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The cryogenic sapphire oscillator at the Paris Observatory has been continuously compared to various

hydrogen masers since 2001. The early data sets were used to test local Lorentz invariance in the

Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the

cosmic microwave background, and represent the best Kennedy-Thorndike experiment to date. In this

work, we present continuous operation over a period of greater than six years from September 2002 to

December 2008 and present a more precise way to analyze the data by searching the time derivative of the

comparison frequency. Because of the long-term operation we are able to search both sidereal and annual

modulations. The results give PKT ¼ �RMS � �RMS � 1 ¼ �1:7ð4:0Þ � 10�8 for the sidereal and

�23ð10Þ � 10�8 for the annual term, with a weighted mean of �4:8ð3:7Þ � 10�8, a factor of 8 better

than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal

and annual variations. The result gives �H-Maser � �CSO ¼ �2:7ð1:4Þ � 10�4 for the annual and

�6:9ð4:0Þ � 10�4 for the diurnal terms, with a weighted mean of �3:2ð1:3Þ � 10�4. This result is 2

orders of magnitude better than other tests that use electromagnetic resonators. With respect to

fundamental constants a limit can be provided on the variation with ambient gravitational potential and

boost of a combination of the fine structure constant (�), the normalized quark mass (mq), and the electron

to proton mass ratio (me=mp), setting the first limit on boost dependence of order 10�10.

DOI: 10.1103/PhysRevD.81.022003 PACS numbers: 04.80.Cc, 03.30.+p, 06.30.Ft

I. INTRODUCTION

Local Lorentz invariance (LLI) and local position in-
variance (LPI) are underlying principles of relativity and
Einstein’s equivalence principle (EEP). LLI postulates that
the outcome of a local experiment is independent of the
velocity and orientation of the apparatus, while LPI implies
that the gravitational redshift of radiation is universal and
thus independent of the type of emitting source and that
fundamental constants remain constant with respect to time
and space. Tests of EEP are motivated by its central im-
portance to modern physics, as well as the development of
a number of unification theories, which suggest violations
of EEP at some level. To identify a violation it is necessary
to have an alternative test theory to interpret the experi-
ment [1], which have been developed for both LLI experi-
ments [2–8] and LPI experiments [1,9,10].

A. Local lorentz invariance

For tests of LLI the kinematical frameworks (Robertson-
Mansouri-Sexl or RMS) [2,3] postulate a simple parame-
terization of the Lorentz transformations with experiments
setting limits on the deviation of those parameters from
their values in special relativity. Because of their simplicity

they have been widely used to interpret many experiments
[11–16]. In general these tests are performed with respect
to the cosmic microwave background (CMB), which is
considered as our best candidate for an absolute reference
frame.
More recently, a general Lorentz violating extension of

the standard model of particle physics (SME) has been
developed whose Lagrangian includes all parameterized
Lorentz violating terms that can be formed from known
fields [6–8,17]. This has inspired a new wave of experi-
ments designed to explore uncharted regions of the SME
Lorentz violating parameter space. Because of the vast
amount of parameters there has been an increase in activity
in experimental tests of LLI, in particular, light speed
isotropy tests (or Michelson-Morley experiments) with at
least 7 experiments reported in the last 6 years [15,18–26],
as well as new Ives-Stillwell experiments [27–30]. This is
largely due to advances in technology, allowing more pre-
cise measurements, and the emergence of the standard
model extension (SME) as a general framework for the
analysis of experiments, providing new interpretations of
LLI tests. It has been recently shown that the SME fully
contains the RMS framework and is thus more general
[31]. None of these experiments have yet reported a vio-
lation of LLI, though the constraints on a putative violation
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have become more stringent by up to 3 orders of magnitude
in the same time frame.

Testing boost dependence

LLI experiments with respect to boost, such as Kennedy-
Thorndike and SME tests must be performed with respect
to a specific frame of reference. Since the discovery of the
CMB) frame of Ref. [32], historically the former types of
experiments have been undertaken with respect to this
frame. Alternatively, SME tests have been done with re-
spect to a sun-centred frame, which remains inertial with
respect to the CMB. Our earlier data has been used to test
for boost and isotropy components in the photon sector of
the SME as well as attaining the best limit for the Kennedy-
Thorndike experiment with respect to the CMB [14,15,19].
For the SME, rotating experiments have superseded this
experiment [16,20,23,25], but remain nonsensitive
Kennedy-Thorndike experiments. An earlier version of
this experiment still remains the most sensitive Kennedy-
Thorndike test. However, we now have more than six years
of continuous data and are able to put better limits. Also, a
putative time or redshift dependence of fundamental con-
stants implies that on a cosmic scale there may also mani-
fest a boost dependence with respect to the preferred frame
[33,34]. In this work we put limits on the boost dependence
of fundamental constants with respect to the CMB and redo
the Kennedy-Thorndike experiment with a factor eight
better sensitivity.

