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We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the

one-loop approximation. The fields consist of classical background fields, taken constant in space, and

quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of

particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t ¼ 0, its

most singular part behaves as 1=t. When the system is coupled to gravity this presents a problem that we

solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the

canonical formalism and the adiabatic particle number for such a system. Most of the formalism is

presented for Minkowksi space. Embedding the system and its dynamics into a flat Friedmann-Robertson-

Walker universe is straightforward and we briefly address the essential modifications.
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I. INTRODUCTION

The question of initial states in nonequilibrium quantum
field theory has found considerable interest recently [1–
12], on various grounds. As a very practical aspect it was
realized, in numerical simulations of quantum fields in
cosmology [2,13,14], that the energy-momentum tensor
had initial time singularities if the initial state was taken
as the naive Fock-space vacuum. These had to be removed
when coupling the field to gravity, e.g., in a Friedmann
universe. A more speculative aspect that has attracted some
interest recently was the question whether the choice of
initial state can be expected to leave an imprint in the
cosmic microwave background spectrum. In any case it
is a question of principle, to what extent the choice of
initial state is constrained in an interacting theory of par-
ticles by consistency requirements.

As a general aspect of quantum field theory, the problem
of initial conditions was realized long ago. It ultimately can
traced back to the fact that one switches on the interaction
at some time t ¼ 0. In the case of nonequilibrium dynam-
ics we have to impose initial conditions for the background
fields. In most applications the initial state was taken to be
the adiabatic vacuum, which would be the ground state if
all background fields were held fixed forever. When one
starts to evolve the system dynamically at least the second
derivative of the fields will be discontinuous on account of
the second order differential equation, which for t > 0
determines their evolution. In cosmology it is already the
first derivative of the scale parameter which for t > 0 is
determined by the Friedmann equation. Such singularities

have been noted for the first time by Stückelberg [15], they
are discussed briefly in the textbook of Bogoliubov and
Shirkov [16]. The phenomenon has been identified as a
kind of ‘‘Casimir effect’’ connected to the initial time
surface by Symanzik [17]. In the context of quantum field
theory out of equilibrium the presence of such singularities
has been noticed by various authors.
The solution proposed by Symanzik is the introduction

of surface counterterms in addition to the usual ‘‘bulk’’
counterterms of perturbative quantum field theory. In the
context of nonequilibrium quantum field theory this line
has been pursued in Refs. [9,10].
The introduction of initial time surfaces singles out the

particular time at which one starts the evolution to the
extent that the surface counterterms become part of the
field theory for t > 0. The approach of modifying the naive
initial vacuum state [2,8,18] seems to be more pragmatic;
the idea is to find the minimal requirements on an initial
state that could arise from a previous dynamical evolution.
The latter aspect is discussed in [19]. The technique used
for constructing such an initial state consists of finding a
Bogoliubov transformation of the naive adiabatic vacuum.
For the single-channel case and scalar fluctuations this has
been done in Ref. [2] and for fermion fluctuations in
Ref. [20]. These results were used in Refs. [14,21] in
formulating the renormalized equations in a flat
Friedmann-Robertson-Walker (FRW) universe.
Our approach is based on a mode function formalism

that has been introduced, for coupled channels, in
Ref. [22]. The formalism ensures the conservation of en-
ergy with one-loop or Hartree quantum backreaction and
has been renormalized along the lines of Ref. [23]. There
the initial state was chosen to be the adiabatic vacuum
based on a Fock space of particle excitations that diago-
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nalize the initial mass matrix. It is this initial state that we
will improve here. In Ref. [22] renormalization is based on
a perturbative expansion close to standard perturbation
theory, in the same way as in Ref. [23]. The same expan-
sion was used in Ref. [2] for analyzing the initial time
singularity. This analysis can be carried over in a straight-
forward way to the case of coupled fields. Most other
analyses of the singular early time behavior were based
on the eikonal expansion. An eikonal formalism for
coupled systems has been formulated recently [24]. We
are not aware, however, of an eikonal expansion for
coupled-channel systems.

The quantum expansion of the fluctuation fields is for-
mulated in such a way that the canonical commutation
relations hold for t ¼ 0. It was not discussed in Ref. [22]
how they continue to hold for t > 0. Though this is to be
expected, it is not entirely obvious, and in fact leads some
nontrivial relations for the fluctuation modes which prove
to be useful for our formalism. This is discussed in
Appendix B. Another approach to the canonical formalism
for coupled-channel systems was introduced in Ref. [24],
and this is another reason for verifying that the scheme of
Ref. [22] works correctly.

Though our main subject here is the choice of the initial
state, with hindsight of coupling the system to gravity, we
take the occasion for discussing the concept of adiabatic
particle number within our formalism. This is suggested by
the fact that we have to discuss Bogoliubov transforma-
tions for coupled systems anyway and that particle num-
bers are usually defined by the coefficients of these
transformations.

The paper is organized as follows: in Sec. II we intro-
duce the model we want to consider, a system of two
coupled quantum fields with masses and a general fourth
order potential. We define the decomposition into classical
and fluctuation fields and the evolution of the fluctuations.
In Sec. III we discuss the behavior of the Green’s function
at early times and construct a Bogoliubov transformation
in order to reduce the leading singular behavior such that
the leading time derivatives become finite at the initial
time. In Sec. IV we present the expectation value of the
energy-momentum tensor in the Bogoliubov-transformed
initial state. In Sec. V we discuss the concept of adiabatic
particle number. Some more technical subjects are trans-
ferred to the appendixes: the Bogoliubov transformation
for coupled systems in Appendix A and some aspects of the
canonical formalism in Appendix B.

II. THE MODEL

We consider a system of two coupled scalar quantum
fields with a Lagrangian density of the form

L ¼
�
1

2
@��i@

��i þ 1

2
m2

i �
2
i

�
þ �ij

4
�2

i �
2
j ; (2.1)

where the indices i, j take the values 1 and 2. The hybrid

model of inflation [25–27] with

L ¼ 1

2
@��@��þ 1

2
@��@

��þ 1

2
m2�2 þ �

4
ð�2 � v2Þ2

þ �

2
�2�2 (2.2)

is of this form with �11 ¼ 0, �12 ¼ �, �22 ¼ �, m2
1 ¼ m2,

and m2
2 ¼ ��v2. Also some models involving supersym-

metric flat directions [28,29] are of this type. The general-
ization to a general mass matrix and a general fourth order
potential is possible, but we do not want do overburden the
formalism with a profusion of indices. Also, the limitation
to two fields is not essential.
We separate the fields � into classical fields and fluctu-

ations via

�i ¼ ’i þ c i: (2.3)

