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We propose a simple method for incorporating correlations into the impact parameter space description

of multiple (semi)hard partonic collisions in high energy hadron-hadron scattering. The perturbative QCD

input is the standard factorization theorem for inclusive dijet production with a lower cutoff on transverse

momentum. The width of the transverse distribution of hard partons is fixed by parametrizations of the

two-gluon form factor. We then reconstruct the hard contribution to the total inelastic profile function and

obtain corrections due to correlations to the more commonly used eikonal description. Estimates of the

size of double correlation corrections are based on the rate of double collisions measured at the Tevatron.

We find that, if typical values for the lower transverse momentum cutoff are used in the calculation of the

inclusive hard dijet cross section, then the correlation corrections are necessary for maintaining

consistency with expectations for the total inelastic proton-proton cross section at LHC energies.
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I. INTRODUCTION

Models of multiple partonic collisions in high energy
hadron-hadron scattering are important for simulations of
complex events in upcoming experiments like those at the
LHC or in high energy cosmic ray air showers.
Furthermore, measurements of the rate of multiple partonic
collisions can be used to test current models of proton
structure. Already, measurements at accessible energies
[1–5] yield a much smaller effective cross section �eff

than what is naively expected if partons are homogene-
ously distributed over the transverse area of the proton.
(Figure 1 shows a schematic depiction of a double partonic
collision.) The definition of �eff is

�eff ¼ m
�2

2

2�4

; (1)

where �2 is the inclusive cross section for a single partonic
collision (resulting in a dijet), �4 is the inclusive cross
section for a double collision, and m is a symmetry factor
that depends on whether the partons are identical. New
measurements of multiple collisions are currently being
proposed for the LHC [6]. Hence, novel new phenomena
involving multiple hard partonic collisions, which will
enhance understanding of proton structure, can be expected
in the next generation of experiments at the high energy
frontier.

However, multiple interactions involve a complex inter-
play of soft, hard, and semihard physics, so a complete
description using purely perturbative techniques is not
possible. In simulations of complex hadronic final states,
methods are needed for combining hard and soft collisions
in a consistent way. (For an overview of current approaches
see, e.g., [7,8], and references therein.) The hard contribu-

tion is calculated using the well-known perturbative QCD
(pQCD) leading twist factorization formula for the inclu-
sive dijet production cross section, involving a convolution
of the standard parton distribution functions (PDFs) with a
partonic cross section. An immediate complication is that,
in order for perturbation theory to be applicable, the rela-
tive transverse momentum of the produced jets must be
larger than some minimum cutoff scale pc

t . The cutoff
should be chosen small so as to maximize the range of
the perturbative expression, but still large enough for per-
turbative methods to be reasonable. For describing events
with transverse momentum less than pc

t , nonperturbative
methods are needed. A prescription for matching the high

FIG. 1 (color online). Schematic depiction of a double hard
collision. A disconnected pair of partons from each proton
collide to produce a pair of high transverse momentum dijets.
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and low transverse momentum behavior is necessary for a
complete description over the full range of transverse
momentum.

The inclusive pQCD hard dijet cross section is numeri-
cally very sensitive to the precise choice of pc

t . This has a
tendency to lead to substantial variations between different
model predictions of the minijet cross section at high
energies. The question of what values of pc

t are appropriate
continues to be discussed in current research on the devel-
opment of models and simulations (see, for example, re-
cent discussions in [8–11]).

An additional complication is that a description is
needed for the distribution of hard partons in impact pa-
rameter space. In the past, it has usually been modeled or
assumed to be equal to the electromagnetic form factor of
the nucleon. Also, in a number of models, soft and hard
partonic interactions are incorporated into a single eikonal
picture. In this way, both soft and hard interactions are
included in a way that respects s-channel unitarity. Data for
the total and inelastic pp cross sections can then be used to
fit parameters such as pc

t and the width of the distribution
of hard partons in impact parameter space. However, dif-
ferent choices for these parameters can provide equally
good fits to the total cross section at accessible energies
while leading to very different extrapolations at high en-
ergies (see, for example, Ref. [12]). Therefore, it is impor-
tant to make use of any experimental or observational
information that can narrow the range of allowed parame-
ters and falsify some of the models currently in use.

It is nowadays possible to use pQCD to obtain direct
experimental information about the transverse spread of
hard partons in the proton via parametrizations of the
generalized parton distributions (GPDs). (See Ref. [13]
and references therein for a review of the phenomenology
of GPDs.) The gluon GPD of the proton, for example, can
be extracted from measurements of the t dependence in
deep inelastic production of light vector mesons or photo-
production of heavy vector mesons [14,15]. Then, since the
GPD is a universal object [16], it can be reused in other
processes. In particular, it can be used in the description of
the impact parameter dependence of hard collisions in
hadron-hadron scattering. As such, we adopt the point of
view in this paper that the impact parameter description of
a hard collision is not an adjustable model parameter, but
rather is fixed by fits to the gluon GPD.

An accurate description of the impact parameter depen-
dence is important because it allows for a measure of how
close the hard interaction is to the unitarity (or ‘‘satura-
tion’’) limit. Furthermore, the proximity to the unitarity
limit is related to the number of high transverse momentum
jets that are produced, and hence to the use of centrality as
a dijet trigger [17]. However, as was illustrated in Ref. [18],
using GPDs to describe the impact parameter dependence
of hard collisions within the approximation where partons
are not correlated in the transverse plane (which is imple-

mented in the simplest eikonal description) leads to incon-
sistencies with general expectations for the extrapolation
of the total inelastic profile function to high energies,
unless a large value is used for the transverse momentum
cutoff pc

t . Specifically, the contribution to the total inelastic
profile function from the production of hard dijet pairs
becomes larger than the total inelastic profile function
itself. Although the inclusive dijet cross section is unita-
rized in the basic eikonal description, it nevertheless grows
too rapidly with energy. As we will argue, this problem is
most likely a symptom of the common assumption that
partons are uncorrelated.
The study of correlations in multiple hard collisions is

already an active area of research [19–22]. Imple-
mentations of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution in multiparton distribution functions
suggest that correlations are indeed significant [21].
Correlations may also be induced by evolution in
Bjorken x [23] in the very high energy limit. However,
numerical estimates in Ref. [18] suggest that hard unitarity
(saturation) effects contribute to only a small fraction of
the total inclusive dijet cross section, even at LHC ener-
gies. Moreover, the inconsistencies encountered in
Ref. [18] occur even at large impact parameters, *
1:0 fm, and values of pc

t that are not particularly small,
e.g., pc

t � 2:5 GeV. In the instanton liquid model (see
Ref. [24] and references therein) one can expect a strong
correlation between the quark and gluon fields in the
constituent quarks which will result in correlations at all
impact parameters. It may be somewhat diluted at large b
due to the contribution from the 4q �q component. On the
other hand for partons at large enough distances from the
center it is likely that another parton should be present at a
distance comparable to the confinement scale, leading to
correlations of q �q pairs at relative distances � 0:5 fm that
are rather small which could easily compensate for the
dilution effect. Therefore, it is likely that nonperturbative
correlations, unrelated to the overall impact parameter,
play a role in determining the size of the dijet contribution
to the total inelastic cross section. Heuristically, one can
imagine scattering at large impact parameters as the scat-
tering of pion clouds. The nonperturbative dynamics re-
sponsible for binding the q �q pairs introduces potentially
large correlations.
Collinear constituents of the incoming protons are ex-

pected, on average, to have a spacetime separation of order
�1=�QCD. Because of the breakdown of asymptotic free-

dom at these scales, it should be anticipated that the con-
stituents of the nucleon are subject to strong
nonperturbative correlations. In other words, one should
not expect the multiparton distribution functions to be
simply related to products of the single parton distribution
function at any scale.
As a specific illustration, let us consider the double

parton event in Fig. 1. If fNðx1; x2Þ is the distribution
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function for parton pairs with momentum fractions x1 and
x2 inside proton N, and fNðx1Þ and fNðx2Þ are the standard
PDFs, then an often made ansatz is

fNðx1; x2Þ�?? fNðx1ÞfNðx2Þ: (2)

