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We generalize the Swiss-cheese cosmologies so as to include nonzero linear momenta of the associated

boundary surfaces. The evolution of mass scales in these generalized cosmologies is studied for a variety

of models for the background without having to specify any details within the local inhomogeneities. We

find that the final effective gravitational mass and size of the evolving inhomogeneities depends on their

linear momenta but these properties are essentially unaffected by the details of the background model.

DOI: 10.1103/PhysRevD.81.023501 PACS numbers: 98.80.Jk, 04.20.Cv, 04.20.Jb

I. INTRODUCTION

The Swiss-cheese models give us (noninteracting) inho-
mogeneities in a cosmological setting that are exact solu-
tions to Einstein’s equations. As a result, the models have
become a standard construction [1] and are very widely
studied [2]. The classical Einstein-Straus vacuole model,
which requires a comoving boundary surface, is unstable.
Many subsequent Swiss-cheese models have also assumed
that the associated boundary surfaces remain comoving,
but it is well known that this need not be the case. Some
general studies of this issue go back many years [3]. Some
specific examples of noncomoving boundary surfaces in-
clude the study of Vaidya-type inhomogeneities [4] and the
evolution of ‘‘density waves’’ in the Lemaı̂tre-Tolman
model [5]. Here we examine the role of the linear momen-
tum of a boundary surface in a Robertson-Walker back-
ground. Within the context of these generalized models, we
study the evolution of the effective gravitational mass and
size of the inhomogeneities for a variety of well-known
background models. We find that whereas the momentum
plays a central role, the details of the background model
are relatively unimportant.

II. MODEL CONSTRUCTION

The theory of hypersurfaces in spacetime is well estab-
lished (see, for example, [6]) and we do not reproduce all
the necessary machinery here. Rather, we go directly to the
essential ingredients of the model. The model consists of
randomly distributed nonintersecting spherical boundary
surfaces � in a Robertson-Walker background with each
particle on � executing radial timelike geodesic motion.

A. Junction conditions

To establish notation, let us write the metrics of the
spacetimes V� in the form [7]

ds2� ¼ ds2��
ðx1�; x2�Þ þ R2ðx1�; x2�Þd�2; (1)

where the signature of the two-surfaces �� is zero and d�2

is the metric of a unit two-sphere, which we write in the
usual form d�2 þ sin2ð�Þd�2. We need consider only one
boundary surface. The metric on � can be written in the
form

ds2� ¼ R2ð�Þd�2 � d�2; (2)

where � is the proper time on�. Since� is, by assumption,
geodesic, there is only one nonvanishing independent com-
ponent of the extrinsic curvature K��. This can be written

in the form (e.g. [3])

K2
��� ¼ R2

�
_R2 þ 1� 2M�

R

�
; (3)

where _� d=d� and M� are the effective gravitational
masses of V�. The invariant properties of M were first
explored by Hernandez and Misner [8] who wrote the
function in the form

M ¼ R3

2
R��

��; (4)

where R is the Riemann tensor of V . See also [9–12] for
further discussion [13]. From (3), and the continuity con-
ditions, we arrive at the central condition of the model:

M� ¼ Mþ; (5)

a statement which is independent of the coordinates
ðx1�; x2�Þ.

B. Background geodesics

The Robertson-Walker geometry (excluding the
Einstein static subcase) has a Killing algebra of dimension
6 (3 translations and 3 rotations). Since � is in radial
motion, we are interested in the constants of motion gen-
erated by translational invariance. Write the background in
the form

ds2þ ¼ a2ðtÞ
�
dr2

�2ðrÞ þ r2d�2

�
� dt2; (6)

where �ðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
with k ¼ �1, 0. The translational
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Killing vectors are then given by

��
1 ¼ �

�
cosð�Þ@r � sinð�Þ

r
@�

�
; (7)

