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The stable configurations of nonrotating and rotating hybrid stars composed of color-superconducting

quark matter cores are constructed using several equations of state (EOSs). We use a set of diverse EOSs

for the nuclear matter which represents the low density phase. The EOSs at higher densities correspond to

the quark matter in the color-superconducting phase and are computed within the Nambu-Jona-Lasinio-

like model for different values of the scalar diquark and vector current couplings strengths. The phase

transition to the quark matter is computed by a Maxwell construction. We find that the stability of the

hybrid stars are mainly governed by the behavior of the EOSs for the color-superconducting quark matter.

However the compositions of hybrid stars are sensitive to the EOS of the nuclear matter. The value of the

critical rotation frequency for the hybrid star depends strongly on the EOS of the nuclear matter as well as

that for the color-superconducting quark matter. Our results indicate that the EOS for the color-

superconducting quark matter can be obtained, by adjusting the parameters of the Nambu-Jona-Lasinio

model, to yield the stable configurations of the hybrid star having the maximum mass �1:5M� in the

nonrotating limit and the critical rotation frequency �1 kHz.

DOI: 10.1103/PhysRevD.81.023009 PACS numbers: 97.60.Jd, 12.38.�t, 26.60.Kp

I. INTRODUCTION

The present knowledge of quantum chromodynamics
(QCD) suggests that quark matter might be in different
color-superconducting phases at high densities. Thus, one
expects the core of the hybrid stars to be composed of
color-superconducting quark matter (CSQM) surrounded
by a nuclear mantle. The possible CSQM phases are the
two-flavor color superconductor (2SC) [1–3], the color
flavour locked (CFL) phase [4,5], and crystalline color
superconductor [6,7]. The speculation that the CSQM ex-
ists in the core of the hybrid stars has triggered many
theoretical investigations both on the modeling of the
equation of state (EOS) of quark matter and on the phe-
nomenological signatures of the presence of quark matter
in the compact stars [8].

The nuclear matter phase of the hybrid star is described
by the various models which can be broadly grouped into
(i) nonrelativistic potential models [9], (ii) nonrelativistic
mean-field models [10–13], (iii) field theoretical based
relativistic mean-field models [14–16], and (iv) Dirac-
Brueckner-Hartree-Fock models [17–20]. The quark mat-
ter in the color-superconducting phases are usually de-
scribed either within the Massachusetts Institute of
Technology (MIT) bag model or using a more realistic
Nambu-Jona-Lasinio (NJL) like model. The studies based
on the MIT bag model indicate the existence of stable
configurations of hybrid stars with the CFL quark matter
core [21–24]. Further, the MIT bag model predicts the
absence of the 2SC color-superconducting phase in the
hybrid stars [25]. The scenario is somewhat different
when the NJL model is employed to study the hybrid stars
with CSQM core. The stable configurations of hybrid stars

with 2SC quark matter core are possible within the NJL
model [26–29]. However, earlier investigations [30–32]
based on the NJL model ruled out the possibility of CFL
quark matter at the core of the hybrid stars, because it
rendered the hybrid star unstable. Only very recently
[33,34], it has been demonstrated that inclusion of the
six-fermion interaction term together with large enough
values of the scalar diquark coupling strength in the NJL
model can yield stable configurations of the hybrid star
containing 2SC or CFL quark matter core. The NJL model
is also applied to study the possibility of existence of the
crystalline color superconductor quark matter phase in the
hybrid stars [35,36].
The stability and the structure of the nonrotating hybrid

stars are quite sensitive to the choice of the EOS of the
nuclear matter and the quark matter [21,37]. Further, one
often finds that even though the stable configurations of the
nonrotating hybrid star for a given EOS belong to the third
family of compact stars, but, the maximum rotation fre-
quency up to which these hybrid stars are stable is much
lower than the corresponding mass-shedding (Keplerian)
frequency [38,39]. The EOSs for the quark matter in the
unpaired or in the various color-superconducting phases
employed in these investigations were obtained within the
MIT bag model. Recently [40], a more realistic EOS for
the unpaired quark matter computed within the NJL model
is used to show that the maximum mass of the nonrotating
hybrid stars depends sensitively on the choice of the EOS
of the nuclear matter. It is necessary to construct stable
configurations of the nonrotating and rotating hybrid stars
using realistic EOSs for the nuclear matter and for the
quark matter in the color-superconducting phases.
In the present work, we compute several EOSs and use

