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We investigate a possibility to restrict various inflationary models with nonminimally coupled inflaton

field � by future measurement of nonlinear parameter fNL which characterizes the non-Gaussianity in the

cosmic microwave background temperature fluctuation. These models are related to the minimally

coupled inflationary models by conformal transformation. We show that the curvature perturbation is

invariant under the conformal transformation up to the second order. By using this property we show that

nonminimal coupling fð�ÞR does not produce large non-Gaussianity, and, in particular, the nonlinear

parameter takes a narrow range�0:022< fNL <�0:007 in the case of fð�Þ ¼ 1þ ��2=m2
P with a wide

range of parameter �.
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I. INTRODUCTION

Although the standard big-bang theory can explain
many observed features of the present Universe, it has
serious conceptual problems such as the horizon problem
and flatness problem. The inflationary scenario is proposed
to solve these problems by assuming a sufficient amount of
accelerated expansion (inflation) in the very early stage of
the Universe [1–4]. It is soon realized that inflationary
expansion can produce almost scale independent density
perturbation and explain the origin of the structure [5–9].
Recent measurement of cosmic microwave background
(CMB) temperature fluctuation by the WMAP satellite
[10] strongly suggests the existence of the inflationary
scenario. Various models of inflationary scenarios [11,12]
have been proposed so far, but we are unable to determine
which model is realized in our Universe. It is expected that
future detection of non-Gaussian fluctuation as well as
polarizations in CMB are used to discriminate various
possible models.

Here we are interested in non-Gaussianity. Primordial
non-Gaussianity in CMB is described in terms of the 3-
point correlation function of Bardeen’s curvature perturba-
tions, �ðkÞ, in Fourier space:

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ ð2�Þ3�3ðk1 þ k2

þ k3ÞFðk1; k2; k3Þ: (1)

Different inflationary models predict different functional
forms ofF [13–15]. In this paper we consider only the local
type of non-Gaussianity. The primordial curvature pertur-
bation in position space is known to have the form

�ðxÞ ¼ �gðxÞ þ fNL�
2
gðxÞ; (2)

where �gðxÞ is a Gaussian field within the context of

inflationary scenario [16,17] and fNL characterizes the

amplitude of primordial non-Gaussianity. The latest con-
straint on fNL from the WMAP 5-yr data is fNL ¼ 38� 21
(68% C.L.; see [18]).
The purpose of this paper is to investigate the possibility

to restrict a certain class of inflationary scenarios by ob-
serving non-Gaussianity in CMB. The class we consider is
inflationary models with inflaton field which couples non-
minimally with background geometry. Many inflationary
scenarios with nonminimally coupled inflaton field have
been proposed [19–27]. Although a simple chaotic infla-
tionary model with a minimally coupled inflaton field �
with a ��4 interaction is now rejected by the result of 5-yr
WMAP, the same model with a nonminimal coupling
��2R does not need a fine-tuning for the self-coupling
constant � and has not been rejected. Since no symmetry
except conformal symmetry is known to determine the
nonminimal coupling constant �, there is no reason not
to consider nonminimally coupled inflationary models, and
it would be very useful to determine the coupling by
observation. We will show that the nonlinear parameter
fNL characterizing non-Gaussianity will be restricted in a
narrow range if there is a nonminimal coupling in inflaton
field with Ricci curvature.
This paper is organized as follow. First we review gen-

eral inflationary models with nonminimally coupled scalar
field and the model is transformed to minimally coupled
scalar field by conformal transformation in Sec. II. The
frame where the scalar field couples with background
curvature nonminimally is called the Jordan frame, and
the frame where the field couples with curvature minimally
is called the Einstein frame. We can make use of results
derived in the Einstein frame in order to study the situation
in the Jordan frame. If we consider inflationary scenarios
with slowly rolling inflaton in the Jordan frame, the con-
formally related scenarios have also slowly rolling inflaton
and predict very small primordial non-Gaussianity. Thus it
is expected that the level of primordial non-Gaussianity
will also be very small in our model. We will verify this
expectation and use this fact to restrict the magnitude of the
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nonminimal coupling constant by observation. In Sec. III
we prove that the curvature perturbations � in both frames
coincide up to second order under the single field assump-
tion. Using this fact we calculate fNL in the Jordan frame.
It is found that the possible range of fNL is tightly con-
strained, and thus it would be possible to constrain the
models with nonminimally coupled inflaton field by ob-
serving non-Gaussianity in CMB.