To calculate the boost with respect to the CMB we
transform all quantities to a geocentric nonrotating refer-
ence frame (with respect to distant stars) centered at the
center of mass of the Earth (Earth frame) with its z axis
perpendicular to the equator, pointing north, the x axis
pointing toward 11.2 h right ascension [aligned with the
equatorial projection of u defined below in (1)]. A pictorial
representation of the frame is shown in Fig. 1. Classical
(Galilean) transformations for the velocities are sufficient

as relativistic terms are of orderOðc�2Þ. We consider three
velocities: the velocity of the sun with respect to the cosmic
microwave background u (declination �6:4�, right ascen-
sion 11.2 h), the orbital velocity of the Earth v0, and the
velocity of the lab due to the rotation of the Earth vR. The
sum of those three will provide the velocity of the
laboratory.
In the Earth frame the CMB velocity is

u ¼ u
cos��

0
sin��

2
64

3
75; (1)

where u is approximately 377 km=s, and �u is approxi-
mately �6:4�. The orbital velocity with respect to the
Earth frame has been shown to be [35]

v o ¼ vo

� sin�o cos�þ cos�o sin� cos"
sin�o sin�þ cos�o cos� cos"

cos�o sin"

2
64

3
75: (2)

Here, vo is the orbital speed of the Earth, which is ap-
proximately 29:78 km=s, " the angle between the equato-
rial and orbital planes is approximately 23.27�, � the right
ascension of u is approximately 167.9� and �o ¼ ��ðt�
toÞ where t-to is the time since the J2000 equinox (20
March at 07 h 35 min UTC for 2000) and�� is the annual
frequency (0.017203 rads/day).
The velocity at Paris due to the rotation of the Earth is

given by

v R ¼ !�R cos�
� sin�
cos�
0

2
64

3
75: (3)

Here, !� is the angular frequency of the Earth rotation
with respect to the stars (sidereal frequency 7:29�
10�5 rads=s), R is the equatorial radius of the Earth
(6370 km), � is the latitude (48.7� for Paris), and � ¼
!�tþ� is the longitude in the Earth frame. The phase �
is set by the initial longitude for Paris at time t ¼ 0 defined
by the J2000 equinox. Thus, the total boost (b) with respect
to the CMB is given by

b ¼ vT
c

¼ uþ vo þ vR
c

: (4)

Substituting all values into (4) one obtains the boost vector

bðtÞ ¼ ð1:25� 10�3 þ 1:91� 10�5 cos½��ðt� toÞ�
þ 9:71� 10�5 sin½��ðt� toÞ�
� 1:02� 10�6 sin½!�ðt� toÞ þ��Þx
þ ð�8:92� 10�5 cos½��ðt� toÞ�
þ 2:08� 10�5 sin½��ðt� toÞ�
þ 1:02� 10�6 cos½!�ðt� toÞ þ��Þy
þ ð�1:40� 10�4 þ 3:92� 10�5 cos½��ðt� toÞ�Þz:

(5)

FIG. 1 (color online). The Earth-centered frame we use has the
spin axis along the z axis, and the velocity of the Sun with
respect to the CMB is defined to have no component in the y
direction. Thus, the Earth is spinning at the sidereal rate within
this frame. The angle � of Paris with respect to the z axis is
shown pictorially.
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The boost vector given by (5) shows both annual and
sidereal variation and in the following work we search
for Lorentz violations and fundamental constant variation
with respect to the boost. To search for leading order
variations the boost vector (5) is used, and for second order
terms the magnitude squared, only keeping the dominant
quadrature terms from (5) we calculate

jbj � 1:3� 10�3 þ 1:5� 10�5 cos½��ðt� toÞ�
þ 9:7� 10�5 sin½��ðt� toÞ�
� 1:0� 10�6 sin½!�ðt� toÞ þ��
� 7:6� 10�8 cos½ð!� ���Þðt� toÞ þ��; (6)

jbj2 � 1:6� 10�6 þ 3:7� 10�8 cos½��ðt� toÞ�
þ 2:4� 10�7 sin½��ðt� toÞ�
� 2:6� 10�9 sin½!�ðt� toÞ þ��
� 1:9� 10�10 cos½ð!� ���Þðt� toÞ þ��: (7)