The classical Lagrangian density then retains the form

L ð0Þ ¼
�
1

2
@�’i@

�’i þ 1

2
m2

i ’
2
i

�
þ �ij

4
’2

i ’
2
j ; (2.4)

while the fluctuation Lagrangian, of second order in the
fluctuations, becomes

Lð2Þ ¼
�
1

2
@�c i@

�c i þ 1

2
m2

i c
2
i

�

þ �ij

2
½’2

i c
2
j þ 2’i’jc ic j�: (2.5)

This can be written as

L ð2Þ ¼ X2
i¼1

�
1

2
@�c i@

�c i þ 1

2
M2

ijð’Þc ic j

�
; (2.6)

with

M 2
11 ¼ m2

1 þ 3�11’
2
1 þ �12’

2
2; M2

12 ¼ 2�12’1’2;

(2.7)

M 2
22 ¼ m2

2 þ 3�22’
2
2 þ �12’

2
1: (2.8)

If the field is coupled to gravity in a flat FRW universe,
the fluctuation mass matrix takes a similar form. After
conformal rescaling of fields and momenta (see, e.g.,
Refs. [13,30]) one just has to replace

m2
i !

�
m2

i þ
�
�i � 1

6

�
R

�
a2: (2.9)

Here a is the scale parameter, R the Ricci scalar, and the �i

are the conformal couplings.
In the following we restrict ourselves to homogeneous

background fields ’iðtÞ, so the mass matrix depends on
time only. In the FRW universe the time parameter is
conformal time, and we have an additional time depen-
dence via að�Þ and Rð�Þ.
We separate the fluctuation mass matrix into its initial

value and a ’’potential’’ V via
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M 2
ijðtÞ ¼ M2

ijð0Þ þV ijðtÞ: (2.10)

We diagonalize the initial mass matrix by

M 2
ijð0Þf�j0 ¼ m2

�0f
�
i0: (2.11)

The eigenvectors f�i0 are chosen to be real, and normalized

to unity:

X2
i¼1

f�i0f
�
i0 ¼ 	��: (2.12)

The Latin subscripts refer to the field components, as
before, and the Greek superscripts refer to the two inde-
pendent solutions of the eigenvalue equation. We now
define a set of mode functions f�i ðk; tÞ for homogeneous
background field in the following way:

(i) their time evolution is determined by

€f �
i ðk; tÞ þ k2f�i ðk; tÞ þM2

ijðtÞf�j ðk; tÞ ¼ 0;

(2.13)

(ii) the initial conditions are specified as

f�i ðk; 0Þ ¼ f�i0; (2.14)

_f �
i ðk; 0Þ ¼ �i��0f

�
i0; (2.15)

where we have introduced the frequencies

��0ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�0 þ k2
q

: (2.16)

The functions f�i ðk; tÞ form a set of linearly independent
solutions of the system of mode equations.

The fields c iðx; tÞ are quantum fields. For a homoge-
neous background we can expand them as

c iðx; tÞ ¼
X
�

Z d3k

ð2
Þ32��0

½a�ðkÞf�i ðk; tÞ

þ ay�ð�kÞf��i ðk; tÞ�eikx: (2.17)

The canonical commutation relations are

½a�ðkÞ; ay�ðk0Þ� ¼ ð2
Þ32��0ðkÞ	��	
3ðk� k0Þ: (2.18)

In the following we will need the two-point functions at the
coincidence limit, the ‘‘fluctuation integrals’’

F ijðtÞ ¼ h0jc iðx; tÞc jðx; tÞj0i

¼ X
�

Z d3k

ð2
Þ32��0ðkÞ
f�i ðk; tÞf��j ðk; tÞ: (2.19)

Here the expectation value is taken in the vacuum state of a
Fock space, whose quanta have the initial masses m�ð0Þ.
This is the ‘‘adiabatic vacuum,’’ defined by

a�ðkÞj0i ¼ 0 8 �;k: (2.20)

Of course this is not the ground state of the system, and the

creation and annihilation operators ay�ðkÞ and a�ðkÞ do not
create free particles with the masses mi. We discuss some
aspects of the canonical formalism in Appendix B; in
particular, we establish that the fluctuation integral as
defined above is real and symmetric in i and j, though
this is not apparent on the right-hand side of Eq. (2.19).

III. THE INITIAL TIME SINGULARITY OF THE
GREEN’S FUNCTION AND THE MODIFIED

INITIAL STATE

The quantum backreaction of the fluctuations onto the
classical fields can be derived using the closed-time-path
formalism [31,32]. For the quantum field theories that we
consider here, it has been formulated in several seminal
publications [18,33–36]. We do not repeat this here. If one
just considers the one-loop quantum backreaction the rele-
vant equations take a rather intuitive form. The equations
of motion for the classical fields become

€’1 þm2
1’1 þ �11’

3
1 þ �12’1’

2
2 þ 3�11’1F 11

þ �12’1F 22 þ 2�12’2F 12 ¼ 0; (3.1)

and an analogous equation for ’2. As will be analyzed
below, the fluctuation integralsF ijðtÞ are singular at t ¼ 0,

the time where we start the evolution. As t & 0 it behaves
as t lnt. Though this represents a mathematical singularity,
it is finite and even zero at t ¼ 0. So it will not prevent us
from starting a numerical simulation. The singular behav-
ior becomes a problem when we couple the field to gravity.
The dynamics of the FRW scale factor a is determined by
the energy-momentum tensor, which involves second time
derivatives of the two-point function. If one analyzes the
energy-momentum tensor, one indeed finds, near t ¼ 0, a
time dependence of the form 1=t in T

�
� . This then prevents

one from starting the dynamical evolution. Of course, even
in flat space this infinity is an undesirable and unphysical
feature of the energy-momentum tensor.
As the energy-momentum tensor is a rather involved

expression, especially after renormalization, we first con-
sider the fluctuation integral and find a way to remove its
initial singularity, such that its first and second time de-
rivatives at t ¼ 0 become finite. This requires less algebra
and, as we have seen previously [2], this is sufficient for
making the energy-momentum tensor finite near t ¼ 0.
The fluctuation integrals are ultraviolet divergent. The

divergences can be analyzed [23] by expanding with re-
spect to orders inV which is equivalent to expanding with
respect to the couplings �ij. This allows one to remove the

divergent parts and the dynamics is determined by the
remaining finite parts. A closer analysis shows that, on
the level of fluctuation integrals, the contributions of zeroth
and first order in V are ultraviolet divergent. One finds
[23], up to first order in V ,

INITIAL TIME SINGULARITIES AND ADMISSIBLE . . . PHYSICAL REVIEW D 81, 023509 (2010)