them to study the properties of the nonrotating and rotating
hybrid stars composed of CSQM core. The lower density*bijay.agrawal@saha.ac.in
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part of these EOSs correspond to the nuclear matter and are
based on the variational and mean-field approaches. Our
set of EOSs for the nuclear matter around the saturation
density (�0 ¼ 0:16 fm�3) is constrained by the bulk prop-
erties of the finite nuclei. But, their behavior at densities,
� > �0, are significantly different. The EOSs for CSQM
are calculated within the NJL model using different values
for the scalar diquark and vector current coupling
strengths. The EOS at intermediate densities are obtained
using a Maxwell construction.

The paper is organized as follows: in Sec. II we describe,
in brief, the models employed to construct the EOSs for
nuclear matter and the CSQM. In Sec. III we present the
results for the equilibrium sequences for nonrotating and
rotating hybrid stars. In Sec. IV we state our conclusions.

II. EQUATIONS OF STATE

We compute the EOSs which correspond to the nuclear
matter at lower densities and CSQM in the 2SC or CFL
phases at higher densities. The EOS at intermediate den-
sities are obtained using a Maxwell construction. For nu-
clear matter in the � equilibrium, we employ a set of
diverse EOSs which are obtained using various ap-
proaches, like variational, nonrelativistic mean field
(NRMF) and relativistic mean field (RMF). In Fig. 1 we
plot various nuclear matter EOSs. The low density behav-
ior of these EOSs are very much similar as they are con-
strained by the bulk properties of the finite nuclei. But,
their behavior at higher densities are so different that the
resulting neutron star properties are at variance. In Table I,
we list some key properties of the nonrotating neutron stars
obtained using these nuclear matter EOSs. It can be seen
from Table I that the values of the maximum neutron star
masses are in the range of 2:0–2:8M� and the radius R1:4 at
the canonical neutron star mass vary between 11.3–
14.8 km. It is interesting to note that the values of the
maximum neutron star mass for both the APR and TM1
EOSs are equal, but the radius at the canonical mass of the
neutron star is reasonably smaller for the APR EOS. This is
due to the fact that the APR EOS is softer relative to the

TM1 at intermediate densities and it becomes stiffer at high
densities as can be seen from Fig. 1. Similar is the case with
SLY4 and BSR10 EOSs. We shall see in the next section
that these pairs of nuclear matter EOSs, for which the
maximum neutron star masses are the same, yield signifi-
cantly different structure for the hybrid stars.
The EOSs for the CSQM in the 2SC or CFL phase are

obtained within the NJL model. The input variables of the
NJL model are the chemical potentials for all the quark
flavours and colors in the chemical equilibrium which is
given by the matrix

���
ab ¼ ð���� þ�QQ

��
f Þ�ab

þ ½�3ðT3Þab þ�8ðT8Þab����; (1)

where, � is the quark chemical potential, �Q is the chemi-

cal potential of the electric charge equal to minus the
electron chemical potential �e, and �3 and �8 are the
color chemical potentials associated with the two mutually
commuting color charges of the SUð3Þc gauge group.
The explicit form of the electric charge matrix Qf ¼
diagfð23 ;� 1

3 ;� 1
3Þ, and for the color charge matrices T3 ¼

diagcð12 ;� 1
2 ; 0Þ, and

ffiffiffi

3
p

T8 ¼ diagcð12 ; 12 ;�1Þ. In the mean-

field approximation, the pressure at vanishing temperature
reads as,

p ¼ 4K�u�d�s � 1

4GD

X

3

c¼1

j�cj2 � 2GS

X

3

�¼1

�2
� þ !2

0

4GV

þ 1

2�2

X

18

i¼1

Z �

0
dkk2j�ij þ Pe � B (2)

where, �u;d;s are the quark-antiquark condensates and �c

are the three diquark condensates. The values of �i and �c

are determined using

@p

@�i
¼ 0 (3)

TABLE I. Values of the maximum mass Mmax and corresponding central energy density �max and radius Rmax obtained for different
EOSs of the nuclear matter. The radius R1:4 for the neutron star with canonical mass (1:4 M�) are also given.