The dominant terms in (5) to (7) above are at the annual,
sidereal, and diurnal (!� ���) frequencies. For the
Kennedy-Thorndike experiment we search variations in
the RMS framework (PKT ¼ �RMS � �RMS � 1, see [15]
for the derivation) from the comparison between the hydro-
gen maser and cryogenic sapphire oscillator (CSO), which
is of the form

��CSO�HmaserðtÞ
�

¼ PKTjbðtÞj2: (8)

Thus, our approach in undertaking the Kennedy-
Thorndike experiment is to search from the data the quad-
rature amplitudes at the frequencies given in (7) to put a
limit on PKT.

B. Local position invariance

For LPI measurements a simple parameterization with
respect to change in gravitational potential (�U) has been
made based on different clocks (denoted by subscript i),
which is given by [12,36–41],

��iðtÞ
�

¼ ð1þ �iÞ�UðtÞ
c2

: (9)

Here, ��i=� is the apparent fractional frequency differ-
ence of clock i with respect to potential, and the parameter
�i will depend on the type of clock. For example, an ion or
atomic clock will depend on the species and type of
transition, while for a classical oscillator dependence on
dimensional and refractive index changes may be consid-
ered. For a null redshift experiment a comparison of two
different types of clocks is necessary, and from (9) we may
write

��a�bðtÞ
�

¼ �aðtÞ � �bðtÞ
�

¼ ð�a � �bÞUðtÞ
c2

: (10)

Here, ��a�b=� is the frequency difference between two
different types of clocks that are colocated.

On Earth we consider the changing potential due to the
solar gravitational potential, so that

UðtÞ
c2

¼ �Gms

ac2
e cosð��t�Þ: (11)

Here, G is the gravitational constant, ms the mass of the
sun, a the semi major axis, e the eccentricity of the orbit,
�� the angular frequency of a sidereal year and t� the time
elapsed with respect to a recorded Aphelion. The expected
change in gravitational potential given by (11) is deter-
mined by fitting the earth’s orbit around the Sun from the
table of Perihelion and Aphelion data (2000-20) [42], with

phase and normalized amplitude (by factor � Gms

ac2
e �

�1:65� 10�10) shown in Fig. 2.
Diurnal variations will also occur as the Earth rotates

from day to night. The phase is set when Paris is directly
pointing toward the Sun. This phase can be calculated with
respect to midday Greenwich, which is also midday for a
MJD. The longitude of Paris is 2.33�, thus the phase is
advanced by 0.0406662 radians with respect to midday of a
MJD. Noise statistics of the CSO is better over a day when
compared to a year so tests of both LPI and LLI can
be compared over these two time scales. The magnitude
of the signal (variation of gravitational potential) is to first
order sinusoidal with an amplitude approximately given

by GmsrParis
c2a2

� 2:54� 10�13, rParis ¼ rEarth cos½�Paris��
cos½c Earth�, where rEarth is 6:37� 106 meters and �Paris

is the latitude (48.7�) and c Earth is the Earth’s tilt of 23.5
�.

C. Variation with respect to fundamental constants

It has also been suggested that variation in fundamental
constants can occur with respect to space and time, with
respect to the evolving universe [43]. Effects proportional
to gravity may occur through couplings of the fields to an
evolving scalar field (�) such as the dilaton [44,45], which
is proportional to the gravitational potential given by (12)

���0 ¼ 	ðGM=rc2Þ: (12)

Thus, the more recent approach to testing LPI relates the
dependence of the type of frequency standard to funda-
mental constants [39–41,46,47]. This approach includes
calculating how the frequency-determining element de-
pends on dimensionless constants such as the fine structure
constant, �, the quark mass (mq) with respect to the

quantum chromodynamics (QCD) scale of the strong force
(�QCD), �q ¼ mq=�QCD and the electron to proton mass

ratio �e ¼ me=mp / me=�QCD. In general the frequency

ratio between two different clocks (or frequency standards)
with respect to dependence of fundamental constants is of
the form

x ¼ �1

�2

¼ Const� �n1�n2
e �

n3
q : (13)
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The values of n1, n2, and n3 depend on the frequency
standards used in the comparison. Thus, any variation of
the fundamental constants with respect to gravitational
potential will induce a frequency shift of the form


x

x
¼ ðn1	� þ n2	e þ n3	qÞ � 


�
GM

rc2

�
;

