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This paper explores the Petrov type D, stationary axisymmetric vacuum (SAV) spacetimes that were

found by Carter to have separable Hamilton-Jacobi equations, and thus admit a second-order Killing

tensor. The derivation of the spacetimes presented in this paper borrows from ideas about dynamical

systems, and illustrates concepts that can be generalized to higher-order Killing tensors. The relationship

between the components of the Killing equations and metric functions are given explicitly. The origin of

the four separable coordinate systems found by Carter is explained and classified in terms of the analytic

structure associated with the Killing equations. A geometric picture of what the orbital invariants may

represent is built. Requiring that a SAV spacetime admits a second-order Killing tensor is very restrictive,

selecting very few candidates from the group of all possible SAV spacetimes. This restriction arises due to

the fact that the consistency conditions associated with the Killing equations require that the field

variables obey a second-order differential equation, as opposed to a fourth-order differential equation that

imposes the weaker condition that the spacetime be SAV. This paper introduces ideas that could lead to the

explicit computation of more general orbital invariants in the form of higher-order Killing tensors.
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I. INTRODUCTION

It is well known that many Petrov type D spacetimes
admit second-order Killing tensors [1–3]. These Killing
tensors give rise to constants of geodesic motion that can
be used to describe particle motion within the spacetimes
and so provide clues to the spacetime’s experimental or
observational signature [4,5].

This paper explores the existence of second-order
Killing tensors in the restricted context of stationary axi-
symmetric vacuum (SAV) spacetimes. The aim is to gen-
erate the ideas necessary to help gain explicit control over
the geodesic structure of all SAV spacetimes, if this is
possible.

Much of the more recent work done on second-order
Killing tensors is written in terms of the repeated principal
null directions associated with the Weyl tensor of type D
spacetimes. Once the results are postulated within this
formalism it is easy to show that they are correct as is
elegantly done in [2,3]. It is however unclear how to
generalize this work to higher-order Killing tensors, where
the solutions are not a priori known. A constructive deri-
vation for finding such Killing tensors, similar to Carter’s
original 30 page derivation [1] for the second-order case, is
thus required. With the advantage of hindsight it should be
noted that the second-order Killing tensor problem can
effectively be reduced to a linear problem [6]. This ex-
plains the early success of Carter’s direct approach to
finding solutions. This feature does not extend to higher-
order Killing tensors, where the problem becomes dis-
tinctly nonlinear [6]. Despite this difficulty, a number of
the features observed in the derivation of spacetimes ad-
mitting second-order Killing tensors do generalize to
higher-order Killing tensors.

This paper aims to familiarize the reader with a con-
structive approach to finding second-order Killing tensors,
taking special care to highlight the features and results of
such a derivation that can be extended to higher-order
Killing tensors. While none of the results presented in
this paper are new, the derivations I believe are and the
insights gained have been conducive to seeking and under-
standing solutions to the higher-order Killing tensor equa-
tions in SAV spacetimes. The purpose of this paper is
mainly pedagogical. It serves as a prototype calculation
that will be fleshed out in subsequent papers [7–9] to
provide a formalism for checking for the existence of and
subsequently writing down a formal solution for the com-
ponents of fourth-order Killing tensors.
The restrictions of stationarity and axisymmetry result in

two Killing vectors on the general SAV spacetime mani-
fold. If these Killing vectors commute, the vacuum space-
time is entirely determined by a complex Ernst potential
[4]. In this context, the problem of finding the existence of
a second-order Killing tensor simplifies. As is shown in
Sec. II, it essentially reduces to several two-degree-of-
freedom problems [6]. An investigator can benefit from
the work performed in this field, and the related field of
superintegrable systems [10–15] to build up intuition about
how the field equations and Killing equations interrelate.
Two-degree-of-freedom dynamical systems have the great
advantage that they can be easily visualized [6]; further-
more, Killing tensors take on a distinct geometric meaning
that was discussed in [6] and this can be used to aid
calculation. It is this structure, studied in this and subse-
quent work [7,8] that admits generalization to higher-order
Killing tensors.
This derivation relies heavily on the techniques devel-

oped in the field of dynamical systems and direct searches
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for invariants [13,14]. It should however not be forgotten
that what one is actually describing is the physical trajec-
tory of an observer through four-dimensional spacetime.
This observer has his/her own coordinate system and can
perform experiments to determine the nature of the space-
time through which he/she is traveling. As will be shown in
Sec. II, the existence of second-order Killing tensors im-
plies not only separability of the metric functions, but the
existence of special coordinate systems, in which separa-
bility occurs (see Sec. III). How these arise and their
implications will be discussed in Secs. II and V.