023509-3



F ij ¼
Z d3k

ð2
Þ3
X
�

1

2��0

f�i ðtÞf��j ðtÞ

’
Z d3k

ð2
Þ3
�X

�

1

2��0

f�i0f
��
j0 þX

��

1

2��0��0

f�i0f
�
j0

�
� 1

��0 þ��0

ðV ��ðtÞ �V ��ð0Þ cos½ð��0 þ��0Þt�Þ

þ 1

ð��0 þ��0Þ2
_V ��ð0Þ sin½ð��0 þ��0Þt� þ 1

ð��0 þ��0Þ3
ð €V ��ðtÞ � €V ��ð0Þ cos½ð��0 þ��0Þt�Þ

þ 1

ð��0 þ��0Þ3
Z

dt0V
:::

��ðt0Þ cos½ð��0 þ��0Þðt� t0Þ�
��
: (3.2)

Several integrations by parts have been performed in order to separate the high momentum power behavior. The first term
in the integrand is quadratically divergent, and the one proportional toV ðtÞ is logarithmically divergent. In the process of
renormalization these terms are removed and included in the mass and coupling constant renormalizations. The
contribution proportional to V ð0Þ vanishes as V ð0Þ ¼ 0 by definition, see Eq. (2.10). The terms proportional to _V ðtÞ
and €V ðtÞ are finite at all times. The nonanalytic parts are those proportional to _V ð0Þ and €V ð0Þ. Near t ¼ 0we find that the
momentum integrals which multiply _V ð0Þ and €V ð0Þ behave as

Z d3k

ð2
Þ3
1

2��0��0ð��0 þ��0Þ2
sin½ð��0 þ��0Þt� ’ � 1

8
2
t ln½ðm� þm�Þt�;

Z d3k

ð2
Þ3
1

2��0��0ð��0 þ��0Þ3
cos½ð��0 þ��0Þt� ’ 1

16
2
t2 ln½ðm� þm�Þt�:

So in general the first and second derivatives of the fluc-
tuation integrals would be infinite at t ¼ 0.

As we have mentioned previously there are two methods
for getting rid of this singular behavior: either one intro-
duces surface counterterms or one modifies the initial state.
Our approach is the second one, and we have formulated
this modification of the initial state as a Bogoliubov trans-
formation. The singular behavior is obviously related to the
large momentum behavior of the integrand. So the modi-
fication of the initial state will constrain only its ultraviolet
behavior. We are still free to modify it at finite momenta, or
with contributions that vanish sufficiently fast at large
momenta, as e.g. a thermal initial state.

The Bogoliubov transformation and its consequences for
the fluctuation integral are presented in detail in
Appendix A. The general concept implies that we replace
our naive initial state, the vacuum state for quanta of
masses mi0 by a transformed vacuum state, annihilated
by a superposition of annihilation operators a�ðkÞ and

creation operators ay�ð�kÞ. The essential formulas are:
(i) the definition of the transformation

~a �ðkÞ ¼
X
�

ffiffiffiffiffiffiffiffiffi
��0

��0

s
½C��a�ðkÞ � S��ay�ð�kÞ�;

(3.3)

(ii) the definition of a new vacuum state j~0i via

~a�ðkÞj~0i ¼
ffiffiffiffiffiffiffiffiffi
��0

��0

s
C��

�
�
a�ðkÞ�

ffiffiffiffiffiffiffiffiffi
��0

��0

s
���a

y
�ð�kÞ

�
j~0i ¼ 0;

(3.4)

where � ¼ C�1S is a symmetric matrix;
(iii) the definition of a matrix M�� which is introduced

via the expectation value of a�ðkÞay�ðk0Þ in the new
vacuum:

h~0ja�ðkÞay�ðk0Þj~0i ¼ ð2
Þ3	3ðk� k0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
�M��ðkÞ; (3.5)

and
(iv) the relation between � and M

M� �MT�y ¼ I; (3.6)

which ensures that the commutator of ~a�ðkÞ and ~ay�ðk0Þ is
canonical. All matrices which we have introduced here
depend on k ¼ jkj.
As derived in Appendix A, the fluctuation integral, when

evaluated in the Bogoliubov-transformed vacuum, takes
the form
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~F ijðtÞ ¼ h~0jc iðx; tÞc jðx; tÞj~0i

¼ 1

2

Z d3k

ð2
Þ3
X
�;�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q ½f�i ðtÞf�j ðtÞ��
M�


þ f�i ðtÞf��j ðtÞM�� þ f��i ðtÞf�j ðtÞ��
����M
�

þ f��i ðtÞf��j ðtÞ��
�M
��: (3.7)

We now have to determine � in such a way as to cancel
the initial singularities which are contained in the integral

over f�i ðtÞf��j ðtÞ. As discussed below Eq. (3.2) the danger-

ous contributions are those involving _V ��ð0Þ sin½ð��0 þ
��0Þt� and €V ��ð0Þ cos½��0 þ��0Þt�. They have to be

canceled by the terms proportional to � and �2 generated
by the Bogoliubov transformation. If one considers
Eqs. (3.6) and (3.7) one realizes that the determination of
� seems to be marred already by the nonlinear relation
betweenM and �. We have to realize, however, that there is

no unique choice for �, anyway. All we need is a cancel-
lation of the dangerous terms at large momenta. These
contributions are divided, in the integrand, by combina-
tions of ��0 and��0 which asymptotically behave as k�4

and k�5, respectively. So these terms become small asymp-
totically, and to get the correct asymptotic behavior of the
matrix elements of � we can work in the linear approxi-
mation. In this approximation we have M�� ’ 	��,

��
M�
 ’ ���, and M
��
�
���� ’ 0. Furthermore, we

can approximate f�i ðtÞ ’ f�i0 expð�i��0tÞ, whenever it ap-
pears multiplied by �. Corrections would be of order � �
V ; as V is of order � this would be of order �2.
When rewriting the fluctuation integral in the

Bogoliubov-transformed vacuum ~F ij we use the approx-

imations we have just mentioned. We further use the
expansion of f�i ðtÞf��j ðtÞ as it appears in Eq. (3.2), but we

remove the renormalization parts. We then obtain, to first
order in V and �

~F ij ’
Z d3k

ð2
Þ3
�X
�;�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q f�i0f
�
j0½���e�ið��0þ��0Þt þ ����eið��0þ��0Þt�

þX
�;�

1

2��0��0

f�i0f
�
j0

�
1

ð��0 þ��0Þ2
_V ��ð0Þ sin½ð��0 þ��0Þt� þ 1

ð��0 þ��0Þ3
ð €V ��ðtÞ � €V ��ð0Þ

� cos½ð��0 þ��0Þt�Þþ 1

ð��0 þ��0Þ3
Z

dt0V
:::

��ðt0Þ cos½ð��0 þ��0Þðt� t0Þ�
��
: (3.8)

