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We study the radiative electroweak symmetry breaking and the relic abundance of neutralino dark

matter in the supersymmetric type I seesaw model. In this model, there exist threshold corrections to

Higgs bilinear terms coming from heavy singlet sneutrino loops, which make the soft supersymmetry

breaking (SSB) mass for up-type Higgs shift at the seesaw scale and thus a minimization condition for the

Higgs potential is affected. We show that the required fine-tuning between the Higgsino mass parameter�

and the SSB mass for up-type Higgs may be reduced at the electroweak scale, due to the threshold

corrections. We also present how the parameter � depends on the SSB B-parameter for heavy singlet

sneutrinos. Since the property of neutralino dark matter is quite sensitive to the size of �, we discuss how

the relic abundance of neutralino dark matter is affected by the SSB B-parameter. Taking the SSB

B-parameter of order of a few hundreds TeV, the required relic abundance of neutralino dark matter can be

correctly achieved. In this case, dark matter is a mixture of bino and Higgsino, under the condition that

gaugino masses are universal at the grand unification scale.
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I. INTRODUCTION

A supersymmetric (SUSY) seesaw model is a SUSY
extension of the seesaw model [1,2] which naturally ex-
plains small masses of neutrinos and stabilizes the hier-
archy between the electroweak scale and some other high
scale without severe fine-tuning, if the mass spectrum of
superpartners is less than the TeV scale as well. In the
SUSY type I seesaw model, we introduce not only heavy
right-handed (RH) Majorana neutrinos but also their super-
partner called sneutrinos which are standard model gauge
singlet. This leads us to anticipate that some predictions of
the minimal supersymmetric standard model (MSSM) can
be deviated due to the contributions associated with the
heavy RH neutrinos and their superpartners, and new
phenomena absent in MSSM may occur in the SUSY
type I seesaw model. In this regard, there have been
attempts to study lepton flavor violation and neutrino
masses in the SUSY type I seesaw model [3–5]. On the
other hand, the gauge singlet RH neutrino superfield may
affect the Higgs sector as investigated in Ref. [6], where
they have shown that there is a sizable negative loop
contribution to the mass of the lightest Higgs field in the
split-SUSY scenario at the price of giving up the natural-
ness in supersymmetry.

In this study, we revisit the issue as to how the Higgs
sector can be affected by heavy singlet sneutrinos while
keeping the naturalness in supersymmetry. It is well known
that the lightest CP-even Higgs mass in the MSSM can get
large one-loop corrections which increase with the top
quark and squark masses [7–10]. The current experimental
bound on the lightest CP-even Higgs mass, mh *
114 GeV, demands the top squark mass to be larger than

500 GeV [11], which in turn leads to a fairly large correc-
tion to the soft supersymmetry breaking (SSB) mass for the
up-type Higgs m2

H2
. In the MSSM, electroweak symmetry

can be broken due to the large logarithmic correction to
m2

H2
[12–16]. However, as is known, we need rather large

fine-tuning between the Higgsino mass parameter � and
the SSB mass m2

H2
to achieve the Z-boson mass at the

electroweak scale through a minimization condition for
the Higgs potential of the MSSM. In this study, we show
that there exist some new contributions generated from the
loops mediated by the heavy singlet sneutrino sector to the
SSB mass m2

H2
and the Higgsino mass parameter � in the

SUSY type I seesaw model. The new contributions are
given in terms of SSB parameters BN and SSB mass term
for the singlet sneutrino m2

~N
at the seesaw scale.

Integrating out the singlet neutrino superfield below the
seesaw scale, the SUSY type I seesaw becomes equivalent
to the MSSM but those new contributions are taken to be
threshold corrections to the Higgs bilinear terms. As will
be discussed, those threshold corrections can lower the
sizes of m2

H2
and � at the electroweak scale and thus the

fine-tuning may be reduced. This means that the fine-
tuning required for the radiative electroweak symmetry
breaking can be shifted to tuning the size of BN at the
seesaw scale. In this paper, we investigate how the sizes of
m2

H2
and � at the electroweak scale depend on the parame-

ter BN .
Since the property of neutralino dark matter is quite

sensitive to the size of �, we discuss how the relic abun-
dance of the neutralino dark matter is affected by the
parameter BN. In fact, some literature exists in which the
impacts of neutrino Yukawa couplings on neutralino dark
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matter in the SUSY type I seesaw model have been dis-
cussed [17–24]. It was found that some regions of parame-
ter space can significantly affect the neutralino relic
density without the threshold corrections associated with
the heavy singlet neutrino superfield. In our work, how-
ever, we consider the possible existence of the threshold
corrections generated from the loops mediated via the
heavy singlet neutrino superfield which can also signifi-
cantly affect the neutralino relic abundance by lowering the
sizes of m2

H2
and � at the electroweak scale. Such a

possibility of the impact on the neutralino relic density
has not been studied before.

This paper is organized as follows. First, we present the
effective potential for Higgs fields in the SUSY type I
seesaw model in Sec. II. We show that threshold correc-
tions to Higgs bilinear terms are generated from the loops
mediated by heavy singlet neutrino superfields. In Sec. III,
we give the alternative derivation for the threshold correc-
tions, using renormalization group equations (RGEs) for a
general field theory. In Sec. IV, we study the contributions
of the threshold corrections to the radiative electroweak
symmetry breaking and investigate how the size of the
parameter� can be affected by them. In Sec. V, we discuss
the relic abundance of neutralino dark matter. Finally
Sec. VI is devoted to conclusions and discussions. The
details of convention for CP phases and the derivation of
the effective potential for Higgs fields are given in the
Appendixes.

II. THE EFFECTIVE POTENTIAL OF SUSY TYPE I
SEESAW MODEL

In this section, we first derive the effective potential of
the SUSY type I seesaw model, and then show that there
exist threshold corrections to Higgs bilinear terms arisen
due to the heavy RH singlet sneutrinos. Those threshold
corrections may be modified by wave function renormal-
ization for the Higgs field.