In some treatments of correlations this relation follows
after an integration over impact parameters, even if the
factorization ansatz is broken in impact parameter space.
The question marks in Eq. (2) indicate that we will ques-
tion the validity of this assumption. Given the strong
binding between the constituent partons in the proton, the
approximation in Eq. (2) is probably very rough at any
scale. We will argue that deviations can have an important
effect on extrapolations to high energies.

For a large cutoff pc
t , the inclusive dijet cross section

gives a small fraction of the total inelastic cross section,
and there is no conflict with s-channel unitarity. What is
needed at smaller pc

t is a method for organizing correlation
corrections which does not rely on the commonly used
assumption that correlations can be neglected.

To summarize, the aim of this paper is to set up a method
for organizing corrections to the uncorrelated approach at
small pc

t . We will use this to simultaneously incorporate
the following information into a description of multiple
hard partonic collision:

(i) The impact parameter distribution of hard partons
obtained from measurements of the gluon GPD. The
width of the distribution of hard partons is not a
fixable parameter in our approach.

(ii) An estimate of the size of double parton correlations
obtained from measurements �eff . In this paper, we
will assume that these correlations are roughly inde-
pendent of impact parameter.

From this information, we will reconstruct the hard dijet
contribution to the total inelastic profile function.
Compared with the uncorrelated expression, the result
obtained with correlations will be shown to exhibit greater
consistency with common high energy extrapolations of
the total inelastic cross section, even with a relatively small
and fixed value for pc

t in the perturbative inclusive dijet
calculation. Thus, including correlations in this way may
provide a natural resolution to the consistency problems
encountered in Ref. [18] at large impact parameters and
fixed pc

t .
The paper is organized as follows: In Sec. II we review

the basic setup for discussing high energy collisions in
impact parameter space, and in Sec. III we review the steps
outlined in Ref. [18] for dealing with multiple hard colli-
sions in terms of inclusive dijet cross sections, applying the
result to the special case of uncorrelated scattering in
Sec. IV. In Sec. V these steps are extended to allow for
impact parameter independent correlations. In Sec. VI we
use estimates of correlations based on Tevatron measure-
ments of �eff to calculate the hard contribution to the
inelastic profile function at LHC energies, and we compare

with standard extrapolations of the total inelastic profile
function. We speculate on prospects for including impact
parameter dependence of correlations in Sec. VII. We close
in Sec. VIII with a conclusion and a discussion of the main
results.

II. IMPACT PARAMETER REPRESENTATION

A. S-channel unitarity

We work in impact parameter space, defining the profile
function,

�ðs; bÞ � 1

2isð2�Þ2
Z

d2qeiq�bAðs; tÞ: (3)

Here Aðs; tÞ is the amplitude for elastic pp scattering (see
Fig. 2), and s and t are the usual Mandelstam variables, s ¼
ðp1 þ p2Þ2 and t ¼ ðp1 � p3Þ2. We work in the high en-
ergy limit, s � �t, where one may approximate t � �q2

(see, e.g., Ref. [25] for a review of kinematics in the high
energy limit). In the two-dimensional Fourier transform to
coordinate space, b is the impact parameter.
Unitarity and analyticity allow the total, elastic and

inelastic cross sections to be calculated in terms of the
profile function via the familiar relations:

�totðsÞ ¼ 2
Z

d2bRe�ðs; bÞ; (4)

�elðsÞ ¼
Z

d2bj�ðs; bÞj2; (5)

�inelðsÞ ¼
Z

d2bð2Re�ðs; bÞ � j�ðs; bÞj2Þ: (6)

We refer to the integrand of Eq. (6) as the inelastic profile
function,

�inelðs; bÞ � ð2Re�ðs; bÞ � j�ðs; bÞj2Þ: (7)

In the very high energy limit, it is appropriate to neglect the
imaginary part of the amplitude. Then unitarity requires

�inelðs; bÞ;�ðs; bÞ � 1: (8)

The profile function for the total proton-proton cross sec-
tion and its extrapolation to high energies has been studied
extensively over the last few decades. Our main concern in

FIG. 2. Momentum labels for pp scattering.
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this paper is whether common extrapolations of Eq. (7) are
consistent with extrapolations of the total hard
contribution.

B. Inclusive dijet cross section

Hard collisions are described by the leading twist pQCD
expression for the inclusive dijet cross section,

�inc
pQCDðs;pc

t Þ ¼
X
i;j;k;l

K

1þ �kl

Z
dx1dx2

Z
dp2

t

d�̂ij!kl

dp2
t

� fi=p1
ðx1;ptÞfj=p2

ðx2;ptÞ�ðpt � pc
t Þ: (9)

The collision is between parton types i and j inside protons
p1 and p2, respectively, and the partonic hard scattering
cross section d�̂ij!kl=dp

2
t is calculated at tree level. We

have explicitly included a K factor and a symmetry factor
1=ð1þ �klÞ. The fi=p1

ðx1;ptÞ and fj=p2
ðx2;ptÞ are the

usual integrated parton distribution functions for partons
with longitudinal momentum fractions x1 and x2, evaluated
at a hard scale equal to the dijet transverse momentum. The
lower bound pc

t is in principle arbitrary, but it should be
chosen large enough for it to be a reasonable hard scale. It
is not clear exactly what is the minimum pc

t that can be
used, but Relativistic Heavy Ion Collider data for pion
production suggest that perturbation theory is still reliable
for pions with pc

t * 1 GeV [26] for forward production
where background from soft physics is small. (Note here
that for such kinematics pt of the progenitor quark is close
to pt of the pion.)