The approach taken in the constructive derivation given
here is direct; simply solve both the field and Killing
equations simultaneously and see how much you could
possibly learn. For simplicity, the approach is coordinate
based, with an emphasis on identifying the structures that
relate to work done in two-degree-of-freedom dynamical
systems. A formulation on an appropriately chosen tetrad
basis is given in [7] which simplifies the analysis somewhat
for higher-order Killing tensors. The tetrad formalism
however disguises other properties of note. A particular
advantage of the formulation given here is that it is imme-
diately apparent how to write down the explicit compo-
nents of the Killing tensor given the metric in the separable
coordinate system (Sec. II).

For the sake of completeness, the relationship between
general type D metrics and those admitting second-order
Killing tensors is given in Sec. IV. Finally this paper is
concluded by highlighting which features of this particular
derivation generalize to higher-order Killing tensors.

II. SECOND-ORDER KILLING TENSORS ON SAV
SPACETIMES

Consider a totally symmetric tensor Tð�1�2Þ of order 2 on
a SAV spacetime with line element

ds2 ¼ e�2c ½e2�ðd�2 þ dz2Þ þ R2d�2�
� e2c ðdt�!d�Þ2; (1)

where the functions c , �, ! and R are determined by the
complex Ernst potential E [6].

For purposes of calculation, the components will be split
into two parts. Allow the indices A, B to run over ft; �g and
the indices i, j over f�; zg, while the indices �i run over all
four possibilities.

If a tensor T obeys the Killing equation,

Tð�1�2;�3Þ ¼ 0; (2)

it can be shown that the quantity

Tð�1�2Þp�1
p�2

¼ Q (3)

is constant along a geodesic of a particle with four mo-
mentum p� and so provides a constant of motion. A trivial
solution to (2) is found by replacing T with the metric g;
then the constantQ is the rest mass��2. To fully describe

the geodesic in four dimensions, we need three more dis-
tinct quantities that remain constant along the curve to use
as coordinates ideally suited to the curve. If we assume
these quantities are second-order Killing tensors, two re-
ducible Killing tensors can be constructed from the Killing
vectors @t and @�. We are searching for the third and a

method of computing its explicit form.
Start by writing out the Killing equations. Let V ¼

e2��2c ; then the nonzero Christoffel symbols associated
with the metric (1) are

��
�� ¼ ���

zz ¼ �z
z� ¼ 2@�ðlnVÞ; �A

Bi ¼
1

2
gAD@igBD;

�z
zz ¼ ��z

�� ¼ �
�
z� ¼ 2@zðlnVÞ; �i

BC ¼ � 1

2V
@igBC:

(4)

The absence of explicit dependence on t and � greatly
reduces the number of equations to be considered. The
Killing equations that are not trivially satisfied are

TðAB;jÞ ¼ 0 and Tðij;kÞ ¼ 0. The first group of equations,

TðAB;jÞ ¼ 0, define the six gradients of the three TðABÞ
components:

TðABÞ
;j ¼ V@kg

ABTkj; (5)

the second group of equations, Tðij;kÞ ¼ 0, decouple and
describe the Killing equations for a two-dimensional mani-
fold with metric gij ¼ V�ij:

0 ¼ VT��
;� þ V;�T

�� þ V;zT
�z; (6)

0 ¼ VT��
;z þ 2VT�z

;� þ V;�T
�z þ V;zT

zz; (7)

0 ¼ VTzz
;� þ 2VT�z

;z þ V;�T
�� þ V;zT

�z; (8)

0 ¼ VTzz
;z þ V;�T

�z þ V;zT
zz: (9)

This group of equations is entirely equivalent to the geo-
metric picture given in [6]. The two-dimensional Killing
equations represent the Fourier-series expansion of the
invariant distinct from the Hamiltonian in phase space.
Associated with these equations we find the analytic struc-
ture observed by [6,13,16]. This structure represents a
coordinate freedom that can either be viewed as a friend
or a foe. The coordinate freedom in two-degree-of-freedom
Hamiltonian systems makes it very difficult to identify
whether the system is integrable. In the case of the SAV
spacetimes and in this derivation, however, the coordinate
freedom is a friend and allows a gauge to be chosen such
that the components of the Killing equations can be ex-
plicitly written down. To make this gauge freedom explicit,
consider the linear combinations of Eqs. (6)–(9) from
which the Cauchy-Riemann conditions become apparent,

ðT�� � TzzÞ;� ¼ 2T
�z
;z ; ðT�� � TzzÞ;z ¼ �2T

�z
;� :

(10)
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(It is easier to identify the analytic structure if the equations
are written in terms of a tetrad, as will be done in [7].)

