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When the last electron-photon scattering takes place in a magnetized environment, the degree of

circular polarization of the outgoing radiation depends upon the magnetic field strength. After deriving the

scattering matrix of the process, the generalized radiative transfer equations are deduced in the presence of

the relativistic fluctuations of the geometry and for all the four brightness perturbations. The new system

of equations is solved under the assumption that the incident radiation is not polarized. The induced

V-mode polarization is analyzed both analytically and numerically. The corresponding angular power

spectra are calculated and compared with the measured (or purported) values of the linear polarizations

(i.e. E mode and B mode) as they arise in the concordance model and in its neighboring extensions.

Possible connections between the V-mode polarization of the cosmic microwave background and the

topological properties of the magnetic flux lines prior to equality are outlined and briefly explored in

analogy with the physics of magnetized sunspots.
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I. MOTIVATIONS AND GOALS

The circular polarization of the cosmic microwave back-
ground (CMB in what follows) is not the direct target of
forthcoming experimental searches. It will be argued here-
under that more accurate spectropolarimetric measure-
ments of the V-mode polarization can be enlightening
especially as a diagnostic of the magnetization of the
predecoupling plasma. The primary goal of experimental
endeavors in the near future is related, in one way or
another, to the determination of the angular power spectra
of the intensity and of the linear polarization of the CMB
radiation field. Even the B-mode polarization, one of the
primary objectives of diverse experimental programs, will
be unable to shed light on the circular polarizations of the
CMB. To avoid possible misunderstandings on this point it
is desirable to introduce the relevant conventions on the
Stokes parameters of the radiation field1

I ¼ j ~E � ê1j2 þ j ~E � ê2j2; V ¼ 2 Im½ð ~E � ê1Þ�ð ~E � ê2Þ�;
(1.1)

Q ¼ j ~E � ê1j2 � j ~E � ê2j2;
U ¼ 2Re½ð ~E � ê1Þ�ð ~E � ê2Þ�;

(1.2)

where ê1 and ê2 are two mutually orthogonal directions
both perpendicular to the direction of propagation n̂ which
is chosen to lie along ê3. The temperature autocorrelation

(i.e. the TT angular power spectrum2) stems directly from
the brightness perturbation of the intensity of the radiation
field: the fluctuations of the space-time curvature act as
sources of inhomogeneity of the intensity. The treatment of
the polarization is slightly more cumbersome and it has to
do with the transformation properties of the Stokes pa-
rameters. Consider a rotation of the unit vectors ê1 and ê2
in the plane orthogonal to n̂ and suppose that the rotation
angle is ’. By rotating the axes in the right-handed sense,
i.e. as

ê 0
1 ¼ cos’ê1 þ sin’ê2; ê01 ¼ � sin’ê1 þ cos’ê2;

(1.3)

the Stokes parameters of Eq. (1.1) are left invariant
(i.e. I0 ¼ I and V0 ¼ V) while Q and U [introduced in
Eq. (1.2)] transform as

Q0 ¼ cos2’Qþ sin2’U;

U0 ¼ � sin2’Qþ cos2’U:
(1.4)

In other words, while I and V are invariant under a two-
dimensional rotation, Q and U do transform and do mix
under the same rotation. It is worth stressing that the
transformation parametrized by Eq. (1.3) is not a global
rotation of the coordinate system but it is rather a rotation
on the tangent plane to the two-sphere at a given point. The
transformation properties of the Stokes parameters under
Eq. (1.3) allow one determine their associated spin weight
[4–7]. The brightness perturbations associated with I and V

*massimo.giovannini@cern.ch
1From the definitions of the Stokes parameters it follows (see,

e.g. [1–3]) that I2 � Q2 þU2 þ V2, where the equality sign
arises in the case of the field of a plane wave.

2The specific definitions of the relevant angular power spectra
are provided hereunder, see, e.g. Eqs. (1.11) and (1.12).
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(i.e. �I and �V) both have spin weight 0. The brightness
perturbations of Q and U (i.e. �Q and �U) transform as a

function of spin weight �2, since, from Eq. (1.4),
��ðn̂; �Þ ¼ �Qðn̂; �Þ � i�Uðn̂; �Þ transform as�0�ðn̂; �Þ ¼
e�2i’��ðn̂; �Þ. Consequently, while ��ðn̂; �Þ have to be
expanded, on the two-sphere, in terms of spin-� 2 spheri-
cal harmonics �2Y‘mðn̂Þ

��ðn̂; �Þ ¼
X
‘m

a�2;‘m�2Y‘mðn̂Þ; (1.5)

�Iðn̂; �Þ and �Vðn̂; �Þ have to be expanded on the basis of
spherical harmonics Y‘mðn̂Þ as:

�Iðn̂; �Þ ¼
X
‘m

aðIÞ‘mY‘mðn̂Þ; �Vðn̂; �Þ ¼
X
‘m

aðVÞ‘mY‘mðn̂Þ:

(1.6)

Both spin-0 and spin-� 2 spherical harmonics arise natu-
rally as Wigner matrix elements [8] depending in general
upon three different eigenvalues: while the third eigenvalue
is 0 for scalar harmonics, it is �s for spin-s weighted
harmonics. The complete information on the radiation field
of the CMB should therefore stem from the analysis of the
TT and VV angular power spectra

CðTTÞ
‘ ¼ 1

2‘þ 1

X‘
m¼�‘

haðIÞ�‘m aðIÞ‘mi;

CðVVÞ
‘ ¼ 1

2‘þ 1

X‘
m¼�‘

haðVÞ�‘m aðVÞ‘m i;
(1.7)

as well as from the angular power spectra of the E-mode
and B-mode autocorrelations.3 The E-mode and B-mode
autocorrelations are defined as

CðEEÞ
‘ ¼ 1

2‘þ 1

X‘
m¼�‘

haðEÞ�‘m aðEÞ‘mi;

CðBBÞ
‘ ¼ 1

2‘þ 1

X‘
m¼�‘

haðBÞ�‘m aðBÞ‘mi;
(1.8)

where aðEÞ‘m and aðBÞ‘m are a linear combination of the coef-

ficients a�2;‘m already introduced in Eq. (1.5):

aðEÞ‘m ¼ � 1

2
ða2;‘m þ a�2;‘mÞ;

aðBÞ‘m ¼ i

2
ða2;‘m � a�2;‘mÞ:

(1.9)

In real space the fluctuations constructed from aðEÞ‘m and aðBÞ‘m

have the property of being invariant under rotations on a
plane orthogonal to n̂ and, up to an ‘-dependent prefactor,
they can be expanded in terms of (ordinary) spherical
harmonics:

�Eðn̂; �Þ ¼
X
‘m

N�1
‘ aðEÞ‘mY‘mðn̂Þ;

�Bðn̂; �Þ ¼
X
‘m

N�1
‘ aðBÞ‘mY‘mðn̂Þ;

(1.10)

where N‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘� 2Þ!=ð‘þ 2Þ!p

. Before matter radiation
equality the radiation field is customarily assumed to be
unpolarized. The properties of electron-photon (and ion-
photon) scattering imply that the radiation can become
linearly polarized provided the incident brightness pertur-
bations have a nonvanishing quadrupole moment,4 i.e.
�I2 � 0.
Circular dichroism as well as linear polarization of the

CMB becomes theoretically plausible in the presence of
preequality magnetic fields [9,10] but, so far, there has not
been any specific calculation of the circular polarization
induced by a magnetized plasma prior to recombination
and in the framework of the concordance model. One of the
purposes of this article is to fill such a gap. While the
V-mode polarization is suppressed in comparison with the
E-mode polarization, the question is to determine quanti-
tatively the nature of the suppression and its typical range
in multipole space. The answer to the latter question can
only be dynamical: it will be interesting, for the present
purposes, to understand how, when and to what extent a
radiation field which is originally unpolarized prior to
equality will become circularly polarized after photon
decoupling.
Some of the phenomenological aspects of the present

considerations can be understood in analogy with solar
spectropolarimetry. The knowledge of large-scale magne-
tism is often inspired (and partially modeled) by our im-
proved understanding of solar magnetism (see, for
instance, [11] for a dedicated review on the subject).
Circular polarization is known to occur in sunspots [12–
14] and it is sometimes argued that the analysis of polar-
ization might improve the understanding of the local to-
pology of magnetic flux lines in the vicinity of sunspots
[11]. The amount of circular polarization depends, in the
case of the sun, both on the gradients of the velocity field as
well as upon the magnetic field topology and intensity. A
naive approach to the problem would suggest that, absent
any velocity gradient, V ’ 9� 10�12Bspot�I where � is the

wavelength in units of nm (1 nm ¼ 10�9 m) and Bspot is

the magnetic field in units of gauss. As noted long ago (see

3This statement on the autocorrelations of temperature and
polarization does not exclude the possibility of discussing and
measuring the various cross correlations between temperature
and polarization.

4As usual �I‘ denotes the ‘th multipole of the intensity of the
radiation field. With the same notation we will refer, when
needed, to the multipoles of other observables.
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e.g. [12,13]) for typical values of the magnetic field (i.e.
Bspot 	 kG) and for optical wavelengths (i.e. 380< �<

750 nm) we would get V=I 	 10�5 which is 1 or 2 orders
of magnitude smaller than what is approximately observed.
The latter discrepancy suggested (see e.g. [15]) the impor-
tant role played by velocity gradients whose contribution
should be included for a consistent interpretation of the
observational data.

Circular polarization arises naturally also in synchrotron
emission [16–18] (see also [19,20]). In this second context
the amount of circular polarization is generated from the
linear polarization by the so-called Faraday conversion
effect. In the case of the CMB the relativistic effect asso-
ciated with the synchrotron emission is difficult to realize.
On the contrary the predecoupling plasma is rather cold
and the electrons are nonrelativistic. Furthermore, it is
difficult to justify that the initial radiation field should be
linearly polarized already well before equality. The only
way Faraday conversion could lead to circular polarization
is as a secondary effect when the linearly polarized CMB
photons impinge on the relativistic electrons in the cluster
magnetic field [21]. In this paper, on the contrary, the target
is to compute the amount of circular polarization induced
at early times by a predecoupling magnetic field and in
terms of unpolarized initial conditions of the Einstein-
Boltzmann hierarchy. To introduce some quantitative (but
still general) considerations it is practical to define, for
immediate convenience,

GðTTÞ
‘ ¼ ‘ð‘þ 1Þ

2�
CðTTÞ
‘ ; GðVVÞ

‘ ¼ ‘ð‘þ 1Þ
2�

CðVVÞ
‘ ;

(1.11)

GðEEÞ
‘ ¼ ‘ð‘þ 1Þ

2�
CðEEÞ
‘ ; GðBBÞ

‘ ¼ ‘ð‘þ 1Þ
2�

CðBBÞ
‘ ;

(1.12)

measuring, for a given observable, the angular power per
logarithmic interval of ‘. With the same notation the cross
correlations between different observables can be defined,

for instance, asGðTEÞ
‘ ,GðVTÞ

‘ and so on and so forth. In terms

of Eqs. (1.11) and (1.12) the typical orders of magnitude
angular power spectra can then be summarized as5

GðTTÞ
‘ ’ Oð5� 103Þ ð�KÞ2;

GðTEÞ
‘ ’ Oð150Þ ð�KÞ2;

GðEEÞ
‘ ’ Oð50Þ ð�KÞ2:

(1.13)

The TT and TE correlations have been accurately assessed
by the WMAP Collaboration [22–24] (see also [25,26]).
Interesting measurements on the EE correlations have been
reported, for instance, by the QUaD experiment [27–30].