	� ¼ 
�

�

�



�
GM

rc2

�
; 	e ¼ 
�e

�e

�



�
GM

rc2

�
;

	q ¼

�q

�q

�



�
GM

rc2

�
:

(14)

In the laboratory, one can look for variations with re-
spect to the changing gravitational potential in the same
way as the LPI experiment discussed previously. For com-
parisons between the CSO and hydrogen maser, the values
of n1, n2, and n3 are 3, 1, and �0:1, respectively, [36,48],
unless the frequency is close to a phonon or paramagnetic
resonance (in this case sensitivity would be enhanced
[49]), which is not the case in our experiment.

It has also been shown that fundamental constant may
vary through the association of Lorentz and CPT symmetry
violations [50]. Thus, one may also expect fundamental
constants to vary with respect to boost as well as gravita-
tional potential. Furthermore, variations in fundamental
constants have been postulated to occur through a scalar
field that is dependent on redshift [34]. One interpretation
of the redshift dependence is a variation with respect to
look back time (time dependence). On the other hand, one
could postulate a variation due to the direct boost. If one is
to search for boost dependence of fundamental constants it
makes more sense to search for effects relative to the
preferred frame candidate the cosmic microwave back-
ground to complement the cosmological redshift searches.
Stringent limits on fundamental constants have been set on
cosmological scales with respect to the cosmological red-
shift [51–55]. However, frequency comparisons experi-

ments offer a more sensitive measurement if the two
frequencies have a different dependence on fundamental
constants. From (13) one can then postulate the depen-
dence on boost to be of the form


x

x
¼ B � b; B ¼ n1B� þ n2Be þ n3Bq

B�i
¼ 1

�


�


bi
; Bei ¼

1

�e


�e


bi
; Bqi ¼

1

�q


�q


bi
:

(15)

Here, the violation due to the boost is described by the
vectors B�, Be, and Bq with components i ¼ x, y, or z.

Thus, in the laboratory one may look for variations with
respect to our changing boost over the year and sidereal
day, as has been undertaken in the past for Kennedy-
Thorndike and SME-type LLI experiments.

II. FREQUENCY COMPARISON EXPERIMENT

In this work we present near continuous monitoring of
the CSO with respect to a hydrogen maser from September
2002 to December 2008. Both oscillators are operated in
temperature controlled rooms, with the temperature sensi-
tive electronics mounted on an actively temperature stabi-
lized panel. The CSO resonant frequency at 11.932 GHz is
compared to the 100 MHz output of the hydrogen maser as
shown as described in [55–57]. The maser signal is multi-
plied up to 12 GHz of which the CSO signal is subtracted.
The remaining 67 MHz signal is mixed to a synthesizer
signal at the same frequency and the low frequency beat at
of 63–67 Hz is counted, giving access to the frequency
difference between the maser and the CSO with respect to
12 GHz.
We analyze the data with respect sidereal, diurnal and

annual modulations using weighted least squares (WLS) or
ordinary least squares (OLS) depending on the noise type
(early data before September 2002 was discarded due to

FIG. 2 (color online). Right, normalized change in gravitational potential of the Sun at the Earth, due to the Earth’s orbital
eccentricity. Left, phase of the gravitational potential versus Modified Julian Day (MJD). The slope gives the frequency of the signal as
0:0172 03 rads=day (the annual frequency).
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lack of environmental temperature control). To search for
annual variations the data sets are averaged over 95 000 sec
intervals (1.1 days) minimum data separation. To search
for sidereal or diurnal variations the data sets are averaged
over 2,500 s intervals (42 minutes) minimum data separa-
tion. We show that there is an advantage to analyzing the
derivative of the beat frequency over the beat frequency
directly, because it naturally filters out nonstationary ef-
fects such as systematic jumps between cryogenic refills
and relocking of the CSO leading to a more sensitive
measurement. When fitting annual modulations to the
data, the derivative gives a factor of 4 better sensitivity
than the direct beat. Conversely, over sidereal and diurnal
time scales the beat and the derivative give similar results.
However, this is only attained after a rigorous conditioning
of the beat frequency data, where one has to try and
eliminate the nonstationary jumps in frequency one at a
time by breaking up the data sets into subset, which does
not include any noticeable jumps. Thus, the data condition-
ing over such a large amount of data is a time consuming
process. In contrast, the derivative is easily conditioned as
frequency jumps simply appear as outliers reducing their
effect on the fitted amplitudes. Thus, in this work we only
set limits on putative signals with respect to the derivative
of the beat frequency.