The superpotential of the SUSY seesaw model is given
by

W ¼ �H1 �H2 � Y�ðL̂ � Ĥ2ÞN̂c �MR

2
N̂cN̂c; (1)

where N̂c is a gauge singlet chiral superfield, which con-
tains a RH neutrino and its scalar partner. MR denotes the
mass of the RH neutrino. Here, we do not consider the
terms associated with the charged leptons and quarks
whose contributions to our study are negligibly small ex-
cept for the top quark superfield. From now on, we con-

sider only one generation of N̂c for simplicity, and the
extension to three generations is straightforward. The soft
breaking terms of the Lagrangian in the SUSY seesaw
model are given by

Lsoft ¼ �m2
~L
j ~Lj2 �m2

~N
j ~Nj2 � ð12B�

NM
�
R
~N2 þ H:c:Þ

þ 2ReðB�H1 �H2Þ �m2
H1
Hy

1H1 �m2
H2
Hy

2H2

þ ðA�Y�ðH2 � ~LÞN� þ H:c:Þ; (2)

where we can take MR, BN, Y�, and � to be real by
superfield rotation and Uð1ÞR symmetry, whereas A� and
B are left as complex numbers. We discuss the details of
the phase convention in Appendix A. From the superpo-
tential given in Eq. (1), the SUSY part of the Lagrangian is
obtained as follows:

LSUSY ¼ �jY�
~L �H2 þMR

~N�j2 � jY�
~N� ~L��H1j2

� j�j2Hy
2H2 � Y2

�j ~Nj2Hy
2H2

� 1
2MR

�NRNR
c � Y�

�NRlL �H2 þ H:c: (3)

With this Lagrangian, we can derive the effective poten-
tial by using field dependent masses for the singlet RH
neutrinos and sneutrinos. The effective Higgs potential
which includes 1-loop contributions mediated by the sin-
glet RH neutrino superfields is written as

V
1 loop
eff ¼ðj�j2þm2

H1
ðQ2ÞÞHy

1H1

þðj�j2þm2
H2
ðQ2ÞÞHy

2H2�2ReðBðQ2Þ�H1 �H2Þ

þ
�
�2 Y2

�

16�2
log

M2
R

Q2

�
Hy

1H1þ Y2
�

16�2

�
log

M2
R

Q2

�ðm2
~L
þm2

~N
þjA2

�jÞþ2m2
~N
þ2ReðA�BNÞ

�

�Hy
2H2�2Re

�
Y2
�

16�2

�
BNþA� log

M2
R

Q2

�

��H1 �H2

�
�LD; (4)

where Q is a renormalization scale and LD is the D-term
contributions given by

LD ¼ �g02

8
ðHy

1H1 �Hy
2H2Þ2

� g2

8
ðHy

1 �
aH1 þHy

2 �
aH2Þ2: (5)

In Appendix B, we present in detail how the effective
potential is derived. Matching this effective potential
with that of the MSSM at the seesaw scale, we can obtain
some relations between MSSM parameters and corre-
sponding ones in the SUSY seesaw model. Here, we do
not include the loop contributions mediated by the top
quark and its superpartner because they are identical to
each other in both the MSSM and the SUSY seesaw model,
and thus canceled in the relations. Therefore those contri-
butions are irrelevant to the threshold corrections for the
Higgs bilinear terms. The Higgs potential of the MSSM is
given by
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VMSSM ¼ ðj�j2 þ �m2
H1
ðQ2ÞÞHQy

1 HQ
1

þ ðj�j2 þ �m2
H2
ðQ2ÞÞHQy

2 HQ
2

� ð �BðQ2Þ�HQ
1 �HQ

2 þ H:c:Þ �LD: (6)

By matching the Higgs potentials Eq. (6) with Eq. (4) at
Q2 ¼ M2

R, we obtain the following relations:

�m 2
H1
ðM2

RÞ ¼ m2
H1
ðM2

RÞ;

�m2
H2
ðM2

RÞ ¼ m2
H2
ðM2

RÞ þ
Y2
�

8�2
ðm2

~N
þ ReðA�BNÞÞ;

�BðM2
RÞ ¼ BðM2

RÞ þ
Y2
�

16�2
BN:

(7)

On the other hand, the wave function renormalization for
the Higgs fieldH2 in the limit of small external momenta is
given by

�
1� Y2

�

16�2
log

M2
R

Q2

�
@�H

Qy
2 @�HQ

2 ; (8)

where we neglect the terms suppressed byM�2
R . We notice

that there exist no contributions from heavy RH neutrino
superfields to wave function renormalization for H1. At

Q2 ¼ M2
R, Eq. (8) becomes @�H

y
2 @

�H2, so the relations

given in Eq. (7) are not modified by wave function
renormalization.

It is worth noting that the soft breaking parameter of the
singlet sneutrino, BN , contributes to the Higgs mass
�m2
H2
ðM2

RÞ and the parameter B. We use RGEs for the soft

breaking parameters of the MSSM to obtain their low
energy values below the seesaw scale MR, whereas the
corresponding RGEs given in the SUSY seesaw model
are used above the seesaw scale. Thus, the values of the
parameters in the RH side of Eq. (7), m2

H1
ðQ2 ¼ M2

RÞ and
m2

H2
ðQ2 ¼ M2

RÞ, depend on the boundary condition at fur-

ther high energy scale, such as MGUT or MPlanck.

III. THE THRESHOLD CORRECTIONS FROM
RENORMALIZATION GROUP EQUATIONS

In this section, we study the alternative derivation of the
threshold corrections given in Eq. (7) by using RGEs
including threshold effects. The RGEs in the MSSM in-
cluding threshold effects are discussed in Refs. [25–28].
We derive the one-loop RGEs for Higgs mass-squared
parameters in the SUSY seesaw model, by using the for-
mulas for RGEs of dimensional parameters in general
gauge field theories [29]. Then we integrate them and

obtain the threshold corrections. Here we focus on the
effects from the heavy neutrino and sneutrinos.
The key point of the derivation of the threshold correc-

tions is to take into account three different thresholds. One
of them corresponds to the mass of the RH neutrino (MR),
and the others correspond to the masses of the heavy
sneutrinos, i.e., the superpartners of the RH neutrino.
They are two real scalar fields and their masses are devi-
ated from MR due to soft SUSY breaking terms of the
sneutrinos sector, as given by

L mass ¼ �1
2M

2
~N1
N2

1 � 1
2M

2
~N2
N2

2 ; (9)

where N1 and N2 are real and imaginary parts of the
complex scalar field ~N, respectively, and are defined as

N1 ¼ ð ~N þ ~N�Þ= ffiffiffi
2

p
; N2 ¼ ð ~N � ~N�Þ=ð ffiffiffi

2
p

iÞ: (10)

The masses of the N1 and N2 are then given by

M2
~N1

¼ m2
~N
þM2

R þ BNMR;

M2
~N2
¼ m2

~N
þM2

R � BNMR:
(11)

Since BN is real positive, the hierarchy of the three mass
scales is given by

M2
~N1
>M2

R >M2
~N2
: (12)

Then the energy scales at which ~N1, ~N2, and NR are
decoupled are different from each other, yielding the
threshold corrections to Higgs mass-squared parameters.
The Higgs mass terms are given as