Other measurements on the TT correlation for large multi-
poles (i.e. ‘ > 1000) have been reported by the ACBAR
experiment [31,32]. While all the current experimental
data are consistent with the standard �CDM paradigm
they can also be used to estimate the parameters of a
putative magnetized background. In this respect, the result
is that large-scale magnetic fields of nG strength and
slightly blue spectral indices are allowed by current
CMB data [33,34]. The estimation of the parameters of a
magnetized background led to the first estimate of the
likelihood contours in the two-dimensional plane charac-
terized by the magnetic spectral index and by the magnetic
field intensity. In a frequentist perspective the results of
[33,34] exclude, to 95% confidence level, a sizable portion
of the parameter space of magnetized models centered
around comoving field intensities of 3.2 nG and magnetic
spectral indices6 nB ¼ 1:6. The latter results hold when the
underlying model is just the �CDM (concordance) para-
digm7 but the addition of, for instance, dark energy fluc-
tuations does not change quantitatively the exclusion plots
[35].
The B-mode polarization has not been measured yet and

upper limits exist by various experiments. In the standard
�CDM paradigm with no tensors the BB power spectrum
vanishes. For instance magnetic fields ofOð5 nGÞ and blue
spectral index lead, at intermediate scales, to an angular
power spectrum which can be as large as 10�3 ð�KÞ2 [36].
The latter estimate can be compared, for instance, with the
BB angular power spectrum expected from the tensor
modes of the geometry and from the gravitational lensing
of the CMB anisotropies. The tensor modes are the con-
ventional (potential) source of B-mode polarization in the
simplest extension of the �CDM paradigm. Defining rT as
the tensor to scalar ratio, a typical value rT 	 0:3 would
imply, at intermediate multipoles (i.e. ‘ < 100) a BB an-
gular power spectrum of the order of 10�2 ð�KÞ2.
The degree of circular polarization computed here de-

pends, in the simplest case, upon the amount of curvature
perturbations, upon the magnetic field parameters and
upon the typical frequency of the experiment. For nG
magnetic fields and for a reference frequency Oð10Þ GHz
the VV angular power spectrum is GðVVÞ

‘ ’ 10�15 ð�KÞ2.
For the same range of parameters the cross correlation

GðVTÞ
‘ ’ 10�6:5 ð�KÞ2. If the observational frequency de-

creases the signals can be larger. While this comparison
will be more carefully performed in Sec. IV it is important
to appreciate that, in some sense, the absolute magnitude of
the different correlation functions represents just a neces-
sary but insufficient guide for the observer since the sys-

5For sake of simplicity the numerical values quoted here refer
to the maximum of each power spectrum.

6The conventions on the magnetic spectral indices nB are
exactly the same as the ones employed for the spectral index
of curvature perturbations (denoted as ns). The scale-invariant
value corresponds, in both cases, to 1.

7In the acronym � stands for the (nonfluctuating) dark energy
component while CDM stands for cold dark matter.
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tematics associated with the circular polarization are dif-
ferent from the ones arising in the case of a linearly
polarized signal [37]. The second point we wish to stress
is that, as it will be apparent from the subsequent analysis,
low frequency instruments seem to be experimentally pref-
erable [38,39] and, in this respect, it is tempting to specu-
late that very low frequency (radio) techniques could be
appropriately adapted [40–42]. The third point related to
the potential observations of the effects is that spectropo-
larimetric techniques should probably be employed given
the necessity of a simultaneous determination of the bright-
ness perturbation of the intensity and of the V-mode po-
larization (see, in this respect, Sec. IV).

The analogy of the present problem with the physics of
the sunspots suggests the possibility of connecting the
amount of (measured) circular polarization with the topol-
ogy of the magnetic flux lines. This topic is, in principle,
rather rich and, in this paper, we will merely scratch the
surface by presenting some particular examples which are
only semirealistic and which are borrowed from known
examples in plasma physics. Indeed, the study of the
topology of magnetic flux lines has a long history going
back to the pioneering work of Fermi and Chandrasekhar
on the gravitational stability of the galactic arm [43,44]. It
would be interesting, in perspective, to connect the pos-
sible occurrence (or absence) of the circular polarization
with magnetized plasmas which minimize the magnetic
energy while the helicity is conserved (as it should) at high
conductivity (see, along this line, the seminal papers of
Chandrasekhar, Kendall and Woltjer [45–47]).

The layout of the paper is the following. In Sec. II the
photon-electron and photon-ion scattering will be dis-
cussed in the presence of a magnetic field in the guiding
center approximation. Details are also reported in
Appendix A. In Sec. III the same problem will be ad-
dressed in the case of a magnetic knot, i.e. a simple
example of static configuration minimizing the energy at
a fixed value of the magnetic helicity. It will be speculated
that the degree of circular polarization could be eventually
connected with the topological properties of the magnetic
flux lines in the plasma. In Sec. IV the evolution equations
of the brightness perturbations will be deduced and solved
both analytically and numerically. Relevant details on this
topic are given in Appendix B. The tight-coupling approxi-
mation will be applied to the new framework and analytical
results for the V-mode power spectra for large angular
scales will be derived. For smaller angular scales numeri-
cal results will also be presented and compared with
the temperature and (linear) polarization anisotropies.
Section V contains the concluding considerations.

II. MAGNETIZED ELECTRON-PHOTON
SCATTERING

The electron-photon scattering is customarily computed
without taking into account the contribution of the mag-

netic field itself to the scattering matrix. This happens not
only in the case when magnetic fields are assumed to be
absent but also in the presence of large-scale magnetic
fields (see, for instance,8 [48–50]). The purpose of this
section is to drop such an assumption and to derive the
appropriate scattering matrix for electron-photon scatter-
ing in a weakly magnetized plasma. It is practical to define,
for the present purposes, the outgoing and ingoing Stokes
vectors whose components are the Stokes parameters, i.e.

I outð!;�;�0; ’; ’0Þ ¼ ðI1; I2; U; VÞ; (2.1)

I inð!;�0; ’0Þ ¼ ðI01; I02; U0; V 0Þ; (2.2)

� ¼ cos# and �0 ¼ cos#0. The intensity I and one of the
components of the linear polarization (i.e. Q) have been
replaced, as usual, by I1 ¼ ðI þQÞ=2 and I2 ¼ ðI �QÞ=2.
The components of the ingoing Stokes parameters have
been distinguished by a prime and they depend upon �0 ¼
cos# 0 and ’0. The Stokes parameters depend upon the
(angular) frequency! ¼ 2��. By definition, the scattering
matrix connects the outgoing to the ingoing Stokes pa-
rameters as:

I out
i ð!;�;�0; ’; ’0Þ ¼ Sijð!;�;�0; ’; ’0ÞI in

j ð!;�0; ’0Þ:
(2.3)

The coordinate system has been fixed as9:

r̂ ¼ ðcos’ sin#; cos’ sin#; cos#Þ; (2.4)

�̂ ¼ ðcos’ cos#; sin’ cos#;� sin#Þ; (2.5)

’̂ ¼ ð� sin’; cos’; 0Þ: (2.6)

The purpose is to obtain the scattering matrix of electron-
photon scattering (see, e.g. [2]) but in the presence of a
magnetic field and in the guiding center approximation
[51] which is, in practice, a controlled expansion in gra-
dients of the magnetic field intensity. The derivation of the
various components of the scattering matrix is reported in
Appendix A. In what follows only the results will be
reported and discussed. Defining as re ¼ e2=me the clas-
sical radius of the electron, the various components of the
scattering matrix can be written as:

8It is appropriate to stress that it would be rather pretentious to
give a complete and thorough list of references in connection
with primordial magnetism. The easiest solution is to refer the
interested reader to the dedicated review articles of [9,10] where
a more complete bibliography can be found.

9The orientation of the coordinate system corresponding to
Eqs. (2.4)–(2.6) implies that #̂ � ’̂ ¼ r̂. In other classic refer-
ences such as [2] the orientation is such that #̂ � ’̂ ¼ �r̂; this
different choice entails a modification of Eq. (2.6), i.e. ’̂ ¼
ðsin’;� cos’; 0Þ. The conventions spelled out by
Eqs. (2.4)–(2.6) will be followed throughout the paper.
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S11 ¼ r2e
2r2

f2�3ð!Þð1��2Þð1��02Þ
þ �2ð!Þ�2�02½1þ f2eð!Þ�2

2ð!Þ�
� 4�ð!Þ�3ð!Þ��0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
� cosð’0 � ’Þ þ �2ð!Þ½1� f2eð!Þ�2

2ð!Þ�
��2�02 cos½2ð’0 � ’Þ�g; (2.7)

S12 ¼ �2�2ð!Þr2e
2r2

f1þ f2eð!Þ�2
2ð!Þ

� ½1� f2eð!Þ�2
2ð!Þ� cos½2ð’0 � ’Þ�g; (2.8)

S 13 ¼ r2e
r2

f�ð!Þ�3ð!Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
sinð’0 � ’Þ

� 1

2
�2ð!Þ�2�0½1� f2eð!Þ� sin½2ð’0 � ’Þ�g;

(2.9)

S 14 ¼ r2efeð!Þ�ð!Þ�2ð!Þ
r2

�½�ð!Þ��0 ��3ð!Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
cosð’0 � ’Þ�; (2.10)

S21 ¼ �2ð!Þ�02r2e
2r2

f�2
1ð!Þ þ f2eð!Þ�2

2ð!Þ
� ½�2

1ð!Þ � f2eð!Þ�2
2ð!Þ� cos½2ð’0 � ’Þ�g; (2.11)

S22 ¼ �2ð!Þr2e
2r2

f�2
1ð!Þ þ f2eð!Þ�2

2ð!Þ
þ ½�2

1ð!Þ � f2eð!Þ�2
2ð!Þ� cos½2ð’0 � ’Þ�g; (2.12)

S23 ¼ �2ð!Þr2e
2r2

½�2
1ð!Þ � f2eð!Þ�2

2ð!Þ��0 sin½2ð’0 � ’Þ�;
(2.13)

S 24 ¼ r2e
r2
feð!Þ�2ð!Þ�1ð!Þ�2ð!Þ�0; (2.14)

S31 ¼ r2e
r2

f�2�ð!Þ�1ð!Þ�3ð!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
� sinð’0 � ’Þ
þ �2ð!Þ��02½�1ð!Þ � f2eð!Þ�2

2ð!Þ�
� sin½2ð’0 � ’Þ�g; (2.15)

S32 ¼�r2e
r2
�2ð!Þ½�1ð!Þ� f2eð!Þ�2

2ð!Þ�� sin½2ð’0 �’Þ�;
(2.16)

S33 ¼ �ð!Þr2e
r2

f��1ð!Þ�3ð!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
� cosð’0 � ’Þ þ �ð!Þ½�1ð!Þ � f2eð!Þ�2

2ð!Þ���0

� cos½2ð’0 � ’Þ�g; (2.17)

S 34 ¼ � r2e
r2
feð!Þ�ð!Þ�2ð!Þ�3ð!Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
sinð’0 � ’Þ; (2.18)

S41 ¼ � r2efeð!Þ�ð!Þ�2ð!Þ�0

r2
f2�3ð!Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
� cosð’0 � ’Þ
� �ð!Þ��0½�1ð!Þ þ 1� ð�1ð!Þ � 1Þ
� cos½2ð’0 � ’Þ��g; (2.19)

S42 ¼ r2efeð!Þ�2ð!Þ�2ð!Þ�
r2

f1þ�1ð!Þ þ ½�1ð!Þ � 1�
� cos½2ð’0 � ’Þ�g; (2.20)

S43 ¼ r2e
r2
ffeð!Þ�ð!Þ�2ð!Þ�3ð!Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
� sinð’0 � ’Þ � feð!Þ�2ð!Þ�2ð!Þ
���0½1��1ð!Þ� sin½2ð’0 � ’Þ�g; (2.21)

S44 ¼ r2e
r2
f��0�2ð!Þ½�1ð!Þ þ f2eð!Þ�2

2ð!Þ�

� �ð!Þ�1ð!Þ�3ð!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
� cosð’0 � ’Þg: (2.22)

In Eqs. (2.7)–(2.22) various (frequency dependent) quanti-
ties have been introduced, namely feð!Þ, �1ð!Þ, �2ð!Þ
and �3ð!Þ. Their explicit expressions are

�1ð!Þ ¼ 1þ
�!2

pi

!2
pe

��
!2 �!2

Be

!2 �!2
Bi

�
; (2.23)

�2ð!Þ ¼ 1�
�!2

pi

!2
pe

��
!Bi

!Be

��
!2 �!2

Be

!2 �!2
Bi

�
; (2.24)

�3ð!Þ ¼ 1þ
�!2

pi

!2
pe

�
; (2.25)

�ð!Þ ¼ 1

f2eð!Þ � 1
¼ !2

!2
Be �!2

; feð!Þ ¼
�
!Be

!