III. TESTING LORENTZ INVARIANCE WITH
RESPECT TO BOOST

A. Search for sidereal and diurnal variations

The experimental data consists of 212 separate sets of
measured values of the beat frequency (every 100 s) of
varying lengths ranging from no less than 1 day to 24.5
days (average 7.6 days) spanning 2,296 days (6.3 years)
with a duty cycle of 71%. Periods of down time have
occurred due to oscillator warm up for maintenance.
Also, data sets are chosen to be free of excursions due to
settling after cool downs and liquid helium top ups, which
cause an exponential relaxation of the beat frequencies that
take about a day to settle. Such data is vetoed as the
frequency variation is dominated by a known systematic
effect and adds to the reduction of the duty cycle of the
measurement. Each data set is averaged over at least
2,500 s periods (size of the data set reduced by a factor
of 25 from the original 100 s). The residuals of the experi-
mental data are shown in Fig. 3 (after removing an offset
and drift from all 212 sets).

The power spectral density of the residuals shown in
Fig. 3 was observed to have a power law of f1 around the
frequencies of interest (consistent with prior analysis on
the beat frequency [14]) as shown in Fig. 4. Thus, to
optimize the effect of the noise on the search, the data is
whitened around the diurnal frequencies through the
weighted least squares process [15]. With respect to the
beat frequency given by Eq. (8) we search for the dominant
components given by, C!����Cos½ð!� ���Þðt� toÞ�

(in-phase diurnal component), and S!�Sin½!�ðt� toÞ�
(out-of-phase sidereal component) with respect to the
CMB. However, since we are searching for signals
amongst the residuals of the derivative of the beat fre-
quency, the putative signal will be differentiated and of
the form, !�S!�Cos½!�ðt� toÞ� and �ð!� ���Þ�
C!����Sin½ð!� ���Þðt� toÞ�, respectively. In actuality,

we simultaneously fit to the residuals 40 parameters given
by,

P
i �!iC!iSin½!iðt� toÞ� þ!iS!iCos½!iðt� toÞ�,

near the sidereal and diurnal frequencies and harmonics.
The specific frequencies that are fitted for are shown in
Fig. 5. Cross correlation coefficients between them vary
between 10�5 to 10�2 for frequencies separated by the
order of the diurnal and sidereal and are thus very well
distinguished. For components centered around the side-

FIG. 3 (color online). Fractional residuals of the derivative of
the beat frequency (with respect to 12 GHz) of the 212 data sets.

FIG. 4 (color online). Power spectral density of the residuals
of the derivative of the fractional frequency fluctuations (Fig. 4)
around the frequencies of interest. The bold line is the power law
fit.
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real frequency, and separated by frequencies of order the
annual frequency, correlation coefficients vary from 10�3

to 10�1, which is still sufficiently small for independent
determination at the selected frequencies.

The quadrature amplitudes with respect to the sidereal
frequency are shown in Fig. 5. In particular, we determine
C!���� ¼ �1:7ð1:0Þ � 10�16 and S!� ¼ 0:56ð1:0Þ �
10�16. Both amplitudes are less than 2 times the standard
error and are not significant compared to the scatter of
values calculated at nearby frequencies and harmonics.
Ignoring the annual variations in (7) and taking the
weighted mean of the contributions of C!���� and S!� ,

from (8) we obtain PKT ¼ �1:7ð4:0Þ � 10�8.

B. Search for annual variations

To search for annual variations in the data we show here
that it is optimum to search the derivative of the beat
frequency data as it filters out directly the large systematic
jumps between cryogenic refills and relocking of the CSO.
Since, the Dewar must be refilled at least once every three
weeks this occurs regularly in 1 yr. To be able to track
variations of the order of a year or more it is also important
that the CSO runs continuously cold without warming up
to room temperature as this will change the stress condi-
tions on the resonator as it is cycled [55]. If this is the case,
the shift in the derivative of the beat frequency of the CSO
will be larger than the stationary noise in the data and can
mimic a positive signal when fitting harmonic amplitudes.
From the data obtained since September 2002, there were
only two periods, which spanned more than 1 yr without
warming up. This includes data from the 26th March 2003
to the 3rd of August 2006, and the 12th of August 2006 to
the 26th of August 2008. The recorded beat frequency is
shown in Fig. 6.