II. INFLATION MODELS WITH NONMINIMAL
COUPLED INFLATON FIELD

Here we briefly review the recipe to compute inflation-
ary observable in our model which will be used in the later
sections.

The inflaton field model we consider is a real scalar field
� nonminimally coupled to gravity via the Ricci scalarR.
The action will be the following:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
m2

pfð�ÞR� 1

2
gab@a�@b�� Vð�Þ

�
;

(3)

where we use a coefficient of the Ricci scalar fð�Þ ¼ 1þ
½�ð�2=m2

pÞ�, and potential Vð�Þ ¼ �
4 ð�2 � v2Þ2. Here

mp ’ 2:43� 1018 GeV is the reduced Plank mass.

It is well known that the Jordan frame is transformed to
the Einstein frame by a conformal transformation gEab ¼
�gab. In this case we take � ¼ fð�Þ and we have

S ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
1

2
m2

pRE � 1

2
gabE @a�@b�� VEð�Þ

�
;

(4)

where VEð�Þ ¼ Vð�Þ
fð�Þ2 , andRE is the Ricci scalar calculated

from gEab. A new scalar field � is defined by

�
d�

d�

�
2 � 1

fð�Þ þ
3

2
m2

p

fð�Þ2;�
fð�Þ2 : (5)

Note that the transformed scalar field � in the Einstein
frame is also slowly rolling when � is slowly rolling in the
Jordan frame.

We use spatially flat Friedmann-Robertson-Walker
(FRW) metric as our background:

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj: (6)

Then the background equations in the Jordan frame may
be written as

H2 ¼
_�2

6fð�Þm2
p

þ Vð�Þ
3fð�Þm2

p

�H _�
fð�Þ;�
fð�Þ (7)

€a

a
¼ � 1

2

fð�Þ;�
fð�Þ

€��
�
fð�Þ;��

2fð�Þ þ 1

3mpfð�Þ
�
_�2

�H _�
fð�Þ;�
fð�Þ þ Vð�Þ

3m2
pfð�Þ (8)

€�

�
1þ 3

2
m2

p

f2;�
f

�
þ 3H _�

�
1þ 3

2
m2

p

f2;�
f

�
þ V;�

þ f;�
2f

ð _�2 � 4VÞ þ 3

2
m2

p

f;�
f

_�2f;� ¼ 0: (9)

We can also calculate the background equations in the
Einstein frame

HE ¼ _̂�

6m2
p

þ VE

3m2
p

(10)

€̂aE
aE

¼ � _̂�2

3m2
p

þ Vð�ÞE
3m2

p

(11)

€̂�þ 3HE _̂�þ V;� ¼ 0; (12)

where

aE ¼
ffiffiffiffiffi
�

p
a; dtE ¼

ffiffiffiffiffi
�

p
dt (13)

and _̂¼ d
dtE

, €̂¼ d2

dt2E
.

As mentioned before, if _�� 0 then _̂�� 0 in both
frames. In fact, the condition of accelerated expansion of
the universe in the Jordan frame and the Einstein frame is

€a

a
� Vð�Þ

3m2
pfð�Þ> 0 (14)

€̂aE
aE

� Vð�ÞE
3m2

p

¼ Vð�Þ
3m2

pfð�Þ2 > 0: (15)

The difference of both frames is only the factor of 1
fð�Þ .