��
2 ¼ �

�
sinð�Þ sinð�Þ@r þ 1

r

�
cosð�Þ sinð�Þ@�

þ cosð�Þ
sinð�Þ @�

��
; (8)

and

��
3 ¼ �

�
sinð�Þ cosð�Þ@r þ 1

r

�
cosð�Þ cosð�Þ@�

� sinð�Þ
sinð�Þ @�

��
: (9)

Consider a radial geodesic with tangent u� ¼ _r@r þ _t@t
and define the constants Cn � ��

nu� and D2 � P
nC

2
n. It

follows directly from (7)–(9) that

_r 2 ¼ D2�2

a4
; (10)

so that from the timelike condition u�u� ¼ �1 we have

_t 2 ¼ 1þD2

a2
: (11)

Equations (10) and (11) should be well known [14]. Our
purpose here is to explain the physical meaning of D. It is
the total linear momentum of � [15].

C. Swiss-cheese

The standard Swiss-cheese inhomogeneous cosmology
takes D ¼ 0. Of these models, the Einstein-Straus case,
which sets V� as vacuum, is the most well known. The
model has seen very wide application [1], but it is known to
be unstable: to aspherical perturbations [16] and to pertur-
bations in the condition (5) which could lead to the devel-
opment of surface layers [17]. A clear way to see the
instability in this model at a primitive level is to look at
the necessary conditions for a boundary surface:

½G�
�n�u

�� ¼ ½G�
�n�n

�� ¼ 0; (12)

whereG�
� is the Einstein tensor, ½�� � ð�þ ���Þj�, and

u� and n� are the tangent and normal vectors to �,
respectively. By assumption, V� satisfies

G�
� þ���

� ¼ 0; (13)

where � is the cosmological constant. As a result, the
following two conditions must be satisfied in Vþ if �
constitutes a boundary surface:

G�
�n�u

� ¼ 0; (14)

and

G�
�n�n

� þ� ¼ 0: (15)

From (6) and (14) we find _r ¼ 0 and from (6) and (15) we
find 8	p ¼ 0 where p is the comoving isotropic pressure.
As a result, in the Einstein-Straus model,�must be exactly
comoving and the background must be exactly dust. If
either of these conditions do not hold then (5) is necessarily
violated. Without resorting to surface layers, we can take
the view that the culprit is the assumption that V� is
exactly vacuum. That is, (13) is too strong a condition to
impose onV�. In other Swiss-cheese cosmologies, (13) is
not imposed on V�. A widely used example is to assume
that V� is dust. However, typically � is taken as comov-
ing a priori and so we arrive back at (14) and (15) which,
we would like to emphasize, are not necessary conditions
for a boundary surface.

D. Generalized model

In this paper the only condition imposed on V� is (5)
and we concentrate on the evolution of� inVþ which, for
the sake of clarity, we assume is spatially flat. It follows
from (10) and (11) that [18]

r�ðzÞ ¼
Z 1

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ð1þ xÞ2

1þD2ð1þ xÞ2
s

dx

HðxÞ ; (16)

where we have set the initial conditions by r�ðt ¼ 0Þ ¼ 0;
the Hubble function H is given, as usual, by 1

a
da
dt ; and,

without loss in generality, we have set a0 ðtodayÞ ¼ 1. We
have chosen as an independent variable z ¼ 1=a� 1 and
so for universes with a big bang that do not recollapse
�1< z <1.

III. BACKGROUND MODELS

In this work we explore mass scales associated with
various models for the background specified by HðzÞ.
The inhomogeneities considered here are governed by
one free parameter, the total linear momentum D. The
first task at hand then is to establish a reasonable range of
values for this parameter.

