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Completely regular quantum stress tensor with w < —1
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For many quantum field theory computations in cosmology it is not possible to use the flat space trick of
obtaining full, interacting states by evolving free states over infinite times. State wave functionals must be
specified at finite times and, although the free states suffice to obtain the lowest order effects, higher order
corrections necessarily involve changes of the initial state. Failing to correctly change the initial state can
result in effective field equations which diverge on the initial value surface, or which contain tedious sums
of terms that redshift like inverse powers of the scale factor. In this paper we verify a conjecture from 2004
that the lowest order initial state correction can indeed absorb the initial value divergences and all the
redshifting terms of the two-loop expectation value (in free, Bunch-Davies vacuum) of the stress tensor of
a massless, minimally coupled scalar with a quartic self-interaction on a nondynamical de Sitter

background.
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L. INTRODUCTION

Suppose ¢(t, X) is a real scalar field operator whose
Lagrangian (by which we mean the spatial integral of the
Lagrangian density) at time 7 is L[ ¢(¢)]. Then the relation
between the in-out functional integral formalism and ca-
nonical matrix elements is

(@IT*(O[e]IV) = [ [dgle' I3 Mgy 1)1
X O[TV[(1))]. (1)

In this formula O[¢] is some functional of the field for
times between ; and 7,, and the T* symbol means that the
operator upon which it acts is time-ordered, but with any
time derivatives taken outside the time-ordering. The
Heisenberg states |¥) and |®) have C-number wave func-
tionals W[ (#;)] and ®[ ¢(z,)] in terms of the eigenkets of
o(t, X) at times #; and t,, respectively.

In flat space physics we typically seek to compute matrix
elements between states which are true vacuum in the
infinite past and future. This might seem problematic
because no one has ever exhibited a normalizable energy
eigenstate for an interacting, D = 4 dimensional quantum
field theory. Of course it would be possible to build up
perturbative corrections—which is all that is needed for
finite order computations—the same as in quantum me-
chanics. However, for theories with a mass gap we can
avoid this tedious and noncovariant exercise by taking | V)
and |®) to be free vacuum, and then considering the limit
in which #; goes to —o and #, goes to +oo. Up to a
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normalization factor, this limit projects out true vacuum
in the weak operator sense [1]. Of course the most interest-
ing theories have massless particles, which violate the
assumption about a mass gap, but it is believed the proce-
dure still gives correct inclusive rates and cross sections
[2].

In cosmology we typically imagine that the Universe
began with an initial singularity, and it is often our igno-
rance about what happens in the far future that is the chief
reason for interest in the computation. The canonical op-
erator formalism is of course the same, but its more useful
functional integral representation is given by the
Schwinger-Keldysh formalism [3-5]. The relation analo-
gous to (1) is [6],

(I (BLe) T* (AL o)) W) = f [, ]

X 8[p (1) — 1 (17)]
w o S atlo- O1-Llo-(0])

X< W[ (1)1Blb_]
XAl W[, (1))] (2)

Here |W) is the Heisenberg state whose C-number wave
functional in terms of the time f; eigenkets is W[ (#;)].
Like O[] in (1), the operators A[¢] and B[ ¢] are func-
tionals of the operators ¢(7, X) fort; <t < t,. Asin (1), the
T* symbol stands for time-ordering, with any time deriva-
tives taken outside; the T* symbol stands for anti-time-
ordering, again with time derivatives taken outside. The
reason for the two C-number integration variables ¢ . (7, X)
in (2) is that the functional integration over ¢ . evolves the
system forward to time #,, whereas the functional integra-
tion over ¢ _ carries it back to the initial time ;.
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Expression (2) is well adapted to cosmological problems
in which the Universe is released in a prepared state |'¥) at
some finite time #; and its subsequent evolution is studied
through correlators. Unfortunately, we can no longer use
infinite time evolution to transform the known free states
into fully interacting ones. There have been attempts to
achieve the same thing by including an additional evolu-
tion in Euclidean time [7-9]. However, the absence of a
unique vacuum means that it is not clear what the fully
interacting state should be [10]. Of special significance to
this work is the fact that this is even true on de Sitter
background for the massless, minimally coupled scalar
[11].