Information about the impact parameter distribution of
hard partons in the proton is obtained from the gluon GPD
which is parametrized in experimental measurements of
the t dependence in exclusive heavy vector meson photo-
production and light vector meson electroproduction at
small x. For the t dependence of the differential exclusive
vector meson production cross section, we use the dipole
parametrization,

Fgðx; t;�Þ ¼ 1

ð1� t
mgðx;�Þ2Þ2

: (10)

The basic Feynman diagram contributing to this reaction
involves the exchange of two gluons in the t channel, so we
refer to it as the two-gluon form factor. The gluon GPD
gðx; t;�Þ is then

gðx; t;�Þ ¼ gðx;�ÞFgðx; t;�Þ; (11)

where gðx;�Þ is the standard integrated gluon distribution
function evaluated at hard scale �. The two-gluon form
factor obeys the condition

Fgðx; t ¼ 0;�Þ ¼ 1; (12)

so Eq. (11) reduces to the standard PDF in the limit of t !
0. The parametermgðx;�Þ in Eq. (10) determines the width

of the peak around t ¼ 0. Following Ref. [17], we allow it

to have x and� dependence to account for evolution in the
hard scale � and diffusion at small x. The Fourier trans-
form of the two-gluon form factor into the transverse plain
is

F gðx; b;�Þ ¼
Z

d2�tFgðx; t;�Þe�i�t�b; t � ��2
t :

(13)

Again, the approximation t � ��t is justified so long as
s � �t. Using the dipole form in Eq. (10) one finds
explicitly

F gðx; b;�Þ ¼ mgðx;�Þ3b
4�

K1ðmgðx;�ÞbÞ: (14)

In this paper, Kn for integer n denotes a modified Bessel
function of the second kind. The overlap function is de-
fined as

P2ðb; x1; x2;�Þ ¼
Z

d2b0F gðx1; jb0j;�Þ
�F gðx2; jb� b0j;�Þ: (15)

Using Eq. (14) yields

P2ðs; b;pc
t Þ ¼

m2
gðx;pc

t Þ
12�

�
mgðx;pc

t Þb
2

�
3
K3ðmgðx;pc

t ÞbÞ:
(16)

Here we have made the usual approximation, x1 � x2 �
x � 2pc

t =
ffiffiffi
s

p
. A more detailed treatment should take into

account the separate integrations over x1 and x2—there is
not, in general, a one-to-one mapping between values of pc

t

and x1 (2). For now, we mention that direct numerical
calculations verify that this approximation introduces less
than 10% error in the essential region of integration for the
cross section. Note that P2ðs; b;pc

t Þ is normalized to unity,

Z
d2bP2ðs; b;pc

t Þ ¼ 1: (17)

Combining Eqs. (10)–(17) with Eq. (9) allows the inclusive
dijet cross section to be written in the form

�inc
pQCDðs;pc

t Þ ¼
Z

d2b�2ðs; b;pc
t Þ; (18)

where

�2ðs; b;pc
t Þ ¼ �inc

pQCDðs;pc
t ÞP2ðs; b;pc

t Þ: (19)

We will refer to �2ðs; b;pc
t Þ as the impact parameter de-

pendent inclusive cross section [27]. Using the GPD to
write the inclusive dijet cross section in the form of
Eq. (18) enables one to analyze the contribution from
different regions of impact parameter space.

III. MULTIPLE HARD PARTONIC COLLISIONS

By taking into account multiple hard scattering events, it
is in principle possible to reconstruct the total hard scat-
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tering contribution to the total inelastic profile function
using probabilistic arguments [28,29]. In this section, we
briefly review the steps for constructing the dijet contribu-
tion to the total inelastic profile function in terms of a series
involving the inclusive n-dijet cross sections.

We start by defining �2nðs; b;pc
t Þ to be the analogue of

�2ðs; b;pc
t Þ for the case of n-dijet production (n hard

collisions). Namely, integrating over all impact parameters
yields

Z
d2b�2nðs; b;pc

t Þ ¼ �inc
2n ðs;pc

t Þ; (20)

where �inc
2n ðs;pc

t Þ is the inclusive cross section for produc-
ing n-dijet pairs.

Next, ~�2nðs; b;pc
t Þ is defined to be the exclusive ana-

logue of �2nðs; b;pc
t Þ. It describes the production of ex-

actly n hard collisions, differential in b. Integrating over
impact parameters gives

Z
d2b~�2nðs; b;pc

t Þ ¼ �ex
2nðs;pc

t Þ; (21)

where �ex
2nðs;pc

t Þ is the integrated cross section for produc-
ing exactly n-dijet pairs. [The ~�2nðs; b;pc

t Þ correspond to
the ‘‘exclusive’’ cross sections of Ref. [20], the quotes
referring to the fact that these cross sections are still
inclusive in soft fragments.]

Now we reconstruct the hard dijet contribution to the
inelastic profile function by writing down the expression
for the inclusive cross section for k-dijet production in
terms of the exclusive cross sections:

�2kðs; b;pc
t Þ ¼

X1
n	k

n
k

� �
~�2nðs; b;pc

t Þ: (22)

The combinatorial factor counts all the ways an n-dijet
event can contribute to the inclusive k-dijet cross section.
Equation (22) can be inverted to obtain the exclusive
impact parameter cross sections in terms of the inclusive
ones,

~� 2kðs; b;pc
t Þ ¼

X1
n	k

n
k

� �
ð�1Þn�k�2nðs; b;pc

t Þ: (23)

The total inelastic profile function is obtained by summing
all the exclusive components. Using Eq. (23), we obtain

�inel
dijetsðs; b;pc

t Þ ¼
X1
k¼1

~�2kðs; b;pc
t Þ

¼ X1
n¼1

ð�1Þn�1�2nðs; b;pc
t Þ: (24)

In principle, if all the inclusive n-dijet impact parameter
dependent cross sections �2nðs; b;pc

t Þ are known, then it is
possible to obtain exactly the dijet contribution to the
inelastic profile function by summing all the terms in the

last line of Eq. (24). In practice, higher orders in n need to
be modeled or approximated.
Consistency requires the hard dijet contribution to the

total inelastic cross section to be less than the actual total
inelastic cross section so

�inel
dijetsðs; b;pc

t Þ � �inel
actualðs; bÞ; (25)

where the right side is the ‘‘actual’’ inelastic profile func-
tion, which could be obtained from either a measurement
or a model extrapolation. Hence, Eq. (25) provides a means
of checking that an expression for �inel

dijetsðs; b;pc
t Þ, con-

structed from Eq. (24), is consistent with other methods
for obtaining the total inelastic profile function. Aviolation
of Eq. (25) means either that the model/extrapolation is
incorrect or that there is a problem with the �2nðs; b;pc

t Þ
used in Eq. (24).

IV. UNCORRELATED SCATTERING

The simplest and most common way to obtain an ex-
plicit expression for �inel

dijetsðs; b;pc
t Þ from Eq. (24) is to

assume that all partonic collisions occur completely inde-
pendently from one another. It was shown in Ref. [28] that
the inclusive impact parameter dependent cross section for
production of n dijets is then

�2nðs; b;pc
t Þ ¼ 1

n!
�2ðs; b;pc

t Þn: (26)

This can be inserted into the last line of Eq. (24) and
summed to reproduce the familiar unitarized eikonal-like
expression,

�inel
dijetsðs; b;pc

t Þ ¼
X1
n¼1

1

n!
ð�1Þn�1�2ðs; b;pc

t Þn

¼ 1� exp½��2ðs; b;pc
t Þ
: (27)