It is natural to define the complex variable t ¼ T�� �
Tzz þ 2iT�z and the real variable s ¼ T�� þ Tzz. In addi-
tion, the introduction of � ¼ 1=2ð�þ izÞ and its complex
conjugate �� as independent variables results in the follow-
ing expressions for the Killing equations:

TAB
;� ¼ 1

2
Vð�t@ ��g

AB þ s@�g
ABÞ; (11)

ðVsÞ;� ¼ �
�
1

2
V �t; �� þ �tV; ��

�
; (12)

t; �� ¼ 0: (13)

The complex conjugates of these equations must also hold.
Bear in mind that tð�Þ is an analytic function that admits a
power series expansion in � . Formally,

tð�Þ ¼ X
n

anð� � �0Þn: (14)

The solution method now involves eliminating the varia-
bles TAB and s in favor of a higher-order equation for tð�Þ
by writing down their integrability conditions. These equa-
tions limit the freedom of choice of the coefficients an,
which determine the analytic function t.

For the Eqs. (11) and (12), after some algebra we are,
respectively, left with

�ððVgABÞ2 �tÞ; ��
VgAB

�
; ��
¼ CC; (15)

and

�ðV2 �tÞ; ��
V

�
; ��
¼ CC; (16)

where the notation ‘‘¼ CC’’ should be read as ‘‘equals its
complex conjugate.’’ There are four different equations of
the same form, indicating the hunt for four different two-
manifolds admitting a second-order Killing tensor.

Only very special potentials V admit a solution. A
general method for solving Eq. (16) was suggested by
Hall [13] and proceeds as follows: Make the conformal
transformation generated by the analytic function r ¼
r1 þ ir2, namely, that d� ¼ rd~� with ~� ¼ 1=2ð~�þ i~zÞ.
Furthermore, choose r such that t ¼ 1=2r2. Then in the
new coordinate system Eq. (16) becomes

1

�r
@~� ~�

ð�rVÞ ¼ CC: (17)

Multiplying through by r�r and using the fact that r
; �~�
¼ 0,

we obtain

@~� ~zðr�rVÞ ¼ 0: (18)

The general solution can be written down as

r�rV ¼ f1ð~�Þ þ f2ð~zÞ; (19)

where the functions f are arbitrary and must be chosen
such that the field equations are also satisfied.
Equation (15) has the same form, and the general solu-

tion for gAB can also be written down in terms of another
set of free functions fAB,

r�rVgAB ¼ fAB1 ð~�Þ þ fAB2 ð~zÞ: (20)

This implies that in the separable coordinate system, the
conformally rescaled metric ĝ�� ¼ r�rVg�� is separable in
all components. As a result, the Hamilton-Jacobi equation
associated with this Hamiltonian is also separable.
In the new coordinate system, the Killing equations (11)

and (12) take on a greatly simplified form:

@~�

�
TAB � 1

2
VsgAB

�
¼ þ 1

4
@ �~�
ðr�rVgABÞ;

ðVsÞ;~� ¼ � 1

2
@ �~�
ðr�rVÞ:

(21)

The separable form of the quantities on the right allow the
solution to be written down explicitly,

Vs ¼ � 1

2
ðf1ð~�Þ � f2ð~zÞÞ þ as;

TAB ¼ 1

2
VsgAB þ 1

4
ðfAB1 ð~�Þ � fAB2 ð~zÞÞ þ aABt ;

(22)

where at and as are real constants.
It should be observed that the potential V and the metric

components must obey a second-order differential equa-
tion in some coordinate system, if they are also to admit a
second-order Killing tensor. The V’s generated for SAV
spacetimes are in fact only required to obey fourth-order
nonlinear differential equations, one form of which is
Ernst’s equation. The condition that there be a second-
order Killing tensor on the spacetime is therefore far
more restrictive than the conditions governing the genera-
tion of the spacetimes themselves. It is shown in [7] that
this condition limits the Petrov type to D.
This example also illustrates the difficulty in identifying

whether a particular Hamiltonian is integrable [6,14].
Although, as shown here, the potential V has a very suc-
cinct form in some coordinate system, the coordinate trans-
formation to this system is in general not known. This
greatly hinders the identification of whether a sample
Hamiltonian admits a second-order Killing tensor.
In the case of the SAV field equations this particular

difficulty can be overcome. The analytic function t is
related to the choice of gauge function Rð�; zÞ of the metric
(1). To see this, expand ðð15Þ � gABð16ÞÞ=V to yield the
three equations involving the three metric components gAB

of the form,

3�t; ��@ ��g
AB þ 2�tð@��gAB þ 2ðlnVÞ; ��@ ��g

ABÞ ¼ CC; (23)

now take the ‘‘trace’’ of Eq. (23) by multiplying by gAB and
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summing over A and B. Recall that gABgAB ¼ 2 and
detðgABÞ ¼ �R2, where R;� �� ¼ 0. Furthermore using the

SAV field equations (Appendix A) it can be shown that the
trace of (23) becomes

M2 �t; �� þ 2�tM2; �� ¼ CC; (24)

whereM2 ¼ ðlnRÞ; �� . If we choose the coordinate system to

be Rð�; zÞ ¼ � and correspondingly M2 ¼ 1=�, M2; �� ¼
�1=�2, then Eq. (24) reduces to