The cancellation of the terms which would produce a
singularity at t ¼ 0 then requires

Im��� ¼ 1

2��0��0

1

ð��0 þ��0Þ2
_V ��ð0Þ; (3.9)

Re��� ¼ 1

2��0��0

1

ð��0 þ��0Þ3
€V ��ð0Þ: (3.10)

If the fields were independentV �� would be diagonal and
we would obtain (omitting the indices of the diagonal
elements)

Im�

Re�
¼ 2�0

_V ð0Þ
€V ð0Þ

(3.11)

and

j�j ¼ 1

8�3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_V ð0Þ2 þ

€V ð0Þ2
4�2

0

vuut
(3.12)

for the separate Bogoliubov transformations of the two
fields. This agrees in the approximation of large momenta
with the results for the one-field case, Eqs. (51) and (52) of

Ref. [2]. There it was possible to remove the contributions
proportional to _V ð0Þ and €V ð0Þ for all momenta. Here
these terms are canceled at large momenta only.
With Eqs. (3.9) and (3.10) we have obtained a solution to

our problem of initial singularities. We have to stress that
there is an infinite manifold of such solutions, differing,
e.g., by a different choice of initial occupation numbers at
finite momenta. They all have to share the same large
momentum behavior, however.
Once we have � we now must determineM, using (3.6),

without any approximation, because otherwise our trans-
formation would not be canonical. Though � appears non-
linearly, Eq. (3.6) is simply a system of four linear
equations for the matrix elements of M. Finally, the fluc-
tuation integral (3.7) has to be computed using the exact
numerical solutions f�i ðtÞ in all four terms of the integrand.
For the numerical computations it is preferable to imple-

ment the Bogoliubov transformation in a different way, by
redefining the mode functions. For this purpose we intro-
duce

~f
�
i ðk; tÞ ¼

X
�

ffiffiffiffiffiffiffiffiffiffiffiffi
2��0

q
ffiffiffiffiffiffiffiffiffiffiffiffi
2��0

p ½f�i ðk; tÞN�� þ f��i ðk; tÞ��
�N
��;

(3.13)
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where the matrix N satisfies N � N ¼ M.1 It can be de-
termined using the eigenvalues and eigenvectors ofM. One
easily verifies that

~F ijðtÞ ¼
X
�

Z d3k

ð2
Þ32��0

~f�i ðk; tÞ~f��j ðk; tÞ (3.14)

is identical to the previous definition, Eq. (3.7). As f�i
and f��i are solutions of the same equation of motion,

Eq. (2.13), so is ~f�i . It is sufficient, therefore, to determine
~f�i as a solution to this equation with the initial conditions
implied by Eqs. (3.13), (2.14), and (2.15).

Having presented the technical procedure we would like
to add some comments concerning the interpretation. In
order to do so we need to discuss the problem of initial
states in a more general way.

The adiabatic vacuum has often been used as an initial
state for preheating simulations, maybe on the grounds that
after inflation one ends up in a temperature zero state, i.e.
an ‘‘empty’’ vacuum. Indeed if this is the case, and if the
evolution of the classical fields is very slow (‘‘adiabatic’’),
this can be considered to be a reasonable guess for an initial
state. Another choice that may be reasonable, e.g., after
thermalization and in a period of adiabatic evolution, is a
thermal initial state. This is of course not a pure state. For a
thermal state the fluctuation integral would be replaced by

F ijðtÞ ¼
X
�

Z d3k

ð2
Þ32��0ðkÞ
ð2N�ðkÞþ 1Þf�i ðk; tÞf��j ðk; tÞ;

(3.15)

with

N�ðkÞ ¼ ½expð��ðkÞ=TÞ � 1��1: (3.16)

Here we have used the fact that the mass matrix and
therefore the fluctuation Hamiltonian is diagonal in the
basis f�i0 at t ¼ 0.

If one takes into account the real evolution of the system
before t ¼ 0 then neither the adiabatic vacuum nor a
thermal initial state will be appropriate. If the system has
started, before t ¼ 0, in a pure quantum state, it cannot
have ended up, at t ¼ 0, in a thermal state or in any other
state described simply by particle numbers N�ðkÞ. The
quantum system can be interpreted as a system of inde-
pendent free particles only after ‘‘decoherence,’’ a concept
that has been addressed in the present context in
Refs. [37,38]. But even if the system has started, at an
earlier time, with a mixed state, the interaction with the
background field will have created a coherence in the

different components of such a state at t ¼ 0, and a repre-
sentation in the form (3.15) will not be possible.
So, if one takes into account the evolution of the system

prior to t ¼ 0 then one would have to know the entire
prehistory or at least the prehistory of a long period in
order to describe the state at t ¼ 0 with its full quantum
coherence. This is of course not possible unless one knows
how to start the system at an earlier time, facing then the
same problem. The best one can hope for is that after some
time the system will not remember much of its initial state.
This is presumably the case if the background fields pro-
duce large quantum fluctuations at later times.
The purpose of the Bogoliubov transformation is differ-

ent. If we know the evolution of the background fields near
t ¼ 0 (and by continuity this means also shortly before t ¼
0), to the extent that we know _V ð0Þ and €V ð0Þ, or, equiv-
alently, _�ð0Þ and €�ð0Þ, then we have limited information
on the initial state. Constant background fields at t < 0 and
the adiabatic vacuum state as initial state would produce a
singularity of the first two derivatives of the Green’s func-
tion. The Bogoliubov transformation removes this singu-
larity or, more precisely, it reduces it to higher orders in the
derivatives. In this way it takes a minimal account of the
fact that the system is not static before t ¼ 0. As we have
displayed above the transformation may be considered as a
modification of the state or of the mode functions. The new
state should not be considered as a vacuum state. The
adiabatic vacuum state remains the lowest energy state
for a given set of background fields. The analysis of the
high momentum behavior of the fluctuation integral simply
shows that the system will never arrive at this state if the
background fields keep changing with time. In reality, of
course, we would rather expect the quantum state of the
fluctuations to be an excited one, particularly at low mo-
mentum. Our simple requirement of continuity for the
Green’s function does not give us any information on this
excited state, except at high momenta.
The state generated by the Bogoliubov transformation

applied to the adiabatic vacuum is a pure state. Therefore,
it cannot be described by a mixed state with suitable
particle numbers N�ðkÞ. If for some physical motivation
we want to start with a thermal state or some other state
specified by particle numbers we have to combine two
different concepts: a mixed state made up of different
excited Fock-space states and a pure state that ensures
the continuity of the Green’s function. For a thermal state
the particle numbers decrease exponentially as k ! 1;
then the discontinuity of the Green’s function solely arises
from the vacuum contribution. Its Bogoliubov transforma-
tion is well-defined and compulsory at high momenta only.
There are then, among many others, two pragmatic ways of
defining a thermal initial state: (i) One defines the thermal
state using for all momenta the modified mode functions
~f�i ðk; tÞ. This is not quite a thermal state, though, as the
modified mode functions are not eigenfunctions of i@=@t.