The residuals of the beat frequency were determined by
subtracting quadratic fits to the two sets of data shown in
Fig. 6. During the 3rd of August there was a fault in the
CSO, which lead to a necessary warm up from 4 K to room

temperature. After fixing and recooling operation recom-
menced on the 12th of August. The resulting residuals are
shown in Fig. 7, along with the power spectral density.
Given that the power spectral density has approximately an
f�2 dependence it is better to analyze the derivative of the
beat frequency.
The fractional derivative of the beat frequency (with

respect to 12 GHz) was also calculated from the data and
is shown in Fig. 8. The slope is approximately �1:5�
10�13=day (as we reported before) [55]. However, there is
clearly a small linear dependence of the derivative over the
longer term, which justifies the quadratic fit to the beat
frequency when calculating the residuals. Also, we note a
larger than usual scatter, which relaxed after 125 days and
coincided with the jump in frequency between the 3rd and
12th of August 2006 due to the necessary warm up and
maintenance. It was necessary to veto this data as it is a
clear systematic effect on the long-term drift rate of the
resonator. Linear fits where then subtracted from both data

FIG. 6 (color online). The direct beat frequency between the
CSO and multiplied hydrogen maser with respect to 12 GHz.

FIG. 5 (color online). Calculated coefficients C!� and S!� as a function of frequency. Left, coefficients at frequencies of order a
sidereal day (and harmonics). Right, coefficients at frequencies offset from the sidereal by the order of the annual frequency. Error bars
represent the standard error.
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sets (before and after the 3rd of August 2006), with the
residuals shown in Fig. 8. The power spectral density of the
residuals is shown in Fig. 9, and is consistent with white
noise and thus OLS was used to search for putative sinu-
soidal signals from the data.

With respect to the beat frequency residuals shown in
Fig. 7, the annual terms we search for are of the form,
C��Cos½��ðt� toÞ� (in-phase), and S��Sin½��ðt� toÞ�
(out-of-phase). Thus, with respect to the derivative of the
beat frequency given by the residuals in Fig. 8, we search
for signals of the form ���C��Sin½��ðt� toÞ� and

��S��Cos½��ðt� toÞ�. In the analysis we also simulta-

neously search for a sum of eight nearby frequencies with
the phase defined with respect to the CMB frame and of the
form

P
iC!i

Cos½!iðt� toÞ� þ S!i
Sin½!iðt� toÞ� from the

residuals of the beat frequency (Fig. 7), and of the formP
i �!iC!i

Sin½!iðt� toÞ� þ!iS!i
Cos½!iðt� toÞ� from

the residuals of the derivative (Fig. 8). Our results deter-
mine that searching the derivative of the beat frequency is
about a factor of 4 more sensitive than searching the beat
frequency directly. Moreover, the quadrature amplitudes

using the derivative technique do not have amplitudes
greater than 3 standard errors over the 16 quadrature
components, with all except one coefficient below two
standard errors in magnitude. In contrast, when searching
the residuals of the beat frequency directly, five amplitudes
have significance greater than three standard errors. It is
apparent that the nonstationary noise in the data can mimic
significant amplitudes at many different frequencies. Thus,
we should only consider searching the derivative of the
beat signal when searching for putative new physics over
the annual period.
In general, fitting the amplitudes using the derivative

does not show any significance much greater than the
standard error at ��, or much greater than the amplitudes
at other nearby frequencies.
The quadrature amplitudes at the fitted frequencies are

shown in Fig. 10. Cross correlation coefficients vary be-
tween 10�3 to 10�1, which is still sufficiently small for
independent determination at the selected frequencies.
From these results we determine C�� ¼ �2:7ð2:1Þ �
10�14 and S�� ¼ �5:4ð2:4Þ � 10�14. Combining (7) and
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FIG. 8 (color online). Left, Derivative of the fractional frequency (with outliers removed), which shows a slight variation to the
linear drift of the CSO over a period of 5.5 years. Straight after maintenance (including warm up) in August 2006, there was a larger
scatter in the determination of the slope, which only settled after 125 days, this was vetoed from the data and represent 6% of the total
data. Right, the residuals with the linear dependence removed separately for the two data sets.

