ ¼ v�; uð1=2Þ ¼ wþ ð1=2Þðw� v�Þ: (14)

For reasonable matter models like collisionless matter,
elastic matter, or magnetic fields, uðsÞ is a monotone
function on ½0; 1=2� interpolating between the values
(14); we refer to [9] for examples. It is often beneficial to
use the anisotropy parameter � instead of the constant v�;
it is defined as

� ¼ 2ðw� v�Þ
1� w

: (15)

Finally, let us state the assumptions on the matter model
we consider in this paper. We assume that

� 1

3
<w<

1� ffiffiffi
3

p
3

� �0:244; (16)

hence the strong energy condition is satisfied. Furthermore,
v� is assumed to satisfy

1
6 ð1þ 6w�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3þ ð1� 3wÞ2

q
Þ< v�

v� < 1
6ð1þ 6wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3þ ð1� 3wÞ2

q
Þ:

(17)

The admissible domain of the parameters w and v� is
depicted in Fig. 1. Clearly, the dominant energy condition
is satisfied since the rescaled anisotropic pressure v�
(which is the pressure in the plane of symmetry) and its
counterpart vþ ¼ 3w� 2v� (which is the pressure in the
orthogonal direction) satisfy jv�j< 1.
Since the dynamical system (11) extends regularly to

r ¼ 0 it is suggestive to analyze the system induced on that
surface. From (13) we obtainHDjr¼0 ¼ 1,N2

1Djr¼0 ¼ 0, so
that (12) becomes �D ¼ 1� �2

D. This in turn implies
qD ¼ 1

2 ð1þ 3wÞ þ 3
2 ð1� wÞ�2

D. Insertion into (11) yields

�0
D ¼ �3ð1� �2

DÞð12ð1� wÞ�D � ðuðsÞ � wÞÞ; (18a)

s0 ¼ �12�Dsð12 � sÞ: (18b)

The state space for this two-dimensional dynamical system
is ½�1; 1� � ½0; 1=2�. The dynamical systems analysis is
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straightforward. We use that uðsÞ is a function such that
uð0Þ ¼ v� and uð1=2Þ ¼ wþ ðw� v�Þ=2; here, w and
v� are assumed to satisfy (16) and (17), respectively.

We focus our attention on the fixed point R of (18),
which is given by

R: r ¼ 0; s ¼ 0; �D ¼ ��: (19)

It is straightforward to prove that R is a sink for the flow of
the system (18), because

s�1s0jR ¼ 6�< 0; (20a)

ð�D þ �Þ�1ð�D þ �Þ0jR ¼ �3
2ð1� �2Þð1� wÞ< 0;

(20b)

hence the eigenvalues of the linearization of (18) at R are
negative.

The crucial property of the fixed point R is revealed by
considering the full system (11): R is a sink not only on the
boundary r ¼ 0, but also for the full system (11). To see
this we simply compute

r�1r0jR ¼ 2ð32ð1� wÞ�2 þ 1
2ð1þ 3wÞ þ �Þ< 0 (20c)

and use (17) to establish that the right-hand side is
negative.

Since the fixed point R is a sink for the flow of the
system (11), i.e., for LRS Bianchi type IX models with
anisotropic matter satisfying (16) and (17), there exists an
open subset of LRS type IX initial data such that the
corresponding solutions converge to R. Because HD ¼ 1
at R we infer from (13a) that H is positive for these
solutions for late times; by the remark following (9) we
obtain that H is positive, i.e., these models are expanding
for all times.

In the following we analyze the asymptotic behavior of
these forever expanding LRS type IX solutions in terms of
the metric variables: For a solution of (11) that converges
to the point R we find r ! 0, s ! 0, �D ! ��, hence

HD ! 1, N1D ! 0 by (13). Furthermore, N2D :¼ n2=D !
1; to see this we first note that s ! 0 implies s	 N1DN

�1
2D

by (7c). Then, from N1D 	 ffiffiffiffiffi
rs

p
, see (13b), we conclude

that N2D 	 ffiffiffiffiffiffiffi
r=s

p
. Using that s�1s0jR ¼ 6�, cf. (20a), and

r�1r0jR ¼ 2ðqþ �Þ, cf. (20c), where
q :¼ qDjR ¼ 3

2ð1� wÞ�2 þ 1
2ð1þ 3wÞ;

we finally get N�1
2DN

0
2DjR ¼ q� 2�> 0, and the claim

follows. The fact that N2D ¼ n2=D ! 1 implies that
N2 :¼ n2=H ! 1 as � ! 1 since H ’ D in the limit
(because HD ¼ H=D ¼ 1). This property is completely
unproblematic here, but makes the treatment of the prob-
lem extremely difficult in the standard Hubble-normalized
approach.
For large �, the shear variables are �1 ¼ �2� ¼

�2D�D ’ 2D� and �2 ¼ �3 ¼ � ¼ D�D ’ �D�. To
obtain the metric we integrate @tgkk ¼ 2gkkðH þ �kÞ
(which is a consequence of @tgij ¼ �2gilk

l
j). In the first

step we note that H ¼ HDD ¼ D so that the equation
reads @tgkk ¼ 2gkkðDþ �kÞ, i.e.,
@�g11 ¼ 2g11ð1þ 2�Þ; @�g22 ¼ 2g22ð1� �Þ: (21)

Second, we integrate D�1D0jR ¼ �ð1þ qÞ and (8) to get
� ¼ ð1þ qÞ�1 logðt� t0Þ þ �0 with constants �0 and t0.
Therefore, (21) leads to an asymptotic behavior of the
metric represented by

g11 / ðt� t0Þ½2ð1þ2�Þ=ð1þqÞ�;

g22 / ðt� t0Þ½2ð1��Þ=ð1þqÞ� (22)

as t ! 1. Note that � is negative, but 1þ 2� is positive,
which is a consequence of (17). An interesting observation
is the occurrence of partial (directional) accelerated expan-
sion. A straightforward calculation reveals that ð1�
�Þ=ð1þ qÞ> 1; hence lengths in the plane of local rota-
tional symmetry expand at an accelerated rate. The maxi-
mal rate of acceleration is obtained by maximizing
ð1� �Þ=ð1þ qÞ over the domain depicted in Fig. 1; the
maximal value of ð1� �Þ=ð1þ qÞ � 1:112 is attained for
w close to �1=3.
We conclude by restating the main result: The behavior

(22) is typical, i.e., there exists an open set of LRS type IX
initial data such that the associated solutions of the
Einstein equations with anisotropic matter behave as (22)
as t ! 1 and thus expand forever. (These solutions do not
behave extraordinarily in other respects; for instance, there
exist forever expanding solutions that isotropize toward the
singularity.) In this sense, eternal expansion is as likely as
recollapse in the case of LRS Bianchi type IX with aniso-
tropic matter that satisfies the conditions (16) and (17), and
thus, in particular, the strong energy condition.

We gratefully acknowledge the hospitality of the Mittag-
Leffler Institute, Sweden. S. C. is supported by Ministerio
Ciencia e Innovación, Spain (Project No. MTM2008-
05271).

FIG. 1. The admissible values of the rescaled isotropic pres-
sure w and v�, vþ ¼ 3w� 2v�, which represent (the extremes
of) the rescaled anisotropic pressures in the plane of symmetry
and orthogonal to it, respectively. Both the strong and the
dominant energy condition are satisfied. ð1� ffiffiffi

3
p Þ=3 � �0:24.
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