The single, double, and triple scattering terms are repre-
sented graphically in Fig. 3. (This kind of graphical repre-
sentation will be useful later for describing combinatorial
factors when correlations are included.) Each circle-cross
represents a hard scattering event. The uncorrelated as-
sumption of Eq. (26) is symbolized by the absence of
any lines connecting the different hard collisions—each
graph is simply �2ðs; bÞ raised to the appropriate power.
For many practical purposes, Eq. (27) is sufficient. In

general, the reconstructed profile function simply needs to
reproduce the correct pQCD expression at large b where
multiple collisions are very rare, while the minimal unitar-
ity requirement that �inel

dijets & 1 should be enforced at small

b. That is, the basic requirements in the high energy limit
are

�inel
dijetsðs; bÞ ¼b!1

�2ðs; b;pc
t Þ; (28)

�inel
dijetsðs; bÞ &b!0 1: (29)
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In the high energy limit, �inel
dijetsðs; bÞ is expected to approach

one at small b (black disk limit). Equation (27) is com-
pletely satisfactory as far as conditions (28) and (29) are
concerned. For large b, only the first term in the series in
Eq. (27)—i.e., single scattering—is important. However, in
a precise treatment, one should also account for potential
for violations of the consistency requirement in Eq. (25) in
the high energy limit and at intermediate values of b where
corrections of order �2ðs; b;pc

t Þ2 are non-negligible.
Indeed, such consistency problems were found in Ref. [18].

V. ORGANIZING CORRELATIONS IN MULTIPLE
COLLISIONS

A. Impact parameter independence

Deviations from uncorrelated scattering can arise from
multiple sources. As discussed in Sec. I, correlations can be
generated both in perturbative evolution equations and in
nonperturbative models.

Correlations will also be induced by kinematical con-
straints. We will assume, however, that most active partons
have small enough x that these constraints are unimportant,
at least for the first few terms in the series in Eq. (27). For
this paper, we will assume that the incoming partons that
take part in multiple hard collisions move nearly parallel
with transverse momentum of order �1=�QCD. That is,

they have momentum typical for bound constituents of the
incoming hadrons. In general, if pc

t is allowed to be larger
than a few GeV, the partons will undergo DGLAP evolu-
tion, and hence may include partons with larger transverse
momentum. Furthermore, one expects significant depen-
dence of �eff on the hard scale at large pc

t [22]. In such
cases, it is possible that correlations may be understood as
arising from parton evolution. However, conflicts with
Eq. (25) become less likely at larger pc

t .
Therefore, we organize the description of correlations

around the assumption that the effect is to introduce a
simple (impact parameter independent) rescaling from
the uncorrelated case. As a first example, we reconsider
double hard collisions. Equation (26) gives the uncorre-
lated expression

�4ðs; b;pc
t Þ ¼ 1

2�2ðs; b;pc
t Þ2 (30)

which should be replaced in the correlated case by

�4ðs; b;pc
t Þ ! 1

2ð1þ �4ðsÞÞ�2ðs; b;pc
t Þ2; (31)

where �4ðsÞ parametrizes the deviation from uncorrelated
scattering. Our strategy is to estimate the size of the double
correlation by directly fitting Eq. (31) to experimental data,
given the constraint that �2ðs; b;pc

t Þ is fixed by the GPD in
Eq. (19). Note that we place no condition on the b integral
of Eq. (30). In particular, we do not use the approximation
in Eq. (2). In general, the correlation correction will also
depend on both pc

t and b. For our analysis, we will not
explicitly write the pc

t arguments in Eq. (30) because we
are mainly concerned with correlation corrections in the
limited range of pc

t where Eq. (25) becomes problematic
within the usual eikonal picture. As we will see, neglecting
the b dependence in �4ðsÞ will allow for a direct parame-
trization of the correlation correction in terms of experi-
mentally observed double scattering rates. It is likely that
this is a very rough approximation, but it will allow for a
first estimate of the role of correlations at large impact
parameters. We also remark that the dynamics responsible
for confinement are likely to induce large correlations
regardless of impact parameter. We will discuss possible
b dependence in greater detail in Sec. VII.
In experiments the effect of double partonic collisions is

most commonly represented by the observable,

�eff ¼ 1

2

�inc
2 ðs;pc

t Þ2
�inc

4 ðs;pc
t Þ

: (32)

In the uncorrelated case, using Eq. (30) and Eq. (19) in
Eq. (32) yields

�uncor
eff ¼ 1R

d2bP2ðs; b;pc
t Þ2

: (33)

In general, the value of �eff can be fitted to experimentally
measured values by changing the width or shape of
P2ðs; b;pc

t Þ. However, in our approach P2ðs; b;pc
t Þ is fixed

by experimental measurements of the GPD, so the width of
P2ðs; b;pc

t Þ is not a free parameter.
If Eq. (31) is used in Eq. (32), one obtains for �eff in the

correlated case

�cor
eff ¼

1

ð1þ �4ðsÞÞ
R
d2bP2ðs; b;pc

t Þ2
: (34)

FIG. 3. Graphical representation of the term in the series for uncorrelated scattering—the first three terms in the second line of
Eq. (27), assuming no correlations. Spectator partons are not shown.
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With P2ðs; b;pc
t Þ fixed by the two-gluon form factor, one

can only tune Eq. (34) to the measured value of �eff by
adjusting �4ðsÞ. Note also that, although we have assumed
impact parameter independent correlations, the relative
rate of double collisions compared with single collisions,
�2ðs; bÞ=�4ðs; bÞ, still depends on impact parameter.

B. Double partonic correlations in multiple collisions

The effect of double correlations in an n-collision event
may now be organized in a very convenient way. We start
by looking at how �inel

dijetsðs; b;pc
t Þ is modified by the in-

clusion of double correlations. In Eq. (31), �4ðsÞ parame-
trizes the deviation of �4ðs; bÞ from the uncorrelated case,
�4ðsÞ ¼ 0. It represents a correction to the assumption in
Eq. (2) that the integrated double parton PDF is simply a
product of the standard PDFs. The additional term propor-
tional to �4ðsÞ is represented by Fig. 4. The zigzag line
connecting the two hard collisions may be thought of
loosely as representing the effect of summing all soft
gluons exchanged between the nearly parallel incoming
and outgoing partons. We call �4ðsÞ the double correlation
correction factor.

Next, we reconsider the uncorrelated description of
triple parton scattering, graphically represented by the
third term in Fig. 3. With no zigzag lines, we get the naive
uncorrelated contribution from Eq. (26)

�6ðs; b;pc
t Þ ¼ 1

6�2ðs; b;pc
t Þ3: (35)

For each pair of incoming partons there is another double
correlation correction. In other words, for each pair of
colliding partons there is another replacement like
Eq. (31):

�6ðs; b;pc
t Þ ¼ 1

6½�2ðs; b;pc
t Þ2
�2ðs; b;pc

t Þ
! 1

6½ð1þ �4ðsÞÞ�2ðs; b;pc
t Þ2
�2ðs; b;pc

t Þ:
(36)

There is, therefore, an extra contribution equal to �4ðsÞ
6 �

ð�2ðs; bÞÞ3 for each of the

3
2

� �
¼ 3

ways a pair of incoming bound partons can become corre-
lated. This is illustrated graphically in Fig. 5, which shows

the additional contributions that must be added to the n ¼
3 term in Eq. (27)/Fig. 3. The expression for �6ðs; b;pc

t Þ is
therefore

�6ðs; b;pc
t Þ ¼ 1

6ð1þ 3�4ðsÞÞ�2ðs; b;pc
t Þ3: (37)

Following this example, it is now clear how to include
double correlation corrections in n-parton scattering. In an
n-parton collision, there are

n
2

� �

additional contributions equal to 1
n!�4ðsÞ�2ðs; b;pc

t Þn. In
terms of diagrams like Fig. 5, this corresponds to all the
ways that two collisions can be connected by a single
zigzag line. Therefore, to include double correlations in
the description of the inclusive n-dijet cross section, the
uncorrelated relation in Eq. (26) should be replaced with

�2nðs; b;pc
t Þ ¼ 1

n!