Of course we are doing perturbation theory so the lowest
order results can be obtained using the free vacuum.
Certain higher order corrections show secular growth
from the coherent superposition of interactions throughout
the past light-cone, which is not affected by corrections to
the initial state [12-19]. However, in many cases state
corrections on the initial value surface are as important
as 4-volume effects [20-22]. And even when a higher order
correction is dominated by secular growth from a 4-volume
effect, failure to include state corrections leads to a number
of problems including:

(1) divergences when operators touch the initial value

surface [13-16,18,20-23];

(i1) nonvanishing surface terms from partial integrations

[17]; and
(iii) complicated collections of terms which redshift like
inverse powers of the scale factor [13].

This paper concerns an example of the first and last
problems above. Consider a massless, minimally coupled
scalar with a A@* self-interaction on a nondynamical de
Sitter background whose scale factor a = e’ is normal-
ized to be one on the initial value surface. The expectation
value of the stress tensor has been computed at one- and
two-loop orders in the presence of free Bunch-Davies
vacuum [13]. With a slight change in the original renor-
malization scheme, the energy density and pressure are
[24],

) DY S P 3 43
+——2Z(”Jr 1)}+0()12), 3)
3/ AHY[ L, T 5 o
_gw(n—3)(n+1) 5
3 Z‘z—nza” } + 0(A2). 4)

This model violates the classical stability condition p/p =
w = —1 through quantum effects, without any intrinsic
instability. That holds great interest for cosmologists be-
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cause the original data revealing the current phase of
cosmic acceleration [25] showed a pronounced tendency
to favor w < —1 [26]. That sparked an explosion of model-
building [27], most of which could be immediately ruled
out owing to instabilities [28]. Although the phenomeno-
logical interest in models which exhibit w < —1 has waned
in the face of better data [29], understanding how a viable
model can exhibit this behavior is still interesting.

In the case of (3) and (4) the secular growth (which is
what causes w < —1) derives from inflationary particle
production. More scalars increases the scalar field strength,
driving it up the A@* potential and thereby increasing the
vacuum energy.’ This part of the result will persist for any
initial state which is finitely excited from Bunch-Davies
vacuum. That is not true of the exponentially falling terms,

AH4{ i—zi(”zﬁ} )

Ptalli
alling = 44| 242 “ n*a"

Pfalling = (6)

AH* 1
22

2 - (n—3)(n+1)
@’ 3 Z }
Because they are separately conserved, diverge on the
initial value surface, and fall off rapidly as one evolves to
late times, it was conjectured that pine and pryjiine could
be absorbed into corrections to the initial state wave func-
tional [13]. In this paper we will prove the conjecture by
constructing the A¢? correction which completely absorbs
(5) and (6). We will even explain the curious fact that they
contain no 1/a term.

This paper consists of five sections. In Sec. II we specify
the background geometry and the entire apparatus of per-
turbation theory, even though our own work does not
require regularization, renormalization or even the quartic
self-interaction. In Sec. III we compute the effect on the
expectation value of the stress tensor of a general A¢?>
correction to the initial state wave functionals. The specific
correction which absorbs (5) and (6) is worked out in
Sec. IV. Our conclusions are given in Sec. V.