�
;

(2.26)

where !Be;i and !pe;i are the Larmor and plasma frequen-

cies for electrons and ions, namely:
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!Be ¼ eB

mea
; !Bi ¼ eB

mpa
; (2.27)

!pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2n0
meað�Þ

s
; !pi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2n0
mpað�Þ

vuut ; (2.28)

where B is the modulus of the magnetic field intensity
coinciding, in practice, with the lowest order result of
the guiding center approximation. As discussed in
Appendix A, Eqs. (2.27) and (2.28) take into account the
redshift dependence of the frequency. The magnetic field
appearing in Eq. (2.27) is the comoving magnetic field (see
Appendix A) and this means, in particular, that the relation
to the physical frequencies is given by

!Be ¼ eB
me

að�Þ ¼ !
phys
Be að�Þ; (2.29)

and similarly for the other quantities of Eqs. (2.27) and
(2.28). The logic behind the functions defined in
Eqs. (2.23)–(2.25) is that we want to factorize the electron
contribution by keeping track of the ions. According to this
strategy, to leading order in the ion contributions, �1ð!Þ,
�2ð!Þ and �3ð!Þ turn out to be

�1ð!Þ ¼ 1þO
�
me

mp

��
1þO

�
!Be

!

��
;

�2ð!Þ ¼ 1�O
�
m2

e

m2
p

��
1þO

�
!Be

!

��
;

�2ð!Þ ¼ 1þO
�
me

mp

�
:

(2.30)

In the limit feð!Þ ! 0 and by correspondingly setting
�1ð!Þ ¼ �2ð!Þ ¼ �3ð!Þ ¼ 1, Eqs. (2.7)–(2.22) repro-
duce exactly the results of Ref. [2] modulo the different
orientation of the coordinate system [see Eqs. (2.4)–(2.6)
and footnote therein] which leads to an overall sign differ-
ence in the matrix elements containing the sines. In the
limit �1ð!Þ ¼ �2ð!Þ ¼ �3ð!Þ ! 1 the present results
coincide with Ref. [52] (see also [53] modulo the typo
pointed out in [52]). The evolution equations for the bright-
ness perturbations can be written, in general terms, as10

�0
I þ �0�I þ ni@i�I ¼ c 0 � ni@i	þ �0�vb

þ �0CIð�;!Þ; (2.31)

�0
Q þ �0�Q þ ni@i�Q ¼ �0CQð�;!Þ; (2.32)

�0
U þ �0�U þ ni@i�U ¼ �0CUð�;!Þ; (2.33)

�0
V þ �0�V þ ni@i�V ¼ �0CVð�;!Þ: (2.34)

Concerning Eqs. (2.31)–(2.34) a few comments are in
order. The brightness perturbations can be classified in
terms of their transformation properties under rotations in
the three-dimensional Euclidean submanifold. This means
that all the brightness perturbations will have a scalar, a
vector and a tensor contribution. In the framework of the
�CDM scenario the tensor and the vector fluctuations of
the geometry are totally absent. Therefore, since we want
to compute the circular polarization in the minimal situ-
ation, we will stick to the scalar modes of the geometry
which are connected with the scalar modes
of the brightness perturbations. As implied by the
concordance model the background metric is taken to be
conformally flat with signature mostly minus, i.e. �g�� ¼
a2ð�Þ
�� where 
�� ¼ diagð1;�1;�1;�1Þ is the

Minkowski metric. In Eq. (2.31), 	 and c represent the
scalar fluctuations of the metric in the conformally
Newtonian gauge, i.e. �sg00 ¼ 2a2	 and �sgij ¼
2a2�ijc . Always in Eq. (2.31), vb is related to the baryon

velocity (see Appendix A) i.e. the center of mass velocity
of the electron-ion system. In Eqs. (2.31)–(2.34) �0 denotes,
as usual, the differential optical depth, i.e.

�0 ¼ xe~ne�
e

a

a0
; �
e ¼ 8

3
�r2e: (2.35)

After integration over ’0 the source terms appearing in
Eqs. (2.31)–(2.34) can be written as

CIð�;!Þ ¼ 3�0

16�

Z 1

�1
d�0f½ �P11 þ �P12 þ �P21 þ �P22�

� �Ið�;�0Þ þ ½ �P11 � �P12 þ �P21 � �P22�
� �Qð�;�0Þ þ 2½ �P13 þ �P23��Uð�;�0Þ
þ 2½ �P14 þ �P24��Vð�;�0Þg; (2.36)

CQð�;!Þ ¼ 3�0

16�

Z 1

�1
d�0f½ �P11 þ �P12 � �P21 � �P22�

� �Ið�;�0Þ þ ½ �P11 � �P12 � �P21 þ �P22�
� �Qð�;�0Þ þ 2½ �P13 � �P23��U

þ 2½ �P14 � �P24��Vð�;�0Þg; (2.37)

10Note the presence of the Doppler term arising in the source
term of the intensity. The collisionless part of the evolution of the
intensity perturbations is well known. For the interested reader it
is derived, within the present conventions, in Ref. [54] and
within different gauge choices.
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CUð�;!Þ ¼ 3�0

16�

Z 1

�1
d�0f½ �P31 þ �P32��Ið�;�0Þ

þ ½ �P31 � �P32��Qð�;�0Þ þ 2 �P33�Uð�;�0Þ
þ 2 �P34�vð�;�0Þg; (2.38)

CVð�;!Þ ¼ 3�0

16�

Z 1

�1
d�0f½ �P41 þ �P42��Ið�;�0Þ

þ ½ �P41 � �P42��Qð�;�0Þ þ �P43�Uð�;�0Þ
þ �P44�Vð�;�0Þg; (2.39)

where the generic matrix element appearing in Eqs. (2.36)–
(2.39) is the integral over ’0 of the corresponding element
of the scattering matrix of Eq. (2.3), i.e.

�P ijð�;�0Þ ¼
Z 2�

0
Sijð�;�0; ’0Þd’0: (2.40)

For immediate convenience it is appropriate to write down
the explicit form of the various matrix elements appearing
in Eqs. (2.36)–(2.39):

�P11ð!;�;�0Þ ¼ �f2�3ð!Þð1��2Þð1��02Þ
þ �2ð!Þ�2�02½1þ f2eð!Þ�2

2ð!Þ�g;
�P12ð!;�;�0Þ ¼ ��2�2ð!Þ½1þ f2eð!Þ�2

2ð!Þ�;
�P13ð!;�;�0Þ ¼ 0;

�P14ð!;�;�0Þ ¼ 2�feð!Þ�2ð!Þ�2ð!Þ�2�0;
�P21ð!;�;�0Þ ¼ ��2ð!Þ�02½�2

1ð!Þ þ f2eð!Þ�2
2ð!Þ�;

�P22ð!;�;�0Þ ¼ ��2½�2
1ð!Þ þ f2eð!Þ�2

2ð!Þ�;
�P23ð!;�;�0Þ ¼ 0;

�P24ð!;�;�0Þ ¼ 2�feð!Þ�2ð!Þ�1ð!Þ�2ð!Þ�0;
�P31ð!;�;�0Þ ¼ �P32ð!;�;�0Þ ¼ �P33ð!;�;�0Þ

¼ �P34ð!;�;�0Þ ¼ 0;

�P41ð!;�;�0Þ ¼ 2�feð!Þ�2ð!Þ�2ð!Þ½�1ð!Þ þ 1���02;
�P42ð!;�;�0Þ ¼ 2�feð!Þ�2ð!Þ�2ð!Þ½�1ð!Þ þ 1��;

�P43ð!;�;�0Þ ¼ 0;

�P44ð!;�;�0Þ ¼ 2��2ð!Þ½�1ð!Þ þ f2eð!Þ�2
2ð!Þ���0:

(2.41)

Inserting the results of Eq. (2.41) inside Eqs. (2.36)–(2.39)
the explicit expressions of the various source terms can be
obtained. The details of this standard manipulation are
reported in Appendix B [see, in particular, Eqs. (B1) and
(B2)]. The final result is

CIð!;�Þ ¼ 1

4
f�I0½2�3ð!Þð1��2Þ

þ 2�2ð!Þð�2 þ�2
1ð!ÞÞ þ 2�2ð!Þf2eð!Þ

��2
1ð!Þð1þ�2Þ� þ ½2�3ð!Þð1��2Þ

� �2ð!Þð�2 þ�2
1ð!ÞÞ

� f2eð!Þ�2ð!Þ�2
2ð!Þð1þ�2Þ�SP

� 6if2eð!Þ�2ð!Þ�2ð!Þ½�2 þ�1ð!Þ��V1g;
(2.42)

CQð!;�Þ ¼ 1

4
f½2ð1��2Þð�3ð!Þ � �2ð!Þf2eð!Þ�2

2ð!ÞÞ
� 2�2ð!Þð�1ð!Þ ��2Þ��I0

þ ½2�3ð!Þð1��2Þ � �2ð!Þð�2 ��2
1ð!Þ

� f2eð!Þ�2
2ð!Þð1��2ÞÞ�SP

� 6if2eð!Þ�2ð!Þ�2ð!Þð�2 ��1ð!ÞÞ�V1g;
(2.43)

CVð!;�Þ ¼ �2ð!ÞP1ð�Þ
2

�
feð!Þ�2ð!Þð�1ð!Þ þ 1Þ

� ½2�I0 � SP�
� 3

2
i½�1ð!Þ þ f2eð!Þ�2

2ð!Þ��V1

�
; (2.44)

while CUð!;�Þ vanishes identically. In Eqs. (2.42)–(2.44)
the following important combination has been introduced,
namely:

SP ¼ �I2 þ �Q2 þ �Q0: (2.45)

It must be remarked that SP is the standard source term
arising in the treatment of CMB polarization when the
magnetic field contribution is ignored in the scattering
process (see, e.g. [33,55,56] and references therein). The
result expressed by Eqs. (2.42)–(2.44) does hold to lowest
order in the guiding center approximation [see Eq. (A11)
and discussion therein]. As it will be discussed in Sec. IV,
the results derived so far improve the accuracy of the
radiative transfer equations in the case when large-scale
magnetic fields are consistently included in the discussion.
The Faraday effect of the CMB is just a rotation of the

linear polarization of the CMB and it does not involve the
generation of any circular polarization. Faraday effect has
been recently treated in greater detail by including various
effects which have been neglected in the past [36] (see also
[57]). In the case of the Faraday effect, first the linear
polarization is generated because of the quadrupole in
the intensity of the radiation field and then the polarization
is rotated. Also Faraday rotation is treated often in the
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uniform field approximation but without the explicit con-
tribution of the magnetic field intensity to the scattering.
The present formulation improves also on the treatment of
Faraday effect of the CMB (see [10] for an introduction)
even if, to keep the discussion self-contained, the focus
will be on the generation of the V-mode polarization.

In connection with the Faraday rotation it is appropriate
to mention the different physical nature of the approxima-
tions often employed in the discussion of large-scale mag-
netism. In the present paper, as already mentioned, the
guiding center approximation has been employed. This
approximation (see Appendix A) is particularly sound in
the case of scattering problems when the wavelength of the
scattered photons is much shorter than the inhomogeneity
scale of the magnetic field [51]. The guiding center ap-
proximation does not break explicitly the isotropy of the
background. As already mentioned in the previous para-
graph, Faraday rotation can be discussed in the uniform
field approximation [58–61]. The uniform field approxi-
mation is independent upon the guiding center approxima-
tion: indeed, for instance, in the studies of [58–61] the
magnetic field does not contribute to the scattering matrix
while it does rotate the polarization plane of the CMB. The
uniform field approximation holds provided the magnetic
field is not too strong. In the latter case a (new) preferred
direction in the sky pops up; a potential correlation of the
aT‘�1;m and aT‘þ1;m multipole coefficients is induced and,

from this observation, uniform magnetic fields can be con-
strained [62–65]. This last case is not directly related to the
present considerations.

III. CIRCULAR POLARIZATION FROM
MAGNETIC KNOTS

It is appropriate to highlight a possible connection be-
tween the occurrence of circular polarization and the to-
pological properties of the magnetic flux lines. The
occurrence of circular polarization is directly related to
the Lorentz force acting either on the individual charge

carriers (i.e. ~ve;i � ~B) or on the Ohmic current (i.e. ~J � ~B).
In a plasma characterized by a finite conductivity, the
presence (or absence) of Lorentz force term can be directly
related to the topology of the magnetic flux lines. The
topology of the magnetic flux lines can be classified in
terms of the so-called magnetic helicity, i.e.

N B ¼
Z
V
d3x ~A � ~B; (3.1)

where ~A is the vector potential; Eq. (3.1) is the magneto-
hydrodynamical analog of the kinetic helicity, i.e.