�
1þ �4ðsÞnðn� 1Þ

2

�
�2ðs; b;pc

t Þn:
(38)

Using Eq. (38) in Eq. (24) and summing over all n pro-
duces an analytic expression for the hard dijet contribution
to the total inelastic profile function,

�inel
jets ðs; b;pc

t Þ ¼
X1
n¼1

ð�1Þn�1

n!

�
1þ �4ðsÞnðn� 1Þ

2

�

� �2ðs; b;pc
t Þn

¼ 1� exp½��2ðs; b;pc
t Þ


� �4ðsÞ
2

�2ðs; b;pc
t Þ2 exp½��2ðs; b;pc

t Þ
:
(39)

Note that this equation respects the basic requirements of
Eqs. (28) and (29) as long as �4ðsÞ> 0. If �4 is allowed to
be less than zero, then there is a potential for Eq. (39) to be
greater than one for some intermediate impact parameters.
The third line is the standard unitarized expression Eq. (27)
for the profile function, familiar from the eikonal model,
while the last line is a correction due to double correla-
tions. The double correlation correction term contributes a
power of �2ðs; bÞ2 in a series expansion in small
�2ðs; b;pc

t Þ. Therefore, it will only become important at
impact parameters which are small enough that terms
proportional to �2ðs; b;pc

t Þ2 are non-negligible.

C. Higher correlations

In the last section, we assumed that only a single pair of
partons can become correlated. This is reasonable if the
goal is simply to account for double correlations at large or
intermediate impact parameters where the contribution
from double collisions [order �2ðs; bÞ2] is significant,
while contributions from triple collisions [order

FIG. 4. Graphical representation of the extra contribution
ð�1=2Þ�4ðsÞ�2ðs; b;pc

t Þ2 due to double partonic correlations in
Eq. (31).
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�2ðs; bÞ3] and higher are negligible. The explicit sum over
all collisions in Eq. (39) is needed to produce an analytic
expression for the corrected inelastic profile function that
still satisfies Eqs. (28) and (29) and is less than unity for all
b.

In reality, there are of course corrections from triple and
higher correlations; in our graphical representation, triple
correlations are represented by zigzag lines connecting
three of the interaction points—see Fig. 6. The contribution
from triple correlations becomes important only at order
�2ðs; b;pc

t Þ3. If powers of �2ðs; b;pc
t Þ3 are significant, then

we can iterate the steps of Sec. VB by replacing Eq. (37)
with

�6ðs; b;pc
t Þ ! 1

6ð1þ 3�4ðsÞ þ �6ðsÞÞ�2ðs; b;pc
t Þ3; (40)

exactly analogous to Eq. (31) for double correlations. The
�6ðsÞ parametrizes the correction from triple correlations
in triple and higher partonic collisions.

Taking into account the contribution from triple corre-
lations to n > 3 collisions, and including the appropriate
combinatorial factors by counting all ways of connecting
three hard collisions, we then recover Eq. (39), but with a
triple correlation correction term equal to

�6ðsÞ
6

�2ðs; b;pc
t Þ3 exp½��2ðs; b;pc

t Þ
:

Now it is a simple matter to generalize the steps from
Sec. VB to the arbitrary case of n correlation corrections.
The resulting general expression for the inelastic profile
function is

�inel
jets ðs; b;pc

t Þ ¼ 1� exp½��2ðs; b;pc
t Þ


� X1
n¼2

ð�1Þn�2nðsÞ
n!

�2ðs; b;pc
t Þn

� exp½��2ðs; b;pc
t Þ
: (41)

The series after the first line includes all correlation cor-
rections. There is a new correlation correction factor�2nðsÞ
for each number n of collisions. In the series representation
for �inel

jets ðs; b;pc
t Þ, a correlation correction factor �2jðsÞ is

accompanied by powers �2ðs; b;pc
t Þj or higher.

Equation (41) always satisfies the basic conditions
Eqs. (28) and (29) of a unitarized profile function.
[Although, depending on the signs of the �2nðsÞ, it may
need to be checked that the profile function does not
exceed unity for some intermediate value of b.]
Contributions from higher n correlation corrections are
suppressed by factors of ð�2ðs; bÞÞn=n! and can be ne-
glected so long as �2ðs; bÞ is sufficiently smaller than 1.
By truncating the series at larger n, we obtain an increas-
ingly refined description of the b tail at moderate to large b.
By using models of multiple collisions to obtain the �2nðsÞ,
or directly parametrizing the size of correlation corrections
from experimental data, it should therefore be possible to
reconstruct an inelastic profile function that respects
Eq. (22).
Unfortunately, there is as yet very little direct experi-

mental knowledge of �2nðsÞ for n > 2. However, in the
next section we will argue that even when only double
correlations are included, the corrections are important at
moderate to large impact parameters. Once data are avail-
able, steps analogous to those in Sec. VA can be used to
parametrize �6ðsÞ. As in Ref. [6], we can define the triple
effective cross section,

ð�T
effÞ2 ¼

1

6

�inc
2 ðs;pc

t Þ3
�inc

6 ðs;pc
t Þ

: (42)

Then, including up to triple correlations, we have

ð�T
effÞ2 ¼

1

ð1þ 3�4ðsÞ þ �6ðsÞÞ
R
d2bP2ðs; b;pc

t Þ3
: (43)

From Eq. (43), we can calculate the correction from double
correlations to�T

eff with triple correlations neglected. In the

next section, we will find values of 1.3 or 2.1 for �4ðsÞ at
currently accessible energies and pc

t � 2:5 GeV. These
FIG. 6. Graphical illustration of triple correlations in triple
parton scattering.

FIG. 5. Graphical representation of the extra contribution to the n ¼ 3 term of Eq. (27) due to double partonic correlations.
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give �T
eff ¼ 12:8 mb and 10.5 mb, respectively, compared

with �T
eff ¼ 28:3 mb for the case with no double

correlations.
We end this section by pointing out that, in principle, the

steps leading to Eqs. (39) and (41) remain valid if we allow
the �2nðsÞ to have impact parameter dependence. The
hypothesis of impact parameter independent correlations
is only needed if we wish to estimate the size of correla-
tions by using Eq. (34).