�t ; �� � 2�t=� ¼ CC; (25)

repeated differentiation yields �t;��� ¼ 0 and as a result

t ¼ a2�
2 þ ia1� þ a0; (26)

where the a’s are real constants.
Any rescaling of the coordinates and a’s can be absorbed

in the as yet undetermined metric functions. So one needs
only consider the different types of transformations that
result from the different natures of the roots of t. There are
four possibilities:

(A) t is constant, a0 ¼ 1
2 , a1 ¼ a2 ¼ 0;

(B) t is linear, a0 ¼ 0, a1 ¼ 1, a2 ¼ 0;
(C) t is quadratic with a double root, a1 ¼ a0 ¼ 0, a2 ¼

1
2 ;

(D) t is quadratic with two distinct roots, a0 � 0, a1 ¼
0, a2 ¼ 2.

Given these four possibilities and the expression for t, the
corresponding transformation to a separable system gen-

erated by r ¼ 2t1=2 can be found. The field equations can
now be solved and the explicit functional form obtained for
the metric coefficients.

Two other linear combinations of (23) allow us to elimi-
nate the metric fields in favor of their derivativesMi alone.

(The origin of these linear combinations is more easily
seen from the tetrad formulation considered in [7].) Thus,
the coupling between the Killing and field equations can be
expressed as

M2 �t; �� þ 2�tM2; �� ¼ CC;

1

4
�t;�� þ

3

2
�t; ��MA þ �tð2M2

A þMA; �� Þ ¼ CC;

1

2
�t;�� þ

3

2
�t; ��MB þ �tðM2

B þMB; �� Þ ¼ CC;

3

2
�t; ��MC þ �tðð2MA þMB �M2ÞMC þMC; �� Þ ¼ CC;

(27)

where the M’s can be defined in terms of the metric
functions;

M2 ¼ ðlnRÞ; �� ; MA ¼ 1

2
@ �� ðlnVg��Þ;

MB ¼ ðlnVÞ; �� ; MC ¼ �!; ��e
2c 1

R
:

(28)

These equations are valid in any coordinate system. The
field equations that govern the derivatives of theMs can be
found in Appendix A.

III. SPECIALIZATION TO THE SEPARABLE
COORDINATE SYSTEM

In order to find the actual metric functions it is computa-
tionally preferable to specialize the formalism to the sepa-

rable coordinate system ð~�; �~�Þ. A valid solution of the
Killing equations yielding a Killing tensor distinct from
the metric is given by t ¼ 1

2 and the remaining components

are defined by Eqs. (19) and (20) with the specialization
that r ¼ 1. Denote the gradients of the field variables in
this coordinate system as ~M. The ~M’s are given in terms of
the separable functions in (B4).

TABLE I. Four different coordinate transformations with accompanying metric functions and constraints. The four transformations
originate from Eq. (26). The metric functions obey the field equations set out in Appendix A, and the Killing equations given in
Appendix B. The full calculation of the metric functions and constraints as well as the remaining metric functions is performed in
Appendix C.

Analytic structure t ~� r x y R

(A) Constant 1
2 � 1 ~�

(B) Linear i�
ffiffiffi
2

p
e�	=4i�1=2 �i~� 1

2 ~� ~z

(C) Quadratic single root 1
2 �

2 ln� e
~� e~�=2 sinð~z=2Þ 2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
(D) Quadratic double root 2ð�2 þ a24Þ 1

2 lnði�a4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði�a4Þ2 � 1

q
2a4 sinh2~� cosh~� cos~z 2a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ 1Þð1� y2Þp