N v ¼
Z

d3x ~v � ~!; ~! ¼ ~r� ~v (3.2)

where ~! is the vorticity. In simply connected domains, the
magnetic helicity is gauge-invariant provided the normal

component of ~B vanishes at the boundary surface of the

integration volume V. Furthermore, the helicity is also
gauge-invariant if the integration volume is given by a
single (or multiple) magnetic flux tube. An important
property is that the magnetic helicity is conserved in a
highly conducting plasma. In particular, it can be shown,
that (see, e.g. [9] or the seminal paper of [47])

dN B

d�
¼ � 1

4��

Z
V
d3x ~B � ~r� ~B; (3.3)

where � is the conductivity. In the limit � ! 1 the
magnetic helicity is exactly conserved. In minimizing the
total magnetic energy with the constraint that the magnetic
helicity be conserved we are naturally led to the variational
problem

�

�Z
V
d3xðj ~Bj2 � � ~A � ~BÞ

�
¼ 0; (3.4)

where � is a Lagrange multiplier. Since ~B ¼ ~r� ~A, the
variational problem of Eq. (3.4) is equivalent to

�

�Z
V
d3xðj ~r� ~Aj2 � � ~A � ~r� ~AÞ

�
¼ 0: (3.5)

By making the variation explicit, we have that Eq. (3.5)
implies that

~r� ~r� ~A ¼ � ~r� ~A: (3.6)

Going back to the magnetic field we have that the configu-
rations

~r� ~B ¼ � ~B (3.7)

correspond to the lowest state of magnetic field energy
which a closed system may attain. The variational ap-
proach leading to the condition (3.7) is due to Woltjer
[47] (see also, in this connection [43–46]). The configura-
tions obeying Eq. (3.7) are closely related to the concept of
magnetic knot [66] and may arise a consequence of the
dynamics of the electroweak phase transition. The pres-
ence of pseudoscalar interactions at the electroweak time
can twist the magnetic flux lines of the hypermagnetic field
and produce a primordial background of hypermagnetic
knots [67,68]. It has been speculated that baryogenesis can
be related to the presence of hypermagnetic knots and a
similar way of thinking has been pursued in [69,70]. The
themes discussed in [66,67] stimulated various investiga-
tions both on the dynamics of particles in hypermagnetic
knot configurations [71–73] as well as on related ideas
[74,75].
In solar spectropolarimetry magnetic knots have ap-

peared since the late 1960s [76] (see also, for instance,
[77]). An example of magnetic knot configuration is given
by:

~BðzÞ ¼ B0ðsinkzx̂þ coskzŷÞ; (3.8)

satisfying the force-free condition discussed before and
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sometimes analyzed in connection with the polarization
properties of the synchrotron emission [78,79]. The idea is
to distinguish the topology of the magnetic flux lines from
the analysis of the circular polarization. In other words:
measurements of circular polarization can be used to infer
not only the potential existence of large-scale magnetic
fields but also their topological structure. As before we are
considering here the situation where the ingoing Stokes
parameters have no azimuthal dependence. The problem
will now be to compute the various entries of the tensor
Pijð�;�0; zÞ which also depend upon the inhomogeneity

scale of the knot.
Consider, for simplicity, the case when protons are

neglected and only the leading terms are kept in feð!Þ.
In this case we have, quite simply, that the phase matrix,
after integration over ’0, will be

�P11ð�;�0; zÞ ¼ �½2ð1��2Þð1��02Þ þ�2�02�
þ �feð!Þ½3ð1��2Þð1��02Þ þ 1�
� cos½2ðkzþ ’Þ�;

�P12ð�;�0; zÞ ¼ ��2 þ �f1þ�2 cos½2ðkzþ ’Þ�gf2eð!Þ;
�P13ð�;�0; zÞ ¼ 0;

�P14ð�;�0; zÞ ¼ 2���0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
feð!Þ sin½kzþ ’�;

�P21ð�;�0; zÞ ¼ ��02 þ �f1� cos½2ðkzþ ’Þ�gf2eð!Þ;
�P22ð�;�0; zÞ ¼ �þ �f1� cos½2ðkz� ’Þ�gf2eð!Þ;
�P23ð�;�0; zÞ ¼ 0;

�P24ð�;�0; zÞ ¼ 0

�P31ð�;�0; zÞ ¼ �2��f2eð!Þ sin½2ðkzþ ’Þ�;
�P32ð�;�0; zÞ ¼ 0;

�P33ð�;�0; zÞ ¼ 0;

�P34ð�;�0; zÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
�0 cos½kzþ ’�feð!Þ;

�P41ð�;�0; zÞ ¼ �2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
ð�02 � 2Þfeð!Þ sin½kzþ ’�;

�P42ð�;�0; zÞ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q
feð!Þ sin½kzþ ’�;

�P43ð�;�0; zÞ ¼ 0

�P44ð�;�0; zÞ ¼ 2���0½1þ f2eð!Þ�:
By integrating over z the relevant matrix elements, i.e.

Z 2�=k

0

�P41ð�;�0; zÞdz ¼ 0;

Z 2�=k

0

�P42ð�;�0; zÞdz ¼ 0;

Z 2�=k

0

�P43ð�;�0; zÞdz ¼ 0:

(3.9)

The same integration, but applied to the linear polariza-

tions, leads to a nonvanishing result. Indeed, the coupling
of �I to �Q is controlled by the following matrix element:

�P11 þ �P12 � �P21 � �P22 ¼ �ð1��2Þ � 3��02ð1��2Þ
þ �f3ð1��2Þð1��02Þ
þ 2ð1þ�2Þ cos½2ðkzþ ’Þ�gf2e

(3.10)

whose integral over z does not vanish and is given by

�2

k
ð1��2Þð2� 6�02Þ þ 2�2

k
ð1��2Þ

� ½1þ 3�02 þ 2ð1� 3�02Þ�f2e: (3.11)

The rationale for this occurrence stems from the fact that
magnetic knots minimize the magnetic energy subject to
the constraint that the helicity is constant. Indeed, over
large scales, the minimization of the magnetic energy
subjected to the constraint that the magnetic helicity is
conserved is equivalent to the condition

~r� ~B ¼ ~B

L
(3.12)

where L is has dimensions of a length and denotes the
typical scale of the knot. Over very large scales the dis-
placement current can be neglected and, therefore,

~J ¼ 1

4�
~r� ~B; ~J ¼ en0ð ~vi � ~veÞ: (3.13)

But because of Eq. (3.12) ~J ¼ ~B=ð4�LÞ and, therefore,
~J � ~B ¼ 0. This shows that, rather generically, the vanish-
ing of the Lorentz force implies, for these configurations,
the vanishing of the circular polarization.
There is another (indirect) way of appreciating this

point. It is well known that, at finite conductivity and finite
electron density it is possible to construct solutions of the
Maxwell equations whose Poynting vector exactly van-
ishes both in the low-frequency and in the high-frequency

limit, i.e. ~E� ~B ¼ 0. These solutions are often dubbed
helicity waves since they do not carry momentum but
rather helicity [80–82] (see also [83,84]). Consider first
helicity waves in vacuo. A consistent solution of
Maxwell’s equations can be written, in this case, as:

~Eðz; �Þ ¼ B0

k

!
½sinðkzÞ sinð!�Þx̂þ cosðkzÞ cosð!�Þŷ�;

~Bðz; �Þ ¼ B0½sinðkzÞ cosð!�Þx̂þ cosðkzÞ cosð!�Þŷ�:
The above example can also be written as the superposition
of circularly polarized waves propagating in opposite di-
rections:

~Eðz; �Þ ¼ kB0

2!
f½cosðkz�!�Þ � cosðkzþ!�Þ�x̂

þ ½sinðkzþ!�Þ � sinðkz�!�Þ�ŷg: (3.14)
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This class of solution can also be obtained at finite electron
density and the pertinent dispersion relations are

k2

!2
¼ 1� !2

pe

!ð!þ i�Þ (3.15)

where � is the collision frequency (i.e. the rate of inter-
actions). The Ohm law can be written as:

~J ¼ e2ne
me

~E

ð�� i!Þ ’ � ~E; � ¼ !2
pe

4��
: (3.16)

In the limit ! ! 0 the electric fields are suppressed by the
conductivity while the magnetic fields will tend towards
the force-free configuration recalled before.

The configuration discussed here has some realistic
features and the most relevant drawback is that it is not
localized in space. Localized knot configurations can how-
ever be constructed (see [68] and references therein and
also [85]). It will be interesting to understand the scattering
of photons also in these more realistic cases. In spite of that
the physical message of the present exercise seems to be
that circular polarization of the outgoing radiation is ge-
neric provided the underlying magnetic field does affect
charged particles. As we saw such an inference is not
automatic as long as knotted configurations maximize
helicity but minimize the Lorentz force. In the latter case
the scattering matrix might not be affected by the magnetic
field if the correlation scale of the magnetic knot is much
shorter than the Hubble radius at recombination.

IV. ESTIMATES OF THE CIRCULAR
POLARIZATION

Building upon the results of Sec. III and taking into
account the consideration of Sec. IV it is now appropriate
to solve the evolution equations of the brightness perturba-
tions and to obtain explicit estimates of the V-mode power
spectra. Since me=mp 
 1 and feð!Þ 
 1, Eqs. (2.42)–

(2.44) can be safely expanded in powers of (me=mp) as

well as in powers of feð!Þ. The expansion of the scattering
matrix in powers of (me=mp) is rather common (already in

the absence of any magnetic fields) since, to leading order,
the mean free path of the photons is chiefly determined by
the scattering on the electrons. The expansion in (me=mp)

is common practice in Boltzmann solvers (see, e.g. [86]).
In the present case the same strategy will be employed by
adding, however, a further expansion parameter, i.e. feð!Þ.

While the evolution equations of the brightness pertur-
bations for the intensity and for the linear polarization have
the first relevant correction going as f2eð!Þ, the evolution
equation for �V has a source term proportional to feð!Þ.
The three functionals appearing in Eqs. (2.42)–(2.44) can
then be expanded in powers of (me=mp) and feð!Þwith the
result that

CIð!;�Þ ¼ �I0f1þ ½P2ð�Þ þ 2�f2eð!Þg
� SP

2
fP2ð�Þ þ ½2þ P2ð�Þ�f2eð!Þg

� if2eð!Þ½2þ P2ð�Þ��V1 þO
�
me

mp

�
þOðf4eÞ;

(4.1)

CQð!;�Þ ¼ 1� P2ð�Þ
2

fSP þ f2eð!Þ½SP � 2�I0

þ 2i�V1�g þO
�
me

mp

�
þOðf4eÞ; (4.2)

CVð!;�Þ ¼ P1ð�Þ
2

�
2feð!Þ½2�I0 � SP�

� 3

2
i½1þ f2eð!Þ��V1

�
þO

�
me

mp

�
þOðf4eÞ:

(4.3)

As anticipated, the source terms for the intensity and for
the linear polarization have the first correction going as
f2eð!Þ while the source term for the circular polarization
starts with feð!Þ. Higher order corrections to Eqs. (4.1)–
(4.3) can be computed, if needed recalling the results of
Eqs. (2.23)–(2.25) and of Eq. (2.30). Bearing in mind the
results of Eqs. (4.1)–(4.3), to lowest order both in (me=mp)

and in feð!Þ the following system of brightness perturba-
tions can be obtained:

�0
I þ ni@ið�I þ	Þ þ �0�I

¼ c 0 þ �0
�
�vb þ �I0 � P2ð�Þ

2
SP

�
; (4.4)

�0
P þ ni@i�P þ �0�P ¼ 3ð1��2Þ�0

4
SP; (4.5)

�0
V þ ni@i�V þ �0�V

¼ �0P1ð�Þ
�
feð!Þ½2�I0 � SP� � 3

4
i�V1

�
; (4.6)

where all the corrections Oðf2eÞ have been neglected. Note
that in Eq. (4.5) �Q has been replaced by �P, i.e. the

brightness perturbation for the polarization degree P ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2

p
. In equivalent terms, as customarily done, we

could have chosen the frame where �U ¼ 0. Following the
same notation, the source term SP of Eq. (2.45) will be-
come SP ¼ ð�I2 þ�P0 þ�P2Þ. If feð!Þ ¼ 0 in Eq. (4.6)
the standard set of brightness perturbations is quickly
recovered. In this case the procedure will be to integrate
the equations by assuming, for sufficiently early times, that
the baryons are tightly coupled with the electrons implying
that the baryon velocity is effectively equal to the dipole of
the intensity, i.e. vb ’ �3i�I1. This is, in a nutshell, the
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lowest order in the tight-coupling expansion. To lowest
order in the tight-coupling expansion the CMB is not
polarized in the baryon rest frame, i.e. �I0 � 0 �I1 � 0
but �I2 ¼ �P2 ¼ �P0 ¼ 0. To first order in the tight-
coupling expansion (linear) polarization is generated and
it is proportional, as expected, to the photon quadrupole
which can be computed from the lowest order dipole. To
summarize the approximations exploited so far we have
that

(i) the scattering matrix has been derived in the guiding
center approximation;

(ii) the brightness perturbations have been then ex-
panded for feð!Þ< 1;

(iii) the tight-coupling approximation is not invalidated
by the new form of the evolution of the brightness
perturbations.

