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We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms

added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates

are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these

homogeneous and anisotropic cosmological models from its natural initial state and evaluate the

deviations they will create from statistical isotropy in the fluctuations produced during a period of

anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of

approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable

anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale

invariant and the level of statistical anisotropy will grow with scale.
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I. INTRODUCTION

The observations of the cosmic microwave background
(CMB) made by WMAP and ground-based detectors are in
good general agreement with the expectations of a post-
inflationary universe containing a residual quintessence
field [1,2]. However, the data quality has led to a focus
upon the presence of several unexpected features of the sky
maps as well as a search for any evidence of non-
Gaussianity in their statistics [3]. In particular, there have
been studies of the significance and possible explanations
for a lower than expected power in the quadrupole signal
[4], possible alignments between low multipoles giving
rise to a preferred direction, or ‘‘axis,’’ on the sky [5]
that can arise in some anisotropic universes [6], and an
apparent asymmetry between the northern and southern
ecliptic hemispheres [7]. These deviations from statistical
isotropy in the data are hard to assess definitively by means
of a posteriori statistics and may be due to unnoticed
biases in the foreground subtraction, but careful studies
of this potential problem have yet to find evidence of such
an effect at a level which can explain the observations [8].
A detailed study of the evidence for homogeneous statis-
tical anisotropy in the CMB has been conducted by Hanson
and Lewis [9], who use quadratic maximum-likelihood
estimators to analyse Gaussian models with statistical
anisotropy and realistic sources of instrumental noise.
They find evidence for anisotropy in the power spectrum
with a large angular dependence for the quadrupole,
aligned close to the ecliptic plane. Since this is the plane
in which the satellite moves there is a suspicion that this
observed asymmetry may be associated with a systematic
instrumental effect or a beam ellipticity which is not
corrected for in the CMB maps analyzed.

There have been several attempts to explore the possi-
bility that small anisotropic features might be imprinted
upon the primordial fluctuation spectrum by the process of
inflation. In the standard general relativistic model of in-
flation driven by scalar fields which violate the strong-
energy condition during a period of slow rolling, this
would only be possible in the very earliest moments of
inflation if the prior state was one of extreme expansion-
and curvature-anisotropy because the dynamics rapidly
approach those of the de Sitter metric in the presence of
a positive effective cosmological constant. This situation is
studied in Ref. [10], but only for the simplest form of
expansion anisotropy ignoring the effects of collisionless
particles [11] and curvature anisotropies [12,13], which
both make the residual effects larger. It is also possible to
induce local expansion anisotropies by the presence of
superhorizon scale inhomogeneities, and this scenario is
explored by Gao [14]. If we change the underlying infla-
tionary model by adding a vector field [15–17], a Chern-
Simons or Kalb-Ramond field [18], or some quadratic
curvature corrections to the gravitational Lagrangian
[19], then the situation can change. Effective stresses are
created which (unlike the scalar inflaton field in general
relativity) can violate the dominant or the weak-energy
conditions as well as the strong-energy condition. Under
these circumstances the de Sitter metric may no longer be
an attractor during accelerated expansion and anisotropic
inflationary behavior might even be possible. Anisotropic
inflation is only possible in general relativity with a posi-
tive cosmological constant and matter that obeys the strong
energy condition if the 3-curvature is positive. There is a
known exact S1 � S2 Kantowski-Sachs universe of this
type [20] which expands forever, with exponential expan-
sion of its scale factors in two directions and a constant
scale factor along the third. This model has been used in a
study of inflation [21], however, its anisotropic behavior is
unstable within this class of Kantowski-Sachs models and
to the addition of matter fields [22].
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In this paper we are interested in the situation where a
quadratic Ricci term, R��R

��, is added to the Einstein-

Hilbert term. We have already shown [23] that in the
resulting theory with positive cosmological constant it is
possible to find simple exact spatially homogeneous cos-
mological models of Bianchi type I which inflate aniso-
tropically. Here we explore these solutions in more detail
and show that the same cosmological models also possess
an exact de Sitter attractor solution. However, the evolution
towards the de Sitter attractor from an earlier state of
anisotropic inflation is unusually slow and there is ample
opportunity for anisotropic statistical effects to be im-
printed upon the fluctuation spectrum created by the accel-
erated expansion. These anisotropies will be larger at
earlier times in the inflationary phase and therefore will
imprint greater anisotropic effects on larger scales than on
smaller ones. This model is mathematically simple, with
Euclidean space sections, and provides a useful testing
ground for computing more detailed effects of anisotropic
inflation on the scalar and tensor irregularity spectra. It
allows us to determine the sense and relative magnitudes of
explicit expansion anisotropies during a period of volume
inflation in which the orthogonal scale factors expand by
different exponential time factors.