Analytic structure t M2 Functions f1 f2 Constraints

(A) 1
2

1
~� b4 ~�

4 � b2 ~�
2 þ b0 2b2~z

2 þ b1~z b0 ¼ b2
2

4b4
þ b2

1

8b2

(B) i� 1
~� þ i

~z b4 ~�þ b2 ~�
2 þ b0 c4~z

4 þ b2~z
2 b0 ¼ b2

2

4b4
þ b2

2

4c4

(C) 1
2 �

2 1=2ð1� iyffiffiffiffiffiffiffiffi
1�y2

p Þ b4x
2 þ b2x c4yþ 2c2ðy2 þ 1Þ b4 ¼ 2b2

2
c2

16c2
2
�c2

4

(D) 2ð�2 þ a24Þ xffiffiffiffiffiffiffiffi
x2�1

p þ i yffiffiffiffiffiffiffiffi
1�y2

p b2ðx2 þ 1Þ þ b1x c2ðy2 þ 1Þ þ c1y b21 ¼ 4b22 � b2c
2
1

c2
þ 4b2c2
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In addition to the field equations (A1) and (A2), the ~M’s
must also satisfy Eqs. (27) in the special case when ~t is a
real constant. The resulting coupling conditions governing
the field variables are expressed in Eq. (B1). There are thus
essentially two coordinate systems. In the first the metric
function R ¼ � is known, and the metric is assumed to
admit a second-order Killing tensor. In the second, the
explicit solution for the Killing tensor components is
known in terms of the metric functions via Eqs. (22). The
metric functions in this coordinate systems are separable
[Eqs. (19) and (20)]. There are four possible transforma-
tions between these two coordinates systems. These
transformations are known, can be expressed in terms of
the analytic functions r, and they with some of the metric
functions are tabulated in Table I. The computation of the
metric functions compatible with both the field and Killing
equations is given in Appendix C, and the remaining metric
functions are listed in Eq. (C15).

As a result of the four possible transformations, there are
four families of metrics that admit second-order Killing
tensors. The first family (A) includes flat space. The last
family (D), which results from the transformation with two
distinct zeroes, includes spacetimes such as Kerr and
Schwarzschild and is thus of astrophysical interest.

A historical note is that the two manifolds with complex
metric that admit a second-order Killing tensor were com-
pletely classified by Koenigs in 1889 [10]. These metrics
were more carefully studied and their algebraic properties
quantified by Kalnins et al. [15,17]. With the additional
restriction that we are considering a real two metric with
conformal factor V the functions in Table I are included in
this class.

IV. COMPARISON WITH TYPE D METRICS

All SAV metrics admitting second-order Killing tensors
obtained in the previous analysis are of Petrov type D.
However the reverse statement is not true. For complete-
ness, we discuss the properties of the most general type D
metric. A complete list of type D vacuum metrics was
given by Kinnersley [18]. He showed, to his surprise, that
all type D vacuum metrics have at least two Killing vec-
tors. In other words, they are either SAV spacetimes or
admit two spacelike Killing vectors such as colliding plane
waves. He postulated a profound connection between the
existence of isometries such as these and the Petrov clas-
sification. A full understanding of the relationship of the
Petrov classification and orbital structure of the spacetime
has yet to be achieved.

The line element for the general type D spacetime can be
written down and specific cases derived by various limiting
procedures [19–21]. The line element for the vacuum case
is parametrized by four constants, namely, the mass m, the
NUT parameter l and 2 parameters, � and 
 that are related
to the angular momentum per unit mass:

ds2 ¼ p2 þ q2

ð1� pqÞ2
�
dq2

YðqÞ þ
dp2

XðpÞ
�

þ XðpÞðdtþ q2d�Þ2 � YðqÞðdt� p2d�Þ2
ð1� pqÞ2ðp2 þ q2Þ ; (29)

where

XðpÞ ¼ �ð1� p4Þ þ 2lp� 
p2 þ 2mp3;

YðqÞ ¼ �ð1� q4Þ � 2mqþ 
q2 � 2lq3:
(30)

XðpÞ must be positive to get a Lorentzian signature, and
YðqÞ must be positive for axisymmetric stationary
spacetimes.

We define the coordinates ð�̂; ẑÞ such that d�̂ ¼
dq=

ffiffiffiffiffiffiffiffiffiffi
YðqÞp

and dẑ ¼ dp=
ffiffiffiffiffiffiffiffiffiffi
Xð�Þp

. Using these coordinates,
the general type D metric can be cast in the form of Eq. (1)
with

VD ¼ p2 þ q2

ð1� pqÞ2 ; R2
D ¼ XðpÞYðqÞ

ðpq� 1Þ4 ;

e2c ¼ Y � X

ðp2 þ q2Þð1� pqÞ2 ; !D ¼ p2Y � q2X

X � Y
:

(31)

On the principal null tetrad, the only nonvanishing compo-
nent of the Weyl tensor is

�2 ¼ �ðmþ ilÞ
�
1� pq

qþ ip

�
3
: (32)

Note that while the conformally rescaled metric VDg
�1�2

D is
separable, in general g�1�2

D is not. All type D spacetimes
are said to admit a conformal second-order Killing tensor,
but as said previously, they fail to admit an ordinary
second-order Killing tensor.
The subset of type D spacetimes that admit a second-

order Killing tensor can be obtained from Eq. (29) by
making the scale transformation [20]

p ! n�1p; q ! n�1q; � ! n3�; t ! nt;

mþ il ! n�3ðmþ ilÞ; 
 ! n�2
; � ! n�4�;

(33)

and taking the limit of n ! 1, yielding the metric derived
in Eq. (C16),

ds2 ¼ ðp2 þ q2Þ
�
dq2

YðqÞ þ
dp2

XðpÞ
�

þ XðpÞðdtþ q2d�Þ2 � YðqÞðdt� p2d�Þ2
ðp2 þ q2Þ ; (34)

where

XðpÞ ¼ �þ 2lp� 
p2; YðqÞ ¼ �� 2mqþ 
q2:

The relationship between the variables p and q, the con-
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stants �, l, m and 
, and those used in Table I are given in
Eqs. (C12) and (C14).