II. A¢* THEORY ON DE SITTER

We work on the open conformal coordinate patch of de
Sitter space, the invariant element for which is

ds* = g, dx*dx" = a*[—dn?* + dX - dX] with
1
Hn

)

= efit,

The Hubble constant is H and the conformal time 7 runs
from —oo to 0. To facilitate dimensional regularization

'Because A is a constant, whereas In(a) = Hr grows with time,
these secular corrections eventually become nonperturbatively
strong. Starobinsky has developed a stochastic formalism for
summing the series of leading logarithms [30-32].
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(when necessary) we work in D spacetime dimensions,
with the indices taking values w, »=0,1,2,...,(D—1).
As the name of the coordinate patch suggests, the metric
is conformal to the flat space metric ,,,: g, = a’ Ny It
is sometimes useful to distinguish the purely spatial parts
of tensors with an overline, for example,

(QIT,,1Q) = a?8%8) X p + a*7,, X p. (8)

The Lagrangian density is

1
L = _Eau%ay%g”’/\/ g~ —GDOR\/

A . (D-DA,
pPNTET g VO ©)

Here ¢, is the bare field, & is the bare conformal coupling
constant, A is the bare quartic coupling constant, and A is
the bare cosmological constant. The renormalized field ¢
is defined by field strength renormalization of the bare one
as usual,

1

X) = —=@p(x). 10
@(x) \/Z%( ) (10)

That brings the Lagrangian density to the form,

z
L=-30,0d,08" 72 ~ —¢2R\/
VAV Y (D —2)A,

- —g————./& 11
VA 6ng V8 an

The associated stress tensor is,

1 72\
T, = 2[5715‘5 - igwg”"]apwgso T 0

1
+ Z‘fOI:R;LV - Eg,uVR - D,uDV + g,u,VDiIQDZ
(D —2)A,
- . 12
167G Sm (12)

Conservation is straightforward to verify, as a strong op-
erator equation, using the regulated scalar field equation,

) VAW 3
T,,”=|ZU¢ — Z&Re — ; e’ (0,0 =0. (13)

Renormalization is accomplished by expressing the bare
parameters in terms of the renormalized parameters and
counter parameters,

Z=1+08Z  Z*A\g= A+ A\

> (14)
O . 5A.
D-2

Note that no mass counterterm is necessary because mass
is multiplicatively renormalized in dimensional regulari-
zation. However, a conformal counterterm is necessary
even if the renormalized conformal coupling is zero. The
one- and two-loop counterterms were chosen as the follow-

ZfOEO+(S§, AOE
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ing functions of € =4 — D,
I’(1-1e

7—- (4
O 126m)? (HZ) (1—-3e)(1—e)(1—3e)e
+ 0(A3), (15)

o (477)0/2)6 I'(1-3e +0(A3), (16)

C 167 \H? (1—¢e)e
5é = — A (Am\(1/2e weot(3me)(1 — )I'(1 — €)
&= W(ﬁ) (1—3e -zl —3e
+ 0(A?), (17)
87TGH4 3 (4m\(1/2e
oA = {1677 ( )
y (1 —e)(l — 56)(1 - %E)F(l —€) A (477)6

(I—1eT(1—1le H?
['n'cot(% me)e(l1 — e)I'(1 — €)]?

4e(1 —1el*(1 —Le)

(4)*

+ 0()\2)}. (18)

Note that a more complicated renormalization scheme
involving a mass counterterm was employed in the original
computation [13].

There are no normalizable de Sitter invariant state for
the free massless, minimally coupled scalar [11]. We
choose to preserve the symmetries of cosmology—homo-
geneity and isotropy—which is known as the “E3” vac-
uum [33]. It can be realized in terms of plane wave mode
sums by making the spatial manifold 7°~!, rather than
RP~! with coordinate radius H~! in each direction, and
then using the integral approximation with the lower limit
cut off at k = H [34-36]. The resulting free field expansion
is

401 S
o(n, X) = /(2 )Dkl 0(k — H){u(n, k)e™**a(k)

+ u*(n, ke FEat (k) (19)

In this expression the creation and annihilation operators
are canonically normalized,

