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We investigate the validity of the generalized second law of thermodynamics, in the cosmological

scenario where dark energy interacts with both dark matter and radiation. Calculating separately the

entropy variation for each fluid component and for the apparent horizon itself, we show that the

generalized second law is always and generally valid, independently of the specific interaction form,

of the fluids equation-of-state parameters and of the background geometry.
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I. INTRODUCTION

Recent cosmological observations obtained by SNe Ia
[1], WMAP [2], SDSS [3], and X-ray [4] indicate that the
observable universe experiences an accelerated expansion.
Although the simplest way to explain this behavior is the
consideration of a cosmological constant [5], the known
fine-tuning problem [6] led to the dark-energy paradigm.
The dynamical nature of dark energy, at least in an effec-
tive level, can originate from a variable cosmological
‘‘constant’’ [7], or from various fields, such is a canonical
scalar field (quintessence) [8], a phantom field, that is a
scalar field with a negative sign of the kinetic term [9], or
the combination of quintessence and phantom in a unified
model named quintom [10]. Additionally, it can originate
Finally, an interesting attempt to probe the nature of dark
energy according to some basic quantum gravitational
principles is the holographic dark-energy paradigm [11]
(although the recent developments in Horava gravity could
offer a dark-energy candidate with perhaps better quantum
gravitational foundations [12]).

The aforementioned models offer a satisfactory descrip-
tion of the dark-energy behavior and its observable fea-
tures. However, attributing a dynamical nature to dark
energy, these scenarios introduce a new cosmological
problem [6], namely, why are the densities of vacuum
energy and dark matter nearly equal today since these scale
very differently during the expansion history. The elabo-
ration of this ‘‘coincidence’’ problem led to the considera-
tion of generalized versions of the aforementioned models
with the inclusion of a coupling between dark energy and
dark matter. Thus, various forms of ‘‘interacting’’ dark-
energy models have been constructed in order to fulfil the
observational requirements, including interacting quintes-
sence [13], interacting phantom [14], interacting

Chaplygin gas [15] and interacting holographic dark en-
ergy [16–18]. However, one could alleviate the coinci-
dence problem in the variable cosmological constant
framework, too [19]. Finally, since the universe also com-
prises radiation, one can consider the scenario in which
dark energy interacts with both dark matter and radiation
[20]. We mention that the coupling to radiation is not new,
since it is also in the center of ‘‘warm inflation’’ paradigm
[21]. The motivation behind this extra interaction is the so-
called ‘‘triple coincidence problem’’ [22], that is it can
offer an explanation to the fact that the radiation energy
density is today only 3 orders of magnitude smaller than
the dark-matter and dark-energy ones, although it also
scales very differently. In particular, given the dark-en-
ergy-dark-matter coupling, we consider that the energy
dissipated in this interaction is transferred to the radiation
component and vice versa.
In the present work we are interested in investigating the

interaction of dark energy with both dark matter and ra-
diation fluids from the thermodynamic point of view. In
particular, we desire to examine under what conditions the
underlying system obeys the generalized second law of
thermodynamics, namely, the sum of entropies of the
individual components, including that of the background,
to be positive. The plan of the work is as follows: In Sec. II,
we construct the scenario where dark energy interacts with
dark matter and radiation fluids. In Sec. III, considering the
universe as a system bounded by the apparent horizon, we
study the generalized second law of thermodynamics for
our cosmological model. Finally, Sec. IV is devoted to the
summary of the obtained results.

II. DARK ENERGY INTERACTING WITH DARK
MATTER AND RADIATION

Lets us construct a scenario where dark energy interacts
with both dark-matter and radiation fluids. Throughout the
work we consider a spatially homogeneous and isotropic
universe described by the Friedmann-Robertson-Walker
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metric

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2d�2

�
; (1)

where k is 0, 1, �1 for flat, closed and open geometry,
respectively. Thus, the first Friedmann equation writes

H2 þ k

a2
¼ 1

3
ð�DE þ �M þ ��Þ; (2)

where H is the Hubble parameter and �DE, �M and �x

denote the energy densities for dark energy, dark matter
and radiation, respectively. For simplicity, throughout this
work we are using units where 8�G ¼ 1. We mention that
the aforementioned framework holds independently of the
specific dark-energy description.