A. The Range in D

To establish a reasonable range in D we evaluate r�ð0Þ
from (16) for three standard models: �CDM, �CDMþ
non-interacting radiation (see the Appendix) and noninter-
acting matter and radiation without �. The results are
shown in Fig. 1. The top curve is included so as to show
the effect of ignoring the background radiation, and the two
bottom curves are included so as to show the effect of
ignoring� and the effect of changing the integration upper
limit to a redshift where radiation can be neglected, here
z ¼ 1500. The middle curve shows the size of the hole for
the �CDMþ non interacting radiation at earlier time
r�ð100Þ. The wide difference in size r� between the top
and bottom curves shows the effect of adding radiation on
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the evolution of the surfaces for a given value of D. From
the results of Fig. 1, we have chosen to include radiation
(see the Appendix) to all background models HðzÞ.
Throughout the paper, we define quantities associated
with a flat ‘‘standard’’ �CDM model as ‘‘�’’ when using
the following values: for the matter energy density,�m0

¼
0:27, radiation energy density (including relativistic neu-
trinos), �R0

� 8� 10�5 and cosmological constant ��,

regardless of the value of our free parameter D. Using the
�CDM background, Fig. 2 shows the evolution of �r� with
total linear momentum D in the order of �10�5. These
inhomogeneities begin with �r�ð1Þ ¼ 0 and grow mostly
during the radiation epoch. We are interested in ranges of
the parameterDwhere surfaces r� reach up to�100 Mpc.
From Figs. 1 and 2, this corresponds to a range 10�5 &
D & 5� 10�5. In subsequent figures we use D ¼ 5�
10�5 unless specified otherwise.

B. Flat standard cosmological model (�CDM)

In the flat �CDM model, dark energy is the cosmologi-
cal constant, and as usual we have�

HðzÞ
H0

�
2 ¼ �mð1þ zÞ3 þ�� þ�Rð1þ zÞ4; (17)

where the � refer to current values. Note that we have

explicitly included radiation density �R (see the
Appendix) and it is included implicitly in all the following
background models. The influence of�m on r� is shown in
Fig. 3. The WMAP5 [19] value of �m0

¼ 0:279� 0:015

has limited effect on the final size compared to the value of
the linear momentum in Fig. 2. To compare the different
backgrounds, we can plot the mass ratio between the
background model M� and the �CDM background
�M�. From (4) it follows that

M�

�M�

¼
�
r�
�r�

�
3
: (18)

Throughout, for (18), we use the same value for the linear

momentum (D ¼ �D). For the �CDM model, the mass
ratio (18) is shown in Fig. 4, where M is determined by
�m0

¼ 0:33 and different values ofD are shown. In Fig. 5

we plot the mass ratio (18) for the �CDM model for the
same values of �m0

as Fig. 3.

Define

�M � M�=
�M� � 1: (19)

For r� � �r� then�M� 3�r, where�r ¼ ðr�=�r�Þ � 1 is
the size difference for a fixedD. This can be gleaned from
Figs. 2–5.
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FIG. 2. Variation in the evolution of �r� with redshift from
variations in D for a �CDM background. We have used h ¼
0:72 and T0 ¼ 2:73, and like all ‘‘�’’ quantities we have used
�m0

¼ 0:27 and �R0
¼ 8� 10�5. These surfaces start with

�r�ðz ¼ 1Þ ¼ 0. The value of the linear momentum D deter-
mines the final size of these inhomogeneities.
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FIG. 1. The abscissa is the dimensionless fraction D� 10�5

and the ordinate gives r�ð0Þ in units of Mpc. The top curve is the
�CDM model. The middle curve is �CDMþ non interacting
radiation (with the curve just below giving r�ð100Þ for compari-
son). The second to bottom curve is the noninteracting matter
and radiation without �, and the bottom curve is the �CDM
with integration upper limit going to z ¼ 1500. We have adopted
the values �m0

¼ 0:27, h � H0=100 ¼ 0:72 and T0 ¼ 2:73.
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C. Flat dark energy with constant equation of state

This model (which we designate by CES) uses a con-
stant arbitrary value for the equation of state parameter
w � p=
 so that the Hubble function becomes

�
HðzÞ
H0

�
2 ¼ �mð1þ zÞ3 þ�deð1þ zÞ3ð1þwÞ: (20)

FIG. 4. Evolution of ratio M�=
�M� with redshift for some

values of D ¼ �D, where M is given by the �CDM with �m ¼
0:33 and �M is our standard �CDM model.