V. CONCLUSION

This paper provides a constructive method for calculat-
ing the second-order Killing tensor components and iden-
tifying which SAV metrics admit these structures.

In conclusion, I will now comment more fully on the
ways in which various steps in the calculation presented
here will be generalized in subsequent work [7,8]. In a very
real sense, the calculation performed here provides a pro-
totype for the more complex calculations to come without
distracting the reader with an excessive proliferation of
indices and other technical difficulties.

The restriction of the manifolds under consideration to
SAV metrics results in a line element (1) that can be split
into two independent two-metrics. Namely, the compo-
nents associated with the Killing vectors indicated by the
indices ðA; BÞ and the diagonal two-metric associated with
the independent variables ð�; zÞ indicated by the indices
ði; jÞ. This metric structure results in the decoupling of the
Killing equations into two groups. As shown in Eq. (5), the

first group completely defines the gradients of the TðABÞ
components. The second group, Eqs. (6)–(9), represent the
Killing equations of a two-manifold and are completely

decoupled from the TðABÞ components. When searching for
higher-order Killing tensors for SAV spacetimes, a similar
decoupling into several groups takes place. The two groups
identified in this example always persist. In other words,
we always get a group of equations where the gradients of
the Killing tensor components with indices totally in
Killing vector directions, are fully defined, and a second
group that contains the Killing equations for a two-
manifold with metric gij ¼ V�ij. In addition, however,

for higher-order Killing equations other groups of equa-
tions are also introduced allowing greater freedom in the
solutions found as will be seen in [7].

The analytic structure identified in Eqs. (10) and (13)
also persists to higher-order Killing tensor problems, since
it is a feature of the Killing equations of a two-manifold
[13]. For higher-order problems, the gauge freedom in R
coupled with this analytic structure will also be exploited
to simplify the equations and facilitate writing down ex-
plicit solutions.

The fact that the Killing equations can be cast in the
symmetrical form given in Eqs. (15) and (16), indicating
that what is sought is not one but four different two-
manifolds admitting a second-order Killing tensor [6],
came as a surprise. It led the author to look for a similar
structure for fourth-order Killing tensors. Such a structure
was found, greatly reducing the complexity of the problem
[7].

Equations (15) and (16) further imply that the metric
functions are separable, and can be expressed in the forms
(19) and (20). It is this form of the functions that allows the

Killing equations (21) to be solved formally, and an ex-
plicit closed-form solution (22) to be written down, even
though the exact forms of the metric functions f have yet to
be determined. While the property of separability (of the
metric functions and of the Hamilton-Jacobi equations)
does not extend to higher-order Killing tensors in SAV
spacetimes, it is possible to write down an explicit
closed-form solution of the fourth-order Killing equations
in terms of the metric functions. This reduction is carried
out in [8].
This paper highlights the origin of the four separable

coordinate systems discovered by Carter in SAV space-
times that admit a second-order Killing tensor. They are
classified in terms of the analytic structure associated with
the Killing equations. It is shown that the condition that a
second-order Killing tensor exists on the spacetime is far
more restrictive than the condition that the spacetime obeys
the SAV field equations. In particular, Eqs. (15) and (16)
imply that the Killing equations impose a second-order
linear differential equation on the field variables. The
SAV field equations are much less restrictive; they are
effectively fourth-order differential equations. It is neces-
sary to consider at least fourth-order Killing equations
before the conditions for their existence place restrictions
on the field variables that are higher than fourth-order. It
can also be considered as somewhat artificial the circum-
stance that a property of the spacetime should in some
sense be dependent on a choice of gauge, as implied by the
result that relates the four separable coordinates to solu-
tions of the Killing equations.
There are several strong analytic indications as well as a

considerable amount of numerical evidence [6] that higher-
order and at least fourth-order Killing tensors should be
considered in order to obtain a full description of the
orbital structure of SAV spacetimes. In subsequent papers
[7,8] higher-order Killing tensors will be more thoroughly
explored. The calculation increases considerably in com-
plexity, however the basic approach is very similar to the
example derivation of second-order Killing tensors pre-
sented in this paper. In fact many of the key ideas making
the problem tractable were gleaned from this example.
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APPENDIX A: SAV FIELD EQUATIONS

For SAV spacetimes, the vacuum field equations for the
quantities, M2, MA, MB, and MC, introduced in Sec. II are

JEANDREW BRINK PHYSICAL REVIEW D 81, 022001 (2010)

022001-6



given by

M2;� ¼�M2M
�
2;