In the case where the various constituents of the universe
are allowed to interact, the conservation equations for their
energy densities write:

_�DE þ 3Hð1þ wDEÞ�DE ¼ �Q0

_�M þ 3Hð1þ wMÞ�M ¼ Q

_�� þ 3Hð1þ w�Þ�� ¼ Q0 �Q;

(3)

where a dot denotes the derivative with respect to cosmic
time. In these equations we have inserted the equation-of-
state parameters of the various cosmological constituents,
defined as wi ¼ pi=�i, where pi is the pressure of the
corresponding constituent i.

In expressions (3), Q and Q0 describe the interaction
terms, which can have an arbitrary form. In addition, we do
not restrict the sign of these terms, that is Q< 0 corre-
sponds to energy transfer from dark-matter sector to the
other two constituents,Q0 > 0 corresponds to energy trans-
fer form dark-energy sector to the other two fluids, and
Q0 <Q corresponds to energy loss for radiation.
Obviously, in the case Q ¼ Q0, we obtain the usual model
where dark energy interacts only with the dark-matter
sector [13]. Additionally, note that this case may effec-
tively appear as a self-conserved dark energy, with a non-
trivial equation-of-state mimicking quintessence or
phantom, as in the �XCDM scenario [7,19]. Lastly, con-
cerning the form of interaction one can use many ansatzes
[23], but we prefer to remain as general as possible.

Finally, it proves convenient to generalize [17] and
construct the equivalent effective uncoupled model, de-
scribed by:

_�DE þ 3Hð1þ weff
DEÞ�DE ¼ 0

_�M þ 3Hð1þ weff
M Þ�M ¼ 0

_�� þ 3Hð1þ weff
� Þ�� ¼ 0;

(4)

where the effective equation-of-state parameters are given
by

weff
DE ¼ wDE þ Q0

3H�DE

weff
M ¼ wM � Q

3H�M

weff
� ¼ w� þQ�Q0

3H��

:

(5)

III. GENERALIZED SECOND LAW OF
THERMODYNAMICS

In the previous section we presented the cosmological
scenario in which the dark-energy sector interacts with the
dark-matter and radiation ones. In the present section we
proceed to an investigation of its thermodynamic proper-
ties, and, in particular, of the generalized second thermo-
dynamic law [24].
In the literature, when one desires to examine the ther-

modynamic behavior of a cosmological scenario, one con-
siders the universe as a thermodynamical system.
However, it is not trivial what ‘‘volume’’ must be used,
and, in particular, what ‘‘radius’’, in order to acquire a
consistent description. This subject becomes more impor-
tant under the light of use of black-hole physics [25] in a
cosmological framework [26], that is connecting the ‘‘ra-
dius’’ and ‘‘area’’ of the universe with its temperature and
entropy, respectively. For a flat geometry, using the Hubble
horizon, which in this case coincides with the apparent
horizon, as the aforementioned universe ‘‘radius’’, one can
extract the Friedmann equations by applying the first law
of thermodynamics [27]. However, in order to achieve the
same equivalence in a nonflat FRW geometry, one has to
use the apparent horizon, since the use of Hubble horizon
(in this case the two horizons do not coincide) cannot lead
to a physical result [28]. The dynamical apparent horizon, a
marginally trapped surface with vanishing expansion, is in
general determined by the relation hij@i~r@j~r ¼ 0, which

implies that the vector r~r is null (or degenerate) on the
apparent horizon surface [29]. In a metric of the form
ds2 ¼ hijdx

idxj þ ~r2d�2
2, with hij ¼ diagð�1; a2=ð1�

kr2ÞÞ, i, j ¼ 0, 1, it writes [29]:

~r A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k

a2

q : (6)

Furthermore, for a dynamical spacetime the apparent hori-
zon has been argued to be a causal horizon and it is
associated with the gravitational entropy and surface grav-
ity [29,30]. Therefore, for the purpose of this work, we
consider the universe as a thermodynamical system with
the apparent horizon surface being its boundary.
The main goal of the present work is to examine the

validity of the generalized second law of thermodynamics.
As we have already mentioned, the Friedmann equations
themselves arise straightaway from the first law of ther-
modynamics. Although this has been shown in the litera-
ture for only one fluid [28–31], it can be easily extended to
the case at hand. Thus, one could equivalently construct the
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scenario of Sec. II based solely on thermodynamics, with
the only external input still needed, in order to close the
equations system, being the information about the fluid
content of the universe, and, in particular, the (three in our
case) conservation Eqs. (3).