It is convenient to study our model in the Einstein frame
because inflationary models with a single minimally
coupled inflaton field are well studied and we can make
use of these results.
We assume that the e-folding of inflationary expansion is

sufficient to solve puzzles in the standard big-bang theory:

N ¼
Z

dtH

¼ 1

8v2 þ 8m2
p

�
ð2v2 þ 2m2

pÞ log
�
�2

i �þm2
p

�2
f�þm2

p

�

� 2v2 log

�
�i

�f

�
þ ð6�þ 1Þð�2

i ��2
fÞ
�
> 60 (16)

in the Jordan frame. We assume that�f � v, and we derive

the condition of �i to solve cosmological puzzles.

III. EQUALITY OF CURVATURE PERTURBATION
BETWEEN JORDAN AND EINSTEIN FRAMES

Now we prove that the curvature perturbations calcu-
lated in both frames coincide up to second order. This
property will be used to calculate fNL in the next section.
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The metric perturbation of the spatially flat FRW metric
and the scalar field perturbation up to second order can be
written as [28,29]

g00 ¼ �ð1þ 2Að1Þ þ Að2ÞÞ (17)

g0i ¼ Bð1Þ
i þ 1

2
Bð2Þ
i (18)

gij ¼ a2ð1� 2Dð1Þ �Dð2ÞÞ�ij þ a2
�
Cð1Þ
ij þ 1

2
Cð2Þ
ij

�
(19)

� ¼ �0 þ�ð1Þ þ 1

2
�ð2Þ: (20)

In the following we will only consider scalar perturbation.
It is well known that the first and second order gauge-

invariant scalar perturbations � generated by quantum
noise during the inflation may be defined as follows
[30,31]:

� ð1Þ ¼ Dð1Þ þH
�ð1Þ
_�

(21)

� ð2Þ ¼ Dð2Þ þH
�ð2Þ

_�ð0Þ � 2
�ð1Þ

_�ð0Þ ð _Dð1Þ þ 2HDð1ÞÞ � 2H
�ð1Þ

_�ð0Þ

þ
�
�ð1Þ

_�ð0Þ

�
2
�
H

€�ð0Þ

_�ð0Þ � _H � 2H2

�
: (22)

In inflation theory, we consider first-order perturbation to
be Gaussian perturbation, because it behaves as a free-
field. The frame independence of the first-order curvature
perturbation is known [32,33].

Thus the non-Gaussianity is generated by second order
perturbation and higher order. In this paper we only con-
sider the second order perturbation to calculate the non-
linear parameter fNL from the 3-point function of � .

We now prove that � defined in the Jordan frame co-
incides with �E defined in the Einstein frame up to second

order. Then we can compute the primordial power spec-
trum P� and nonlinear parameter fNL generated by the

primordial 3-point function in the Jordan frame by using
corresponding quantities in the Einstein frame.
For this purpose we first note the transformation of the

metric perturbations and scalar field between the Jordan
frame and the Einstein frame:

� ¼ �ð0Þ þ�ð1Þ þ�ð2Þ (23)

�ð1Þ ¼ d�

d�
�ð1Þ (24)

�ð2Þ ¼ 1

2

�
d2�

d�2
�ð1Þ2 þ d�

d�
�ð2Þ

�
(25)

HE ¼ 1ffiffiffiffiffi
�

p
�
H þ

_�

2�

�
(26)

Dð1Þ
E ¼ Dð1Þ � 1

2

�ð1Þ

�ð0Þ (27)

Dð2Þ
E ¼ Dð2Þ þ 2�ð1ÞDð1Þ

�ð0Þ ��ð2Þ

�ð0Þ (28)

�ð1Þ ¼ d�

d�
�ð1Þ (29)

�ð2Þ ¼ d�

d�
�ð2Þ þ d2�

d�2
�ð1Þ2 (30)

_� ð1Þ ¼ _�
d2�

d�2
�ð1Þ þ d�

d�
_�ð1Þ: (31)