Before giving the details on the line of sight solution of
Eqs. (4.4)–(4.6) it is appropriate to pause a moment on the
explicit numerical value of feð!Þ

feð!Þ ¼ !Be

!
¼ 2:8� 10�12

�
Bu

nG

��
GHz

�

�
ðzþ 1Þ: (4.7)

For z ’ zrec ’ 1091 (see e.g. [22–24]), feð!Þ is of the order
of 10�9 for nG field strengths.11 In Eq. (4.7) Bu denotes the
uniform component of the magnetic field, i.e. we are
assuming that the magnetic field is uniform since this is
the simplest approximation in which the heat transfer
equations can be analyzed. The considerations reported
here in the uniform field approximation can be generalized
to the case when the magnetic field is characterized by a
given power spectrum. As already mentioned at the end of
Sec. II the uniform field approximation is more accurate in
the present case than in the case of Faraday rotation which
will be left for future discussions.

The estimate of Eq. (4.7) can be further reduced by
going to higher angular frequencies where, typically,
nearly all CMB experiments are operating.12 Even if
feð!Þ can be rather small the question remains on the
relative magnitude of the VV, VT and BB correlations
and this will be one of the points discussed hereunder first
for large angular scales (i.e. ‘ < 100) and then for smaller
angular scales when dissipative effects are important.

A. Line of sight solutions

Equations (4.4)–(4.6) can be solved, formally, by inte-
gration along the line of sight and the result of this step can
be written, in Fourier space, as

�Iðk;�; �0Þ ¼
Z �0

0
e��ð�;�0Þð	0 þ c 0Þe�i�xd�

þ
Z �0

0
Kð�Þ

�
�I0 þ�vb � P2ð�Þ

2
SP

�
� e�i�xd�; (4.8)

�Pðk;�; �0Þ ¼ 3ð1��2Þ
4

Z �0

0
Kð�ÞSPe�i�xd�; (4.9)

�Vðk;�;!; �0Þ ¼
Z �0

0
Kð�Þ�

�
feð!Þ½2�I0 � SP�

� 3i

4
�V1

�
e�i�xd�; (4.10)

where, as usual, x ¼ kð�0 � �Þ and

�ð�; �0Þ ¼
Z �0

�
xe~nead�

0; Kð�Þ ¼ �0e��ð�;�0Þ:

(4.11)

For large scales the visibility function Kð�Þ can be taken
as sharply peaked at the recombination time. For smaller
angular scales the (approximately Gaussian) width is es-
sential to obtain sound semianalytical estimates. Recalling
the specific form of the lowest order Legendre polynomials
[87,88]

P0ð�Þ ¼ 1; P1ð�Þ ¼ �; P2ð�Þ ¼ 1

2
ð3�2 � 1Þ;

(4.12)

Eqs. (4.4)–(4.6) can be reduced to a hierarchy of coupled
evolution equations for the various multipoles. Multiplying
Eqs. (4.4)–(4.6) by P0ð�Þ ¼ 1 and integrating over �
between�1 and 1, the following relations can be obtained

�0
I0 þ k�I1 ¼ c 0; (4.13)

�0
P0 þ k�P1 ¼ �0

2
½�P2 þ�I2 ��P0�; (4.14)

�0
V0 þ k�V1 ¼ ��0�V0: (4.15)

If Eqs. (4.4)–(4.6) are multiplied by P1ð�Þ, both at right-
and left-hand sides, the integration over � of the various
terms implies:

� �0
I1 �

2

3
k�I2 þ k

3
�I0 ¼ � k

3
	þ �0

�
�I1 þ 1

3i
vb

�
;

(4.16)

11The dependence upon the redshift comes about since the
electron and proton masses break the Weyl invariance of the
system [see Appendix A and, in particular, Eqs. (A4) and (A5)].
12Just to have an idea the Planck explorer satellite is observing
the microwave sky in nine frequency channels: three frequency
channels (i.e. � ¼ 30; 44; 50 GHz) belong to the low-frequency
instrument; six channels (i.e. � ¼ 100143; 217; 353; 545;
857 GHz) belong to the high-frequency instrument. The five
frequency channels of the WMAP experiment are centered at 23,
33, 41, 61 and 94 in units of GHz. Neither WMAP nor Planck are
sensitive to the circular polarizations.
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� �0
P1 �

2

3
k�P2 þ k

3
�P0 ¼ �0�P1; (4.17)

�0
V1 �

2

3
k�V2 þ k

3
�V0

¼ �0
�
�3

4
�V1 þ i

3
feð2�I0 ��I2 ��P2 ��P0Þ

�
: (4.18)

The same procedure, using P2ð�Þ, leads to:

��0
I2 �

3

5
k�I3 þ 2

5
k�I1 ¼ �0

�
9

10
�I2 � 1

10
ð�P0 þ �P2Þ

�
;

(4.19)

��0
P2 �

3

5
k�P3 þ 2

5
k�P1 ¼ �0

�
9

10
�P2 � 1

10
ð�P0 þ�I2Þ

�
;

(4.20)

�0
V2 þ

k

5
½3�V2 � 2�V1� ¼ ��0�V2: (4.21)

For ‘ � 3 the hierarchy of the brightness can be deter-
mined in general terms by using the recurrence relation for
the Legendre polynomials (see, e.g. [87,88]); the result for
‘ � 3 is

�0
I‘ þ �0�I‘ ¼ k

2‘þ 1
½‘�Ið‘�1Þ � ð‘þ 1Þ�Ið‘þ1Þ�;

�0
P‘ þ �0�P‘ ¼ k

2‘þ 1
½‘�Pð‘�1Þ � ð‘þ 1Þ�Pð‘þ1Þ�;

�0
V‘ þ �0�V‘ ¼ k

2‘þ 1
½‘�Vð‘�1Þ � ð‘þ 1Þ�Vð‘þ1Þ�:

(4.22)

We are now ready to compute the evolution of the various
terms to a given order in the tight-coupling expansion
parameter �c ¼ j1=�0j. After expanding the various mo-
ments of the brightness and of the baryon velocity in
powers of �c,

�I‘ ¼ ��I‘ þ �c�I‘; �V‘ ¼ ��V‘ þ �c�V‘; (4.23)

�P‘ ¼ ��P‘ þ �c�P‘; vb ¼ �vb þ �c�vb
; (4.24)

the obtained expressions can be inserted into Eqs. (4.13)–
(4.18) and the evolution of the various moments of the
brightness function can be found order by order in �c. To

zeroth order in the tight-coupling approximation, �vb ¼
�3i ��I1, while Eqs. (4.14)–(4.17) lead, respectively, to

�� P0 ¼ ��I2 þ ��P2; ��P1 ¼ 0; ��V0 ¼ 0: (4.25)

Finally Eqs. (4.19) and (4.20) imply

9 ��I2 ¼ ��Q0 þ ��Q2; 9 ��Q2 ¼ ��Q0 þ ��I2;

��V1 ¼ 8

9
ifeð!Þ ��I0:

(4.26)

Taking together the four conditions expressed by
Eqs. (4.25) and (4.26) we have, to zeroth order in the
tight-coupling approximation:

�� Q‘ ¼ 0; ‘ � 0; ��I‘ ¼ 0; ‘ � 2; (4.27)

�� V‘ ¼ 0; ‘ � 1: (4.28)

Hence, to zeroth order in the tight coupling, the relevant
equations are

�v b ¼ �3i ��I1; (4.29)

�� 0
I0 þ k ��I1 ¼ c 0; (4.30)

�� V1 ¼ 8

9
ifeð!Þ ��I0: (4.31)

Even if to zeroth order in the tight-coupling expansion
we have that the linear polarization is absent. To get a
nonvanishing linear polarization we have to go to first
order where the monopole and the dipole of the linear
polarization are proportional to the quadrupole of the
intensity; at the same order in the perturbative expansion
the nonvanishing quadrupole of the circular polarization is
also generated. Indeed, recalling Eqs. (4.23) and (4.24), the
first-order results can be written as

�Q0 ¼ 5

4
�I2; �Q2 ¼ 1

4
�I2; (4.32)

�I2 ¼ 8

15
k ��I1; �V2 ¼ 2

5
k ��V1: (4.33)

From Eqs. (4.32) and (4.33) the line of sight solution of
Eq. (4.10) can be written as

�ðk;�;!; �0Þ ¼
Z �0

0
Kð�Þ�

�
8

3
feð!Þ ��I0ðk; �Þ

� feð!Þ
3

ðk�cÞ ��I1

�
e�i�xd�; (4.34)

where Eqs. (4.29) and (4.30) have also been used. The
result of Eq. (4.34) has been used in [89] and the present
discussion corroborates and extends those results.
In the sudden decoupling approximation the visibility

function becomes effectively a Dirac delta function and the
second term (proportional to the dipole of the intensity) can
be neglected in comparison with the monopole whose
evolution equation can be written as

�� 00
I0 þ

HRb

Rb þ 1
��0
I0 þ

k2

3ðRb þ 1Þ
��I0 ¼ �c þ �B; (4.35)

where Rb ¼ ð3=4Þ�b=�
 is the baryon to photon ratio and

where

�c ¼ c 00 þ HRb

Rb þ 1
c 0 � k2

3
	 (4.36)
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�B ¼ k2

12ðRb þ 1Þ ð4�B ��BÞ: (4.37)

Equation (4.37) accounts for the presence of an inhomoge-
neous magnetic field (see [34,90,91] for a definition) but in
the estimates we are going to present here, the inhomoge-
neities stemming from the magnetic field itself will be
neglected for consistency with the uniform field
approximation.

It is finally appropriate to remark that it is possible to go
improve on the accuracy of the line of sight solutions for
the V-mode polarization. For this purpose the technique
developed in Ref. [56] will be extended to the line of sight
solution of the V-mode polarization. To be specific con-
sider, again, the system of Eqs. (4.8), (4.9), and (4.10). In
particular we shall be interested in improving on Eq. (4.34)
which has been derived from Eq. (4.10). Instead of using
the lowest order tight-coupling solution for the linear
polarization source it is possible to resum the perturbative
expansion by solving an effective evolution equation for
SP. Recall, for this purpose, that the conformal time de-
rivative of SP, i.e. S

0
P ¼ ð�0

I2 þ �0
P0 þ �0

P2Þ can be ex-

pressed as the sum of the evolution equations of the
separate multipoles. In particular �0

P0 can be expressed

from Eq. (4.14), �0
I2 can be expressed from Eq. (4.19)

and �0
P2 from Eq. (4.20). Summing up the various contri-

butions and rearranging the relevant terms an effective
evolution equation for SP can be obtained and it is

S0P þ 3

10
�0SP ¼ k

�
2

5
�I1 � 3

5
ð�P1 þ �P3 þ �I3Þ

�
;

(4.38)

which can be solved in different ways. For instance, if only
the intensity dipole is kept, at the right-hand side of
Eq. (4.38) the result for SP is

SPðk; �Þ ¼ 2

5
ke3�ð�;�0Þ=10

Z �

0
d�0 ��I1ðk; �0Þe�3�ð�0;�0Þ=10:

(4.39)

If we now insert Eq. (4.39) into Eq. (4.10) the integrals can
be performed, up to some point, with analytic techniques.
This result improves then Eq. (4.34).