VI. NUMERICAL ESTIMATES

A. Total cross sections

Any numerical results that we obtain using Eq. (41)
should be compared with common extrapolations of the
total inelastic profile function to high energies so that
consistency with Eq. (25) can be verified. A standard
parametrization of the total profile function takes the form

�ðs; bÞ ¼ �totðsÞ
4�BðsÞ exp

�
� b2

2BðsÞ
�

(44)

with BðsÞ � B0 þ �0 lns. Regge theory fits give � �
0:25 GeV�2 for the rate of growth of BðsÞ. For the LHC
energy of

ffiffiffi
s

p ¼ 14 TeV, a survey of common models and
extrapolations in the literature [30–34] suggests the follow-
ing as a range of reasonable parameters:

90 mb & �totð
ffiffiffi
s

p ¼ 14 TeVÞ & 120 mb; (45)

19 GeV�2 & Bð ffiffiffi
s

p ¼ 14 TeVÞ & 23 GeV�2: (46)

For example, in Ref. [35] it is found that Eq. (44) with
�ðb ¼ 0Þ ¼ 1 and B ¼ 21:8 GeV�2 is in very close agree-
ment with the Regge parametrization of Ref. [31] as well as
with the non-Gaussian model of Ref. [36]. [Some fits put
the maximum from the total upper error band for
�totð

ffiffiffi
s

p ¼ 14 TeVÞ at around 130 mb. However, a total
cross section this large would also require a very large B to
avoid having a profile function greater than unity at small
b.]

B. Correlated vs uncorrelated partons

To calculate �eff within the uncorrelated assumption, we
use Eq. (33), and obtain �2ðs; b;pc

t Þ from the two-gluon
form factor, as in Eq. (19). We use mg � 1 GeV, which

works well for 0:03 � x � 0:05 and large pt, relevant for
most Tevatron data. More data on J=c electro(photo)pro-
duction and deeply virtual Compton scattering in this range
of kinematics would be very desirable for improving the
accuracy of the determination of the b dependence of quark
and gluon GPDs at x� 10�2.

The value of �eff obtained from Eq. (33) is then about
34 mb. At small x, the width of the �2ðs; b;pc

t Þ grows and
results in an even larger value for �eff . The precise rate of
growth of the radius at small x and fixed pt is not currently
well established but will likely become clearer as new data

become available. For the x dependence, we will use the
parametrization in Ref. [17].
The 34 mb calculation obtained with the uncorrelated

approximation should be compared with the measured
value of 14.5 mb [1] from the CDF collaboration taken at
a center-of-mass energy of

ffiffiffi
s

p ¼ 1:8 GeV. The uncorre-
lated calculation is roughly a factor of 2.3 too large,
implying that it is unsafe to neglect corrections from
correlations. At a minimum one should keep the �4ðsÞ
term in Eq. (39) with a correlation correction factor �4 �
1:3.
It was argued in Ref. [37] that the analysis in [1] actually

overestimates �eff . If three-jet events are taken into ac-
count (to make the cross section truly inclusive), then a
new estimate is �eff � 11 mb. This suggests that the
correlation correction is closer to �4 � 2:1. More recent
measurements from the D0 collaboration find �eff ¼
15:1 mb [5], without cuts on three-jet events. So the pre-
cise size of �eff remains unclear. We remark that �eff may
depend on pc

t , which may lead to differences in measured
values [22].
The CDF measurements in [1] find that correlations de-

pend weakly on x, suggesting that �4 may be roughly con-
stant with energy. Therefore, we will test the effect of using
1:3&�4ð

ffiffiffi
s

p ¼14TeVÞ&2:1 in the calculation of the in-
elastic profile function using Eq. (39). Plots of Eq. (39) are
shown as dotted curves in Figs. 7(a) and 7(b). In these
calculations we allow mg to vary slowly with x and pc

t in

accordance with the parametrization in Ref. [17]. The total
inclusive dijet cross section is the same as what is used in
[18], based on the CTEQ6M gluon distribution function
[38] with a K factor of 1.5. With next-to-leading-order
PDFs being used, the K factor is closer to 1.2. However
the dominant contribution to final states typically involves
at least three jets, corresponding to K ¼ 1:5 for our calcu-
lation [39]. See also the discussion in Ref. [18].
In Fig. 7(a), we have used �4 � 1:3, while in Fig. 7(b)

we have used �4 � 2:1. In addition, we have tested the
sensitivity to higher correlations by including terms up to
n ¼ 4 in Eq. (41), and using the approximation�8 � �6 �
�4 � �. The resulting curves are shown as dashed lines in
Figs. 7(a) and 7(b). The suppression at large b from double
correlations could in principle be spoiled if the triple
correlation is large and positive, so we have checked the
case where �6 > 0. Then, to avoid the possibility that �>
1 at very small b, �8 is made positive.
For comparison, the completely uncorrelated eikonal-

type expression, Eq. (27), is plotted as a dot-dashed curve
in Figs. 7(a) and 7(b). Note that there is a substantial
difference between the correlated curves and the uncorre-
lated expression for 0:8 fm & b & 2 fm in both plots. In
all cases, the correlations result in a suppression of the total
inelastic cross section from dijets [calculated by integrat-
ing �inel

dijetsðs; bÞ over b] by more than 15%. The shaded

regions mark the area covered by the standard extrapola-
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tions of the total inelastic profile function. They correspond
to Eq. (44) with the range of parameters in Eqs. (45) and
(46). The pt cutoff in all cases is fixed at the typical value
of pc

t � 2:5 GeV.
The uncorrelated curve lies entirely above the shaded

area for b & 1:6 fm, in violation of Eq. (25). That is, the
hard contribution to the total inelastic cross section is
larger than the total inelastic cross section itself for
much of the essential range of impact parameters. The
curves that include double or quadratic correlations
exhibit greater consistency for the full range of b for
both Figs. 7(a) and 7(b). In the case of the moderate sized
correlation corrections in Fig. 7(a), the effect of including

triple and higher correlation corrections is rather small
compared with the case where only corrections from
double correlations are kept. Including higher correlation
corrections does seem to smooth out the shape of the
profile function. (We have also assumed all correlation
corrections to be positive.) However, the higher correction
terms only become significant at small impact parameters
where the profile function is already close to unity anyway.
If the correlation corrections are larger, as in Fig. 7(b), then
the higher n > 2 correlations are more significant.
Now let us consider what is needed for the radius of the

hard overlap function if all the �2nðsÞ are set to zero in
Eq. (41) (reducing to the standard eikonal formula). If a
small value of pc

t is used to evaluate �
inc
pQCDðs;pc

t Þ, then fits
of the total cross section to current data require a very
narrow width for the overlap function [12]. In theoretical
calculations, a narrow overlap function is obtained, for
example, in the semiperturbative approach proposed in
[34] where the radius of the hard overlap function de-
creases with energy. In PYTHIA the hard overlap function
is modeled by the double Gaussian parametrization [8]

