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We explore general features of thermodynamic quantities and hadron mass spectra in a possible phase

where chiral SUð2ÞL � SUð2ÞR symmetry is spontaneously broken while its center Z2 symmetry remains

unbroken. In this phase, chiral symmetry breaking is driven by a quartic quark condensate although a

bilinear quark condensate vanishes. A Ginzburg-Landau free energy leads to a new tricritical point

between the Z2 broken and unbroken phases. Furthermore, a critical point can appear even in the chiral

limit where explicit breaking is turned off, instead of a tricritical point at which restoration of chiral and its

center symmetries takes place simultaneously. The net quark number density exhibits an abrupt change

near the restoration of the center symmetry rather than that of the chiral symmetry. Hadron masses in

possible phases are also studied in a linear sigma model. We show that, in the Z2 symmetric phase, the

�qq-type scalar meson with zero isospin I ¼ 0 splits from the �qq-type pseudoscalar meson with I ¼ 1.
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I. INTRODUCTION

Properties of hot and/or dense QCD matter has been
extensively studied within chiral approaches [1]. Our
knowledge on the phase structure is, however, still limited
and the description of the matter around the phase transi-
tions does not reach a consensus, where a typical size of the
critical temperature and chemical potential is considered to
be of order�QCD. The phases of QCD are characterized by

symmetries and their breaking pattern: QCD at asymptoti-
cally high density leads to the color-flavor-locked phase as
the true ground state under the symmetry breaking pattern,
SUð3Þc � SUð3ÞL � SUð3ÞR down to the diagonal sub-
group SUð3ÞcþLþR [2]. The residual discrete symmetries
characterize the spectra of excitations.

At zero temperature and density, an alternative pattern of
spontaneous chiral symmetry breaking was suggested in
the context of QCD [3–5]. This pattern keeps the center of
the chiral group unbroken, i.e. SUðNfÞL � SUðNfÞR !
SUðNfÞV � ðZNf

ÞA, where a discrete symmetry ðZNf
ÞA is

the maximal axial subgroup of SUðNfÞL � SUðNfÞR. The
ZNf

symmetry protects a theory from the condensate of

quark bilinears h �qqi. Spontaneous symmetry breaking is
driven by quartic condensates which are invariant under
both SUðNfÞV and ZNf

transformation. Although meson

phenomenology with this breaking pattern seems to ex-
plain the reality reasonably [3], this possibility is strictly
ruled out in QCD both at zero and finite temperatures but at
zero density since a different way of coupling of Nambu-
Goldstone bosons to pseudoscalar density violates QCD
inequalities for density-density correlators [6]. However,

this does not exclude the unorthodox pattern in the pres-
ence of dense baryonic matter. There are several attempts
which dynamically generate a similar breaking pattern in
an Oð2Þ scalar model [7] and in N ¼ 1 super Yang-Mills
theory [8]. It is of particular interest to explore general
features of thermodynamic quantities in the phase associ-
ated with this breaking pattern, which was not studied.
Within the Skyrme model on crystal, a new intermediate

phase where a skyrmion turns into two half skyrmions was
numerically found [9]. This phase is characterized by a
vanishing quark condensate h �qqi and a nonvanishing pion
decay constant. Recently, another novel view of dense
matter, quarkyonic phase, has been proposed based on
the argument using the largeNc counting whereNc denotes
the number of colors [10]: In the large Nc limit there are
three phases which are rigorously distinguished using the
Polyakov loop expectation value h�i and the baryon num-
ber density hNBi. The quarkyonic phase is characterized by
h�i ¼ 0 indicating the system confined and nonvanishing
hNBi above �B ¼ MB with a baryon mass MB. The sepa-
ration of the quarkyonic from the hadronic phase is not
clear any more in a system with finite Nc. Nevertheless, an
abrupt change in the baryon number density would be
interpreted as the quarkyonic transition which separates
meson dominant from baryon dominant regions. This
might appear near the boundary for chemical equilibrium
at which one would expect a rapid change in the number of
degrees of freedom [10,11].
A steep increase in the baryon number density and the