EOS Approach �max (1015 g=cm3) Mmax (M�) Rmax (km) R1:4 (km) Ref.

APR Variational 2.80 2.19 9.9 11.3 [41]

SLY4 NRMF 2.84 2.05 10.0 11.7 [42]

BSR10 a RMF 2.14 1.97 11.6 13.3 [43]

TM1 RMF 1.87 2.19 12.4 14.4 [44]

NL3 RMF 1.55 2.79 13.3 14.7 [45]

aThis EOS is obtained using one of the several parameter sets of the extended RMF model given in our earlier work [43]. Each of these
parametrizations corresponds to different values of the strength 	 for the ! meson self-coupling term and neutron-skin thickness �r in
208Pb nucleus. The remaining parameters of the models were calibrated to yield reasonable fit to the bulk nuclear observables and
nuclear matter incompressibility coefficient. In the present work we use the parameter set with 	 ¼ 0:03 and �r ¼ 0:2 fm which will
be referred henceforth as BSR10.
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@p

@�c
¼ 0: (4)

In Eq. (2) !0 is the mean-field expectation value for

isoscalar vector like meson ! given as [32] !0 ¼
2GVhQM j c y

uc u þ c y
dc d þ c y

s c s j QMi. This field

modifies also the chemical potentials: �u;d;s !
�u;d;s �!0. The �i are the dispersion relations computed

by following Ref. [3]. The �i depend explicitly on the
values of current quark masses, quark-antiquark and di-
quark condensates, and various chemical potentials ap-
pearing in Eq. (1). The Pe ¼ �4

e=ð12�2Þ is the
contribution to the pressure from the electrons. The con-
stant B is so determined that the pressure vanishes at zero
density and temperature. In addition to the Eqs. (3) and (4),
the pressure must satisfy,

nQ � @p

@�Q

¼ 0; (5)

n3 � @p

@�3

¼ 0; (6)

n8 � @p

@�8

¼ 0; (7)

so that local electric and color charge neutrality conditions
are met. Once the pressure as a function of quark chemical
potential is known, quark matter EOS can be easily
computed.

The model parameters, the current quark masses mu;d;s,

quark-antiquark coupling GS, the strength K of the six-
fermion or ‘‘’t Hooft’’ interaction and the cutoff parameter
� are taken to be [46],

mu ¼ md ¼ 5:5 MeV; (8)

ms ¼ 140:7 MeV; (9)

GS�
2 ¼ 1:835; (10)

K�5 ¼ 12:36; (11)

� ¼ 602:3 MeV: (12)

After fixing the masses of the up and down quarks, mu ¼
md ¼ 5:5 MeV, the other four parameters are chosen to
reproduce the following observables of vacuum QCD [46]:
m� ¼ 135:0 MeV, mK ¼ 497:7 MeV, m
0 ¼ 957:8 MeV,

and f� ¼ 92:4 MeV. This parameter set gives m
 ¼
514:8 MeV. The value of B for this set of parameters is
ð425:4 MeVÞ4. There are two more parameters, the diquark
coupling strength GD and the vector current coupling
strength GV , which are not known. One expects that the
diquark coupling has a similar strength as the quark-
antiquark coupling. We construct quark matter EOS for
GD ¼ 1:1–1:2GS with GV ¼ 0–0:2GS.
In the 2SC phase, pairing occurs only between the u and