1N is not uniquely determined—all we need is one particular
matrix that satisfies this relation. As M is Hermitian, so is N.
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(ii) One uses the integrand of Eq. (3.15) with the original
mode functions f�i ðk; tÞ for low momenta only, and the
integrand of Eq. (3.14) at high momenta.

IV. THE ENERGY-MOMENTUM TENSOR

The energy-momentum tensor for the fluctuations t�� ¼
ðTflucÞ�� in a homogeneous background field is diagonal

and has identical space-space components. It may be
specified by the two independent expectation values

t00 ¼ �

¼ 1

2
h _c iðx; tÞ _c iðx; tÞ þ ~rc iðx; tÞ ~rc iðx; tÞ

þM2
ijðtÞc iðx; tÞc jðx; tÞi (4.1)

and

t
�
� ¼ �� 3p

¼ h� _c iðx; tÞ _c iðx; tÞ þ ~rc iðx; tÞ ~rc iðx; tÞ
þ 2M2

ijðtÞc iðx; tÞc jðx; tÞi: (4.2)

� is the energy density and p the pressure. t00 and t
�
� can be

evaluated in the adiabatic vacuum and in the Bogoliubov-
transformed vacuum in the same way as the fluctuation
integrals. We just present the expectation values in the
Bogoliubov-transformed vacuum; the one in the adiabatic
vacuum is obtained by substituting � ! 0 andM ! I. For
~t00 we obtain

~t00 ¼
Z d3k

ð2
Þ3
X
�;�

1

4��0

fRe½��
M�
ð _f�i _f�i þ k2f�i f
�
i

þM2
ijf

�
i f

�
j Þ� þ ½M�� þM
��

�
�����
� ð _f�i _f��i þ k2f�i f

��
i þM2

ijf
�
i f

��
j Þg: (4.3)

For the trace we find

~t
�
� ¼

Z d3k

ð2
Þ3
X
�;�

1

4��0

fRe½��
M�
ð� _f�i _f�i þ k2f�i f
�
i

þ 2M2
ijf

�
i f

�
j Þ� þ ½M�� þM
��

�
�����
� ð� _f�i _f��i þ k2f�i f

��
i þ 2M2

ijf
�
i f

��
j Þg: (4.4)

Both expressions can alternatively be rewritten in terms of
the modified mode functions of Eq. (3.13).

Using the equation of motion for the fluctuations we can
write

� _f�i _f��i þ k2f�i f
��
i þM2

ijf
�
i f

��
j ¼ � 1

2

d2

dt2
f�i f

��
j ;

(4.5)

� _f�i _f�i þ k2f�i f
�
i þM2

ijf
�
i f

�
j ¼ � 1

2

d2

dt2
f�i f

�
j : (4.6)

Therefore the trace can be expressed in terms of the
fluctuation integrals (3.7) as

~t �� ¼ � 1

2

d2

dt2
~F ii þMij

~F ij: (4.7)

Both the energy density and the trace contain second space
and time derivatives of the two-point function and this can
transform the mild singularities found in the fluctuation
integrals F ij into infinities at t ¼ 0. In Ref. [2] it was

found that the energy density remains finite even in the
adiabatic vacuum. As the second derivatives only appear in
the kinetic terms which are diagonal this analysis remains
valid for the coupled-channel case. However, the trace of
the energy-momentum tensor t�� in the adiabatic vacuum
contains the second time derivative of the fluctuation in-
tegrals F ii and this behaves as d2ðt lntÞ=dt2 ¼ 1=t as

t & 0. In the transformed fluctuation integrals ~F ij we

have removed the dangerous terms, and so ~t�� has a finite
value at t ¼ 0.
When the field is coupled to gravity [39] the expressions

(4.1) and (4.2) receive some further contributions that we
do not want to discuss here in detail. They can be written in
terms of the fluctuation integrals and their first derivatives.
The fluctuation integrals themselves are not infinite at t ¼
0. The most singular of the additional terms are propor-
tional to ð�i � 1=6ÞHdF ii=dt and appear both in t00 and
t��. They behave as lnt as t & 0; in the Bogoliubov-

transformed initial state F ii is replaced by ~F ii and then
the energy-momentum tensor remains finite at t ¼ 0.

V. THE ADIABATIC PARTICLE NUMBER

The adiabatic particle number is obtained by represent-
ing the fluctuation field at time t in terms of the adiabatic
Fock space at time t. The fluctuation field is given by
Eq. (2.17). The adiabatic Fock space at time t is defined
in terms of particle excitations which are eigenstates of the
mass matrix M2

ijðtÞ. We define the eigenvectors of the

mass matrix by

M 2
ijðtÞf�jt ¼ m2

�tf
�
it ; (5.1)

we again choose them to be real and normalized via

X
i

f�itf
�
it ¼ 	��; (5.2)

and define��t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�t

p
. We further expand the fields

with respect to the new basis as

c iðx; tÞ ¼
X
�

Z d3k

ð2
Þ32��t

½a�tðkÞf�it þ ay�tð�kÞf�it�eikx;

(5.3)
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_c iðx; tÞ ¼ �i
X
�

Z d3k

ð2
Þ32 ½a�tðkÞf
�
it � ay�tð�kÞf�it �eikx;

(5.4)

where we have chosen the initial conditions for the modes
f�it ðk; tÞ in analogy to Eqs. (2.14) and (2.15). Using the field
expansion the new annihilation operators a�tðkÞ can be
expressed as

a�tðkÞ ¼
Z

d3xe�ikx½��tc iðx; tÞ þ i _c iðx; tÞ�f�it : (5.5)

They annihilate the adiabatic vacuum defined at time t. The
relation to the original operators a�ðkÞ is obtained by
inserting the field expansion (2.17) into Eq. (5.5). We find

a�tðkÞ ¼
X
�

ffiffiffiffiffiffiffiffiffi
��t

��0

s
½C��a�ðkÞ � S��ay�ð�kÞ�; (5.6)

with

C�� ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��t��0

q ½��tf
�
i ðk; tÞ þ i _f�i ðk; tÞ�f�it ; (5.7)

S�� ¼ �1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��t��0

q ½��tf
��
i ðk; tÞ þ i _f��i ðk; tÞ�f�it : (5.8)

Using the relations (B8)–(B10) of Appendix B it is
straightforward to verify that this is a Bogoliubov trans-
form, i.e., that Eqs. (A23) and (A26) are satisfied. In terms
of the matrices C and S the adiabatic particle number
density is given by,2

n�ðk; tÞ ¼ 1

2V��t

h0jay�tðkÞa�tðkÞj0i ¼
X
�

S���S��:

(5.9)

Inserting Eq. (5.8) we obtain

n�ðk; tÞ ¼ 1

2��t

X
�

1

2��0

½�2
�tf

�
i f

��
j þ _f�i

_f��j �f�itf�jt:

(5.10)

This has a simple interpretation: one decomposes the en-
ergy density with respect to the fluctuations f�it . Then
n�ðk; tÞ is obtained by dividing the part corresponding to
the fluctuations f�it by the frequency ��t of these fluctua-
tions. This result is analogous to the one-channel case.