Usually inflation is considered to be driven by an iso-
tropic scalar field; here we will consider a simple cosmo-
logical constant as an example of such an effect. The
models can easily be extended to include isotropic scalar
fields of this kind, however, this may require additional
fine-tuning for the scalar field to come to dominate the
expansion dynamics at the right time. This is also the case
for fðRÞ effects through the standard conformal transfor-
mation [24]. The effects from the quadratic Ricci term, on
the other hand, are different as they allow for anisotropic
degrees of freedom—indeed, a quadratic Ricci term is the
main source of the anisotropic inflation considered in this
paper.

II. A BIANCHI TYPE I MODEL

Our starting point is the equations of motion using a
dynamical systems approach. For the Bianchi type I (and
II) models, these are given in [23]. We will consider the
quadratic theory where the Einstein-Hilbert action is modi-
fied:

SG ¼ 1

2�

Z
M
d4x

ffiffiffiffiffiffi
jgj

q
ðRþ �R2 þ �R��R

�� � 2�Þ:

Upon variation, the equations of motion are the modified
Einstein equations:

G�� þ��� þ�g�� ¼ 0; (1)

where G�� ¼ R�� � ð1=2ÞRg�� is the regular Einstein

tensor, and

��� ¼ 2�RðR�� � 1
4Rg��Þ þ ð2�þ �Þ

� ðg��h�r�r�ÞRþ �hðR�� � 1
2Rg��Þ

þ 2�ðR���� � 1
4g��R��ÞR��; (2)

and h � r�r�. We note that the GR-limit can be ob-

tained by letting ð�;�Þ ! ð0; 0Þ. Now consider the spa-
tially homogeneous Bianchi type I metrics. We can always
write their metric line elements as

ds2 ¼ �dt2 þ �ab!
a!b;

where !a is a triad of one-forms which, for the Bianchi
type I model, can be written as !a ¼ eaiðtÞdxi.
Defining the timelike hypersurface-orthogonal vector

u ¼ @=@t, we can define the Hubble scalarH and the shear
�ab as follows:

H � 1
3u

�
;�; �ab ¼ uða;bÞ �H�ab:

We will also restrict attention to cosmological models
where the shear is diagonal, so we can write

�ab ¼ diagð�2�þ; �þ þ ffiffiffi
3

p
��; �þ � ffiffiffi

3
p

��Þ:
We define the dimensionless expansion-normalized var-

iables by scaling out appropriate powers of H

B ¼ 1

ð3�þ �ÞH2
; 	 ¼ �

3�þ �
; Q ¼ _H

H2
;

Q2 ¼
€H

H3
; �� ¼ �

3H2
; �� ¼ ��

H
;

��1 ¼ _��
H2

; ��2 ¼ €��
H3

:

(3)

Note the presence of time derivatives of the variables Q2

and ��2; this reflects the 4th order time derivatives in the
field equations of the quadratic theory [25]; 	 is a constant.
We also introduce the dynamical time variable 
 by

d


dt
¼ H;

and note that sinceH ¼ _a=a, the dynamical time is related
to the length scale as a ¼ ‘0e


, where ‘0 > 0 is constant.
We also assume that the cosmological constant is positive:
�� > 0.
The full set of dynamical equations for the Bianchi type

I model (and type II model) are given in [23]. In [23] it was
shown that there exists a peculiar set of solutions for this
theory, namely, a set of anisotropically inflating solutions.
A stability analysis of these solutions was also performed.
Here, we intend to study these solutions further; in par-
ticular, we will investigate their possible influence on any
statistical relic anisotropy at the end of inflation.
For later reference, let us also give the equations of

motion. We will, for simplicity, consider the invariant sub-
space when ð�þ;��Þ / ð�þ1;��1Þ / ð�þ2;��2Þ. This
enables us to write:
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ð�þ;��Þ ¼ �ðcos�; sin�Þ;
ð�þ1;��1Þ ¼ �1ðcos�; sin�Þ;
ð�þ2;��2Þ ¼ �2ðcos�; sin�Þ; �0 ¼ 0:

(4)

The equations of motion are now:

B0 ¼ �2QB; (5)

�0
� ¼ �2Q��; (6)

Q0 ¼ �2Q2 þQ2; (7)