The considerations developed so far suggest the follow-
ing physical picture. To lowest order in the tight-coupling
expansion the presence of a magnetic field produces a
dipole of the circular polarization. The dipole of the V
mode can be fed back into the line of sight solution to
obtain the higher multipoles in full analogy with what is
customarily done in Boltzmann solvers. While the circular
polarization is building up from the monopole of the
intensity, the dipole of the intensity sources, to first- order
in the tight-coupling expansion, the linear polarization and,
in particular, �P0 and �P1. The interesting aspect of this
analysis is that, indeed, to lowest order in the tight-
coupling approximation the CMB is circularly polarized

if a predecoupling magnetic field is present. The linear
polarization is generated to first order in the tight-coupling
expansion. At the level of the amplitude, as it will be
shown, the angular power spectrum of the V mode is
always smaller than the E-mode spectrum which arises
directly from �P. The reason for this occurrence stems
from the specific value of feð!Þ.

B. Large-scale limit

For large angular scales the circular polarization will
then be given by

�Vðk;�; �0Þ ¼ 8

3

Z �0

0
Kð�Þfeð!Þe�i�kð�0��Þ� ��I0ðk; �Þd�;

(4.40)

where ��I0 can be determined from Eqs. (4.29), (4.30),
(4.31), and (4.35). The terms arising in SP have been
neglected since they vanish to lowest order in the tight-
coupling expansion. By assuming that Kð�Þ is a Dirac
delta function centered at recombination (sudden decou-
pling approximation) we shall have that

�Vðk;�; �0; !Þ ¼ 8

3
feð!Þe�i�x� ��I0ðk; �recÞ: (4.41)

Let us now compute the angular power spectrum of the
circular polarization.

�Vðn̂; �0Þ ¼
X
‘;m

aðVÞ‘mY‘mðn̂Þ; (4.42)

thus we will also have that

aðVÞ‘m ¼
Z

dn̂�Vðn̂; �0ÞY�
‘mðn̂Þ

¼ 1

ð2�Þ3=2
Z

dn̂
Z

d3k�Vðk;�; �0ÞY�
‘mðn̂Þ: (4.43)

Recalling the explicit expression of �Vðk;�; �0Þ

aðVÞ‘m ¼ 8feð!Þ
3ð2�Þ3=2

Z
dn̂

Z
d3kY�

‘mðn̂Þ�e�i�x�I0ðk; �recÞ

¼ 8ifeð!Þ
3ð2�Þ3=2

Z
dn̂

Z
d3kY�

‘mðn̂Þ
d

dx
ðe�i�xÞ�I0ðk; �recÞ:

(4.44)

The integration over dn̂ ¼ sin#d’d# ¼ �d�d’ can be
performed in explicit terms since e�i�x can be expanded in
Rayleigh series and the final result is

aðVÞ‘m ¼ � 8

3
�m0

ð�iÞ‘þ1

ð2�Þ3=2 fe
ffiffiffiffiffiffiffi
4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

p

�
Z

d3k

�
dj‘
dx

�
�I0ðk; �recÞ: (4.45)

The angular power spectrum of the circular polarization
can then be written as
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CðVVÞ
‘ ð!Þ ¼ 1

2‘þ 1

X‘
m¼�‘

haðVÞ�‘m aðVÞ‘m i

¼ 256�

9
f2eð!Þ

Z 1

0

dk

k

k3

2�2

�
dj‘
dx

�
2j�I0ðk; �recÞj2;

(4.46)

where the dependence on the angular frequency! has been
explicitly included in the expression of the angular power

spectrum. The large-scale estimate of ��I0ðk; �recÞ follows
from Eq. (4.13) by neglecting the dipole which is negli-
gible for those wavelengths which are still larger than the
Hubble radius around the redshift of recombination:

�� I0ðk; �recÞ ¼ ��I0ðk; ��Þ þ c ðk; �recÞ � c �ðkÞ; (4.47)

where, by definition, c ðk; ��Þ ¼ c �ðkÞ and 	ðk; ��Þ ¼
	�ðkÞ are the values of the metric fluctuations at �� 

�eq. For � ’ �� k�� 
 1 and, in the minimal �CDM

scenario, the initial conditions are (predominantly) adia-
batic, i.e.

�
ðk; ��Þ ¼ �2	�ðkÞ; c ðk; ��Þ ¼ c �ðkÞ

R�ðkÞ ¼ �c �ðkÞ �	�ðkÞ
2

;
(4.48)

implying

�I0ðk; �recÞ ¼ 2ðR� þ 15Þ
5ð4R� þ 15ÞR�ðkÞ;

c �ðkÞ ¼
�
1þ 2

5
R�

�
	�ðkÞ;

(4.49)

where R� is the fractional contribution of the massless

neutrinos to the radiation background.13 The angular
power spectrum is

CðVVÞ
‘ ð!Þ ¼ 512�2

225

�
R� þ 15

4R� þ 15

�
2
f2eð!ÞAR

�
k0
kp

�
ns�1

� I ðVVÞð‘; nsÞ;

I ðVVÞð‘; nsÞ ¼ 2‘ð‘þ 1Þ
�

Z 1

0
dxxns�2

�
dj‘
dx

�
2
:

The derivative of the spherical Bessel function can be
expressed in terms of the appropriate recurrence relations,
namely [87,88]:

dj‘
dx

¼ ‘

x
j‘ðxÞ � j‘þ1ðxÞ: (4.50)

The integral becomes then:

I ðVVÞð‘; nsÞ ¼ ‘ð‘þ 1Þ
Z 1

0
dxxns�5½‘2J2‘þ1=2ðxÞ

þ x2J2‘þ3=2ðxÞ � 2‘xJ‘þ1=2ðxÞJ‘þ3=2ðxÞ�;
(4.51)

which can be explicitly computed [87,88]. The final result
for the angular power spectrum can therefore be written as

‘ð‘þ 1Þ
2�

CðVVÞ
‘ ð!Þ ¼ 256�

225

�
R� þ 15

4R� þ 15

�
2
f2eð!Þ

�AR

�
k0
kp

�
ns�1

I ðVVÞð‘; nsÞ; (4.52)

where

I ðVVÞ
‘ ðnsÞ ¼ ‘ð‘þ 1Þ½4‘ð‘þ 1Þ � ðns � 1Þðns � 2Þðns � 4Þ��ð3� nsÞ�ð‘� 3=2þ ns=2Þ

26�ns�ð2� ns=2Þ�ð3� ns=2Þ�ð72 þ ‘� ns=2Þ
: (4.53)

Following the same technique we can estimate the cross correlation between temperature and polarization as:

‘ð‘þ 1Þ
2�

CðVTÞ
‘ ð!Þ ¼ 16�

75
feð!Þ ðR� þ 15Þð2R� � 15Þ

ð4R� þ 15Þ2
�
k0
kp

�
ns�1

I ðVTÞð‘; nsÞ; (4.54)

where

I ðVTÞð‘; nsÞ ¼ ‘ð‘þ 1Þ
Z 1

0
dxxns�4½‘J2‘þ1=2ðxÞ � xJ‘þ1=2ðxÞJ‘þ3=2ðxÞ�: (4.55)

By integrating the above expression we have that:

I ðVTÞð‘; nsÞ ¼ ‘ð‘þ 1Þð2� nsÞ�ð2� ns=2Þ�ð‘þ ns=2� 1Þ
4

ffiffiffiffi
�

p
�ð5=2� ns=2Þ�ð‘� ns=2þ 3Þ : (4.56)

13Neutrinos are taken to be massless for consistency with �CDM paradigm even if the effect of the masses could be included without
appreciable changes in the forthcoming numerical estimates.
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In Fig. 1 the VV and the VT angular power spectra are
illustrated for large angular scales (i.e. ‘ < 100). Both in
Fig. 1 and in Fig. 2 a double logarithmic scale has been
used. In Fig. 1 the uniform magnetic field intensity is fixed
while the frequency ranges between 10 and 30 GHz. Note
that 30 GHz corresponds to the lower frequency band of
the Planck explorer satellite which is unfortunately not
sensitive to the circular polarization. In Fig. 1 the cosmo-
logical parameters have been fixed as

ð�b;�c;�de; h0; ns; �reÞ � ð0:0441; 0:214; 0:742;
0:719; 0:963; 0:087Þ; (4.57)

corresponding to the best fit of theWMAP data alone in the
light of the vanilla �CDM. In Fig. 2 the frequency is fixed
to 10 GHz while the magnetic field intensity changes from
1 to 10 nG. The values of the magnetic field intensity are
motivated by a recent analysis [34] where using the TE and
TT correlations the parameters of a putative magnetized
background are scrutinized. According to [33,34] nG mag-
netic fields and blue magnetic spectral indices are fully
compatible with the measured values of the TT and TE
angular power spectra.
The results of Fig. 1 and of Fig. 2 show already that the

values of the VT correlations are close to the magnitude of
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FIG. 1 (color online). The VV and VT angular power spectra are illustrated for large angular scales and for different frequencies at a
fixed value of the magnetic field intensity. In both plots a double logarithmic scale has been employed, i.e. on both axes we plot the
common logarithms of the corresponding quantity.
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FIG. 2 (color online). The VV and VT angular power spectra are illustrated for large angular scales and for different values of the
magnetic field intensity at a fixed value of the frequency. As in Fig. 1 a double logarithmic scale has been employed in both plots of the
present figure.
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the BB angular power spectra from gravitational lensing as
well as to the BB angular power spectra expected from the
tensor modes of the geometry. It is important to remind the
reader here that the VV and VT angular power spectra are a
direct consequence of, both, the weakly magnetized
plasma and the adiabatic mode of curvature perturbations.
Absent one of these two essential ingredients the net result
would vanish. The considerations reported so far comple-
ment some of the results already reported in [89]. The
large-scale (analytical) estimates will now be corroborated
by the numerical results at smaller angular scales.

C. Small-scale limit

The visibility function vanishes for � � �rec and has a
maximum around recombination, i.e. when

�00 þ �02 ¼ 0;
d�

d�
¼ �xeð�Þ~neð�Þ�Thað�Þ � ��0:

(4.58)

The second expression in Eq. (4.58) clarifies that a minus
sign appears in the time derivative of �ð�; �0Þ since �
appears in the lower limit of integration. When the finite
thickness effects of the last scattering surface are taken into
account the visibility function can be approximated by a
Gaussian profile centered at �rec, i.e.

Kð�Þ ¼ N ð�recÞe�ð���recÞ2=ð2�2
recÞ;Z �0

0
Kð�Þd� ¼ 1;

(4.59)

N ð�recÞ ¼
ffiffiffiffi
2

�

s
1

�rec

�
erf

�
�0 � �recffiffiffi

2
p

�rec

�
þ erf

�
�recffiffiffi
2

p
�rec

���1
;

(4.60)

erf ðzÞ ¼ 2ffiffiffiffi
�

p
Z z

0
e�t2dt: (4.61)

The overall normalization N ð�recÞ has been chosen in
such a way that the integral of Kð�Þ is normalized to 1:

the visibility function is nothing but the probability that a
photon last scatters between � and �þ d�. Equation (4.60)
simplifies when �0 � �rec and �0 � �rec, since, in this

limit, the error functions go to a constant and N ð�recÞ !
��1

rec

ffiffiffiffiffiffiffiffiffi
2=�

p
. In the latter limit, the thickness of the last

scattering surface, i.e. �rec, is of the order of �rec. The
Gaussian approximation for the visibility function has a
long history (see, e.g. [92–95]). The WMAP data suggest a
thickness (in redshift space) �zrec ’ 195� 2 which would
imply that �rec, in units of the (comoving) angular diame-
ter distance to recombination, can be estimated as
�rec=�0 ’ 1:43� 10�3. By using the finite width of the
visibility function we have that

aðVÞ‘m ¼ ��m0

8ð�iÞ‘þ1

3ð2�Þ3=2 fe
ffiffiffiffiffiffiffi
4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘þ 1

p Z
d3k

�
dj‘
dx

�
� e�k2=k2t � ��I0ðk; �recÞe��re ; (4.62)

where kt ¼ ð ffiffiffi
6

p
=�recÞ, x ¼ kð�0 � �recÞ. The visibility

function, more realistically, also has a second peak at the
reionization epoch (i.e. for zre ¼ 11� 1:4). Also in this
case the visibility function can be approximated with a
Gaussian profile centered, this time, around �re and this
consideration introduces a suppression going as e��re . In
the limit �0 � �rec and �0 � �rec the integral to be com-
puted is, therefore,