L Higgs ¼ �m2
11jH1j2 �m2

22jH2j2 �m2
12H1 �H2 þ H:c:;

(13)

where

m2
11 ¼ j�j2 þm2

H1
; m2

22 ¼ j�j2 þm2
H2
;

m2
12 ¼ �B�:

(14)

Following [29], we divide all the complex scalar fields
into their real and imaginary parts, and derive the beta
functions for the Higgs mass-squared parameters by adopt-
ing the step functions of the renormalization scale (Q) to
take into account the thresholds. Then we obtain the
threshold corrections by integrating the beta functions
with respect to the energy scale between two mass scales
of the singlet sneutrinos.
At the one-loop level, the beta functions for the Higgs

mass parameters are given as
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ð4�Þ2 dm
2
11

d lnQ
¼ Y2

��
2½�ðQ2 �M2

~N1
Þ þ �ðQ2 �M2

~N2
Þ�;

ð4�Þ2 dm
2
12

d lnQ
¼ Y2

�A��½�ðQ2 �M2
~N1
Þ þ �ðQ2 �M2

~N2
Þ� � Y2

��MR�ðM2
~N1
�Q2Þ�ðQ2 �M2

~N2
Þ;

ð4�Þ2 dm
2
22

d lnQ
¼ Y2

�ðm2
~N
þ jA�j2Þ½�ðQ2 �M2

~N2
1

Þ þ �ðQ2 �M2
~N2
Þ� � Y2

�½2ReðA�Þ þ BN�MR�ðM2
~N1
�Q2Þ�ðQ2 �M2

~N2
Þ

þ 2Y2
�M

2
R½�ðQ2 �M2

~N1
Þ þ �ðQ2 �M2

~N2
Þ � 2�ðQ2 �M2

RÞ� þ 2Y2
�m

2
22�ðQ2 �M2

RÞ
þ Y2

�m
2
~L
½�ðQ2 �M2

~N1
Þ þ �ðQ2 �M2

~N2
Þ�: (15)

Here, we note that only the terms coming from the
neutrino-sneutrino sector are presented because the other
terms are the same as those in the MSSM. In deriving the
RGEs, we take into account the fact that the effective
theory changes by passing each threshold corresponding
to the heavy degree of freedom. At the energy scale above
M ~N1

where the RH neutrino and sneutrinos are active, our
RGEs given in Eq. (15) are consistent with those in the
supersymmetric type I seesaw model [30,31]. While the
RH neutrino and the lighter sneutrino are active between
the two scales M ~N1

and MR, only the lighter sneutrino is
active between the two scales MR and M ~N2

. Finally, the
effective theory becomes the MSSM below M ~N2

. In each
step, we integrate out the heavier degrees of freedom and
derive the effective theories which are valid at the lower
energy scales.

By integrating the beta functions with respect to Q from
M ~N1

down toM ~N2
, we obtain the threshold corrections. The

integrals can be approximated as follows:

Z M ~N1

M ~N2

d lnQ ¼ ln
M ~N1

M ~N2

¼ BN

MR

þOðM�3
R Þ;

Z M ~N1

MR

d lnQ ¼ ln
M ~N1

MR

¼ 1

2

�
BN

MR

þm ~N2

M2
R

� B2
N

2M2
R

þOðM�3
R Þ

�
:

(16)

Only the terms proportional to MR or M2
R in Eq. (15)

contribute to the threshold corrections. The results of in-
tegrating the beta functions give

�m2
H1

¼ OðM�1
R Þ;

�m2
H2

¼ Y2
�

8�2
½m2

~N
þ ReðA�ÞBN� þOðM�1

R Þ;

�B ¼ Y2
�

16�2
BN þOðM�1

R Þ;

(17)

which are the same as Eq. (7).
Next, we discuss how the numerical value of the pa-

rameter � can be affected by threshold corrections for the
Higgs bilinear terms in the radiative electroweak symmetry
breaking scenario [12–16]. In the calculation, we assume

that gaugino masses, scalar masses, and A terms are uni-
versal at the grand unified theory (GUT) scale.

IV. MU TERM AND RADIATIVE ELECTROWEAK
SYMMETRY BREAKING

As we have shown, the soft breaking parameter for the
Higgs mass m2

H2
in the MSSM at the seesaw scale MR is

determined by not only �m2
H2
ðM2

RÞ calculated via RGEs in

the SUSY seesaw model but also additional contribution
due to the loops mediated by light and heavy sneutrinos in
the seesaw model at the scaleMR. From Eq. (7), the shift of
m2

H2
from �m2

H2
at the scale MR is approximately given as

�m2
H2

� Y2
�

8�2
ReðA�BNÞ

� 1:6� 105 ðGeVÞ2
�
Y�

0:5

�
2
�

ReA�

100 GeV

��
BN

500 TeV

�
:

(18)

Therefore the soft breaking parameter BN of the order of
500 TeV may significantly affectm2

H2
at the scaleMR. This

observation in turn indicates that the shift of m2
H2

at the

scale MR affects electroweak symmetry breaking in the
MSSM when we take the MSSM as an effective theory of
the SUSY type I seesaw model at the low energy scale.
Let us discuss how electroweak symmetry breaking can

be affected by the parameter BN . In the MSSM, radiative
breaking of electroweak symmetry can occur when SSB
parameters for Higgs sectors satisfy the following relation:

1

2
m2

Z ¼ �j�j2 þm2
H1
ðm2

ZÞ �m2
H2
ðm2

ZÞtan2�
tan2�� 1

: (19)

In the limit of large tan�, this relation becomes

1
2m

2
Z � �j�j2 �m2

H2
ðm2

ZÞ: (20)

Therefore we see that the values of � and m2
H2

are directly

related. In order to satisfy this condition, m2
H2

has to be

negative at the scale mZ. In the radiative electroweak
symmetry breaking scenario, m2

H2
is generally taken to be

positive at high energy scale, but it receives quite large
radiative corrections due to a heavy stop mass and large top
quark Yukawa couplings between high and low energy
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scales, which drive m2
H2

negative so that electroweak sym-

metry can break at the low energy scale. At the scale above
MR, soft breaking masses and couplings are subject to the
RGEs of the SUSY seesaw model. The RGE form2

H2
in the

SUSY seesaw model is given by [30,31]

dm2
H2

dt
¼ 2

16�2

�
� 3

5
g21M

2
1 � 3g22M

2
2 þ 3Y2

t Xt þ Y2
�Xn

�
;

(21)

where t ¼ lnQ
Q0

, Xt ¼ m2
~Q3
þm2

~tR
þm2

H2
þ jAtj2, and

Xn ¼ m2
~L
þm2

~N
þm2

H2
þ jA�j2. Here, M1 and M2 denote

the bino mass and the wino mass, respectively. The last
term comes from the presence of RH neutrino superfields
and other terms are the same as those in the MSSM.