Q0
2 ¼ �3ðQþ 2ÞQ2 � 9

2
ðQþ 2ÞQ

� 3

4
B

�
1þ�2 ��� þ 2

3
Q

�
� 3

2
ð1þ 2	Þ�4

� 1

4
ð8þ 	Þ�2

1 � ð4� 	Þ��1

� 1

4
ð4� 	Þð3�2 þ 2��2 þ 2Q�2Þ; (8)

�0 ¼ �Q�þ �1; (9)

�0
1 ¼ �2Q�1 þ �2; (10)

�0
2 ¼ �3ðQþ 2Þ�2 þ �1

	
½B� ð11	� 8Þ þ 4Qð1� 	Þ

þ 4�2ð1þ 2	Þ� þ�

	
½3Bþ ð4� 	Þð6þQ2 þ 7QÞ

þ 4ð1þ 2	Þð3�2 þ 2��1Þ� (11)

These equations are subject to the (‘‘Friedmann-like’’)
constraint:

0 ¼ Bð1��� ��2Þ þ 12Q� 2Q2 þ 4Q2

� ð4� 	Þð3þ 2QÞ�2 � 6ð1þ 2	Þ�4

� 	ð�2
1 � 2��2Þ þ 4ð2þ 	Þ��1: (12)

The parameter Q is related to the usual deceleration
parameter q via

q ¼ �ð1þQÞ;
and the variable B measures how greatly the quadratic part
of the Lagrangian dominates over the general-relativistic
Einstein-Hilbert term R� 2�. In particular, the larger the
value of B, the ‘‘closer’’ we are to GR. The B ¼ 0 case
corresponds to a purely quadratic Lagrangian theory whose
equations of motion reduce to ��� ¼ 0.

The inflating solutions

We will now focus on two (sets of) solutions, namely,
the de Sitter solution and the anisotropically inflating type I
solutions.

The de Sitter solution, dS: The de Sitter solution is
characterized by the critical points where

Q ¼ Q2 ¼ �� ¼ ��1 ¼ ��2 ¼ N ¼ 0;

�� ¼ 1; B � 0:

Its stability is assured if [23]

B> 0 ) ð3�þ �Þ> 0;

Bþ 2ð4� 	Þ
	

< 0 ) 1þ 2�ð4�þ �Þ
�

< 0:

Anisotropically inflating type I universes, AðIÞ: For
certain values of 	 and B, there are also exact solutions
that describe anisotropic inflationary solutions of Bianchi
type I [23]:

ð�þ;��Þ ¼ �ðcos�; sin�Þ;

�2 ¼ �2
0 � � 2ð4� 	Þ þ B

4ð2	þ 1Þ ;

Q ¼ ��1 ¼ ��2 ¼ N ¼ 0:

There are two classes of such solutions, depending on the
values of B and ��. Here we will concentrate on the
following:

B ¼ const; �� ¼ 18	� B

8ð2	þ 1Þ :

So long as 	 and B take values for which �2
0 > 0, these

solutions exist. Moreover, the solution is unstable, but for
B> 0 contains only one unstable mode.
The metrics corresponding to the case where B � 0 can

be written

ds2 ¼ �dt2 þ e2bt½e�4�þtdx2 þ e2ð�þþ
ffiffi
3

p
��Þtdy2

þ e2ð�þ�
ffiffi
3

p
��Þtdz2�;

b2 ¼ 1þ 8�ð�þ �Þ
9�

;

ð�2þ þ �2�Þ ¼ � 1þ 2�ð4�þ �Þ
18�

: (13)

We note that for these solutions to exist we need both these
squares to be positive. Furthermore, we require �2� þ
�2þ þ b2=2 ¼ �=3> 0.

III. ANISOTROPIC INFLATION

Based on the solutions above and their stability, there
are values of the parameters where AðIÞ exists, and the
de Sitter solution is stable. In fact, the connection is deeper
than this. Assuming B> 0, and �> 0, then if 	> 4,
AðIÞ is connected to dS via a bifurcation at B ¼ 2ð	�
4Þ. For B< 2ð	� 4Þ the de Sitter solution is unstable (1
unstable mode). As the value of B increases, dS bifurcates
at B ¼ 2ð	� 4Þ creating the equilibrium pointsAðIÞ. For
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B> 2ð	� 4Þ, AðIÞ has acquired the unstable mode and
made dS stable. Hence, the only unstable mode ofAðIÞ is
actually connected to the de Sitter solution and these infla-
tionary solutions should therefore be connected via a het-
eroclinic orbit (at least close to the bifurcation point). It is
this fact we shall exploit here because this opens up the
possibility that the universe approaches the pointAðIÞ and
so starts to inflate anisotropically. This state is almost
stable but it does have an unstable mode. This unstable
mode will therefore eventually drive the evolution away
from anisotropic inflation, towards isotropic inflation (rep-
resented by the stable point dS).