d quarks and the s quarks remain unpaired leading to�1 ¼
�2 ¼ 0 and �3 � 0. On the other hand, in the CFL phase,
�1 � 0, �2 � 0, and �3 � 0. In the left panels of Figs. 2
and 3, we plot the pressure as a function of the quark
chemical potential for the nuclear matter and for the quark
matter in the 2SC and CFL phases. The phase realized at a
given chemical potential is the one having largest pressure.
Thus, it is evident from the P�� curves that direct
transition from nuclear matter to the CFL quark matter
occurs for the case of APR and SLY4 EOSs. For the TM1
and NL3 EOSs, transition from nuclear matter to the CFL
quark matter proceeds via 2SC phase at intermediate den-
sities. For the BSR10 EOS, nuclear matter to CFL quark
matter phase transition proceeds via 2SC phase only for
GD ¼ 1:2 GS with GV ¼ 0. We see from these figures that
the pressure, at which the transition from the nuclear to
quark matter occurs, decreases with increasing GD or
decreasing GV . For instance, pressure at the phase transi-
tion reduces almost by a factor of 2 with increase in GD

from 1:1 GS to 1:2 GS. The solid circles on the various
EOSs for the nuclear matter indicate the values of P1:4

which is the pressure at the center of the neutron star with
the canonical mass (1:4 M�). The values of transition
pressure is close to that of P1:4 for the cases plotted in
the lower and the upper panels of Figs. 2 and 3, respec-
tively. For the completeness, in the right panels of Figs. 2
and 3, we display the plots for the pressure as a function of
the baryon density for the case of APR, BSR10, and NL3
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FIG. 1 (color online). The nuclear matter EOSs plotted as
pressure versus energy density. The energy density is normalized
by �0 ¼ 150 MeV=fm3 which is the typical value of the energy
density for the nuclear matter at the saturation density.
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EOSs. The phase transition to the quark matter is computed
by a Maxwell construction.

III. HYBRID STARS WITH CSQM CORE

We construct the equilibrium sequences of the nonrotat-
ing and rotating compact stars using the EOSs obtained in
the last section. These EOSs correspond to the nuclear
matter at lower densities and the CSQM in the 2SC or
CFL phase at higher densities as shown in Figs. 2 and 3.
The nuclear matter EOSs are taken from the published
literature as summarized in Table I. The EOSs for the
CSQM are computed within the NJL model for different
values of the scalar diquark coupling strength GD and the
vector current coupling strength GV . The other parameters
of the model are determined by fit to some of the observ-
ables of the vacuumQCD. The various EOSs as obtained in
the present work can be completely specified by (i) the
source for the nuclear matter EOS as listed in Table I and
(ii) the values ofGD and GV used in computing the EOS of
the CSQMwithin the NJL model. The properties of spheri-
cally symmetric nonrotating and axially symmetric rotat-
ing compact stars are obtained by solving the Einstein’s
equations in one dimension and two dimensions, respec-
tively. The numerical computations are performed by using
computer code written by Stergioulas and Friedman [47].
The equilibrium sequence of compact stars for a given

EOS is obtained by varying the central energy density �c.
For the stable configuration,

@M

@�c
� 0; (13)

where, M is the gravitational mass of the nonrotating
compact star. The equilibrium sequences for the nonrotat-
ing compact stars resulting from our EOSs are plotted as
mass versus radius in Figs. 4 and 5. The central energy
density increases as we move along these curves from the
right hand side. The portion of the curves left to the solid
circles represent the equilibrium sequences of hybrid stars
with CFL quark matter core. The curves between the solid
circle and triangle represent the sequences of hybrid star
composed of 2SC quark matter core. It is clear from the
lower panel of Fig. 4 and upper panel of Fig. 5 that the
stable configurations of hybrid stars with CFL quark matter
core belong to third family of compact stars. Further,
irrespective of the choice of the EOS of the nuclear matter,
the stable configurations of the nonrotating hybrid stars
exist within the NJL model only when the EOSs for the
CSQM are constructed for GD ¼ 1:2 GS with GV &
0:1 GS. These values of GD and GV , for which the stable
configurations of the hybrid star exist, are very much
similar to the ones found in Ref. [33]. It appears that the
stability of the hybrid stars with CSQM core depends
solely on the choice of the EOS for the CSQM. However,
the composition of the hybrid stars depend on the behavior
of the nuclear matter EOS. For instance, in case of the TM1
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FIG. 3 (color online). Same as Fig. 2, but, for GV ¼ 0:1 GS