MA;� ¼�MAM
�
A�MAM

�
2 �M2M

�
A�

1

4
MBM

�
B

þ 1

2
ðMBðM�

2 þM�
AÞþM�

BðM2þMAÞÞ� 1

4
MCM

�
C;

MB;� ¼�1

2
MBM

�
B� 2MAM

�
AþMAM

�
BþMBM

�
A

þ
�
1

2
MB�MA

�
M�

2 þ
�
1

2
M�

B�M�
A

�
M2þ 1

2
MCM

�
C;

MC;� ¼�1

2
MCM

�
2 �

�
3

2
M2þ 2MA�MB

�
M�

C; (A1)

and

M2
C ¼ 4M2

A þ 4M2ðMA �MBÞ � 4MAMB þM2
B þM2; ��

þ 2M2
2: (A2)

This choice of variables was originally motivated as a
linear combination of the variables introduced by
Harrison [22] and Neugebauer [23] for use in the solution
generation techniques. They are proportional to the rota-
tion coefficients associated with the transverse frame of the
SAV spacetime.

APPENDIX B: SEPARABLE COORDINATES

This appendix specializes our formalism to the separable
coordinate system, and gives the explicit form of the
Killing equations, as well as the M field variables ex-
pressed in terms of the separable functions. (The tilde
over the ~M, indicating the variables associated with the
separable coordinate system is dropped here.)

In the separable coordinate system the Killing equations
imply

M
2; �~�

¼ CC; 2M2
A þM

A; �~�
¼ CC;

M2
B þM

B; �~�
¼ CC;

ð2MA þMB �M2ÞMC þM
C; �~�

¼ CC:

(B1)

The Killing equation for M2 can be rewritten as

@~� ~zM2 ¼ @~� ~zM
�
2 ¼ 0; (B2)

so the resultingM2 must also have a separable form in this
coordinate system or

M2 ¼ m1ð~�Þ þ im2ð~zÞ: (B3)

This is consistent with the fact that for all coordinate
systems considered in Table I the gauge function R can
be expressed as the product R ¼ r1ð~�Þr2ð~zÞ.

Note that throughout this paper we follow the conven-
tion that functions of ~� only, are indicated by a function
subscript of 1, for example f1ð~�Þ, and functions of ~z only
by a function subscript of 2.

The field variables M can also be expressed in terms of
the separable functions as

MA ¼ 1

2

f��0
1 þ if��0

2

f��
1 þ f��

2

; MB ¼ f01 þ if02
f1 þ f2

;

MC ¼
�
f��0
1 þ if��0

2

f��
1 þ f��

2

� ft�
0

1 þ ift�
0

2

ft�1 þ ft�2

�
ft�1 þ ft�2
f1 þ f2

R:

(B4)

APPENDIX C: COMPUTATION OF THE
FUNCTIONAL FORMOFMETRIC FUNCTIONS IN

SEPARABLE COORDINATES

This appendix details the computation of the functional
form of the separable metric functions that obey both the
second-order Killing and the field equations. While this
calculation in principle appears straightforward, given the
equations and separable functions of the previous two
appendices, it turned out to be unexpectedly tedious to
execute. In this section we detail the crucial simplifying
steps and arguments that facilitate obtaining the functional
form from first principles. For the purpose of illustrating
useful concepts and the generalization to higher-order
Killing tensors, this appendix is of very little importance.
It is given mainly to prevent the reader from musing about
useless details by providing them explicitly.
The second and third equations of (A1) can be combined

to completely decouple MC. Denoting MD ¼ MB � 2MA,
the resulting differential equation is

2MB;� �MD;� þMDM
�
D ¼ 3

2
ðMDM

�
2 þM�

DM2Þ: (C1)

The third equation in (A1) that defines MB;� can also be

expressed in terms of MD as follows:

2MB;� þMDM
�
D ¼ MDM

�
2 þM�

DM2 þMCM
�
C: (C2)

Differentiating Eq. (C2) with respect to � and substituting
both the Killing and Field equations leads to

MB;�� þMB;�

�
2M�

B � 3

2
M�

2

�
þ 1

2
M2MB; �� �

3

2
MBM2; ��

þM2

�
�3M2MB þ 2M2

B � 3

2
M�

2M
�
B

�
þ ð2M2ÞM2; ��

þM2ðM2
2 þM�2

2 Þ ¼ 0: (C3)

Substituting the separable function expressions forMB and
M2 into Eq. (C3) for the four possible transformations, and
repeatedly differentiating the resulting equations, the fol-
lowing conditions are obtained for the separable functions:

ðAÞ; ðBÞ d5f2
d~z5

¼ d5f1
d~�5

¼ 0; (C4)

ðCÞ; ðDÞ d3f1
dx3

¼ d3f2
dy3

¼ 0 (C5)
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The transformation to ðx; yÞ coordinates for the cases (C)
and (D) are given in Table I. These equations, along with
the consistency conditions that arise when the functions are
substituted back into Eq. (C3), imply the functions listed in
Table I.