It is expected that the RGE for m2
H2

can be significantly

affected by the Yukawa coupling of the neutrino sector Y�

when it is quite large. We can estimate the deviation ofm2
H2

from that without a neutrino sector by integrating out
Eq. (21) explicitly. The deviation at the scale MR is ap-
proximately given as

�logm
2
H2

� Y2
�

8�2
ð3m2

0 þ A2
0Þ ln

MR

MX

; (22)

where m0 and A0 are the universal values for scalar masses
and A terms, respectively. For MR ¼ 6� 1013 GeV and
MX � 2� 1016 GeV, this contribution can be written ap-
proximately as

�logm
2
H2

� �5:5� 104 ðGeVÞ2
�
Y�

0:5

�
2
�

m0

1 TeV

�
2
: (23)

As we can see from Eq. (18), �logm
2
H2

is easily dominated

by the threshold correction when BN is large.
Without threshold corrections, the weak scale value of

m2
H2

becomes more negative than that of the minimal

supergravity (mSUGRA) case. This affects the condition
for electroweak symmetry breaking and the allowed re-
gions for the observed relic density of dark matter [17,18].
Especially, the allowed region where j�j is small is
changed significantly. Universal scalar mass at the GUT
scale, m0 is larger than that of mSUGRA. However, with
the inclusion of the threshold corrections, m0 can be
smaller than that of mSUGRAwhen BN is large.

Figure 1 shows the RG evolution ofm2
H2

andm2
~t with the

energy scale. Here, m~t is defined as m2
~t ¼ m ~Qm~tR . We

assume that soft breaking masses, gaugino masses, and
A terms are universal at the GUT scale ( � 2�
1016 GeV). The calculations are performed with the
ISASUGRA code which is included in the ISAJET package

[32]. The input values used in the calculations are given in
the caption and neutrino massesm� andMR are taken to be
0.1 eV and 6� 1013 GeV, respectively, in both panels so
that Y� and Yt become the same order of magnitude. The
pink, blue, and red curves correspond to the predictions of
signðm2

H2
ÞjmH2

j including threshold corrections for BN ¼
500, 50, and 5 TeV, respectively. The green curves show

how the predictions ofm2
~t evolve from the GUT scale to the

electroweak scale. When BN ¼ 50 TeV, A� � 300 GeV,
and m0 � 1 TeV, the threshold correction and the running
effects from the neutrino Yukawa sector are almost can-
celed, i.e. �m2

H2
þ �logm

2
H2

� 0. Therefore the blue lines

below the scale MR behave as if there are no effects from
the neutrino Yukawa sector. As we can see from Fig. 1, the
value of m2

H2
at the scale mZ obtained in the SUSY seesaw

model is significantly deviated from that obtained in the
MSSM for given input values of m0, m1=2, A0, tan�, and

BN ¼ 500 TeV, whereas such a deviation disappears for
BN & 5 TeV.

FIG. 1 (color online). The renormalization group evolutions of
soft scalar masses for up-type Higgs and stops are shown. The
calculation is performed by taking m0, m1=2, A0, and tan� to be

1 TeV, 400 GeV, 300 GeV, and 10, respectively, in the upper
panel and 700 GeV, 500 GeV, 300 GeV, and 20, respectively, in
the lower panel. We take neutrino masses m� and MR to be
0.1 eVand 6� 1013 GeV, respectively, in both figures so that Y�

and Yt become the same order of magnitude. The pink, blue, and
red curves correspond to the predictions of signðm2

H2
ÞjmH2

j for
BN ¼ 500, 50, and 5 TeV, respectively. The green curves corre-
spond to the MSSM prediction of m~t.
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In the case without threshold corrections, the running of
the m2

H2
in mSUGRA with a RH neutrino superfield

(mSUGRAþ RHN) is discussed in Refs. [18,23]. The

weak scale values of
ffiffiffiffiffiffiffiffiffiffi
jm2

Hu

q
j tend to be larger than those

in the mSUGRA scenario. The difference between
mSUGRA and mSUGRAþ RHN is up to a few hundred
GeV, whenm0 * 1:5 TeV and Y� * Yt. On the other hand,

our results show that the threshold correction increases
mHu

ðQ2 ¼ M2
RÞ by several hundred GeV and therefore

the weak scale values of
ffiffiffiffiffiffiffiffiffiffi
jm2

Hu

q
j can be smaller than those

in the mSUGRA scenario when BN is large.
The significant deviation of m2

H2
at the scale mZ in turn

leads to a significant change in j�j through the stationary
condition, Eq. (19). In Fig. 2, we present how j�ðMZÞj
depends on the value of BN . As the value of BN increases,
j�j becomes smaller, due to the threshold corrections to
m2

H2
ðMRÞ.

It is worthwhile to notice that the size of the mass
parameter � characterizes the property of neutralino dark
matter. Since � is the Higgsino mass term, changing �
may affect the composition of the neutralino dark matter.
This indicates that relic abundance of the dark matter is
affected by BN , especially on the condition that gaugino
masses are universal at the GUT scale.

V. BINO-HIGGSINO DARK MATTER

In this section, we show that the lightest SUSY particle
is a bino-Higgsino mixture state when the size of parameter
BN is of the order of several hundred TeV, and the result of
the WMAP observation can be well accounted for. Here,
we assume that soft scalar masses, gaugino masses, and
A terms are universal at the GUT scale. We consider the
lightest neutralino as a dark matter candidate.
The neutralinos are the physical states that are composed

of the bino, wino, and two Higgsinos. The neutralino mass
matrix in the ~B� ~W � ~H1 � ~H2 basis is given by

M � ¼
M1 0 �mZ cos� sin�W mZ sin� sin�W
0 M2 mZ cos� cos�W �mZ sin� cos�W

�mZ cos� sin�W mZ cos� cos�W 0 ��
mZ sin� sin�W �mZ sin� cos�W �� 0

0
BBB@

1
CCCA; (24)

where M1 and M2 are the bino and wino masses, respec-
tively, and �W is the Weinberg angle. This matrix is diago-
nalized by the unitary matrix N,

M diag
� ¼ N�M�N

�1: (25)

In terms of N, the lightest neutralino �0 is expressed as a
mixture of the gauginos and the Higgsinos:

�0 ¼ N11
~Bþ N12

~W þ N13
~H1 þ N14

~H2: (26)

Since we assumed a universal value for the gaugino
masses at the GUT scale, gaugino masses Mi are related
to gauge couplings gi as follows:

MiðQÞ
Mð�GUTÞ

¼ g2i ðQÞ
g2ð�GUTÞ

; (27)

and this relation is easily derived from the renormalization
group equations for gauginos,

dMi

dt
¼ 2

16�2
big

2
i Mi; (28)

where bi are coefficients of beta functions for gi. From
Eq. (27), the bino mass M1 is written in terms of the wino
mass M2:

M1 ¼ 5
3tan

2�WM2 � 0:5M2; (29)

at the scale mZ.
The relic density of cold dark matter, �CDMh

2, is deter-
mined by the WMAP observation [33] and its value is
given by

�CDMh
2 ¼ 0:1131� 0:0034: (30)

For j�j 	 M2, the dark matter is binolike, whereas for
j�j 
 M2 the dark matter is Higgsino-like. In general, a
binolike dark matter leads to a large relic abundance of a
dark matter, which cannot accommodate the result from

FIG. 2 (color online). The values of j�j are plotted as a
function of BN . The lower red line is obtained for m0 ¼
1 TeV, m1=2 ¼ 400 GeV, A0 ¼ 300 GeV, and tan� ¼ 10, and

the upper green line form0 ¼ 700 GeV,m1=2 ¼ 500 GeV, A0 ¼
300 GeV, and tan� ¼ 20. We take the same values of m� and
MR as in Fig. 1.
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the WMAP observation. This is because couplings for the
bino are smaller than those for the Higgsino and the wino.
When the value of j�j decreases, the Higgsino fraction
defined by jN13j2 þ jN14j2 increases, which leads to larger
annihilation cross sections for Higgsino-like dark matter.
Therefore we can fit the right amount of relic abundance
derived from the result of the WMAP observation with a
dark matter candidate composed of a bino-Higgsino
mixture.

As we can see from Eq. (19), the value of j�ðmZÞj2
becomes smaller as BNðMRÞ increases. A larger value of

BNðMRÞ leads to a larger Higgsino fraction, which makes
the relic abundance of dark matter decreased. Figure 3
presents the predictions of relic abundance of the lightest
neutralino and corresponding contributions of Higgsino
components as a function of BN. Our numerical calculation
is performed by using the MICROMEGAS 2.2 code [34,35].
The straight blue line represents the value of the relic
abundance obtained from the WMAP observation. In this
figure, we can see that as BNðMRÞ increases, Higgsino
fractions get larger, which makes relic abundances smaller.
From our numerical analysis, it turned out that the right
amount of the relic abundance of the dark matter could be
explained by taking the parameter BN to be of the order of
several hundred TeV which makes Higgsino fractions
large. The allowed regions of parameter space for the
observed relic density of the dark matter are most conven-
iently shown in the ðm1=2; m0Þ plane. In the mSUGRAþ
RHN scenario without threshold correction, the allowed
regions are given in Refs. [18,23]. One of the regions
corresponding to the small � is located along the region
where electroweak symmetry breaking cannot take place.
This region corresponds to m0 * 1:3 TeV. The values of
m0 depend on the renormalization group running effect
from the neutrino Yukawa sector and it decreases the low
energy value of m2

H2
. When this effect becomes larger, we

need to choose larger m0 as the GUT boundary condition.
With the inclusion of the threshold correction to m2

H2
,

however, the consequences change. In our scenario, as
shown in Fig. 3, we can takem0 as small as 700 GeV, since
the threshold correction is added to m2

H2
at the scale MR.

Therefore, we conclude that the allowed regions where the
observed relic density is explained by the bino-Higgsino
dark matter are very different from those of mSUGRA and
the mSUGRAþ RHN scenario.

VI. CONCLUSION AND DISCUSSION

We have investigated the effective low energy Higgs
potential of the SUSY type I seesaw model. We found
that Higgs bilinear terms got threshold corrections at the
scale below MR, due to heavy singlet sneutrino loops.
These threshold corrections are proportional to the
B term of heavy singlet sneutrino BN . Therefore, if BN is
large enough, the mass parameters of Higgs bilinear terms
are significantly shifted at the scaleMR, which in turn leads
to a shift of the parameter j�j and reduction of the fine-
tuning between the Higgsino mass parameter � and SSB
mass for up-type Higgs at the electroweak scale. We pre-
sented how the parameter � depends on BN . We have
shown that dark matter becomes a mixture of bino and
Higgsino for BN of the order of several hundred TeV and
the observed relic abundance can be consistently explained
by the bino-Higgsino dark matter. It turned out that the
allowed region of parameter space constrained by the relic
abundance of dark matter in this model is very different
from the MSSM without seesaw under the assumption that

H
H

FIG. 3 (color online). The relic abundances of the lightest
neutralino (red curves) and corresponding Higgsino contribu-
tions (green curves) are drawn as a function of BN . The relic
abundances are shown as decreasing functions with respect to
BN and the corresponding Higgsino contributions are shown as
increasing functions with respect to BN . We take m0, m1=2, A0,

and tan� to be 1 TeV, 400 GeV, 300 GeV, and 10, respectively, in
the upper panel and to be 700 GeV, 500 GeV, 300 GeV, and 20,
respectively, in the lower panel. � is positive, and the values of
m� and MR are taken to be the same as in Fig. 1. The straight
blue lines correspond to the value of the relic abundance ob-
tained from the WMAP observation.
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SSB terms are universal at the GUT scale, mainly because
of the threshold corrections to m2

H2
. Our results are also

different from those of conventional mSUGRA with a
type I seesaw which does not include the threshold correc-
tions to m2

Hu
.