FIG. 5. Evolution of ratio M�=
�M� for �CDM with D ¼

5� 10�5 for some values of �m.
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100
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FIG. 3. Evolution of r� with redshift for some values of the
matter density �m. We have used a �CDM background with a
total linear momentum of D ¼ 5� 10�5 and we have extrapo-
lated the sizes of these inhomogeneities to the infinite future
(z ¼ �1). The dotted line shows the size at the present redshift
(z ¼ 0). We have used values of �m consistent with the 99.9%
confidence interval of [20] to show the effect of �m0

. For

comparison, the latest WMAP5 [19] results give�m0
¼ 0:279�

0:015.

FIG. 6. The same as Fig. 4 where M now has the constant
equation of state (CES) model for the background.
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In Fig. 6 we show the ratio M�=
�M� for w ¼ �0:7 and

w ¼ �1:3 corresponding to a 99.9% confidence level [20].
The mass difference �M between the two models is less
than 2% at maximum. The difference would be negligible
using WMAP5 [19], where w is constrained to �0:97�
0:06 as can be seen in Fig. 7 where we have plotted the
mass ratio for different values of w with �m ¼ 0:27.

D. Flat dark energy with variable equation of state
(VES)

Allowing the equation of state to vary with time (VES),
and using the parameterization [21]

wðzÞ ¼ w0 þ wa

z

1þ z
; (21)

we have�
HðzÞ
H0

�
2 ¼ �mð1þ zÞ3 þ�deð1þ zÞ3ð1þw0þwaÞ

� e�3waðz=ð1þzÞÞ: (22)

The situation is examined in Fig. 8. Whereas the mass ratio
decreases with increasing wa, there is no evidence that
w0 þ wa > 0 [22].

E. Flat DGP models

The flat Dvali-Gabadadze-Porrati (DGP) model [23]
(see also [24]) is a one parameter model from brane theory
where �r ¼ 1=ð4r2H2

0Þ is the dimensional parameter de-

termined by the scale length r which governs the transition
from 4D to 5D behavior. For this model, the Hubble

parameter is given by

�
HðzÞ
H0

�
2 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ�r

q
þ ffiffiffiffiffiffiffi

�r

p Þ2; (23)

where �m ¼ 1� 2
ffiffiffiffiffiffiffi
�r

p
. The 99.9% confidence level of

[20] was used for the values of �r in order to show the

FIG. 7. Ratio M�=
�M� for D ¼ 5� 10�5 for different val-

ues of w with �m ¼ 0:27 for the constant equation of state
model.

FIG. 8. The same as Fig. 7 with the variable equation of state
(VES) model as background forM. Only the region wa < 1 is of
physical interest.

FIG. 9. Same as Fig. 7; M is given for the Dvali-Gabadadze-
Porrati (DGP) model.
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mass ratio (18) for the DGP model as given in Fig. 9.
Subsequent models showing the same type of behavior as
Fig. 9 over the redshift range �1< z < 20 will be sum-
marize in Table I below.

F. Flat interacting dark energy

It is natural to consider the coupling between dark
energy and matter and there are many explicit coupling
procedures considered in the literature. Here we use the
parameterization of [26] to write�

HðzÞ
H0

�
2 ¼ ð1þ zÞ3

�
1��de

�
1� 1

ð1þ zÞ�
���3ðw=�Þ

:

(24)

Figure 10 shows the mass ratio (18) for the interacting dark
energy (IDE) model with w ¼ �1, �de ¼ 0:73 and D ¼
5� 10�5 at z ¼ �1 over a range of � consistent with [26].
The mass ratio (18) does not change significantly over the
redshift range �1< z < 20 as can be seen in Table I.