P2ðbÞ ¼ ð1� 	Þ2
2a21

exp

��b2

2a21

�
þ 2	ð1� 	Þ

a21 þ a22
exp

� �b2

a21 þ a22

�

þ 	2

2a22
exp

��b2

2a22

�
; (47)

with a2 ¼ 0:4a1 and 	 ¼ 0:5 (in Tune A). The radius in
Eq. (47) does not vary with energy. We determine a1 by
using Eq. (47) in Eq. (33) for �eff with uncorrelated
multiple hard scattering and fixing it to the measured
CDF value. In Fig. 8 we show Eq. (47) with a1 calculated
using �eff ¼ 14:5 mb (Ref. [1]) and �eff ¼ 11 mb
(Ref. [37]). For comparison we have also plotted the over-
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FIG. 8 (color online). Overlap functions obtained from the
two-gluon form factor, Eq. (16) (solid curve), the Godbole-
Grau-Pancheri-Srivastava (GGPS) model of Ref. [34] (dashed
curve), and the PYTHIATune A overlap function Eq. (47) fitted to
�eff ¼ 14:5 mb (dash-dotted curve) and �eff ¼ 11 mb (dotted
curve).
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FIG. 7 (color online). Inelastic profile functions calculated
with and without correlations for

ffiffiffi
s

p ¼ 14 TeV and pc
t ¼

2:5 GeV. The shaded region corresponds to the range of typical
extrapolations. The dash-dotted curve corresponds to the stan-
dard eikonal expression. The dotted curve is the inelastic profile
function including the double correlation correction in Eq. (39)
with (a) �4 ¼ 1:3 [1] and (b) �4 ¼ 2:1 [37]. The dashed curve is
with the triple quadruple and correlation corrections from
Eq. (41) using � ¼ �4 ¼ �6 ¼ �8 ¼ (a) 1.3 and (b) 2.1.
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lap function Eq. (16) obtained from the two-gluon form
factor at

ffiffiffi
s

p ¼ 14 TeV, and the overlap function from
Ref. [34], also at

ffiffiffi
s

p ¼ 14 TeV [40]. A comparison of
these curves illustrates that models of the overlap function
tend to be much narrower than what is expected from the
two-gluon form factor.

Because a1 and �2 are fixed by the measured value of
�eff , Eq. (47) yields by construction the same rate of
double collisions as Eq. (39). For triple and quadruple
collisions the two approaches give roughly similar rates
(same orders of magnitude). Therefore, in practical situ-
ations, using Eq. (47) with a narrow peak may be an
economical way to model the effects of correlations.
However, our basic aim in this paper is to incorporate the
maximum amount of available experimental input into the
description of hard collisions by using the factorization
theorem and parametrizations of the GPD to describe the
overlap function. Using the overlap function obtained di-
rectly from the t dependence of the J=c photoproduction
cross section requires either that a larger transverse mo-
mentum cutoff (pc

t * 3:5 GeV) be used or that double
correlations are incorporated by using Eq. (39) with �2n >
0. Otherwise, there are potential problems with the con-
sistency relation Eq. (25), even for a relatively large b.

One source of uncertainty is the shape of the overlap
function P2ðs; b;pc

t Þ. A Gaussian form, for instance, may
be preferred to Eq. (16). Therefore, we have repeated the
calculation of Fig. 7, but now with

P2ðs; b;pc
t Þ ¼ 1

2�b0
exp

��b2

2b0

�
: (48)

The parameter b0 is fixed by requiring that the average b2,

hb2i ¼
Z

d2bb2P2ðs; b;pc
t Þ; (49)

is the same for both Eq. (48) and Eq. (16). The resulting
plots are shown in Fig. 9. The drop with b is slightly steeper
at intermediate b in Fig. 7, but otherwise the plots are very
similar. We also point out that a recent experimental study
[41] finds good agreement between 
 and � electropro-
duction data and the dipole form for the two-gluon form
factor.

Another source of uncertainty is the contribution from
diffraction to the inelastic cross section, which is expected
to be much more peripheral than generic inelastic inter-
actions. This is known already from analyses of the dif-
fractive processes at lower energies [42] and should be
even more prominent at

ffiffiffi
s

p ¼ 2 TeV and above where
inelastic diffraction cannot occur at small impact parame-
ters, and where the interaction is practically black. Inelastic
diffraction constitutes a significant fraction of the inelastic
cross section at

ffiffiffi
s

p ¼ 2 TeV, 25%–30%, and is expected
to remain significant at the LHC.

Hence, in the region where we use the consistency
requirement, Eq. (25), a large fraction of �inel is due to
inelastic diffraction. At the same time the Tevatron data on

the jet production in diffraction indicate a large suppres-
sion of jet production as compared to expectations based
on the use of the diffractive PDFs measured at HERA. This
indicates that for the values of pc

t which we discuss the
fraction of the inelastic diffractive events with jets is sig-
nificantly smaller than 1. Hence, Eq. (25) should be applied
to �inelðbÞ � �diffðbÞ. This implies that an even larger pt

cutoff is needed. A more quantitative analysis of this effect
requires modeling of the inelastic diffraction profile func-
tion and of the dynamics of the suppression of jet produc-
tion in diffraction. We leave such investigations to future
work.

VII. TESTS OF IMPACT PARAMETER
DEPENDENCE

A large source of uncertainty is in the role of b depen-
dence in the correlation corrections. As far as we know,
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FIG. 9 (color online). Inelastic profile functions calculated
exactly as in Fig. 7 but now with the Gaussian form for the
overlap function.
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there are currently no predictions of the impact parameter
dependence of nonperturbative correlations in multiparton
distributions. If all correlations are localized at small im-
pact parameters, then at large impact parameters one sim-
ply recovers the uncorrelated model. We find such
scenarios unlikely, however, since the binding interaction
between any constituent partons should be expected to be
large, regardless of impact parameter. By relaxing the
assumption of b independence for all correlation correc-
tions, it is possible to reconstruct arbitrarily different
shapes for the profile function, though in principle this
arbitrariness can be reduced by future measurements of
higher correlations. In Figs. 7(b) and 9(b), the dip at
intermediate b that occurs when only double correlations
are included suggests that higher correlations should be
included. However, a smooth form for the inelastic profile
function can also be recovered if we allow for modest
impact parameter dependence in the double correlation
correction. As an example, we use instead of �4 ¼ 2:1,

�4ðbÞ ¼ e�2b2 þ 3:5

2þ b
: (50)

This gives numerically the same�eff as Eq. (34) with�4 ¼
2:1, but now with correlations peaked at small b and with
a weakly falling tail at large b. The plot analogous to
Fig. 7(b) is shown in Fig. 10. The curve with only double
correlations is now closer to the corresponding curve in
Fig. 7(b) which was for a larger �eff . However, the main
conclusion of the previous section remains valid—that
correlation corrections of size roughly 1 to 2 are needed
even at relatively large b in order to have consistency with
Eq. (25).