Using these transformations, it is straightforward to

show the equality of � ð2Þ in both frames as follows:

� ð2ÞE ¼ Dð2Þ
E þHE

�ð2Þ

_̂�ð0Þ � 2
�ð1Þ

_̂�ð0Þ ð _̂D
ð1Þ
E þ 2HED

ð1Þ
E Þ � 2HE

�ð1Þ

_̂�ð0Þ þ
�
�ð1Þ

_̂�ð0Þ

�
2
�
HE

€̂�ð0Þ

_̂�ð0Þ � _̂HE � 2H2
E

�

¼ Dð2Þ
E þHE

�ð2Þ

_̂�
� 2� ð1Þ2E � �ð1Þ

_̂�
_̂�
ð1Þ
E þ 2Dð1Þ2

E � �ð1Þ

_̂�
_̂D
ð1Þ
E �HE

_̂�ð1Þ

_̂�

�ð1Þ

_̂�

¼ Dð2Þ
E þHE

ffiffiffiffiffi
�

p �ð2Þ
_�
� 2� ð1Þ2 ��ð1Þ

_�
_� ð1Þ þ 2Dð1Þ2

E ��ð1Þ
_�

_Dð1Þ
E �HE

ffiffiffiffiffi
�

p _�ð1Þ
_�

�ð1Þ
_�

¼ Dð2Þ þH
�ð2Þ
_�ð0Þ � 2

�ð1Þ
_�ð0Þ ð _Dð1Þ þ 2HDð1ÞÞ � 2H

�ð1Þ
_�ð0Þ þ

�
�ð1Þ
_�ð0Þ

�
2
�
H

€�ð0Þ

_�ð0Þ � _H � 2H2

�
¼ � ð2Þ: (32)

IV. CONSTRAINT ON fNL

Since we have shown equality of � between both frames,
we can make use of the results in the Einstein frame to

calculate fNL. The non-Gaussianity in the Jordan frame has
been studied [34] where it has been shown that the non-
Gaussianity becomes very small with the slowly rolling
inflaton, but where no attempt has been made to restrict the
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nonminimal coupling parameter. Although a part of our
conclusion that the non-Gaussianity is very small is the
same, we will show it using the result of the Einstein frame
and will obtain a very severe constraint on the nonminimal
parameter.

The following results for spectral index ns and nonlinear
parameter fNL are known in the inflationary model with a
single minimally coupled inflaton field [35,36]

ns ¼ 1� 6�þ 2	 (33)

fNL ¼ 5

6
ð	� �ð3� gðkÞÞÞ; (34)

where �, 	 are slow-roll parameters, and gðkÞ satisfies 0 �
gðkÞ � 5

6 which is a function of the shape of the triangle

made by 3 momentums ki which goes to zero when two
sides become much larger than the third and becomes 5

6

when the ki’s form an equilateral triangle. The slow-roll
parameter is defined in the Einstein frame:

� ¼ 1

2
m2

p

�
VE;�

VE

�
2
�
d�

d�

��2
(35)

	 ¼ m2
p

�
VE;��

VE

�
d�

d�

��2 � VE;�

VE

�
d�

d�

��3
�
d2�

d�2

��
: (36)

These slow-roll parameters are constant and small in the
Einstein frame if we assume so in the Jordan frame. Under
these conditions, �ð�Þ � �ð�iÞ and 	ð�Þ � 	ð�iÞ. We
write �i ! � to simplify the notation bellow.

We can divide the situation into two cases.
(i) �< v and � ! 0.—This case contains a new infla-

tionary scenario, and the slow-roll parameters take the
following limits:

� ! 0; 	 ! � 4ðv2�þm2
pÞ

v2
: (37)

Note that the condition � ! 0 is necessary to have suffi-
cient e-folding N. Thus we have

ns ¼ 1� 8

�
�þm2

p

v2

�
: (38)

Since the value of ns is observed to be ns ¼ 0:960� 0:14
by 5-yr WMAP and mp=v� 103 if we take the grand

unified theory (GUT) scale as our energy scale, the value
of � is ���106. If we adopt a lower energy scale for v,
we would get a larger negative value for �.