‘ð‘þ 1Þ
2�

CðVVÞ
‘ ð!Þ ¼ 8f2eð!Þ

Z 1

0
e�2ðk2=k2t Þ k3

2�2

� j�I0ðk; �recÞj2ð‘þ 1Þ‘
�
dj‘
dx

�
2
:

(4.63)

Recalling that

�
dj‘
dx

�
2 ¼

�
1� ‘ð‘þ 1Þ

x2

�
j2‘ðxÞ þ

1

2x

d2

dx2
½xj2‘ðxÞ� (4.64)

the Bessel functions can be estimated in the limit of very
large multipoles. A standard calculation then leads to

‘ð‘þ 1Þ
2�

CðVVÞ
‘ ¼ 32

9
f2eð!ÞAR

�
k0
kp

�
ns�1

‘ns�1
Z 1

1
wns�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p
dw½ð2L2

Rðw; ‘Þe�2ð‘=‘tÞ2w2 þM2
Rðw; ‘Þcsbe�2ð‘=‘SÞ2w2Þ

þM2
Rðw; ‘Þcsb cos½2ð
Aw‘Þ�e�2ð‘=‘SÞ2w2 þ 4LRðw; ‘ÞMRðw; ‘Þ ffiffiffiffiffiffi

csb
p

cosð
Aw‘Þe�½ð‘=‘SÞ2þð‘=‘tÞ2�w2�;
(4.65)

where csb ¼ ½3ðRb þ 1Þ��1=2 is the baryon sound speed. Following Ref. [34] we introduced in Eq. (4.65) the quantities14

14It is understood that all the quantities are computed for at z ¼ zrec; furthermore rR ¼ �R=�M ¼ 4:15� 10�2!Mðz=1000Þ.
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LRðw; ‘Þ ¼ �R � �R ln½wq‘�;
MRðw; ‘Þ ¼ ��R þ ��R ln½wq‘�;

q‘ ¼
�

‘

200dAðzÞ
� ffiffiffiffiffiffiffiffiffiffiffiffi

rR
zþ 1

r
; �R ¼ Rb þ 1

6
;

�R ¼ Rb

6
; ��R ¼ � 6

25
lnð96Þ;

��R ¼ � 6

25
: (4.66)

In Eq. (4.66) the quantity dAðzÞ is related to the angular
diameter distance DAðzÞ as dAðzÞ ¼

ffiffiffiffiffiffiffiffiffiffi
�M0

p
H0DAðzÞ=2.

Furthermore 
A and ‘D can be estimated as follows15


A ¼ d�1
A ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Rbðzþ 1Þp ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rb

p þ ffiffiffiffiffiffi
Rb

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rR

p
1þ ffiffiffiffiffiffiffiffiffiffiffi

rRRb

p
�
;

‘D ¼ kDDAðzÞ ¼ 2240dAðz�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rR þ 1

p � ffiffiffiffiffi
rR

pq �
z

103

�
5=4

!0:24
b !�0:11

M :

(4.67)

The Silk multipole is just expressed in terms of ‘t and ‘D as

‘S ¼ ‘t‘D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2t þ ‘2D

q
. With the same approach it is pos-

sible to express, for small angular scales, the cross corre-

lation CðVTÞ
‘ ð!Þ.

For more reliable estimates at small scales fully numeri-
cal methods should be employed and the results, consistent
with the previous analytic estimates, are illustrated in
Figs. 3 and 4. In Fig. 3 the VV and VT angular power
spectra are illustrated on a double logarithmic scale. The
spikes appearing in the VT correlation are the usual feature

displayed when plotting the modulus of the cross correla-
tion. The same spikes occur when plotting the logarithm of
the modulus of the TE power spectrum. In Fig. 3 the
magnetic field is fixed to 1 nG while the frequency of the
channel is allowed to vary. In Fig. 4 the VV and VT
correlations are illustrated for a fixed value of the fre-
quency but for various magnetic field intensities.
The moment has now come to compare the signal from

circular dichroism with the signals expected from the
linear polarization. The spirit of the forthcoming consid-
erations is just to compare the orders of magnitude of the
different contributions. While this step is mandatory within
the present analysis it is also not conclusive, from the
experimental point of view. Indeed different signals and
different correlation functions inherit from nature different
systematic effects. The latter problem is of course ex-
tremely important and will not be treated here.
Let us first of all compare the V-mode signal with the

measurements (and expectations) of the �CDM paradigm.
A simple comparison is illustrated in Table I where the
different angular power spectra are reported at the peak.
The TT power spectrum at the first acoustic peak is of the
order of 6000 ð�KÞ2. The TE and the EE angular power
spectra peak for larger multipoles. The WMAP team mea-
sured with reasonable accuracy the region of the first
anticorrelation peak of the TE power spectrum and the
lowest multipoles of the EE power spectrum. The recent
QUaD measurements gave a rather interesting evidence of
the oscillations in the EE angular power spectra at larger ‘.
The absolute value of the TE angular power spectrum
peaks around ‘	 750 and it is of the order of
130 ð�KÞ2. The EE correlation reaches a value of
40 ð�KÞ2 for ‘	 1000. The quoted figures are consistent
with the expectations of the �CDM scenario with no
tensors (also sometimes called vanilla �CDM). In the
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FIG. 3 (color online). The VV and VT angular power spectra are illustrated for small angular scales and for different values of the
frequency and for fixed magnetic field intensity. As in Fig. 2 a double logarithmic scale has been employed in both plots.

15Following the usual convention we shall denote !X ¼ h20�X0
for a generic species.
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vanilla �CDM the only potential source of B-mode polar-
ization is represented by gravitational lensing of the pri-
mary anisotropies. The typical values of the induced BB
angular power spectrum range between 10�8 ð�KÞ2 and
10�5 for ‘ < 50. In Table I the expectations for the VV and
VT angular power spectra are reported in the case of a
hypothetical low frequency instrument sensitive to V-mode
polarization operating in a band with central frequency of
the order of 10 GHz. The intensity of the (comoving)
magnetic field has been taken to be 1 nG. As previously
discussed both analytically and numerically the VV and
VT power spectra are larger for low multipoles. For larger
multipoles, however, the effects of the thickness of the
visibility function and of the diffusive damping come
into play only for ‘	 1000. In this sense the range of
multipoles highlighted in Table I should be complemented
with the results illustrated in Figs. 1–4.

The comparison summarized in Table I does not con-
template the BB angular power spectrum stemming from
the tensor modes of the geometry which is regarded as the
main target of running experiments such as Planck. The
B-mode power spectrum induced by relic gravitons peaks
for ‘	 90 corresponding to an angular scale of roughly

2 deg. The signal, however, depends upon rT (i.e. the ratio
between the tensor and the scalar power spectrum) for
which only upper limits exist. Depending upon the data
sets chosen for the analysis the putative limit on rT slightly
changes. The situation is quickly summarized in Table II
where the upper limits on rT are reported at the pivot scale
kp ¼ 0:002 Mpc�1 and in the case where the scalar spec-

tral index does not run. Slightly larger values of rT are
allowed if ns is allowed to run but this aspect will not be
essential for the present considerations.16 The comparison
between the VV and VT power spectra and the other
polarization power spectra is also illustrated, more visually,
in Fig. 5. In the plot at the left of Fig. 5 the upper curve
corresponds, as indicated by the legend, to the EE angular
power spectra obtained from the best fit to the WMAP 5-yr
data alone [see Eq. (4.57)]. In the plot at the right the
B-mode polarization is illustrated when a tensor mode
contribution is allowed.
It is tempting to speculate, at this point, that, indeed, low

frequency instruments could make the difference for scru-
tinizing a potential V-mode polarization. In this respect the
results and the techniques of [40–42] (as well as the earlier
results of [38,39]) could be probably revisited in the light
of the considerations developed here. It has been shown
that the VT correlation for a comoving magnetic field from
5 to 10 nG can be as large as 10�5 ð�KÞ2 at 10 GHz for
‘ < 20 (i.e. large angular separations). This means that for
frequencies OðMHzÞ, the resulting signal could be even 6
or 7 orders of magnitude larger than a putative B-mode
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FIG. 4 (color online). The VV and VT angular power spectra are illustrated for small angular scales and for different values of the
magnetic field at a fixed value of the frequency. As in the previous figures, a double logarithmic scale has been employed.

TABLE I. The values of the different angular power spectra at
the peak (illustrative figures for Bu ¼ 1 nG and � ¼ 10 GHz).

Data ‘peak ‘peakð‘peak þ 1ÞCðXXÞ
‘peak

=ð2�Þ
TT 220 5756 ð�KÞ2
EE 1000 40 ð�KÞ2
TE 750 130 ð�KÞ2
VT ‘ < 50 10�6 ð�KÞ2
VV ‘ < 50 10�14 ð�KÞ2

16In the case of running the bounds on rT range from 0.58 (in
the case of the WMAP 5-yr data alone) to 0.54 if we combine the
WMAP data with the large-scale structure data and with the
supernova data.
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signal from gravitational lensing which is between 10�8

and 10�6 ð�KÞ2.

V. CONCLUDING CONSIDERATIONS

In this paper it has been argued that the presence of a
large-scale magnetic field prior to equality can affect the
photon-electron and the photon-ion scattering. In this pro-
cess the radiation becomes circularly polarized and the
induced VV and VT angular power spectra have been
computed. The analysis reported in this paper has to be
regarded as very preliminary. Indeed the considerations
reported here can be refined both at the theoretical as
well as at the more observational level. At the same time
this investigation certainly opens the way for a more direct
use of the circular polarization as a specific diagnostic of
predecoupling magnetism. The reported results might also
be regarded as a modest spur for those observers and
experimenters whose aim is a direct measurement (or a
plausible upper limit) on the circular dichroism of the
cosmic microwave background.
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APPENDIX A: DERIVATION OF THE
SCATTERING MATRIX

In a conformally flat background geometry character-
ized by a metric tensor g��ð�Þ ¼ a2ð�Þ
�� the electron-

ion plasma can be described by the well-known set of two-
fluid equations (see, e.g., [57,96]):

~r � ~E ¼ 4�eðni � neÞ; ~r � ~B ¼ 0 (A1)

~r� ~B ¼ 4�eðni ~vi � ne ~veÞ þ @ ~E

@�
;

~r� ~E ¼ �@ ~B

@�
;

(A2)

where the electromagnetic fields as well as the concentra-
tions of electrons and ions are comoving, i.e.
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FIG. 5 (color online). The VV and VT angular power spectra are compared with other polarization signals arising in the �CDM
paradigm and in its neighboring extensions.

TABLE II. The change in determination of the parameters of the tensor background for three different choices of cosmological data
sets.

Data rT ns �� �M0

WMAP5 alone <0:43 0:986� 0:22 0:770þ0:033
�0:032 0:2300:032�0:033

WMAP5þ ACBAR <0:40 0:9850:019�0:020 0:767� 0:032 0:233� 0:032
WMAP5þ LSSþ SN <0:20 0:968� 0:015 0:725� 0:015 0:275� 0:015
WMAP5þ CMB data <0:36 0:979� 0:020 0:775� 0:032 0:225� 0:032
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~Bð ~x; �Þ ¼ a2ð�Þ ~Bð ~x; �Þ; ~Eð ~x; �Þ ¼ a2ð�Þ ~Eð ~x; �Þ
ne;ið ~x; �Þ ¼ a3ð�Þ~ne;ið ~x; �Þ: (A3)

The evolution equations of the electron and ion velocities
can be written as

d ~ve

d�
þH ~ve ¼ � e

mea
½ ~Eþ ~ve � ~B�; (A4)

d ~vi

d�
þH ~vi ¼ e

mpa
½ ~Eþ ~vp � ~B�; (A5)

whereme andmp are, respectively, the electron and the ion

masses; the velocities are related, as usual, to the comoving

three-momentum ~ve;i ¼ ~qe;i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2e;i þm2

e;pa
2

q
. The explicit

dependence upon the scale factor at the right-hand side of
Eqs. (A4) and (A5) arises because the plasma is cold: both
electrons and ions are nonrelativistic and the mass depen-
dence breaks explicitly the Weyl invariance of the whole
system already at the level of the Vlasov-Landau equations
for the distribution function [57,96]. Finally, in Eqs. (A4)
and (A5) H ¼ a0=a enters directly the Friedmann-
Lemaı̂tre equations:

H 2 ¼ 8�G

3
a2�t; H 2 �H 0 ¼ 4�Ga2ðpt þ �tÞ;

(A6)

where �t and pt denote the total energy density and the
total pressure while the prime stands for a derivation with
respect to the conformal time coordinate �. Since the
electron and ion concentrations are comoving, they simply
obey the following pair of equations

n0e þ ~r � ðne ~veÞ ¼ 0; n0i þ ~r � ðni ~viÞ ¼ 0: (A7)

Further details on the description of globally neutral
plasma in Friedmann-Robertson-Walker backgrounds can
be found, for instance, in [10,33,34,96] (see also [90,91]
for earlier results).