Let us now proceed to the investigation of the general-
ized second law of thermodynamics in the universe. We are
going to examine whether the sum of the entropy enclosed
by the apparent horizon and the entropy of the apparent
horizon itself, is not a decreasing function of time. Simple
arguments suggest that after equilibrium establishes and
the universe background geometry becomes FRW, all the
fluids in the universe acquire the same temperature T [18],
which is moreover equal to the temperature of the horizon
Th [27,28], otherwise the energy flow would deform this
geometry [32].

In general, the apparent horizon ~rA is a function of time.
Thus, a change d~rA in time dtwill lead to a volume-change
dV, while the energy and entropy will change by dE and
dS respectively. However, since in the two states there is a
common source T��, we can consider that the pressure P

and the temperature T remain the same [27,28]. Such a
consideration is standard in thermodynamics, where one
considers two equilibrium states differing infinitesimally in
the extensive variables like entropy, energy and volume,
while having the same values for the intensive variables
like temperature and pressure. In this case the first law of
thermodynamics writes TdS ¼ dEþ PdV, and therefore
the dark-energy and dark-matter entropies read [33]:

dSDE ¼ 1

T
ðPDEdV þ dEDEÞ

dSM ¼ 1

T
ðPMdV þ dEMÞ

dS� ¼ 1

T
ðP�dV þ dE�Þ;

(7)

where V ¼ 4�~r3A=3 is the volume of the system bounded

by the apparent horizon and thus dV ¼ 4�~r2Ad~rA. In the
aforementioned expressions we have also added the corre-
sponding relation for radiation. We mention that due to
equilibration, all the constituents (fluids) of the universe
have the same temperature, while their energy and pressure
are in general different. Finally, it proves useful to divide
(7) by dt, obtaining:

_SDE ¼ 1

T
ðPDE4�~r

2
A
_~rA þ _EDEÞ

_SM ¼ 1

T
ðPM4�~r

2
A
_~rA þ _EMÞ

_S� ¼ 1

T
ðP�4�~r

2
A
_~rA þ _E�Þ;

(8)

where

_~rA ¼ 1

2
H~r3A½ð1þ wDEÞ�DE þ ð1þ wMÞ�M þ ð1þ w�Þ���;

(9)

as it easily arises differentiating the Friedmann equation
1
~r2
A

¼ 1
3 ð�DE þ �M þ ��Þ and using (3).

In order to connect the thermodynamically relevant
quantities, namely, the energies Ei and pressures Pi, with
the cosmologically relevant ones, namely, the energy den-
sities �i and the pressures pi, we can straightforwardly use:

EDE ¼ 4�

3
~r3A�DE EM ¼ 4�

3
~r3A�M

E� ¼ 4�

3
~r3A��;

(10)

and

PDE ¼ weff
DE�DE PM ¼ weff

M �M P� ¼ weff
� ��:

(11)

Note that expressions (11) arise necessarily from the ‘‘un-
coupled’’ form of the system (relations (4) and (5)), since
one needs an (effective or not) noninteracting system in
order to apply basic thermodynamics and avoid concepts
like the chemical potential. Inserting the time-derivatives
of (10), along with (11), into (8), and using (3), we obtain:

_S DE ¼ 1

T
ð1þ weff

DEÞ�DE4�~r
2
Að _~rA �H~rAÞ (12)

_SM ¼ 1

T
ð1þ weff

M Þ�M4�~r
2
Að _~rA �H~rAÞ (13)

_S � ¼ 1

T
ð1þ weff

� Þ��4�~r
2
Að _~rA �H~rAÞ: (14)

At this stage, we have to connect the temperature of the
fluids T, which is equal to that the horizon Th, with the
geometry of the universe. According to the generalization
of black-hole thermodynamics [25] to a cosmological
framework, the temperature of the horizon is related to
its radius through [26,28]