FIG. 7 (color online). Left, fractional residuals (with respect to 12 GHz) between the quadratic fit and experimental data. Right,
SyðfÞ [1=Hz], the fractional frequency power spectral density of the residuals, which shows a f�2 dependence.
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(8) with this result we can put a limit on PKT of
�2:3ð1:0Þ � 10�7.

IV. LOCAL POSITION INVARIANCE

A. Search for diurnal variations

With respect to the frequency comparison between the
CSO and hydrogen maser given by (10), we also search for
signals in-phase, C!����Cos½ð!� ���Þtnoon�, and out-

of-phase, S!����Sin½ð!� ���Þtnoon�, with the varying

gravitational potential. Here, !� ��� is the diurnal fre-
quency (2� rads=day), C!���� the in-phase and S!����
the out-of-phase quadrature amplitudes. Zero phase (or
tnoon ¼ 0) is set when Paris is closest to the sun of the
first day of all the data sets (9th of September). Thus,
with respect to the derivative of the beat frequency
the quadrature amplitudes are determined by searching
the residuals for signals of the form; �ð!� �
��ÞC!����Sin½ð!� ���Þtnoon� and ð!� �
��ÞS!����Cos½ð!� ���Þtnoon�. We use the same pro-

cess as the Kennedy-Thorndike experiment and simulta-
neously fit 40 parameters simultaneously near the diurnal
frequency and at harmonics. The calculation of the C!i

and

S!i
coefficients are very similar to those in Fig. 5, but just

in a different phase and return a value of C!���� ¼
1:8ð1:0Þ � 10�16 and S!���� ¼ 2:0ð1:0Þ � 10�16. Thus,

combining these values with (10) and dividing the in-phase
coefficient by the variation of the gravitational potential
due to the Earth’s rotation (� 2:54� 10�13), a limit on
LPI and fundamental constants can be determined to be
�Hmaser��CSO ¼ 3	�þ	e� 0:1	q ¼�6:9ð4:0Þ� 10�4.

Note that only the in-phase term matters when looking for
dependence proportional to ambient gravitational field
[Eq. (10)]. The quadrature is just a "check" similar to
looking at neighboring frequencies.

B. Search for annual variations

We search for signals in-phase with the varying gravita-
tional potential, and of the form ���C��Sin½��t�� from
the data presented in Fig. 8. We also search for the quad-
rature amplitude of the form ��S��Cos½��t�� as well as
the in-phase and quadrature amplitudes at seven other
frequencies shown in Fig. 10 and 11. The determined
coefficients are of similar values but differ due to the phase
being set by the time of an Aphelion rather than the J2000
equinox used for the boost tests previously. In general, the
amplitudes at �� do not show any significance much
greater than the standard error, and much greater than the
other nearby frequencies and return a value of C�� ¼
4:5ð2:4Þ � 10�14 and S�� ¼ �3:9ð2:1Þ � 10�14. Divid-

FIG. 10 (color online). OLS analysis on the residuals of the
derivative shown in Fig. 8. The bold curve shows the simulta-
neously fitted amplitudes at various frequencies (units year�1),
while the dashed curve shows the standard error at the same
frequencies.

FIG. 9 (color online). Power spectral density of the residuals
of the derivative of the fractional frequency fluctuations.

FIG. 11 (color online). Calculated coefficients Ci and Si as a
function of frequency over periods of order of a year.
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ing the in-phase coefficient by the amplitude of the varying
gravitational potential given by (11) (� 1:65� 10�10) we
derive the following limit with respect to the varying
gravitational potential: �H maser � �CSO ¼ 3	� þ 	e�
0:1	q ¼ �2:7ð1:4Þ � 10�4. The constraint on the electro-

magnetic resonator (�H-Maser � �CSO) is 2 orders of mag-
nitude better than the previous result of Turneaure et al.
[11] of 1:7� 10�2. Such tests on electromagnetic resona-
tors would be sensitive to Lorentz violations that couple
the gravity sector to the photon. Otherwise, the constraint
with respect to fundamental constants is one to 2 orders of
magnitude worse as those constrained recently by atomic
clocks [14,16,17].