The purpose is now to derive the components of
the scattering matrix Sijð!;�;’;�0; ’0Þ introduced in

Eq. (2.3). In the dipole approximation [1], the outgoing
electric field can be written as:

~E outð ~x; �Þ ¼ 1

rn0

�
r̂� r̂� d ~J

d�

�
; (A8)

where

~Jð ~x; �Þ ¼ eðni ~vi � ne ~veÞ ¼ en0ð ~vi � ~veÞ; (A9)

the quantity n0 ¼ ne ¼ ni denotes the common value of
the (comoving) electron and ion concentrations. In compo-
nents the outgoing electric field can be written as

Ek ¼ 1

n0r
½ð ~J0 � r̂Þr̂k � J0k�; (A10)

where the prime denotes, as usual, a derivation with respect
to the conformal time coordinate. The maximum of the
microwave background arises today for typical photon
energies of the order of 10�3 eV corresponding to a typical
wavelength of the mm. At the time of decoupling (i.e.
zdec ’ 1089 according to [22–24]) the wavelength of the
radiation was of the order of 10�3 mm ’ �m. Since the
magnetic field we are interested in is inhomogeneous on a
much larger length scale we can use the guiding center
approximation [51] stipulating that

Bið ~x; �Þ ’ Bið ~x0; �Þ þ ðxj � xj0Þ@jBi þ � � � (A11)

where the ellipses stand for the higher orders in the gra-
dients leading, both, to curvature and drift corrections
which will be neglected throughout. Fixing a local coor-
dinate system with three orthogonal axes x̂, ŷ and ẑ the
components of the accelerations for the electrons are

aðeÞx ¼ � !2
pe

4�n0a½1� f2eð!Þ� ½Ex � ifeð!ÞEy�;

aðiÞx ¼ !2
pi

4�n0a½1� f2i ð!Þ� ½Ex � ifeð!ÞEy�;

aðeÞy ¼ � !2
pe

4�n0a½1� f2eð!Þ� ½Ey þ ifeð!ÞEy�;

aðiÞy ¼ !2
pi

4�n0a½1� f2i ð!Þ� ½Ey þ ifeð!ÞEy�;

aðeÞz ¼ � !2
pe

4�n0a½1� f2eð!Þ�Ez;

aðiÞz ¼ !2
pi

4�n0a½1� f2i ð!Þ�Ez

(A12)

where fe;i ¼ !Be;i=!;!Be;i and!pe;i are, respectively, the

Larmor and the plasma frequencies either of the electrons
or of the ions [see Eqs. (2.27) and (2.28)]. The magnetic
field is oriented along the z axis and only the lowest order
in the gradient expansion is kept. Of course, as it is well
known, higher order will induce both gradient drifts as well
as curvature drifts (see, e.g. [51]). We consider these terms
to be negligible in the first approximation. Here we are
interested in the scattering of electrons and photons not in
the stellar atmosphere but rather at the decoupling time
when the physical wavelength of the photons is minute in
comparison with the inhomogeneity scale of the magnetic
field which is of the order of the Hubble radius and even
larger [33,34]. The guiding center approximation is pretty
robust as far as the magnetized scattering in concerned. For
sufficiently small angular scales (i.e. ‘ � 100) the radial
direction, in spherical coordinates, coincide (approxi-
mately) with the ẑ direction. For this reason, in some
related paper the modulus of the magnetic field has been

taken as B ¼ ẑ � ~B ’ n̂ � ~B where the last approximate
equality follows in the limit of small angular scales. In
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the limit ‘ � 100 the two-sphere actually degenerate into
a plane and this is the reason why one can trade the
spherical decomposition for the plane wave expansion.

It is also possible to write the difference of the accel-

erations of electrons and ions, namely, ~A ¼ ð ~aðeÞ � ~aðiÞÞ
whose components in the local frame are

Ax ¼ � !2
pe

4�n0a½1� f2eð!Þ� ½�1ð!ÞEx � ifeð!Þ�2ð!ÞEy�;
(A13)

Ay ¼ � !2
pe

4�n0a½1� f2eð!Þ� ½�1ð!ÞEy þ ifeð!Þ�2ð!ÞEx�;
(A14)

Az ¼ � !2
pe

4�n0a½1� f2eð!Þ��3ð!ÞEz; (A15)

where�1ð!Þ,�2ð!Þ and�3ð!Þ have already been defined
in Eqs. (2.23)–(2.25). To compute the elements of the
scattering matrix it is preferable to pass from the

Cartesian components of the incident electric fields to the
polar components; the relation between the fields in the
two basis is given by:

Ex ¼ E0
# cos#0 cos’0 � sin’0E0

’; (A16)

Ey ¼ E0
# cos#0 sin’0 þ cos’0E0

’; (A17)

Ez ¼ � sin# 0E0
#: (A18)

To avoid a proliferation of superscripts in the intermediate
expressions the ingoing electric fields E0

# and E0
’ are re-

named as E1 and E2, i.e.

E1 ¼ E0
#; E2 ¼ E0

’: (A19)

Using Eq. (A12) the scattered electric field, in the dipole
approximation, become

~E ¼ E##̂ þ E’’̂; (A20)

where recalling the notations of Eqs. (2.23)–(2.26)

E#ð!;�;�0; ’; ’0Þ ¼ re
r
f½�ð!Þ�ð�0E1 cosð’0 � ’Þ � E2 sinð’0 � ’ÞÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
�3ð!ÞE1�

� i�2ð!Þfeð!Þ��½�0E1 sinð’0 � ’Þ þ E2 cosð’0 � ’Þ�g; (A21)

E’ð!;�;�0; ’; ’0Þ ¼ re
r
f�ð!Þ�1ð!Þ½�0E1 sinð’0 � ’Þ þ E2 cosð’0 � ’Þ�

þ ifeð!Þ�2ð!Þ�ð!Þ½�0E1 cosð’0 � ’Þ � E2 sinð’0 � ’Þ�g: (A22)

Thus, collecting the different factors and rearranging the final expressions we shall have that the scattered electric fields
can be written as

E#ð!;�;�0; ’; ’0Þ ¼ re
r
½AE1 þ BE2�; E’ð!;�;�0; ’; ’0Þ ¼ re

r
½CE1 þDE2�; (A23)

where

Að!;�;�0; ’; ’0Þ ¼ �ð!Þ��0 cosð’0 � ’Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��02

q
�3ð!Þ � i�2ð!Þfeð!Þ�ð!Þ��0 sinð’0 � ’Þ (A24)

Bð!;�;�0; ’; ’0Þ ¼ ��ð!Þ� sinð’0 � ’Þ � i�2ð!Þfeð!Þ�ð!Þ� cosð’0 � ’Þ; (A25)

Cð!;�;�0; ’; ’0Þ ¼ �0�ð!Þ�1ð!Þ sinð’0 � ’Þ þ ifeð!Þ�2ð!Þ�ð!Þ�0 cosð’0 � ’Þ; (A26)

Dð!;�;�0; ’; ’0Þ ¼ �ð!Þ�1ð!Þ cosð’0 � ’Þ � ifeð!Þ�2ð!Þ�ð!Þ sinð’0 � ’Þ: (A27)

The Stokes parameters of the scattered radiation can be
related to the Stokes parameters of the incident radiation in
terms of the appropriate scattering matrix S. As already
mentioned in connection with Eq. (2.3), arranging the
outgoing and the ingoing Stokes parameters in a pair of
column vectors

I out ¼ ðI#; I’;U; VÞ; I in ¼ ðI1; I2; U0; V 0Þ; (A28)

the outgoing Stokes parameters are given as Iout ¼ SI in,

where the various components of S are

S11 ¼ r2e
r2

jAj2; S12 ¼ r2e
r2

jBj2;

S13 ¼ r2e
2r2

ðA�Bþ B�AÞ; S14 ¼ i
r2e
2r2

ðA�B� B�AÞ;
(A29)
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S21 ¼ r2e
r2
jCj2; S22 ¼ r2e

r2
jDj2;

S23 ¼ r2e
2r2

ðC�DþD�CÞ; S24 ¼ i
r2e
2r2

ðC�D�D�CÞ;
(A30)

S31 ¼ r2e
r2

ðA�Cþ AC�Þ;

S32 ¼ r2e
r2

ðB�DþD�BÞ;

S33 ¼ r2e
2r2

ðA�Dþ AD� þ BC� þ B�CÞ;

S34 ¼ ir2e
2r2

ðA�D� AD� þ BC� � B�CÞ;

(A31)

S41 ¼ ir2e
r2

ðAC� � A�CÞ;

S42 ¼ ir2e
r2

ðBD� � B�DÞ;

S43 ¼ ir2e
2r2

ðAD� � A�Dþ BC� � B�CÞ;

S44 ¼ r2e
2r2

ðA�Dþ AD� � B�C� BC�Þ:

(A32)

Using Eqs. (A24)–(A27) inside Eqs. (A29) and (A32) the
various matrix elements can be readily obtained in explicit
terms and have been reported from Eq. (2.7) to Eq. (2.22).

APPENDIX B: DETAILS ON THE DERIVATION OF
THE SOURCE TERMS

It is appropriate to give a few details on the derivation of
the source terms reported in Eqs. (2.42)–(2.44). Using the
results of Eq. (2.41) the source terms of Eqs. (2.31)–(2.34)
can be rewritten in explicit terms as

CIð!;�Þ ¼ 3

16
f2�3ð!Þð1��2ÞZ1 þ �2ð!Þ½�2 þ�2

1ð!Þ þ f2eð!Þ�2
2ð!Þð1þ�2Þ�Z2

þ ½2�3ð!Þð1��2Þ � �2ð!Þð�2ð1þ f2eð!Þ�2
2ð!ÞÞ þ�2

1ð!Þ þ f2eð!Þ�2
2ð!ÞÞ�Z3

þ 4f2eð!Þ�2ð!Þ�2ð!Þð�2 þ�1ÞZ4g;
CQð!;�Þ ¼ 3

16
f2�3ð!Þð1��2ÞZ1 � �2ð!Þ½�2

1ð!Þ ��2 þ f2eð!Þ�2
2ð!Þð1��2Þ�Z2

þ ½2�3ð!Þð1��2Þ � �2ð!Þð�2 ��2
1ð!Þ � f2eð!Þ�2

2ð!Þð1��2ÞÞ�Z3

þ 4f2eð!Þ�2ð!Þ�2ð!Þð�2 ��1ð!ÞÞZ4g:
CVð!;�Þ ¼ 3

8
f��2ð!Þ�2ð!Þð�1ð!Þ þ 1Þ½Z2 �Z3� þ 2��2ð!Þ½�1ð!Þ þ f2eð!Þ�2

2ð!Þ�Z4g;

(B1)

where the four quantities Zi with i ¼ 1; 2; 3; 4 denote the
integral of the various brightness perturbations, i.e.

Z1 ¼
Z 1

�1
d�0ð1��02Þ�Id�

0 ¼ 4

3
½�I0 þ�I2�;

Z2 ¼
Z 1

�1
d�0ð1þ�02Þ�Id�

0;¼ 8

3
�I0 � 4

3
�I2;

Z3 ¼
Z 1

�1
d�0ð1��02Þ�Qd�

0 ¼ 4

3
½�Q0 þ �Q2�;

Z4 ¼
Z 1

�1
�0�V ¼ �2i�V1: (B2)

To derive Eq. (B2) the standard multipole expansion for the
brightness perturbations has been assumed, i.e.

�Xðn̂; �Þ ¼
X
‘

ð�iÞ‘ð2‘þ 1Þ�X‘P‘ð�Þ: (B3)

Using the explicit expressions of Eq. (B2) inside Eq. (B1),
the expressions reported in Eqs. (2.42)–(2.44) are quickly
recovered.
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