Th ¼ 1

2�~rA
: (15)

Finally, concerning the entropy of the horizon, one can
define it as [26,28] Sh ¼ 4�~r2A=ð4GÞ, and since in this
work we are using units where 8�G ¼ 1, we acquire Sh ¼
8�2~r2A. Hence, we obtain:

_S h ¼ 16�2~rA _~rA: (16)

Let us now proceed to the calculation of the total entropy
variation. Adding relations (12)–(14) and (16), and sub-
stituting the effective equation-of-state parameters through
(5), we find:

THERMODYNAMICS OF DARK ENERGY INTERACTING . . . PHYSICAL REVIEW D 81, 023007 (2010)

023007-3



_Stot � _SDE þ _SM þ _S� þ _Sh

¼ 8�2~r3Að _~rA �H~rAÞ½ð1þ wDEÞ�DE þ ð1þ wMÞ�M

þ ð1þ w�Þ��� þ 16�2~rA _~rA: (17)

Note that the aforementioned expression was simplified
due to the useful relation

ð1þ weff
DEÞ�DE þ ð1þ weff

M Þ�M þ ð1þ weff
� Þ��

¼ ð1þ wDEÞ�DE þ ð1þ wMÞ�M þ ð1þ w�Þ��: (18)

Thus, substituting also _~rA by (9) we result to:

_Stot ¼ 4�2~r6AH½ð1þ wDEÞ�DE þ ð1þ wMÞ�M

þ ð1þ w�Þ���2 � 0: (19)

(19) provides the expression of the generalized second law
of thermodynamics in the scenario where dark energy
interacts with dark matter and radiation. The fact that _Stot
is always non-negative proves the validity of this law at all
cosmological times. We mention that this result holds
independently of the interaction form, of the fluids
equation-of-state parameters, and of the background ge-
ometry, provided it is FRW. Finally, note that in the afore-
mentioned analysis we have not taken into account the
possible black-hole formation in the universe and its effect
on entropy.

Let us make a comment here for completeness. As we
observe from (19), there is a critical value of the dark-
energy equation-of-state parameter that leads to _Stot ¼ 0.
In particular this happens if wDEcr ¼ �1� ð1þ
wMÞ�M=�DE � ð1þ w�Þ��=�DE. That is, for regular

dark-matter and radiation, wDEcr lies in the phantom re-
gime. However, in order for wDE to obtain this value one
definitely needs a short of fine-tuning. Its calculation at
present (where the corresponding density parameters are
�M � 0:72,�M � 0:28, wM � 0 and neglecting radiation
for simplicity) leads to wDEcr � �1:39, which is outside
the observational intervals for wDE. But this could change
in the future, if �M decrease sufficiently. We mention that
ifwDE is even smaller, then _Stot will become positive again.
Finally, from (9) we observe that this value for wDE ¼
wDEcr leads also to _~rA ¼ 0. Thus, from the apparent
horizon definition (6) we can easily calculate the corre-
sponding solution for the scale factor, namely aðtÞ ¼
e�tþ� þ 4ke��t�� and aðtÞ ¼ e��t�� þ 4ke�tþ�, where
�, � are constants, and with the second solution existing
only for a closed universe. Obviously, for large times these
solution tend to a de Sitter solution. Note however that if
there is a strong energy-transfer from dark energy to the
other sectors, the former will not necessarily dominate the
universe completely.

In the following we discuss about the sign of the tem-
perature and entropy. In general, if the total equation-of-
state parameter of the universe lies above the phantom
divide, then both these quantities are unambiguously posi-