(ii) v <�.—In this case it is convenient to define c ¼
ð�=mPÞ2� and 
 ¼ ðv=mPÞ2�. The slow-roll parameters
are expressed in terms of c and 
 from Eqs. (35) and (36)
and simplified for � � 10 as follows:

�� 4

3c 2
ð2
þ 1Þ (39)

	�� 4

3c 2
ðc � 1Þð
þ 1Þ: (40)

If we assume that the scalar field � is an electroweak
Higgs field such as [25,26], then v is about 262.2 GeVand
we can totally neglect 
 as far as � 	 ðmp=vÞ2 � 1034.

Then we have

ns � 1� 8

3c 2
ðc þ 2Þ: (41)

This can be solved for c for positive � as

c ¼ � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3ns

p þ 4

3ns � 3
: (42)

This shows that c ¼ ð �mP
Þ2�� const for � � 10.

In fact we evaluate (35) and (36) numerically and
plugged the results into the expression (33) for ns to have

 as a function of �. The result is shown in Fig. 1.
The figure shows that c � const is a very good approxi-

mation for � � 10. Thus we adopt this approximation to
evaluate e-folding N. When � > 10, e-folding N is

N � 1

4
logðc þ 1Þ þ c > 60: (43)

It turns out that this condition is satisfied for the ob-
served ns ¼ 0:960� 0:14 as shown in Fig. 2 and gives no
extra constraint on �.
Next we calculate fNL using (34) under the same con-

dition c � const. We find

fNL �� 10

9c 2
fc þ ð2� gðkÞÞg ð� > 10Þ: (44)

Thus the value of fNL depends only on ns and gðkÞ for
� > 10. In the Jordan frame fNL takes a minimum value for
ns ¼ 0:946 and gðkÞ ¼ 0 and a maximum value for ns ¼
0:974, gðkÞ ¼ 5

6 fNL. Thus the possible range for fNL be-

comes as follows:

 30
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ns = 0.974

FIG. 1. c become constant when � > 10.
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� 0:022< fNL <�0:011:

We evaluate (34) numerically to have fNL as a function of
� without making the approximation. The result is shown
in Fig. 3.

This figure shows that fNL becomes constant, and the
range of order of fNL becomes

� 0:022< fNL <�0:007

for arbitrary �. Thus if we measure the 3-point function and
obtain the nonlinear parameter fNL outside of the above
range for a particular combination of 3 momentums, then

we can reject inflationary models with a nonminimally
coupled inflaton field. Finally we note that we will get
almost the same result even if the order of v is about
GUT scale v� 5:0� 1015 GeV. This can be seen in Fig. 4.

V. CONCLUSION

We have investigated a possibility to constrain infla-
tionary scenarios with a nonminimally coupled inflaton
field by measuring the nonlinear parameter fNL which
characterizes the non-Gaussianity of CMB fluctuation.
By using the equality of fNL between the Jordan and the

Einstein frame and the fact that fNL is very small of the
order of 10�2 in the Einstein frame, we can conclude that
any theory with nonminimal coupling of the form fð�ÞR in
action predicts small nonlinear parameter fNL.
Furthermore, we show that inflationary scenarios with a

nonminimal coupling such as �R�2 predict a narrow range
of nonlinear parameter �0:022< fNL <�0:007 for arbi-
trary values of �. Thus if the value of fNL is observed
outside this range, any theory with this type of coupling is
rejected.
The measurement of fNL formed from the primordial 3-

point function is very difficult, because the second order
perturbation is generated not only by inflationary scenarios
but by a secondary source [37–42]. We must extract only
the primordial perturbation from the measured second
order perturbation.
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