G. Cardassian models

The modified polytropic Cardassian models (hereafter
CAR) are three parameter models that modify the
Friedmann equation in a flat, matter-dominated universe
in order to allow acceleration. The Hubble function is
given by (see [20,27])�
HðzÞ
H0

�
2 ¼ �mð1þ zÞ3ð1þ ð��q

m � 1Þð1þ zÞ3qðn�1ÞÞ1=q:
(25)

The evolution of the mass ratio (18) with redshift for the
Cardassian models is shown in Fig. 11 for �m ¼ 0:27 and
D ¼ 5� 10�5 and values of the parameters n and q sur-
rounding the 99.9% confidence level of [20,27].

H. Flat Chaplygin gas

A dark fluid that combines dark matter and dark energy,
where the equation of state is p ¼ �A=
� [28], gives the
generalized Chaplygin gas equation (CHA)

�
HðzÞ
H0

�
2 ¼ ðAþ ð1� AÞð1þ zÞ3ð1þ�ÞÞ1=ð1þ�Þ: (26)

Since the Chaplygin gas is a two parameter model we
choose two extreme values for A for Fig. 12 in which we
plot the mass ratio (18) at z ¼ �1 as a function of �. The
values chosen here follow the 99.9% confidence level of
[20]. As with the IDE model, the mass ratio for the
Chaplygin gas model is nearly constant over the range
�1< z < 20. See Table I.

I. Flat affine equation of state

The assumption that dark energy and dark matter are a
single dark component that can be modeled by the affine
equation of state p ¼ p0 þ �
 (AFF) gives rise to the
Hubble function [29]

TABLE I. Model properties.

Model �m �de 1st parameter 2nd parameter M�=
�M�ðzÞ

z ¼ �1 z ¼ 20

AFF 0.27 1�� � ¼ 0:023 33 � � � 0.696 0.692

0.27 1�� � ¼ �0:01667 � � � 1.245 1.248

CHA � � � � � � A ¼ 0:7 � ¼ 0:25 0.778 0.783

� � � � � � A ¼ 0:75 � ¼ �0:1 1.171 1.166

IDE � � � 0.73 � ¼ 2:3 w ¼ �1 1.306 1.297

� � � 0.73 � ¼ 3:3 w ¼ �1 0.9192 0.9211

NADE � � � � � � n ¼ 2:5 � � � 0.859 [25] 0.864

� � � � � � n ¼ 3:1 � � � 1.1125 [25] 1.1118

FIG. 10. RatioM�= �M� evaluated at z ¼ �1 as a function of �
for w ¼ �1, D ¼ 5� 10�5 and �de ¼ 0:73 for the interacting
dark energy (IDE) model.
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�
HðzÞ
H0

�
2 ¼ ~�mð1þ zÞ3ð1þ�Þ þ��; (27)

where ~�m � ð
0 � 
�Þ=
c. The ratio (18) for the AFF
model is shown in Fig. 13 at z ¼ �1 as a function of �
using the 99% confidence level of [29] for �.
Complementary information is available in Table I.

J. New agegraphic dark energy (NADE)

A single-parameter model where the energy density of
quantum fluctuations of Minkowski spacetime 
q is in-

cluded in the Hubble equation gives [30]

FIG. 11. Same as Fig. 7, but nowM is given for the cardassian
(CAR) model. FIG. 13. Same as Fig. 10 but for the affine (AFF) parameter

model as a function of �.

FIG. 14. Same as Fig. 7; M is given for the new agegraphic
dark energy (NADE) model [25].

FIG. 12. Same as Fig. 10 but with A ¼ 0:67 and 0.78 as a
function of the parameter � for the Chaplygin (CHA) gas model.

GENERALIZED SWISS-CHEESE COSMOLOGIES: MASS SCALES PHYSICAL REVIEW D 81, 023501 (2010)

023501-7



�
HðzÞ
H0

�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0

ð1þ zÞ3
1��qðzÞ

vuut ; (28)

where �m0
¼ 1��qð0Þ and the evolution of �qðzÞ is

given by

d�q

dz
¼ ��qð1��qÞ

�
3ð1þ zÞ�1 � 2

n

ffiffiffiffiffiffiffi
�q

q �
: (29)

The mass ratio (18) for this model is presented in Fig. 14
with values of n consistent with the likelihood values in
[30].