While the definition (5.9) is suggestive we would like to
add that this particle number does not imply a representa-
tion of the fluctuation integral in the form (3.15) in terms of
the mode functions f�itðk; tÞ. Indeed, if one wants to use the
representation (5.3) for calculating the fluctuation integral
one gets nontrivial contributions from the operators

a�tðkÞa�tðk0Þ, ay�tðkÞay�tðk0Þ, and ay�tðkÞay�tðk0Þ as well,
see Eqs. (A38)–(A40). These contributions to the fluctua-
tion integral are negligible for large particle numbers only,
i.e., if the matrix elements S�� are much larger than the
C��.

VI. SUMMARY

We have addressed here two topics of the nonequilib-
rium dynamics of coupled fields in a one-loop approxima-
tion to quantum backreaction: the problem of the initial
time singularity in the energy-momentum tensor and the
definition of the adiabatic particle number for a system of
coupled scalar fields. Along with these topics we have
considered Bogoliubov transformations and some aspects
of the canonical formalism for such coupled systems.
Our main interest, as evident from the title, were the

initial time singularities. We have been able to define a
Bogoliubov transformation of the initial state that removes
the initial time singularities in such a way that the energy-
momentum tensor is finite in the limit t & 0. This is
important if one considers the evolution of such a system
of fields coupled to gravity. Clearly, this Bogoliubov trans-
formation is constrained only at large momenta. So mod-
ifications that are subleading at high momenta are still
acceptable. We had to include a discussion of the canonical
formalism for a coupled-channel system, as some of the
results were needed in the construction of the initial time
singularities: we had to ensure that the fluctuation integrals
are real and symmetric in the indices, as they should be on
account of their definition.
Both the discussion of the canonical formalism and of

Bogoliubov transformations for coupled-channel systems
are at the same time the basis for defining the adiabatic
particle number density. So we have derived an expression
for this density in terms of the coupled system mode
functions. It is analogous to the definition in the single-
channel case and has a simple intuitive interpretation.
Another formulation for the adiabatic particle number,
based in an eikonal formalism and the evolution of
Bogoliubov coefficients, has been presented recently
[24]. As both formalisms are canonical, the results should
be equivalent, though it may be difficult to verify this
analytically.
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APPENDIX A: THE BOGOLIUBOV
TRANSFORMATION FOR A COUPLED SYSTEM

We first recall some basic relations for the case of a
single quantum field; see, e.g., Ref. [40]. The Bogoliubov
transformation rotates creation into annihilation operators

2No summation over �. For simplicity of presentation we
assume the adiabatic vacuum as initial state.
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and vice versa, such as to preserve the canonical commu-
tation relations

½aðkÞ; aðk0Þ� ¼ 0;

½aðkÞ; ayðk0Þ� ¼ ð2
Þ32!	3ðk� k0Þ;
½ayðkÞ; ayðk0Þ� ¼ 0:

(A1)

Furthermore the transformation has to be chosen in such a
way that the vacuum retains its total momentum zero and
remains isotropic. The most general form of such a trans-
formation is then induced by the operator

Q ¼ 1

2

Z d3k

ð2
Þ32! ½qðkÞayðkÞayð�kÞ

� q�ðkÞaðkÞað�kÞ�; (A2)

via

~aðkÞ ¼ expðQÞaðkÞ expðQyÞ ¼ expðQÞaðkÞ expð�QÞ
(A3)

and

j~0i ¼ expðQÞj0i: (A4)

Here qðkÞ is a general complex function of k ¼ jkj. We
have

½aðkÞ; Q� ¼ qðkÞayð�kÞ; (A5)

½ayð�kÞ; Q� ¼ q�ðkÞaðkÞ: (A6)

We have in general

aðkÞ expð�QÞ ¼ expð�QÞ X1
n¼1

ð�1Þn
n!

�½½½½½aðkÞ; Q�; Q� . . .�; Q�n; (A7)

where the n-th term in the sum contains n commutators.
The even commutators (n ¼ 2l) yield

½½½½½aðkÞ; Q�; Q� . . .�; Q�2l ¼ jqðkÞj2laðkÞ; (A8)

and the odd ones (n ¼ 2lþ 1) yield

½½½½½aðkÞ; Q�; Q� . . .�; Q�2lþ1 ¼ jqðkÞj2lqðkÞayð�kÞ:
(A9)

Writing qðkÞ ¼ �ðkÞei	ðkÞ with real constants � and 	 we
find

aðkÞ expð�QÞ ¼ expð�QÞ½coshð�ÞaðkÞ
� sinhð�Þei	ayð�kÞ�

¼ expð�QÞ~aðkÞ: (A10)

With these preliminaries the generalization is straight-
forward. We have two sets of creation and annihilation

operators ay�ðkÞ and a�ðkÞ, where � ¼ 1; 2 labels the two
independent solutions f�i ðkÞ. We have the field expansion

c iðx; tÞ ¼
Z d3k

ð2
Þ3
X
�

1

2��0

fa�ðkÞf�i ðk; tÞeikx

þ ay�ð�kÞf��i ðk; tÞe�ikxg (A11)

and the commutation relations

½a�ðkÞ; ay�ðk0Þ� ¼ ð2
Þ32��0	��	
3ðk� k0Þ: (A12)

The operator Q now takes the form

Q ¼ 1

2

Z d3k

ð2
Þ3
X
�;�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q ½q��ðkÞay�ðkÞay�ð�kÞ

� q���ðkÞa�ðkÞa�ð�kÞ�: (A13)