The naturalness problem for such a large value of BN is
beyond the scope of this work. Since the size of BN of the
order of several hundred TeV is much larger than the scale
of soft breaking parameters, the origin of BN must be
different from those of other SUSY breaking parameters.
Uð1ÞB�L extension of the MSSM might provide the origin
of large BN . It would be interesting to see if such a large
value of BN can be naturally possible.
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APPENDIX A: CP VIOLATION AND PHASE
CONVENTION

Here, we discuss the CP violation of the SUSY type I
seesaw model and identify the independent phases by
choosing a phase convention. One can assign theR charge 0

to the Higgs superfields Ĥ1 and Ĥ2, and 1 to the lepton

superfields L̂ and N̂c. Under the R transformation and the

phase redefinition of the superfields L̂, Ĥ1, Ĥ2, and N̂
c, the

superpotential is transformed as

W ! e2i�R
�
�Y� expðið�Nc þ �L þ �2ÞÞN̂cL̂ � Ĥ2

�MR

2
expð2i�NcÞN̂cN̂c

þ� expðið�1 þ �2 � 2�RÞÞĤ1 � Ĥ2Þ
�
: (A1)

Therefore one can remove the phases of the parameters Y�,
�, and MR in W by choosing the phases of the superfields
as follows:

�Nc ¼ �1
2 argMR; �1 þ �2 � 2�R ¼ � arg�;

�L þ �2 þ �Nc ¼ � argY�:
(A2)

The trilinear couplings of the soft breaking terms transform
in the same way as the superpotential, so one cannot

remove those phases. For the soft breaking parameters of
the bilinear form, one can take one of them to be real. We
then rotate the phase of BN away by choosing the phase
parameter of R transformation as follows:

�R ¼ �1
2 argðBNÞ: (A3)

In Eq. (A2), we still have the freedom of choosing the
phase of �2. Here, we choose the phase �2 so that the
vacuum expectation value of H2 becomes real

�2 ¼ � argðv2Þ: (A4)

To summarize, we choose the phases as

�Nc ¼ �1
2 argMR; �1 ¼ � arg�þ argðv2Þ � argBN;

�L ¼ argðv2Þ þ 1
2 argMR � argY�: (A5)

With this phase convention, the soft breaking terms are
written as

L soft ¼ ðjA�jjY�j ~N�ei½argðA�=BNÞ� þ H:c:Þ
þ 2j�jjBjReðei½argðB=BNÞ�H1 �H2Þ

� jMRj
2

jBNj ~N� ~N� �m2
~L
j ~Lj2 �m2

~N
j ~Nj2; (A6)

and two independent irremovable CP violating phases are
presented as

B ¼ jBjei argðB=BNÞ; A� ¼ jA�jei argðA�=BNÞ: (A7)

APPENDIX B: DERIVATION OF THE EFFECTIVE
POTENTIAL

In this Appendix, we derive the effective potential of
Higgs fields in the SUSY type I seesaw model. The con-
tribution to the effective potential for Higgs fields from the
loops mediated by neutrino superfields is written as

Veffðv1; v2Þ ¼
Z Q4�dddk

ð2�Þdi
1

2
ðln detðMs

2 � k2Þ

� ln detðMF � k6 ÞÞ; (B1)

whereMF is the mass matrix of one of the neutrino sectors
and M2

s is the 4� 4 mass-squared matrix of the sneutrino
sector given by

M2
s ¼

ðm2
~L
þm2

DÞ 0 Â�
�mD jMRmDj

0 ðm2
~L
þm2

DÞ jMRmDj Â�mD

Â�mD jmDMRj jMRj2þm2
~N

jBNMRj
jmDMRj Â�

�mD jB�
NMRj jMRj2þm2

~N

0
BBBBB@

1
CCCCCA;

(B2)

where
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mD ¼ Y�v2ffiffiffi
2

p ; Â� ¼ A��v�
1

v2

�; A� ¼ jA�jeiargðA�=BNÞ:

(B3)

The effects of CP violation appear through the parameter

Â�. We compute the following quantity:

ln detðMs
2 � k2Þ ¼ Tr lnðMs

2 � k2Þ: (B4)

To compute the scalar contribution, we diagonalize M2
s

approximately and treat the A term as perturbation. We
first split M2

s as

M2
s ¼ M2

0 þ�A; (B5)

where

M2
0 ¼

ðm2
~L
þm2

DÞ 0 0 jMRmDj
0 ðm2

~L
þm2

DÞ jMRmDj 0

0 jmDMRj jMRj2 þm2
~N
þm2

D jBNMRj
jmDMRj 0 jB�

NMRj jMRj2 þm2
~N
þm2

D

0
BBBB@

1
CCCCA; (B6)

and

�A ¼
0 0 Â�

�mD 0
0 0 0 Â�mD

Â�mD 0 0 0
0 Â�

�mD 0 0

0
BBB@

1
CCCA: (B7)

One can find the orthogonal matrix O which diagonalizes M2
0. Using this matrix, Ms

2 is transformed as

OMs2OT ¼ diagðm2
1; m

2
2; m

2
3; m

2
4Þ þO�AO

T: (B8)

Here, m1, m2 are the mass of lighter sneutrinos and m3, m4 are those of heavier sneutrinos given by

m2
1 ¼

M2
R þm2

~N
þ 2m2

D þ BNMR þm2
~L

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

R þm2
~N
þ BNMR �m2

~L
Þ2 þ 4m2

DM
2
R

q
;

m2
2 ¼

M2
R þm2

~N
þ 2m2

D � BNMR þm2
~L

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

R þm2
~N
� BNMR �m2

~L
Þ2 þ 4m2

DM
2
R

q
;

m2
3 ¼

M2
R þm2

~N
þ 2m2

D � BNMR þm2
~L

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

R þm2
~N
� BNMR �m2

~L
Þ2 þ 4m2

DM
2
R

q
;

m2
4 ¼

M2
R þm2

~N
þ 2m2

D þ BNMR þm2
~L

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

R þm2
~N
þ BNMR �m2

~L
Þ2 þ 4m2

DM
2
R

q
:

(B9)

These sneutrino masses should be compared with the
neutrino masses written as

m2
H ¼ M2

R

2
þm2

D þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

R þ 4m2
DM

2
R

q
2

;

m2
L ¼ M2

R

2
þm2

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

R þ 4m2
DM

2
R

q
2

:

(B10)

Using Eq. (B1) and the mass eigenvalues, one can find the
effective potential as follows:

Veff ¼ Vð0Þ
eff þ

Z ddk

ð2�Þdi
1

2

�
�
þ X1

n¼1

ð�1Þn�1

n
Tr

�
1

m2 � k2
O�AO

T

�
n
�
;

(B11)

where

Vð0Þ
eff ¼

1

2

Z ddkQ4�d

ð2�Þdi
�X4
i¼1

logðm2
i � k2Þ � 2 logðm2

H � k2Þ

� 2 logðm2
L � k2Þ

�

¼ 1

64�2
CUV

�
2ðm4

H þm4
LÞ �

X4
i¼1

m4
i

�

þ 1

64�2

�X4
i¼1

m4
i

�
log

m2
i

Q2
� 3

2

�
� 2m4

H

�
log

m2
H

Q2
� 3

2

�

� 2m4
L

�
log

m2
L

Q2
� 3

2

��
; (B12)

where CUV ¼ 1
	 � 
þ log4� andQ is the renormalization

scale. The renormalization point dependent finite part of
the effective potential Vð0Þ

eff is given as
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Vð0ÞðQ2Þ ¼ 1