and 0:2 GS with GD ¼ 1:2 GS.
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FIG. 2 (color online). The pressure as a function of the quark
chemical potential (left panel) and the baryon density (right
panel) for the nuclear and quark matter. The EOSs for the quark
matter in the 2SC and CFL phases are obtained within the NJL
model using GV ¼ 0 with GD ¼ 1:1GS and 1:2GS. The solid
circles on the various EOSs for the nuclear matter indicate the
pressure at the center of the neutron star with the canonical mass
(1:4 M�).
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and the NL3 EOSs of the nuclear matter, the core of the
hybrid stars are composed of CSQMwhich is either in 2SC
phase or in the CFL phase. In the later case, CFL quark
matter core is surrounded by a layer of 2SC quark matter
with the outer layer composed of nuclear matter. The
thickness of the 2SC quark matter at the maximum hybrid
star mass is around 0.5–0.7 km and its mass is �0:1 M�.
On the other hand, no 2SC quark matter appears in the
stable configurations of the hybrid star constructed using
the EOSs for which the nuclear matter part correspond to
the APR and SLY4.
The equilibrium sequences for the hybrid stars rotating

with fixed rotation frequency f are constructed. As an
illustration, in Fig. 6, we plot mass versus circumferential
equatorial radius Req at fixed values of the rotational

frequency obtained for two different EOSs. For the clarity,
we mainly focus on the regions of the M� Req curves

corresponding to the sequences of the hybrid stars which
are relevant in the present context. We see that beyond
certain frequency, so-called the critical rotation frequency
fcrit, the stable configuration for the rotating hybrid star
does not exist. The solid black lines in Fig. 6 represent the
result obtained at the f ¼ fcrit. In Fig. 7 we plot the values
for the fcrit (left panel) calculated for the cases for which
the stable configurations for the nonrotating hybrid star
exist. It is evident that the values of fcrit are quite sensitive
to the choice of the EOS for the nuclear matter as well as
the CSQM. Depending on the EOSs, fcrit varies in the
range of 350–1275 Hz. We also plot in Fig. 7 (right panel)
the maximum mass Mmax for the nonrotating hybrid stars
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FIG. 5 (color online). Plots for the mass-radius relationships
for the equilibrium sequences of the nonrotating compact stars
obtained using various EOSs as shown in Fig. 3. The solid circles
and triangles divide the curves according to the composition of
the hybrid stars as described in Fig. 4.
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FIG. 4 (color online). Plots for the mass-radius relationships
for the equilibrium sequences of nonrotating compact stars
obtained using various EOSs as shown in Fig. 2. The curves
on the left of the solid circles represent the equilibrium sequen-
ces for the hybrid stars with core composed of the quark matter
in the CFL phase. The curves between the solid circles and
triangles represent the hybrid stars with 2SC quark matter core.
The absence of solid triangle on a curve means that the hybrid
stars contain quark matter only in the CFL phase.
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FIG. 6 (color online). Plots for the mass versus circumferential
equatorial radius Req at fixed values of the rotational frequency

as indicated along each of the curves (in Hz). The black solid
lines represent the results obtained at the critical frequencies
fcrit. For f > fcrit, the stable configurations of hybrid star do not
exist.
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with CSQM core. It is interesting to note from this figure
that the values of GD and GV for a given nuclear matter
EOS can be so adjusted that the resulting hybrid star has
(a) the maximum mass in the nonrotating limit larger than
1:44 M� which is the most accurately measured value for
the maximum mass of a compact star [48] and (b) the
maximum allowed rotation frequency is larger than the
current observational limit of 716 Hz [49].

In Fig. 8 we show the correlations between the values of
the fcrit for the hybrid stars and the radius R1:4 for the
neutron star with the canonical mass. We see that fcrit is
large if the value of R1:4 is also large. Thus, the hybrid star
constructed for a given EOS for the CSQM can rotate faster
if the EOS for the nuclear matter is stiffer. The existence of
the correlations between the values of fcrit and R1:4 may be
due to the fact that the pressure at which the nuclear to the
quark matter transition occurs is closer to the values of P1:4

as can be seen from the lower and upper left panels of
Figs. 2 and 3, respectively.