[a(k),

and the mode functions are

k
— - (1)
u(n, k) = ,4H (D- 1)/2)H(D 1)/2)(1_1 ) 21

The mode functions take a particularly simple form in D =
4,

at ()] = @mP-16P~ (k- &),  (20)

u(n, Blp_y =J{2%[1 e[ e
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Because time translation is not an invariance of cosmol-
ogy there is no conserved energy, even at the free level.
However, it is still the case that each mode of a free
quantum field theory behaves as a harmonic oscillator, in
this case with time dependent mass and frequency. Hence
there will be a minimum energy Heisenberg state at any
instant, although this state will not generally have the
minimum energy before or after that instant. The Bunch-
Davies vacuum is the state which was minimum energy in
the distant past. It corresponds to the condition

a(®))Q)=0 V k> |kl>H. (23)

It is a straightforward exercise to solve for the state wave
functional using expressions (19), (21), and (23),

) = Nese| ~ 3 [ K 00 1 n, B
= Nexp| —= - ,
UJi p 2 ) @mpP1 M
iu'(ng, k)7 -~ -
<[ B D] b | 24)
u(ny, k)
Here n; = —1/H is the initial time (corresponding to ¢ =

0), N is a functional normalization factor and &(n;, k) is
the spatial Fourier transform of field on the initial value
surface,

By B) = [ AP Ve K (3. (25)

It remains only to give the Schwinger-Keldysh formal-
ism, which can be read off from the fundamental relation
(2). There are some excellent reviews of this subject [37] so
we shall just summarize the results:

(i) because the same field operator ¢(m, X) is repre-
sented by two different functional integration varia-
bles ¢ (7, X), the endpoints of lines carry a =
polarity;

(i1) interaction vertices are either all + or all —;

(iii) vertices with a + polarity are the same as for the in-
out formalism whereas those with a — polarity are
conjugated;

(iv) corrections to the initial states take the form of
vertices on the initial value surface; and

(v) propagators canbe + +, + —, —+ or — —.

The mode sums for the various propagators are

dD—lk 2 a
iA++(x;x') = W@(k - H)e’k'("_")
X A{0(n — nu(n, Du*(n', k)
+ 0(n' — mu*(n, Huln', b}, (26)
D—1 R
iA,_(xx) = %H(k _ H)eik.(i—;(/)
X u*(n, Ku(n’, k), (27)
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dP~ 'k
(27T)D_1

X u(n, k)u*(n', k), (28)

AL (xx) = 6k — H)e'® =)

dP 'k ol
iA__(ox) = '/-We(k _ H)elk-(x—x)

X{60(n — n"u*(n, Hu(n’, k)
+ 0(n' — nu(n, Hu*(n', k)}. (29)

III. ORDER A¢? STATE CORRECTION
Consider a change in the initial state,
Q) — [¥) = Q) + [AQ), (30)

where |Q)) is free, Bunch-Davies vacuum (24). Because the
stress tensor is conserved (13) as a strong operator equa-
tion, its expectation value must be conserved in any state.
Hence we have

D*QIT,,|0) =0, (31)

and also,
D”{(AQlTW,l(D + (QlTﬂylA(D + (AQlT,U,IAQ)} = 0.
(32)

Of course this was one reason for suspecting that the
separately conserved parts (5) and (6) of the original result
(3) and (4) could be absorbed into a change of the initial
state.

The expectation value of the stress tensor must also be
conserved order-by-order in perturbations theory. Of
course we can expand the initial state correction in powers
of A,

1AQ) = A"|Q,). (33)
n=1

The purpose of this paper is to find the first-order correc-
tion A|Q);) which absorbs the exponentially redshifting
terms (5) and (6),

1
A 845 = 5 gt Jila,00,61)

+(Q19,00,0|Q)}
= —a?8%,89 X pratting = @* My X Pralling- (34)

In order for perturbation theory to make sense, all cor-
rections to the initial state must take the form of the free
vacuum times powers of the fields. Because the first-order
correction of interest to us must link up with the d,¢0d,¢
part of the stress tensor, we are obviously looking for a
correction of the form A¢?2. The two fields in the state
correction will each connect with fields in the stress tensor
as in Fig. 1, so there will be no ultraviolet divergences and
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initial value surface