In addition, a number of integrability conditions arise
when repeatedly differentiating the field equations (A1)
and (A2) and Killing equations (B1). These equations limit
the freedom of the constants that appear in Table I. In
particular, in order for field and Killing equations to be
consistent, they must satisfy the condition

g2 þ bgþ c ¼ 0; (C6)

where

g ¼ 1

4V
ðM2M

�
2 � 2M�

B; ��
Þ;

b ¼ � 1

2V
ðM2 �MBÞðM�

2 �M�
BÞ;

c ¼ 1

4
ðb2 � e �eÞ;

e ¼ 1

2V
ðM2

2 þM�2
2 þM�2

B þ 2M2; �� Þ

� 1

V
ðM2MB þM�

2M
�
BÞ:

(C7)

Equations (C6) result in the constraints on the constants
listed in Table I.

Once the functions f1 and f2 have been determined, the
general form of the separable functions corresponding to
the t, � components of the metric can be written down
using the following argument. The determinant of the
metric detðgABÞ ¼ �R2 relates the remaining separable
metric functions to the functions f1, f2 and R, already
found with

ðf1 þ f2Þ2
R2

¼ �ðf��
1 þ f��

2 Þðftt1 þ ftt2 Þ þ ðft�1 þ ft�2 Þ2:
(C8)

By differentiating with respect to ~� and ~z, and recalling
that a function with subscript 1 is a function of ~� only
whereas a subscript 2 indicates a function of ~z, we have that

@~� ~zFð~�; ~zÞ ¼ �f��0
1 ftt

0
2 � f��0

2 ftt
0

1 þ 2ft�
0

1 ft�
0

2 ; (C9)

where Fð~�; ~zÞ ¼ ðf1 þ f2Þ2=R2. To find the functional

form of f��0
1 , for example, divide (C9) by the coefficient

of ft�
0

1 and differentiate with respect to ~z, removing any

dependence on ft�
0

1 . Divide the resulting equation by the

coefficient of ftt
0

1 , differentiate with respect to ~z and solve

for f��0
1 . This process can be repeated for any of the six

metric functions, and indicates that the correct functional
form for the functions are

fAB1 ð~�Þ ¼ DAB
0 þ�3

j¼1D
AB
j @j~zFð~�; ~zÞj~z¼z0 ;

fAB2 ð~zÞ ¼ EAB
0 þ�3

j¼1E
AB
j @j~�Fð~�; ~zÞj~�¼�0

:
(C10)

The remaining metric functions are thus determined up to a
set of unknown constants DAB

j and EAB
j . These functions

are then substituted back into the field equations to deter-
mine the constants in terms of the constants that enter the
known functions, f1, f2 and R.
The results can be most concisely expressed using

VD ¼ p2 þ q2 ¼ f1 þ f2; R2
D ¼ XðpÞYðqÞ: (C11)

The definitions of p and q for the different analytic struc-
tures (A.S.) are given by

Functions X and Y are defined for each of the four coor-
dinate systems given in Table I as

XðpÞ ¼ �þ 2lp� 
p2; YðqÞ ¼ �� 2mqþ 
q2;

(C13)

the relationship between the constants �, l,m and 
 and the
constants entering Table I for the four different analytic
structures are

ðAÞ 
 ¼ 0; � ¼ 2b2; m ¼ �2
ffiffiffiffiffi
b4

p
; l ¼ 0;

ðBÞ 
 ¼ 0; � ¼ �b2; m ¼ �2
ffiffiffiffiffi
b4

p
; l ¼ 2

ffiffiffiffiffi
c4

p
;

ðCÞ 
 ¼ 1
4 ; � ¼ 1

4

b2
2

4b4
¼ c2

2 � c2
4

4�8c2 ; m ¼ 1
8

b2ffiffiffiffi
b4

p ; l ¼ c4

2
ffiffiffiffiffiffi
2c2

p ;

ðDÞ 
 ¼ 1; � ¼ b2
1
�4b2

2

4b2
¼ 4c2

2
�c2

1

4c2
; m ¼ b1

2
ffiffiffiffi
b2

p ; l ¼ c1
2
ffiffiffiffi
c2

p :

(C14)
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The separable functions entering the metric thus are

f��
1 ¼ � 1

Y
; f��

2 ¼ 1

X
; ft�1 ¼ q2

Y
;

ftt1 ¼ �q4

Y
; ftt2 ¼ p4

X
; ft�2 ¼ p2

X
;

(C15)

and the resulting metric becomes

ds2 ¼ ðp2 þ q2Þ
�
dq2

YðqÞ þ
dp2

XðpÞ
�

þ XðpÞðdtþ q2d�Þ2 � YðqÞðdt� p2d�Þ2
ðp2 þ q2Þ :

(C16)
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