64�2

�X4
i¼1

m4
i

�
log

m2
i

Q2
� 3

2

�
� 2m4

H

�
log

m2
H

Q2
� 3

2

�

� 2m4
L

�
log

m2
L

Q2
� 3

2

��
: (B13)

We note that Vð0Þ depends on the Higgs vacuum expecta-
tion value through m2

D where mD ¼ Y�v2ffiffi
2

p . To obtain the
contribution to the Higgs mass term m2

H2
Hy

2H2, one can
differentiate the effective potential with respect to m2

D,
while keeping the terms which remain nonzero in the large
limit of MR,

@Vð0Þ

@m2
D

’ 1

64�2

��
log

M2
R

Q2
� CUV � 1

��
2m2

3

@m2
3

@m2
D

þ 2m2
4

@m2
4

@m2
D

� 4m2
H

@m2
H

@m2
D

�
þ 2

�
m2

3 log
m2

3

M2
R

@m2
3

@m2
D

þm2
4 log

m2
4

M2
R

@m2
4

@m2
D

� 2m2
H log

m2
H

M2
R

@m2
H

@m2
D

��

’ 1

16�2

��
log

M2
R

Q2

�
ðm2

~L
þm2

~N
Þ þ 2m2

~N

�

� 1

16�2
ðCUV þ 1Þðm2

~L
þm2

~N
Þ: (B14)

The terms which are proportional to the derivative of the

lighter mass also vanish in the large limit of MR, because

m2
1 �m2

2 ’ m2
~L
’ m4

D

M2
R

and the derivatives with respect tom2
D

are suppressed as BN

MR
and

m2
D

M2
R

, respectively. From Eq. (B14),

one can read off the coefficient of the Higgs mass term
Hy

2H2. The contribution to the Higgs mass term including
the counterterm is given as

Vð0Þ
eff ðQ2Þ ¼ Vð0Þ

eff þ Vð0Þ
c

¼ Y2
�

16�2
ðHy

2H2Þ
�
log

M2
R

Q2
ðm2

~L
þm2

~N
Þ þ 2m2

~N

�
;

(B15)

where the counterterm is given as

Vð0Þ
c ¼ Y2

�

16�2
ðCUV þ 1Þðm2

~L
þm2

~N
ÞHy

2H2: (B16)

Next we compute the corrections to Vð0Þ due to the A�

terms up to the second order of �A, because they give the
nonvanishing contribution to the effective potential in the
large limit ofMR. To compute the corrections, one needs to
derive the orthogonal matrix O in Eq. (B6). To diagonalize
M2

0, we follow two steps. First, we diagonalizeM2
0 with the

help of orthogonal matrices OL and OH as follows:

M02
0 ¼ OL 0

0 OH

� �
M2

0

OT
L 0
0 OT

H

� �

¼
m2

~L
þm2

D 0 0 mDMR

0 m2
~L
þm2

D mDMR 0

0 mDMR M2
R þm2

~N
þm2

D � BNMR 0

mDMR 0 0 M2
R þm2

~N
þm2

D þ BNMR

0
BBBB@

1
CCCCA; (B17)

where OL and OH are given as

OL ¼ OT
H ¼ 1ffiffiffi

2
p 1 1

�1 1

� �
: (B18)

We note the degenerate diagonal masses of the heavy sneutrinos are split after the rotation. The mass-squared matrix M02
0

has the separated 2� 2 parts as submatrices. Each of them has the form of the seesaw type. Thus, the mass matrixM0
0 can

be diagonalized as

m2
1 0 0 0
0 m2

2 0 0
0 0 m2

3 0
0 0 0 m2

4

0
BBB@

1
CCCA ¼

cos�þ 0 0 � sin�þ
0 cos�� � sin�� 0
0 sin�� cos�� 0

sin�þ 0 0 cos�þ

0
BBB@

1
CCCAM02

0

cos�þ 0 0 sin�þ
0 cos�� sin�� 0
0 � sin�� cos�� 0

� sin�þ 0 0 cos�þ

0
BBB@

1
CCCA:

(B19)

Then the orthogonal matrix O is given as
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O ¼
cos�þ 0 0 � sin�þ

0 cos�� � sin�� 0
0 sin�� cos�� 0

sin�þ 0 0 cos�þ

0
BBB@

1
CCCA� OL 0

0 OH

� �
: (B20)

Using the above form of orthogonal matrix O, O�AO
T is given as

O�AO
T ¼ mD ReðÂ�Þ

� sin2�þ 0 0 cos2�þ
0 sin2�� � cos2�� 0
0 � cos2�� � sin2�� 0

cos2�þ 0 0 sin2�þ

0
BBB@

1
CCCAþ imD ImðÂ�Þ

�
0 sinð�� þ �þÞ � cosð�� þ �þÞ 0

� sin�� þ �þ 0 0 cosð�� þ �þÞ
cosð�� þ �þÞ 0 0 sinð�� þ �þÞ

0 � cosð�� þ �þÞ � sinð�� þ �þÞ 0

0
BBB@

1
CCCA: (B21)

We then obtain the corrections to the effective potential at
the first order of �A given as

�Vð1Þ
eff ¼

1

2

�X4
i¼1

Z ddk

ð2�Þdi
ðOÂ�O

TÞii
m2

i � k2

�

¼ �ReÂ�mD

32�2

�
m2

4 sin2�þ
�
CUV þ 1� ln

m2
4

Q2

�

�m2
1 sin2�þ

�
CUV þ 1� ln

m2
1

Q2

�

�m2
3 sin2��

�
CUV þ 1� ln

m2
3

Q2

�

þm2
2 sin2��

�
CUV þ 1� ln

m2
2

Q2

��
: (B22)

Now, let us show how the divergences are canceled so that
the correction is finite. To do this, we use the relation

ðm2
4 �m2

1Þ sin2�þ ¼ ðm2
3 �m2

2Þ sin2��: (B23)