FIG. 1. Feynman diagram for the order A initial state correc-
tion to the expectation value of the stress tensor at x*.

we can simplify the discussion by taking D = 4. The most
general state correction with these properties, which also
has the right dimensions and is consistent with homoge-
neity and isotropy, can be written as

AU ()] = Ol ()] x ]
Bk
@)

F( )¢+<m, D (1, B,
(35)

AIH- ()] = OLp ()] x
A’k
@)

( )31 D31
(36)

The function F(k/H) characterizes the state, and is at this
stage arbitrary. We will determine it in the next section.
State corrections of the form (35) and (36) are treated
just as interaction vertices in the Schwinger-Keldysh for-
malism, the only differences with the volume terms being
that there is no factor of =i, that the “interactions’ are
restricted to the initial value surface, and that they are
generally not local in position space. We obviously get
distinct contributions from the ¢, correction (35) and
from the ¢ _ correction (36). The contribution from (35)
involves two ++ propagators between the observation
point (7, X) and the initial value surface. Because the
observation comes after the initial time this contribution is

1 dk k
AT = AH| 8287 — = ] —F(—)
unv A [ e % ng,vg (277_)3 H
X [u*(ny, K Le®¥u(n, k)]0 Le~ T ul(n, k)]

(37

The contribution from (36) involves two +— propagators
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and is
1 &k k
AT_ — H P So _ po F* o
X [u(ny, K a Le®¥u*(n, k)]0 Le”*Tu*(n, k)]

(38)

We obviously wish to solve for F(k/H) to enforce the

condition,

ATS, + AT, = —a?89,69 X ppiiing — @* My X Pralling:
(39)

We can eliminate the tensor algebra by distinguishing
the temporal and spatial derivatives,

A= f @m) (9[“*("1’"ﬂz[aw(n»kﬂ% (40)

:Azlj:f fo " Ak F ( )[u*(m, k)]z[ dou(n, k)]
(41)

k
= /\Hf(z o (E)[u*(m, k) Plku(n, k)]?,  (42)

e (Y LA R L) B

Decomposing AT
pressure gives

;w into its induced energy density and

Apt = %[A B, (44)
- %’2 /0 - dkk2F<£)[u*(771, k)]z{[é dou(m, k)]2
Jowne])
= % fo " Ak F ( )[u*(n,, k)]z{[ dou(n, k)]
Afkana]]

The — contributions follow from complex conjugation,
and we will be able to completely absorb the exponentially
falling terms (5) and (6) if the function F(k/H) can be
chosen such that

Ap™ +(ApT)" =

Ap" +(Ap") =

~ Prallin, and
falling 48)

~ Pralling-
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IV. RECONSTRUCTING F(k/H)

Because the stress tensor is conserved it suffices to
enforce just the first condition of (48). The key to doing
this is expanding out the exponentially falling terms in the
curly brackets of expression (45). As we saw in expression
(22) the mode function and its time derivative are simple in
D = 4 spacetime dimensions,

u(n, k>=%[1 el | = dontn o

= \/%[— Ifcl_za] exp[;—i]. (49)

It follows that the curly bracketed term of (45) is

[é dou(n, k):l2 + [Su(n, k)]2

= %(%)2[1 - Z—ls] exp[%], (50)
_ %(%)2{1 - i (”n_! D (%)} 51)

It is immediately apparent why there are no 1/a> terms in

pfalling!
Substituting (51) into expression (45) and making the
change of variable k = Hx gives

+ /\H4 / dx F(x)(l + i )2 —2ix

1672
1 (n—3) 2ix)*2
x {? r; n—2) a" } (52)

Employing this relation in (48) and comparing with ex-
pression (5) for pgyine implies that we need the function
F(x) to obey the relations,