tive as usual. However, if the universe lies in the phantom
phase the subject is still open in the literature. Assuming a
zero chemical potential the temperature must be negative,
with the density and the entropy positive [34] and assuming
a negative chemical potential then temperature, entropy
and density are positive [35]. Additionally, in [36] it was
shown that even with an arbitrary chemical potential the
temperature of a phantom universe is negative, with the
density and the entropy positive, while in [32] it was found
that the phantom temperature is positive and its entropy
negative. Finally, in [37] it was argued that one can de-
scribe the phantom universe either with negative tempera-
ture and positive entropy, or with negative entropy and
positive temperature. In the analysis of this work equilib-
rium requires all the fluids in the universe to have the same
temperature, which is moreover equal to the temperature of
the horizon (although one could put into question the
equilibrium assumption and examine the nonequilibrium
case too). Since the horizon temperature is always positive,
it is deduced that the universe temperature will be positive
even if it lies in the phantom phase. Thus, in order to be in
agreement with the literature, one should have a negative
universe entropy in this case. Note however that the nega-
tive entropy of the universe ingredients is overcome by the
positive horizon entropy, and thus the total entropy is
always positive.
In particular, and assuming complete dark-energy domi-

nation for simplicity, in the quintessence regime we have
_~rA > 0 [according to (9)]. Thus, according to (16) we
obtain _Sh > 0, while according to (12) we have _SDE < 0.
Furthermore, Sh > 0 (as always), while SDE > 0 (since we
are in the quintessence regime). Thus, in this regime we
have _Stot > 0 [according to (19)] and Stot > 0. On the other
hand, in the phantom regime (9) leads to _~rA < 0, and thus
(16) gives _Sh < 0, while (12) gives _SDE > 0. Moreover,
Sh > 0 (as always), while SDE < 0 (since we are in the
phantom regime). However, in this case we obtain Stot > 0
and also _Stot > 0. So in summary, the present work and the
validity of the generalized second law, is consistent with
the positive-temperature and negative-entropy picture of
the phantom dark energy. Finally, note that the inconsis-
tency of the generalized second law with the negative-
temperature and positive-entropy picture of the phantom
dark energy, was already mentioned in [38].
Before closing this section let us make a comment on the

horizon we use in the present work. Concerning the first
law of thermodynamics it has been proven in [39] that the
field equations of any (diffeomorphism invariant) gravita-
tional theory must be expressible as a thermodynamic
identity, TdS ¼ dE, around any event in the spacetime.
However, concerning the generalized second law of ther-
modynamics, it has been shown that it is generally valid
only if one uses the apparent horizon [28–31], while it is
conditionally valid for other horizon choices [38]. Thus,
repeating our calculations using the future event horizon
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Rh ¼ R1
a da=ðHa2Þ instead of the apparent horizon rA, we

find that the generalized second law is not always valid.
Clearly, the separate investigation of each horizon is a
crucial and open subject in the thermodynamic aspects of
gravity, as it is discussed in detail in the recent review [40].

IV. CONCLUSIONS

In this work we investigated the cosmological scenario
where dark energy interacts with both dark matter and
radiation, a scenario which could alleviate the triple coin-
cidence problem [22]. After reminding that in such fluid
cosmological models the Friedmann equations can arise
from the first law of thermodynamics, with the fluid con-
servation equations being the only external input required
to close the equations system, we examined the validity
of the generalized second law of thermodynamics. Con-
sidering the universe as a thermodynamical system
bounded by the apparent horizon, and calculating sepa-
rately the entropy variation for each fluid component and
for the horizon itself, we resulted to an expression for the
time derivative of the total entropy of the universe.

According to our main result, that is expression (19), the
time derivative of the total entropy is always non-negative,
and this holds independently of the specific interaction
form, of the fluids equation-of-state parameters, and of

the background geometry. Thus, the generalized second
law of thermodynamics is always and generally valid, as
long as one considers the apparent horizon as the universe
‘‘radius’’ (the use of other choices, such is the future event
horizon, leads to conditional validity only). However, we
mention that the present work is consistent with the
positive-temperature and negative-entropy picture of the
phantom dark energy [37]. Finally, it is interesting to notice
that if the dark-energy equation-of-state parameter takes a
critical phantom value, then the total entropy of the uni-
verse remains constant.
In the present work we have proven the validity of the

generalized second law of thermodynamic in the scenario
where dark energy interacts with dark-matter and radiation
sectors. This result is necessary for the consideration of
such scenarios, but it is not sufficient. One must also
examine whether such models affect the known cosmo-
logical epochs, before proceeding to their safe use. But
such a study is beyond the purpose of this work and it is left
for future investigation.
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