IV. DISCUSSION

A property of the mass ratio (18) seen in all relevant
figures is simply

�HðzÞ _ HðzÞ , M� _ �M�: (30)

As can be seen in Fig. 6, 7, and 11, the mass ratio (18)
appears to have an extremum at z ¼ 0. (This feature is
present in all plots of the mass ratio as a function of z but is
not visible in all figures because of the chosen scale.) In
fact, the extremum can not happen at z ¼ 0. From (16) and
(18), and defining 0 ¼ d=dz, we find�

M�

�M�

�0 ¼ 3
r2�
�r4�

fr0� �r� � �r0�r�g; (31)

where from (16)

r0�ðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ð1þ zÞ2

1þD2ð1þ zÞ2
s

1

HðzÞ (32)

and equivalently for the �CDM model (with a bar).
Therefore the mass ratio is extremal for

r�
�r�

¼ r0�
�r0�

¼ �H

H
¼

�
M�

�M�

�
: (33)

An extremum at z ¼ 0 would imply that r� ¼ �r� and that

M� ¼ �M�. Equation (31) can also be expressed as

�
M�

�M�

�0
z¼0

¼ 3�3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1þD2

s
1

r�ð0ÞH0

f�0 � 1g; (35)

where �3
0 ¼ ðM�ð0Þ= �M�ð0ÞÞ and r�ð0Þ is obtained from

(16) for the model investigated.
In Eq. (16), the influence of D in the first factor of the

integral converges to 1 for D2ð1þ zÞ2 � 1 or 1þ z �
1=D and converges to Dð1þ zÞ when 1þ z 	 1=D. In
effect then since D� 10�5, D is unimportant at early
times for r� and �r�.

V. CONCLUSION

We have introduced a new generalized Swiss-cheese
model which does not assume a priori that the associated
boundary surfaces are comoving. In order to quantify
evolving inhomogeneities, we have considered geodesic
boundaries characterized by their linear momentumD. For
the size of the inhomogeneities we are interested in, the
physical values of D=c are �10�5. For a given linear
momentum, we have found that the inhomogeneities
grow almost independently of the background model
(with the inclusion of the radiation density parameter
�R0

). As shown in Fig. 2 these inhomogeneities are almost

at their full size by the decoupling (z� 1100). For a
redshift of z & 2, corresponding to high redshift super-
novae, the inhomogeneities considered here are growing
very slowly as is shown in see Fig. 4.
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APPENDIX: RADIATION

The integration in Eq. (16) requires a high redshift
contribution from radiation. See, for example, [19,31].
This was added to all the Hubble background models
HðzÞ as noninteracting species / a�4. The energy density
for radiation 
R is


R ¼ aBT
4
CMB

�
1þ 7

8

�
T�

TCMB

�
4
N�

�
; (A1)

where aB ¼ 4=c in which  is the Stefan-Boltzmann’s
constant, TCMB ¼ 2:725 K is the temperature of the cosmic

microwave background (CMB), T� ¼ ð4=11Þ1=3TCMB is
the temperature parameter for the relativistic neutrinos
after the annihilation of electron-positron pairs and N� ¼
3 is the standard number of neutrino families. The first
right-hand side term is the contribution from the CMB
photons and the second term is the contribution from
relativistic neutrinos. The energy density of radiation is
therefore

�R0
¼ 
R0


c0

’ 8� 10�5; (A2)

where 
c is the critical energy density; the subscript 0 is
used to specify present values (z ¼ 0). Note that before the
electron-positron pairs annihilated (z� 1010) the tempera-
ture of the neutrinos and CMB radiation was in equilibrium
T� ¼ TCMB. This contribution in Eq. (A1) was negligible
in our integration of (16) and was ignored.
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