F( ) YRS 3
[ dx 1+ l)C)ze 2 + c.c. = m, (53)
foodx(ix)”*“F(x)(l + ix)?e” ™ + c.c.
0
(n+ Dn—2)
= (=4l V=4 (54

It is useful to eliminate the factors of i by defining real
functions a(x) and B(x) as
F(x)(1 + ix)>e ?* = a(x) + iB(x). (55)

Then conditions (53) and (54) can be rewritten as

/ dxx2a(x) = (56)

42’
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" (=D"2m + 5)(m + 1)
f dxx® a(x) = 22T 12 (1 + 2)2
X (2m)! ¥ m=0, (57)

(=)™ (m + 3)2m + 3)
22O 2 (2m + 5)2
XQ2m+1)! ¥Vm=0. (58)

foo dxxzmﬂﬁ(x) —
0

Let us begin with (58). We can eliminate the factors of 2
and 7 by defining,

Bx) = (59)
T
and making the change of variable y = 2x. This implies,

[ ® Ay 1b(y) = (= 1)1 2m + 1)!
0

2m + 6)2m + 3)
(2m + 5)? ’

(60)

1 J—
2m + 5

— (=1 2m + 1)!{1 - ©1)

2m + 5)2}'

Now suppose we have found a function b, (y) which obeys,
[ vy = Comiem oL 62)
0

We can employ it to construct functions b,(y) and bs(y)
which will add one and two factors of 1/(2m + 5), respec-
tively,

© b
by(y) =y* dz%, (63)

y
bi(y) = 3j‘°° by(z) by(2) , (z

Changing the order of integration shows that b,(y) has the
desired property,

00 00 00 b
[ dyy2m+1b2(y) — [ dyy2m+4 7 1
0 0 y

b
z 'Z(f) [ vy (66)

SZ)’ 65)

_ (=)™ @2m + 1)!
2m + 5

(67)

Of course the same manipulations show that b5(y) has two
powers of 1/(2m + 5). So if we can find b,(y) to enforce
(62) then we can construct b,(y) according to (63) and
bs(y) according to (64) to give the function B(x),

B = 5515120 — ba(20) = 2b201 (69
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A solution for b, (y) seems to be just cos(y), provided we
use a convergence factor to make sense of the integral,

00 9 \2m+1
/ dye”<y*" "1 cos(y) = (— —)
0 Jde

X [oo dye” € cos(y), (69)
0
(-3 =
= —_—— — + X
e 20€e—1 e+i
2m+2 2m+2
T @
€— I €+ i

Taking the limit € — 0 gives the desired relation,

(70)

— om+ 1)1%{(

lim [oo dye y* 1 cos(y) = (—1)""1(2m + 1)\.
0

e—0"

(72)

With a few partial integrations we can even express the
function b,(y) as a sine integral,

by(y) = y3[czsy(3y I Si;ly(zy = Cog;y ) _ éSi(y)]. (73)

No similar expression can be obtained for b5(y).
The same pattern is followed in finding a function a(x)
which obeys (57). We first extract the factors of 2 and 7,

a(2x)
aly) = 75, (74)
which implies,
o0 2m+5)(m+1)
2m — (—1\m

[ awymaty) = (=1 o, 9
— rem1 - 5o L ae

' 2m+2) 2(m+ 2?3

Hence we seek a function a,(y) with the property,
[ asymatn) = (=1ymem. )

From a;(y) we can construct a,(y) and a;(y) to insert
factors of 1/(2m + 4) and 1/(2m + 4)?, respectively,

© a(z)
a =y [Ta ",
y 4

(78)

as(y) =y’ /y ) dzazz—SZ) = fy "z “;ff) ln<§). (79)

The function a(x) is

alx) = 32—177_2[611(2)6) — a,(2x) — 2a5(2x)]. (80)

It is straightforward to see that the desired solution for
a;(y) is sin(y)
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0 8 2m 1 1 1
lim f dye y?"sin(y) = lim (—) 2—{ - }
0 l

e—0* e—0t\J€ €e—1 €+1i
81
= (=1)"2m)!. (82)

The function a,(y) can be expressed as a cosine integral,

sin(y) | cos(y) _sin(y) 1 . }
+ - +-C . (83
3 e o 6 iy (83
It remains to note that relation (56) follows from analytic

continuation of (57) that we have just solved. First write
(57) in a form that makes sense for arbitrary m,

(—D)"Q2m +5)(m + 1)
22m+7,n.2(m + 2)2

eMmm(2m + 5)(m + 1)

ar(y) = y3{

X (2m)!