In Fig. 1 the evolution of universes with three different
initial values are plotted. The universes start to inflate
around 
 ¼ 0, at which Q � 0, however, as can be seen,
the shear is nonzero; hence, the universe starts inflating
anisotropically. During a transient period the universe can
stay arbitrary close to the anisotropically inflating point
AðIÞ; however, as we can see, eventually the universe will
move towards isotropic inflation. For the universes dis-
played, we see that during the time from 
 ¼ 0 to 
 ¼
60 (which corresponds to 60 e-folds), we have Q � 0 and
therefore they are inflating during the entire period, even if

the universes are undergoing a transition between aniso-
tropic inflation and isotropic inflation.
Interestingly, the smaller the shear is at 
 ¼ 0, the longer

it takes to enter the state of isotropic inflation. The reason
for this can be seen from the unstable mode ofAðIÞ. From
the eigenvalues derived in [23], we see that the unstable

mode goes as / expð�1
Þ, where �1 ¼ ð3=2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�2

0

q
�

1Þ. Consequently, the smaller the shear, the more time it
would take for the universe to enter a state of isotropic
inflation. Furthermore, since the universe inflates during
the transition, Q � 0 and the value of B � const.
Therefore, close to the de Sitter isotropic point the shear
will decay as � / expð�2
Þ where �2 can be estimated to
be

�2 � � 3

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 16ð2	þ 1Þ

9	
�2

0

s �
:

For small �0, this reduces to �2 � �4ð2	þ 1Þ�2
0=ð3	Þ.

This implies that the shear during the anisotropic inflation,
�0, is imprinted in the decay rate of the shear on the
approach to isotropic de Sitter state and the smaller the
shear �0, the slower the approach towards the isotropic
de Sitter inflation.
A consequence of this is that at the end of 60 e-folds

(
 ¼ 60), the universe may still have considerable amount
of shear in spite of the fact that the universe has inflated.
However, as we can see from Fig. 1, this shear can also be
arbitrary small.
In Fig. 2 the numerics have been started away from the

anisotropic inflationary solutions. With a bit of fine-tuning
we can see that the solutions experience a transient period

FIG. 1. Inflation: The evolution of Q and � with time, 
, for
universes with three different initial values. Here, we set 	 ¼ 6.

FIG. 2. The evolution of the dimensionless expansion-
normalized shear, �, with time, 
, for three universes starting
away from the inflating solutions. They experience a transient
period during which the universes inflate anisotropically. The
evolution displayed requires some fine-tuning but the plot illus-
trates that there is a set of nonzero measure that gives the desired
behavior.
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during which the universe inflates anisotropically. This
shows that there is a set of nonzero measure of initial
values that experience anisotropic inflation.

A. Consequences for the CMB

In Ref. [16], the imprints of a preferred direction on the
CMB was studied for an anisotropic model in which rota-
tional invariance is broken by the presence of a vector
picking out a preferred direction with unit vector n̂. If

parity is preserved ( ~k ! � ~k) then the leading order of
the anisotropic power spectrum has a quadrupole form,
with

Pð ~kÞ ¼ PðkÞ½1þ gðkÞðn̂ � k̂Þ2 þ higher order�;
where PðkÞ is the isotropic part of the power spectrum and
gðkÞ measures the power of the statistical anisotropy. If the
anisotropic contributions are scale independent then gðkÞ
will be a constant. However, this need not always be the
case, as in the study of anisotropies induced by super-
horizon inhomogeneities [14].

The model considered in Ref. [16] was an axisymmetric
anisotropically inflationary model. Our model allows for
axisymmetry in the special case �� ¼ 0 (the general case
has no rotational symmetry whatsoever). Their model ac-
tually corresponds to the exact equilibrium point, but in our
model this is unstable and evolves toward the isotropic
de Sitter state. In their eq. (39) they define the anisotropy
parameter H, which in our notation is just the dimension-
less shear distortion (in the special case �� ¼ 0):

gðkÞ / H � 2�þ
H

¼ 2�;

(recall that the dynamical time 
 is related to the scale
factor a through a ¼ a0e


). In our model gðkÞ will evolve
and so cause the perturbation spectrum to depend on the
time when each perturbation scale left the horizon. Hence,
the statistical anisotropy will not be scale invariant. In our
models the anisotropy is larger at the beginning of the
inflation which means that long wavelengths will be
more anisotropic than the short wavelengths.