The normalization convention introduced by writingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
has the advantage of keeping the functions

q��ðkÞ symmetric in the indices. Indeed this symmetry is
the only restriction on these functions; as they are complex
we have six free parameters, which are functions of k. The
symmetry arises from the fact that the products
a�ðkÞa�ð�kÞ and a�ðkÞa�ð�kÞ are equivalent. On the
one hand the operators commute, and on the other hand the
arguments k and �k may be exchanged as the integration
is symmetric in the sign of k and the functions q�� only
depend on jkj. An asymmetric part of these functions
would simply be summed and integrated away. We again
have Qy ¼ �Q and the transformation matrix expðQÞ is
unitary.
What does not work here, at least not in a general

parametrization q��, is the explicit evaluation of the trans-
formation of the annihilation and creation operators. The
matrix q��q��� which appears after every second step in
the evaluation of the multiple commutators, is given by

q��q��� ¼ jq11j2 þ jq12j2 q11q12� þ q12q22�
q11�q12 þ q12�q22 jq12j2 þ jq22j2

� �
��

:

(A14)

It is Hermitian, in analogy to the reality of jqj2 in the
single-channel case. It is diagonal in two cases:
(i) q12 ¼ 0 and (ii) q11 ¼ q22 ¼ 0. It is instructive to
evaluate the transformation of a�ðkÞ in the two cases. In
the first case we find

~a 1ðkÞ ¼ coshðjq11jÞa1ðkÞ � sinhðjq11jÞei argðq11Þay1 ð�kÞ;
(A15)

~a 2ðkÞ ¼ coshðjq22jÞa2ðkÞ � sinhðjq22jÞei argðq22Þay2 ð�kÞ;
(A16)

i.e., a simple Bogoliubov transformation for each channel.
In the second case we have
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~a 1ðkÞ ¼ coshðjq12jÞa1ðkÞ

� sinhðjq12jÞei argðq12Þ
ffiffiffiffiffiffiffiffiffi
�10

�20

s
ay2 ð�kÞ; (A17)

~a 2ðkÞ ¼ coshðjq12jÞa2ðkÞ

� sinhðjq12jÞei argðq12Þ
ffiffiffiffiffiffiffiffiffi
�20

�10

s
ay1 ð�kÞ; (A18)

i.e., an annihilation operator in channel 1 is mixed with a
creation operator in channel 2.

In the general case the matrix q��q��� is not diagonal.
Still we can sum up the series formally, as a series of matrix
products. As the exponential series converges well this can
be done even numerically. We write

~a �ðkÞ ¼
X
�

ffiffiffiffiffiffiffiffiffi
��0

��0

s
½C��a�ðkÞ � S��ay�ð�kÞ�: (A19)

In terms of the matrix q�� we then have

C�� ¼ X
n

1

ð2nÞ! ½ðqq�Þ
n���; (A20)

where qq� is the matrix product q��q��� and the power
series is a series of powers of this matrix. Further, we have

S�� ¼ X
n

1

ð2nþ 1Þ! ½ðqq�Þ
n���q��: (A21)

Instead of writing these matrices as power series in q�� we
can ask for the conditions on C and S that follow from the
requirement that the commutation rules should be con-
served. From

½a�ðkÞ; a�ðk0Þ� ¼ 0 (A22)

one finds X
�

ðC��S�� � S��C��Þ ¼ 0; (A23)

or

CST ¼ SCT ¼ ðCSTÞT: (A24)

Multiplying from the left with C�1 and from the right with
ðCTÞ�1 one finds

C�1S ¼ ðC�1SÞT; (A25)

i.e., this a symmetric matrix.
Considering the nonvanishing commutator we findX

�

ðC��C��� � S��S���Þ ¼ 	��; (A26)

or, in matrix form,

CCy � SSy ¼ I; (A27)

the obvious generalization of

cosh 2ð�Þ � sinh2ð�Þ ¼ 1: (A28)

Instead of having to deal with two matrices it may be more
convenient to deal with just one: the condition that the

operators ~a�ðkÞ annihilate the vacuum j~0i reads

~a�ðkÞj~0i¼
ffiffiffiffiffiffiffiffiffi
��0

��0

s
C��

�
a�ðkÞ�

ffiffiffiffiffiffiffiffiffi
��0

��0

s
���ay�ð�kÞ

�
j~0i¼ 0;

(A29)

where we have defined the matrix

� ¼ C�1S: (A30)

From Eq. (A25) we see that � is a symmetric matrix.
Indeed we had found previously that we have six free
parameters for the most general transformation.
To begin with we compute the expectation value of

a�ðkÞay�ðk0Þ in the new vacuum. As vacua are homoge-
neous and isotropic we can write

h~0ja�ðkÞay�ðk0Þj~0i ¼ ð2
Þ3	3ðk� k0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
M��ðkÞ:
(A31)

This definition implies thatM is a Hermitian matrix. Using
the commutation relations and (A29) we have

h~0ja�ðkÞay�ðk0Þj~0i ¼ ð2
Þ32��0	
3ðk� k0Þ	��

þ h~0jay�ðk0Þa�ðkÞj~0i
¼ ð2
Þ32��0	

3ðk� k0Þ	��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

�
0��0

s
��
����

� h~0ja�ð�k0Þay
ð�kÞj~0i: (A32)

In terms of the matrix M we find

M��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
¼ 	����0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
��
����M�
;

(A33)

or

M� �MT�y ¼ I: (A34)

This can be solved explicitly forM. Using the symmetry of
� it easy to verify, e.g., using the series expansion in ��y,
that

M ¼ ðI � ��yÞ�1: (A35)

Furthermore, using S ¼ C� it is easy to see, using
Eq. (A27), that

CCy ¼ ðI � ��yÞ�1 ¼ M: (A36)

This implies that knowing � the matrixC is not determined
uniquely. If one uses a basis in which � is diagonal, CCy is
diagonal as well, and we have two free phases in the matrix
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C. A further useful identity is

M� ¼ �MT: (A37)

It can easily be verified using again the expansion of M in
terms of ��y.

We next evaluate the expectation values of the other
products:

h~0ja�ðkÞa�ðk0Þj~0i ¼
ffiffiffiffiffiffiffiffiffi
��0

�
0

s
��
h~0ja�ðkÞay
ð�k0Þj~0i

¼ ð2
Þ3	3ðkþ k0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
� ��
M�
ðkÞ; (A38)

h~0jay�ðkÞay�ðk0Þj~0i ¼
ffiffiffiffiffiffiffiffiffi
��0

�
0

s
��
�h~0ja
ð�kÞay�ðk0Þj~0i

¼ ð2
Þ3	3ðkþ k0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
� ��
�M
�ðkÞ; (A39)

h~0jay�ðkÞa�ðk0Þj~0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

��0�
0

s
��
����h~0ja
ð�kÞ

� ay�ð�k0Þj~0i
¼ ð2
Þ3	3ðk� k0Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
� ��
����M
�ðkÞ: (A40)

In terms of the matrices � andM the fluctuation integral,
evaluated in the Bogoliubov-transformed vacuum takes the
form

~F ijðtÞ ¼ h~0jc iðx; tÞc jðx; tÞj~0i

¼
Z d3k

ð2
Þ3
X
�;�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0��0

q
� ½f�i ðtÞf�j ðtÞ��
M�
 þ f�i ðtÞf��j ðtÞM��

þ f��i ðtÞf�j ðtÞ��
����M
�

þ f��i ðtÞf��j ðtÞ��
�M
��: (A41)

This is the basis for determining �; this is discussed in
Sec. III.