= XT'2m + 1). 84
22m+7,n.2(m + 2)2 ( m ) ( )
Then set m = —1 + € and take the limit as € approaches
Zer0,
i(71+e)77(3 +2 ) 3
e €)e

i XT(—1+2€) = —.

I e rer <112 = gm &

Assembling the various results of this section gives the
following final expression for the kernel function F(k/H)
of the state corrections (35) and (36),

ie2ix ) 0 dZ )
F — —2ix _ 3[ s 2z
() 3272(1 + ix)? {e ) Fe

0 )
—2x3 f —f 11’1(5)67211}.
x Z X

V. CONCLUSIONS

(86)

We have verified the conjecture [13] that the exponen-
tially redshifting parts (5) and (6) of the two-loop energy
density and pressure of A¢@* theory on de Sitter background
can be completely absorbed into a redefinition of the initial
state. Our technique was to explicitly construct the correc-
tions (35) and (36), with the kernel function F(k/H) given
in expression (86). It might be worried that we have only
established the possibility of making this modification of
the initial state, not the necessity. However, note that the
parts of the free vacuum stress tensor we have absorbed are
not only exponentially falling, they also diverge on the
initial value surface. There is no alternative to absorbing
these terms initially, and making all time derivatives of the
stress tensor regular at least requires that the asymptoti-
cally large powers of 1/a should be canceled.

It seems at least possible to give our state correction an
elegant interpretation. That would be to regard it as the
finite remainder of the A¢? correction that must come from
the conformal counterterm (17). The idea is that a nonzero
conformal coupling 6¢ will change the mode functions
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u(m, k) from (21) to

T k
— ,_ 7((071)/2)[_1(1)(_) ith
u(n, k) 15 AV wit
1

87)
D — 1\2

Because the conformal counterterm changes only the qua-
dratic part of the Lagrangian density, the wave functional
must still have the form (24) but with the new mode
functions. Because 6¢ is of order A one would expand
the mode functions, keeping only the first-order correction
for our current purposes.

The obvious problem with the interpretation we have
just offered is, what becomes of the divergent part of §&?
We think a possible answer is that there is also a correction
of the form A¢* which can contribute if two of the fields
are taken up by a coincident propagator and the other two
connect to the stress tensor at x*. It then seems possible
that the divergence in the coincident propagator cancels
against the divergent part of 8¢, leaving the finite state
correction we have found. More work needs to be done to
check this possibility.

We are obviously just at the beginning of systematically
studying and exploiting initial state corrections. Previous
work has been done for free scalar fields by regarding the
mass and the conformal coupling as interactions [38] but,

PHYSICAL REVIEW D 81, 023508 (2010)

as far as we know, this is the first result to be obtained for a
genuinely interacting theory. One obvious application for
initial state corrections is to cancel the surface terms that
have been encountered when two loop diagrams are sim-
plified by a partial integration [17]. Far from simply being
a complication, these surface terms would actually lead, at
higher orders, to new ultraviolet divergences which could
not be canceled by the usual volume counterterms.’
Another important application will be to make the evolu-
tion equations for quantum corrections to the mode func-
tion reliable at finite times so that momentum dependent
but temporally constant changes in the normalization of
mode functions can be reliably determined [22]. The pos-
sibility for observable tilts in the power spectrum of pri-
mordial perturbations has already been noted [22].
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