B. Other Bianchi models

The model considered here is a very special Bianchi
model. However, the existence of anisotropic inflation
seems to be a widespread feature of quadratic theories of
gravity. In [26] we showed the existence of anisotropic
inflation for Bianchi type II models. Among the most
general Bianchi models are the Bianchi type VIh and
VIIh models and anisotropic inflation is also present there.
The following metrics can be shown to be solutions to
��� ¼ 0 in Eq. (1):

ds2 ¼ �dt2 þ dx2 þ e2rðtþxÞ½e2aðAdyþ BdzÞ2
þ e�2aðCdyþ AdzÞ2�:

Here, r and a are constants. For the various Bianchi types,
the functions A, B and C are as follows:
(1) Type VIIh: A ¼ cos½!ðxþ tÞ�, B ¼ �C ¼

sin½!ðxþ tÞ�.
(2) Type VIh: A ¼ cosh½!ðxþ tÞ�, B ¼ C ¼

sinh½!ðxþ tÞ�.
(3) Type IV: A ¼ 1, B ¼ !ðxþ tÞ, C ¼ 0.
There are no analogues of these solutions in general

relativity because they would violate the weak-energy
condition. Interestingly, these are also so-called plane-
wave spacetimes. We note that the 3-space volume expands
exponentially, V / expð2rtÞ in terms of the comoving
proper time, t; hence, these are indeed inflationary solu-
tions. However, as we see that one orthogonal direction is
actually fixed and does not expand at all.
The existence of such solutions for these Bianchi types

indicates that anisotropic inflation is a more general feature
of quadratic theories than previous thought and is present
in even the most general class of anisotropic universes,
which includes types VIh and VIIh.

IV. CONCLUSIONS

Simple Bianchi type I universes in gravity theories in
which the Einstein-Hilbert lagrangian is augmented by the
addition of terms quadratic in the scalar curvature (R2) and
Ricci invariant (R��R

��) display evolution that commen-

ces from a near-isotropic singularity. It mimics the behav-
ior of a radiation-dominated Friedmann universe [27] and
asymptotes towards a de Sitter late-time attractor.
However, the evolution spends a long time evolving slowly
through a period of anisotropic inflation during which the
3-volume expands exponentially in comoving proper time
and the three directional scale factors increase at different
rates. We display exact solutions which display this transi-
tional anisotropic inflationary behavior and show that it
does not arise in the general relativity limit when the
higher-order curvature terms vanish from the Lagrangian.
With a small amount of fine-tuning of the preinflationary
evolution this behavior can leave a distinctive imprint on
the spectrum of inhomogeneities created by any period of
inflation defined by the exponential increase in the 3-
volume. Using the characterization of the leading statisti-
cally anisotropic contribution to the power spectrum of
inhomogeneities that was introduced by Ackerman,
Carroll, and Wise [16], we determine the amplitude of
the statistical anisotropy in the spectrum and show that it
will not be scale invariant because the anisotropic effects
increase with scale.
There have been a number of studies of the possible

sources of statistical anisotropy in the power spectrum of
the microwave background. The most detailed study [9]
finds significant evidence for anisotropy but no proof that it
is primordial in origin. Our analysis identifies a broad class
of higher-order gravity theories in which there are solu-
tions that differ significantly from those in general relativ-
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ity. In particular, ever-expanding vacuum solutions with a
positive cosmological constant do not approach the
de Sitter solution. The higher-order curvature terms con-
tribute effective stress terms which violate the energy
conditions that are needed for the cosmic no hair theorems
of general relativistic cosmology to hold. Hence, they
allow new types of exact solution to exist in which different
directions accelerate at different rates. We have shown that
solutions of this anisotropic inflationary type also exist in
some of the most general Bianchi type universe and are not

confined to the type I case we have used for simplicity. In
the general Bianchi I universe we have studied, there is
attraction to an asymptotic de Sitter solution, as in general
relativity, but the evolution spends a large number of e-
folds of expansion in the neighborhood of an anisotropic
inflationary solution. The existence of such behavior near
the Planck scale and the persistence of anomalies in the sky
maps derived so far from observations of the microwave
sky suggest that there is a possibility the two are related.
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