As we have performed a canonical transformation it is to

be expected that ~F ij is real and symmetric in i and j, as it

holds for F ij. The sum of the first and fourth terms in the

brackets can be shown to be real and symmetric in i and j
using the relation (A37), the symmetry of � and the
Hermiticity of M. The sum of the second and third terms
in the brackets can be rewritten, using Eq. (A34) and the
symmetry in the summation over � and �, as

M��f
�
i f

��
j þ ���M
��

�
�f��i f�j

¼ 	��f
�
i f

��
j þ ���M
��

�
�f�i f
��
j

þ ���M
��
�
�f��i f�j : (A42)

The first term on the right-hand side is the one that appears
in the fluctuation integrals F ij. Its sum over � ¼ � with

prefactor 1=��0 is real and symmetric in i and j; see
Eq. (B8). The sum of the second and third terms on the
right-hand side is obviously symmetric in i and j. It can be
shown to be real as well.
The analogy of the various matrices we have defined

here with the coefficients obtained in the one-channel case
of Ref. [2] is given by C $ cosh�, S $ sinh� expði	Þ,
� $ tanh� expði	Þ, M $ cosh2�, M� $
sinh2� expði	Þ=2, and 2M� I $ cosh2�.

APPENDIX B: CANONICAL FORMALISM AT t > 0

In Sec. II we have defined the fluctuation integral

F ijðtÞ ¼ hc iðx; tÞc jðx; tÞi

¼ X
�

Z d3k

ð2
Þ32��0ðkÞ
½f�i ðk; tÞf��j ðk; tÞ�:

The expression on the right-hand side does not appear to be
symmetric in the indices i and j, and does not appear to be
real. On the other hand the fields c iðx; tÞ and c jðx; tÞ
should commute with each other. Furthermore, the com-
mutator between c iðx; tÞ and c jðy; tÞ is given by the same

integral with the only modification that a factor exp½ikðy �
xÞ� appears in the integrand. As these fields commute as
well for arbitrary x and y, the expressionX

�

1

2��0ðkÞ f
�
i ðk; tÞf��j ðk; tÞ (B1)

should be real. This is not quite obvious.
To begin with we consider the commutators in x space.

If we calculate the time derivative of the equal time com-
mutator between the fields we get

d

dt
½c iðx; tÞ; c jðy; tÞ� ¼ ½c iðx; tÞ; _c jðy; tÞ�

þ ½ _c iðx; tÞ; c jðy; tÞ�; (B2)

and this is zero if the canonical commutation relations

½c iðx; tÞ; _c jðy; tÞ� ¼ i	ij	ðx� yÞ (B3)

hold at time t. If we require that this relation continues to
hold we get the condition

d

dt
½c iðx; tÞ; _c jðy; tÞ� ¼ ½ _c iðx; tÞ; _c jðy; tÞ�

þ ½c iðx; tÞ; €c jðy; tÞ� ¼ 0: (B4)

The second term can be expressed, using the equation of
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motion

€c j ��c j þMjkc k ¼ 0 (B5)

by the field commutators; the term vanishes if these com-
mutators take their canonical form at time t. We have to
require that the first term vanishes:

½ _c iðx; tÞ; _c jðy; tÞ� ¼ 0 (B6)

at time t. If this identity shall continue to hold we have to
make sure that

d

dt
½ _c iðx; tÞ; _c jðy; tÞ� ¼ ½ _c iðx; tÞ; €c jðy; tÞ�

þ ½ €c iðx; tÞ; _c jðy; tÞ� ¼ 0: (B7)

Using again the equation of motion and the symmetry of
MijðtÞ this can be verified, if the nontrivial commutations

(B3) hold, whereupon the scheme closes.
This is of course the standard way for proving the time

independence of the canonical commutation relations. But
this analysis in x space shows us how to proceed in proving
the identity

Im
X
�

1

��0ðkÞ f
�
i ðk; tÞf��j ðk; tÞ ¼ 0 (B8)

that guarantees the reality and symmetry of the fluctuation
integrals. In order for the identity (B8) to hold at all times,
we have to require in addition that the identities

Im
X
�

1

��0ðkÞ f
�
i ðk; tÞ _f��j ðk; tÞ ¼ 	ij (B9)

and

Im
X
�

1

��0ðkÞ
_f�i ðk; tÞ _f��j ðk; tÞ ¼ 0 (B10)

hold independent of time, and that they hold at t ¼ 0.
There is no direct evidence for any of these relations; we
just can prove that they continue to hold if they hold at one
time. In the one-field case one just has to prove that the
canonical commutator is satisfied at all times and that

follows from the conservation of the Wronskian. Here
the Wronskian of the fluctuations is given, with our initial
conditions, by

Wðf�; f�Þ ¼ X
i

ðf�i _f��i � _f�i f
��
i Þ ¼ 2i	����0; (B11)

where the summation is with respect to the lower indices,
while in the commutators we need summations over the
upper indices, weighted with 1=��0.
The proof that the conditions Eqs. (B8)–(B10) hold

independent of time goes through in analogy to the proof
in x space given above, using this time the equations of
motion (2.13). The time derivative (on both sides) of
Eq. (B8) holds, if the relation (B9) holds. The time deriva-
tive of Eq. (B9) can be shown to hold by using the equa-
tions of motion for the fluctuations, and assuming that the
relations (B8) and (B10) hold. Using again the equations of
motion, the time derivative of the relation (B10) holds if
Eq. (B9) holds.
We still have to consider the initial time t ¼ 0. With the

initial conditions Eqs. (2.14) and (2.15) the relations (B8)
and (B10) hold trivially as we have chosen the f�i ð0Þ ¼ f�i0
to be the real eigenvectors of the mass matrix. We could
still multiply the two eigenvectors with two different phase
factors expði	�Þ without spoiling these conditions.
Equation (B9) at t ¼ 0 reduces toX

�

f�i0f
�
j0 ¼ 	ij; (B12)

and this is the orthogonality relation dual to

X
i

f�i0f
�
i0 ¼ 	��: (B13)

So at t ¼ 0 all three relations are satisfied, and then will be
so for t > 0.
Aside from their importance for the formalism devel-

oped here the relations (B8)–(B10) represent useful checks
for numerical simulations, along with the time indepen-
dence of the Wronskian; we have verified this numerically.
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