It is possible to visualize why an enhancement in corre-
lations at large impact parameters is likely by considering
the following simple model: Consider scattering at a large
impact parameter jbj ¼ 
 and assume that collisions are
between the pion clouds in each nucleon with the core of

the other nucleon. Then the cross section for scattering in a
range of impact parameters from 
� r� to 
þ r� (where
r� is the pion radius) is proportional to the cross-sectional
area of the pion and the probability prob�ð
Þ to scatter if
the pion cloud from the nucleon overlaps with the nucleon
core of the other:

d�cor / �r2� � prob�ð
Þ: (51)

By contrast, without correlations the cross section is pro-
portional to the area of the annulus between 
� r� and

þ r� and a different probability,

d�uncorr / 4�
r� � probuncorrð
Þ: (52)

Requiring that these two expressions give the same cross
section means that

prob�ð
Þ
probuncorrð
Þ

¼ 4


r�
: (53)

The cross sections for double scattering are the areas times
the square of the probabilities for single scattering. The
ratio of the double scattering cross sections obtained for the
correlated and uncorrelated cases is then

�r2�½prob�ð
Þ
2
r�4
�½probuncorrð
Þ
2

¼ 4


r�
: (54)

Hence, in this simple picture one expects the true double
scattering cross section to be enhanced at large 
 relative to
what is expected if correlations are neglected.
A natural question is how to test the dependence of

correlations between partons as a function of b. One pos-
sibility is to study the dependence of multijet production on
the associated hadron multiplicity away from the rapidities
and angles where hadron production due to the fragmenta-
tion of jets is important. The distribution in b of events with
dijets is given by the overlap function P2ðbÞ [Eq. (19)]. Let
us now consider the distribution over the accompanying
multiplicity PMðN=hNiÞ where N is the observed hadron
multiplicity, and hNi is the average multiplicity in mini-
mum bias nondiffractive events (the CDF collaboration
reported an average multiplicity for events with a Z boson
trigger for angles where gluon radiation effects associated
with the production of Z are small by a factor � 2 larger
than in the minimal bias inelastic events [43]).
Both soft and hard interaction mechanisms of hadron

production lead to a monotonic increase in the average
accompanying multiplicity with decreasing b. In the first
case this is due to an increase of the contribution of the
multi-Pomeron exchanges; in the second it is due to an
increase in the probability of multiple (semi)hard interac-
tions. Hence, to a large extent fluctuations in the multi-
plicity are due to the distribution of collisions in b. To
simplify the following discussion we will neglect fluctua-
tions of multiplicity at a given b, though one can model
these effects as well using current Monte Carlo models. It
seems natural to expect that such fluctuations will smear
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FIG. 10 (color online). Curves analogous to Fig. 7(b), but now
using the b-dependent correlation correction in Eq. (50).
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resolution in b but will not remove the generic trend of
decrease of the multiplicity with increase of b.

Under these assumptions, we can identify intervals of b
that correspond to production of i hadrons not belonging to
the hard collision (this could be, for example, hadrons at
the central rapidity interval not affected by hadron produc-
tion in the hard process leading to production of dijets),

Z bi

biþ1

P2ðbÞd2b ¼ pi; (55)

where pi is the probability for producing exactly i hadrons.
Given values of pi andP2ðbÞ, we may construct the number
of hadrons NðbÞ corresponding to a given impact parame-
ter:

NðbÞ ¼ 1 for b 2 ½b2; b1
; (56)

NðbÞ ¼ 2 for b 2 ½b3; b2
; (57)

..

.

Next we can consider production of four jets. We may
calculate the multiplicity of events with at least four jets by
integrating the number of collisions NðbÞ over b, weighted
by the probability density P4ðbÞ for a four-jet event:

hNð4Þi ¼
Z 1

0
P4ðbÞNðbÞd2b: (58)

One can write similar equations for the higher moments of

Nð4Þ, though in this case sensitivity to the fluctuations at a
given impact parameter becomes larger.

If correlation corrections are impact parameter indepen-
dent, then P4ðbÞ is simply proportional to the square of
P2ðbÞ. However, if correlations are concentrated at small
impact parameters, then P4ðbÞ is more sharply peaked at
small b and falls off faster at large b. Then the integrand in
Eq. (58) is more localized at small b where NðbÞ is large,
and the average accompanying multiplicity for four-jet
events will be larger than in the uncorrelated case. A

similar analysis extends to higher moments hNðiÞi. One
should emphasize here that the multiplicity of hadron
production in the rapidity interval between 4 jets may be
affected by various effects of color correlations, etc.; hence
it is desirable to look for the change of the multiplicity at
the rapidities sufficiently remote from the region of 4-jet
activity. This is feasible for the LHC detectors with a good
acceptance in a large rapidity interval.

In addition, if the correlations are present at all impact
parameters they should be manifested in the hard diffrac-
tive processes which correspond to scattering at large
impact parameters. One could consider both cases of single
and double diffraction with production of two and four jets:

pp ! pþ Xð2 jetsþ Y; 4 jetsþ YÞ; (59)

pp ! ppþ Xð2 jetsþ Y; 4 jetsþ YÞ: (60)

Correlations between the partons should also enhance
the cross section of the exclusive channel when the light-
cone fraction carried by two of the interacting partons of
one of the nucleons is close to maximal: ðx1 þ x2Þ=xP � 1.
Such a contribution should be enhanced if �t is large
enough (few GeV2) to squeeze the transverse size of the
exchanged ladder (see Fig. 11).

VIII. DISCUSSION AND CONCLUSIONS

The main conclusion of this paper is that, given the
distribution of hard partons known from the gluon GPD,
the hard contribution to the total inelastic profile function
should probably be modeled using Eq. (39) or Eq. (41) with
1 & � & 2 rather than the usual one-minus-exponential
shape that arises in a purely eikonal treatment. This avoids
conflicts with general expectations for the total inelastic
profile function (essentially a unitarity problem), when a
small or fixed pc

t is used for the inclusive dijet cross
section. The correlation corrections stem from a break-
down in the factorization ansatz of Eq. (2).
There are many uncertainties associated with the size of

correlations at various impact parameters. Nevertheless,
we believe there is ample evidence that large correlations
are important even at relatively large impact parameters.
Our sample calculations illustrate how including correla-
tion corrections of roughly the size suggested by available
experimental data can lead to greater consistency with the
total inelastic pp cross section. Hence, questions of uni-
tarization and consistency at small pc

t should be organized
around a more precise determination of higher correlation
corrections, with either experimental input or theoretical
modeling.
As more data become available, and the range of al-

lowed parameters narrows, it will be possible to use
Eq. (41) to obtain an increasingly refined picture of the
profile function. More studies of the x dependence and rate
of growth of the hard overlap function are needed.
Furthermore, it will be important to establish, through
measurements or theoretical models, the pc

t and energy
dependence of the correlation corrections [22]. Although

FIG. 11. Double Pomeron process with production of two
pairs of dijets.
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we have assumed that correlation corrections are impact
parameter independent in this paper, it is possible to in-
corporate any impact parameter dependence into the same
basic framework simply by allowing the �2nðsÞ to depend
on impact parameter. We have suggested possible ways of
testing for impact parameter dependence of correlations in
Sec. VII. It would also be very useful to have direct
measurements of contributions from triple and higher cor-
relations. For a recent discussion of this possibility for
triple correlations at the LHC, see Ref. [6]. Furthermore,
it was recently argued in Ref. [44] that different numbers of
collisions contribute incoherently when they are identified
by their topologies.

Fits to the total cross section can be obtained within the
more common eikonal approach by using a very narrow
hard overlap function. However, the contribution to the
total cross section arising from high pt jets depends on
the blackness of the hard collisions [17,35], and hence on
the width of the hard overlap function. Therefore, it is
phenomenologically important to use the correct radius

in the description of hard multiple collisions. In addition
to being necessary for the construction of realistic simula-
tions, sorting out these issues has the potential to lead to an
improved understanding of the transverse structure of the
proton at high energies.
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