V. BOOST DEPENDENCE OF FUNDAMENTAL
CONSTANTS

To obtain a limit on the components of the vector B as
defined in (15) the amplitude due to the violation is calcu-
lated by taking the dot product of the boost given in (5)
with B, and returns components at the annual and sidereal
frequencies as shown in Table I. There are four measure-
ments made with three amplitudes to constrain (Bx, By,

Bz), thus the system is over constrained and limits on all
three components may be made.

The system of equations may be solved using weighted
averaging for an over determined equation set, with the
weightings set by the inverse variance (square of the stan-
dard errors in Table I). The process returns values of (Bx,
By, Bz) of [� 1:3ð0:9Þ � 10�10, 0:6ð1:0Þ � 10�10,

�4:7ð4:8Þ � 10�10], allow the first upper limit of variation
of fundamental constants to boost with respect to the CMB.

VI. DISCUSSION

In our experiment, the LPI test with respect to gravita-
tional potential variation over the annual period is a factor
of 3 more sensitive than the diurnal. In contrast, the LLI
and fundamental constant test with respect to boost effects
over the sidereal and diurnal periods is a factor of 2.5 times
more sensitive than the annual. Thus, combining the results
as a weighted mean may attain a small improvement in the
determination of the values. Doing this sets the following
limits: 1) �H maser � �CSO ¼ 3	� þ 	e � 0:1	q ¼
�3:2ð1:3Þ � 10�4, 2) PKT ¼ �4:8ð3:7Þ � 10�8, and

3) B ¼ 3B� þ Be � 0:1Bq ¼ ð�1:3ð0:9Þ � 10�10;

0:6ð1:0Þ � 10�10;�4:7ð4:8Þ � 10�10Þ. The first result im-
proves LPI gravitational tests on electromagnetic resona-
tors by 2 orders of magnitude, the second result improves
Kennedy-Thorndike experiments by a factor of 8, while the
final result puts the first determination on the variation of
fundamental constants with respect to boost.
It is difficult to experiment on systematics over a year

period because of the large time scales involved. For
example, limits using atomic clock comparisons typically
estimate constant systematic shifts from the absolute fre-
quency over much smaller time scales, following this
averaged results are presented with an error budget over
a many periods smaller than 1 yr. Our approach is different
as we look at the relative stability between the two oscil-
lators and do a direct investigation using least squares to
search for the amplitudes at the required frequencies. For
this type of experiment a constant systematic shift (or shifts
at frequencies other than the frequencies of interest) does
not limit the measurement. One just needs to show that a
systematic is not limiting the measurement at the required
frequencies of interest. Typical possible systematics in-
clude; frequency dependence on pressure, temperature,
tilt, magnetic field, etc. [19]. For our purposes these effects
must couple to variations over the annual, sidereal and
diurnal time scales. It is feasible that a systematic with a
certain phase may be present due to day-night and seasonal
variations in these parameters. If this was indeed the case
one would expect to see a significant signal much greater
than the standard error and much larger than nearby fre-
quencies. For this experiment it is not the case at our
frequencies of interest. Given that the diurnal frequency
is equal to the difference between the sidereal and annual
frequency, to provide a more thorough check, we have
searched for 40 coefficients simultaneously for amplitudes
offset from the sidereal by the annual frequency as shown
in Fig. 5. There was no significant difference at the annual
offsets from the sidereal frequency. Also, we searched for
amplitudes at frequencies of fractions and harmonics of the
annual frequency as shown in Fig. 10. The combined result
indicates that there is likely only a small systematic influ-
ence at the diurnal, sidereal and annual frequencies since
we record null results.

TABLE I. The amplitude dependence on coefficients (Bx, By, Bz), due to the putative boost dependence of the fundamental constants
(occurring at annual and sidereal frequencies). To the right of column 2 the numeric values and standard errors are given for each
component, which have been determined experimentally.

Frequency Component Amplitude

sin½��ðt� toÞ 9:71� 10�5Bx þ 2:08� 10�5By �5:4ð2:4Þ � 10�14

cos½��ðt� toÞ� 1:91� 10�5Bx � 8:92� 10�5By þ 3:92� 10�5Bz �2:7ð2:1Þ � 10�14

sin½!�ðt� toÞ þ�� �1:02� 10�6Bx 0:56ð1:0Þ � 10�16

cos½!�ðt� toÞ þ�� 1:02� 10�6By 0:87ð1:0Þ � 10�16
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