Then, the corrections to the effective potential become

�Vð1Þ
eff ¼

mDReÂ�

32�2

�
m2

1 sin2�þ ln
m3m4

m2
1

�m2
2 sin2�� ln

m3m4

m2
2

þm2
3 sin2��þm2

4 sin2�þ
2

ln
m2

4

m2
3

�

’mDReðÂ�Þ
32�2

ðm2
4�m2

3Þð�þþ��Þ

’ m2
D

8�2
ReðÂ�BNÞ ’ Y2

�

8�2
Re

�
A�BN

v2
2

2
��BN

v�
1v2

2

�

’ Y2
�

8�2

�
ReðA�BNÞHy

2H2��BNReðH1 �H2Þ
�
; (B24)

where we have used the relation which is valid in the large
limit of MR, �� � mD

MR
, and m2

4 �m2
3 ¼ 2MRBN . The cor-

rection at the second order of the �A�
term is given as

�Vð2Þ
eff ¼ � 1

4

Z ddk

ð2�Þdi
1

m2
i � k2

ðO�AO
TÞij 1

m2
j � k2

� ðO�AO
TÞji: (B25)

The term which is not suppressed by 1
Mn

R
is given as

�Vð2Þ
eff ¼ � 1

16�2

�
CUV þ 1� ln

M2
R

Q2

�
m2

DjÂ�j2

¼ � Y2
�

16�2

�
CUV þ 1� ln

M2
R

Q2

�
ðjA�j2Hy

2 �H2

� 2ReðA��H1 �H2Þ þ�2Hy
1 �H1Þ: (B26)

The divergences are canceled by adding the counterterm,

Vð2Þ
c ¼ Y2

�

16�2
ðCUV þ 1ÞðjA�j2Hy

2 �H2

� 2ReðA��H1 �H2Þ þ�2Hy
1 �H1Þ: (B27)

The effective potential at the one-loop level is finally
written as

V
1 loop
eff ¼ðj�j2þm2

H1
ðQ2ÞÞHy

1H1þðj�j2þm2
H2
ðQ2ÞÞHy

2H2

�2ReðBðQ2Þ�H1 �H2Þþ
�
�2 Y2

�

16�2
log

M2
R

Q2

�
Hy

1H1

þ Y2
�

16�2

�
log

M2
R

Q2
ðm2

~L
þm2

~N
þjA2

�jÞþ2m2
~N

þ2ReðA�BNÞ
�
Hy

2H2

�2Re

�
Y2
�

16�2

�
BNþA� log

M2
R

Q2

�
�H1 �H2

�
�LD;

where LD is the D-term contribution. To complete the
renormalization of the effective potential, we consider
the relation between the renormalized mass parameters
and the bare ones. We first note that the bilinear part of
the Higgs sector including the tree and the counterterms in
the present model can be derived from the following
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Lagrangian:

L ¼ Z1Ĥ
y
1 Ĥ1jD þ Z2Ĥ

y
2 Ĥ2jD þ�Ĥ1 � Ĥ2jF þ H:c:

� ðm2
H1
ðQ2Þ þ �m2

H1
ÞHy

1H1 � ðm2
H2
ðQ2Þ

þ �m2
H2
ÞHy

2H2 þ 2ReððBðQ2Þ þ �BÞ�H1 �H2Þ:
(B28)

After integrating out the F terms of the superfields, one
obtains

L ¼ Z1@�H
y
1 @

�H1 þ Z2@�H
y
2 @

�H2 � j�j2
Z2

Hy
1H1

� j�j2
Z1

Hy
2H2 þ 2ReððBðQ2Þ þ �BÞ�H1 �H2Þ

� ðm2
H1
ðQ2Þ þ �m2

H1
ÞHy

1H1

� ðm2
H2
ðQ2Þ þ �m2

H2
ÞHy

2H2: (B29)

We define bare superfields and the bare parameter � as
Ĥ0

i ¼
ffiffiffiffiffi
Zi

p
Ĥi (i ¼ 1, 2) and�0

ffiffiffiffiffiffi
Z1

p ffiffiffiffiffiffi
Z2

p ¼ �, respectively.
One can write the Lagrangian in terms of the bare fields as

L ¼ @�H
0y
1 @�H0

1 þ @�H
0y
2 @�H0

2 � j�0j2H0y
1 H0

1

� j�0jH0y
2 H0

2 þ 2ReðB0�0H
0
1 �H0

2Þ

� ðm2
H1
ðQ2Þ þ �m2

H1
Þ

Z1

H0y
1 H0

1

�m2
H2
ðQ2Þ þ �m2

H2

Z2

H0y
2 H0

2 : (B30)

Then one can define the bare mass parameters as

m2
0H1

Z1 ¼ m2
H1
ðQ2Þ þ �m2

H1
;

m2
0H2

Z2 ¼ m2
H2
ðQ2Þ þ �m2

H2
;

B0 ¼ BðQ2Þ þ �B:

(B31)

Equation (B29) leads to the following counterterms for the
bilinear parts of the Higgs potential:

Vc ¼ ð�m2
H1

þ ðZ�1
2 � 1Þj�j2ÞHy

1H1

þ ð�m2
H2

þ ðZ�1
1 � 1Þj�j2ÞHy

2H2

� 2Reð�B�H1 �H2Þ: (B32)

Comparing Vc with the sum of the counterterms Vð0Þ
c þ

Vð2Þ
c given by

Vð0Þ
c þVð2Þ

c ¼ Y2
�

16�2
ðCUV þ 1ÞðjA�j2 þm2

~N
þm2

~L
ÞHy

2H2

þ Y2
�

16�2
ðCUV þ 1Þ�2Hy

1H1

� 2
Y2
�

16�2
ðCUV þ 1ÞReðA��H1 �H2Þ; (B33)

we obtain the following relations:

�m2
H1

þðZ�1
2 �1Þ�2 ¼ Y2

�

16�2
ðCUV þ1Þ�2;

�m2
H2

þðZ�1
1 �1Þ�2 ¼ Y2

�

16�2
ðCUV þ1ÞðjA�j2þm2

~N
þm2

~L
Þ;

�B¼ Y2
�

16�2
ðCUV þ1ÞA�: (B34)

Using the results of the wave function renormalization,

Z1 ¼ 1; Z2 ¼ 1� Y2
�

16�2
CUV; (B35)

we obtain

�m2
H1

¼ Y2
�

16�2
�2; (B36)

�m2
H2

¼ Y2
�

16�2
ðjA�j2 þm2

~N
þm2

~L
ÞðCUV þ 1Þ: (B37)

Finally, we find the following relations between the renor-
malized parameters and the bare ones:

m2
H1
ðQ2Þ ¼ m2

0H1
� Y2

�

16�2
�2;

m2
H2
ðQ2Þ ¼ m2

0H2
Z2 � Y2

�

16�2
ðjA2

�j þm2
~N
þm2

~L
ÞðCUV þ 1Þ;

BðQ2Þ ¼ B0 � Y2
�

16�2
A�ðCUV þ 1Þ; �ðQ2Þ ¼ �0

ffiffiffiffiffiffi
Z2

p
:

(B38)
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