Finally, we would like to compare the present results
with corresponding ones obtained within the MIT bag
model [37,50]. The present results as obtained within the
NJL model are significantly different with those for the
MIT bag model. Within MIT bag model the EOS for the
CSQM can be obtained by adjusting the value of the CFL
gap parameter and the bag constant such that the resulting
hybrid stars with CFL quark matter core are gravitationally
stable up to the masses �2 M� in the static limit and the

maximum allowed rotation frequency is much larger than
1 kHz. However, it can be seen from Fig. 7, stable con-
figurations of the hybrid stars with CFL quark matter core
obtained within the NJL model are having the maximum
values for the mass and the rotational frequency appreci-
ably lower than those obtained for the MIT bag model. The
differences between the results for the MIT bag model and
the NJL model can be attributed to the fact that the con-
stituent quark masses, chiral condensates and the color-
superconducting gaps in the later case are computed self-
consistently as a function of baryon density.

IV. CONCLUSIONS

The stability of nonrotating and rotating hybrid stars,
composed of the color superconducting quark matter core
surrounded by a nuclear mantle, is studied by using several
EOSs. The EOSs for the nuclear matter, employed at lower
densities, are based on the variational and the mean-field
approaches. We use a diverse set of nuclear matter EOSs
such that the resulting maximum neutron star mass lies in
the range of 2:2–2:8 M� and the radius at the canonical
neutron star mass vary between 11.3–14.8 km. The EOSs
at higher densities corresponding to the color-
superconducting quark matter in the 2SC or the CFL phase,
are calculated within the NJL model using different values
of coupling strengths for the scalar diquark and isoscaler
vector terms. The EOS at intermediate densities are ob-
tained using a Maxwell construction.
We find that the stability of the nonrotating hybrid stars

is very much sensitive to the EOSs for the color-
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FIG. 7 (color online). The values of the critical rotation fre-
quency fcrit (left panel) for the hybrid stars with the CSQM core
and their maximum masses (right panel) in the nonrotating limit
as obtained using different EOSs for the nuclear matter and the
CSQM.
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FIG. 8 (color online). Correlations between values of fcrit for
the hybrid stars and the radius R1:4 for the neutron star with
canonical mass as listed in Table I.
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superconducting quark matter and almost independent of
the choice for the EOS for the nuclear matter. The stable
configurations of the hybrid stars exist only for the large
enough value for the scalar diquark coupling strength.
Though, the stability of the hybrid stars are not sensitive
to the choice of the EOSs for the nuclear matter, but
compositions of the hybrid stars are at variance for these
EOSs. If the EOS for the nuclear matter is stiff, core of the
hybrid star is composed of color-superconducting quark
matter which is either in the 2SC or the CFL phase. In the
later case, CFL quark matter core is surrounded by a thin
layer of the 2SC quark matter and the outer layer composed
of nuclear matter.

The stability of the rotating hybrid star is sensitive to the
choice of the EOS for the nuclear matter as well as that for
the color-superconducting quark matter. In particular, we
find that the values of the critical rotation frequency vary
from about 350 Hz to 1275 Hz depending upon the choice
of the EOSs for the nuclear matter and the color-

superconducting quark matter. Our results also indicate
that the EOSs for the color-superconducting quark matter
obtained within the NJL model may be adjusted for the
various nuclear matter EOSs in such a way that it yields
(a) the maximum mass in the nonrotating limit larger than
1:44 M� which is the most accurately measured value for
the maximummass of a compact star and (b) the maximum
allowed rotation frequency is larger than the current ob-
servational limit of 716 Hz.
Finally, we would like to mention that our present study

can be extended in several ways. The quark matter in the
crystalline color-superconducting phase, expected to ap-
pear at the intermediate densities, should also be consid-
ered. One might also include the contributions from the
hyperons which would soften the hadronic EOS. The phase
transition from hadron to the quark matter should proceed
via mixed phase which can be constructed using the Gibbs
conditions.
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