corresponding maximum in its susceptibility �B are driven
by a phase transition from a chirally broken to a restored
phase in most model-approaches. Interplay between (de)
confinement and chiral symmetry breaking has been
studied within a Nambu–Jona-Lassinio model with
Polyakov loops [12] which describes how the deconfine-
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ment and chiral phase boundaries are changed from Nc ¼
1 down to Nc ¼ 3 [13]. The model study shows that the
chiral phase transition at T ¼ 0 appears just above the
mass threshold �B ¼ MB and thus a large �B is associated
with the chiral phase transition. However, a constituent-
quark picture does not directly describe the thermodynam-
ics of hadronic matter and there are no a priori reasons that
the quarkyonic transition should be accompanied by chiral
phase transition. Besides, it seems unlikely that the chiral
symmetry is (even partially) restored slightly above the
freeze-out curve where the baryon density is not high
enough to drive a phase transition. From this perspective,
further investigations of dense baryonic matter and a pos-
sible appearance of the quarkyonic phase in QCD with
Nc ¼ 3 require a modeling in terms of dynamical
hadronic-degrees of freedom in a systematic way.

In this paper we will address this issue under the alter-
native pattern of chiral symmetry breaking in dense had-
ronic matter. The aim of this paper is to discuss a
possibility of a new phase in dense QCD and to clarify
the characteristic behavior of the bulk thermodynamic
quantities and the hadronic spectra in this phase. We will
show how an intermediate phase with unbroken center
symmetry can appear between chiral symmetry broken
phases and its restored phases with analyses using a
Ginzburg-Landau free energy. This leads to multiple criti-
cal points and one of them is associated with the restoration
of the center symmetry rather than that of chiral symmetry.
The net baryon number susceptibility exhibits a strong
enhancement at the restoration point of the center symme-
try although the chiral symmetry remains spontaneously
broken. This is reminiscent of the quarkyonic transition
and our framework provides a theoretical description of the
quarkyonic phase on the bases of a chiral Lagrangian with
two distinct order parameters. An analysis using a linear
sigma model for the hadron mass spectra is also made.

II. A MODEL FOR 2-QUARK AND 4-QUARK
STATES

We construct a chiral Lagrangian for 2- and 4-quark
states under the following pattern of symmetry breaking:

SUðNfÞL � SUðNfÞR ! SUðNfÞV � ðZNf
ÞA ! SUðNfÞV:

(2.1)

In this paper we will restrict ourselves to a two-flavor case.

A. Lagrangian

We introduce a 2-quark stateM in the fundamental and a
4-quark state � in the adjoint representation as1

Mij � �qR;jqL;i; �ab � �qL�a��qL �qR�b�
�qR; (2.2)

where the flavor indices run ði; jÞ ¼ 1; 2 and ða; b; cÞ ¼
1; 2; 3 and Pauli matrices �a ¼ 2Ta with tr½TaTb� ¼
�ab=2. The M and � are expressed as

Mij ¼ 1ffiffiffi
2

p ð��ij þ i�a�aijÞ;

�ab ¼ 1ffiffiffi
3

p ��ab þ 1ffiffiffi
2

p �abcc c;

(2.3)

where � and � represent scalar fields and � and c pseu-
doscalar fields, and �ijk is the total antisymmetric tensor

with �123 ¼ 1. In general the field � contains an isospin 2
state. One can take appropriate parameters in a Lagrangian
in such a way that this exotic particle is very heavy. Thus,
we will consider only isospin 0 (�) and 1 (c ) states in this
paper. The fields transform under SUð2ÞL � SUð2ÞR as
chiral nonsinglet,

M ! gð2ÞL Mgð2ÞyR ; � ! gð3ÞL �gð3ÞyR : (2.4)

This transformation property implies that the field M
changes its sign under the center Z2 of SUð2ÞL [or
SUð2ÞR], while � is invariant:

M ! �M; � ! �: (2.5)

Up to the fourth order in fields one obtains a potential,

VðM;�Þ ¼ �m2

2
Tr½MMy� þ 	2

4
ðTr½MMy�Þ2

� �m2

2
�ab�

T
ba þ

�	2
1

4
�ab�

T
bc�cd�

T
da

þ
�	2
2

4
ð�ab�

T
baÞ2 þ 2g1�ab Tr½TaMTbM

y�
þ g2�ab�

T
ba Tr½MMy� þ g3Det�

þ g4ðDetMþ H:c:Þ: (2.6)

The last term violates the Uð1ÞA symmetry. The coeffi-
cients of the quartic terms are positive for this potential to
be bounded. Other parameters gi can be both positive and
negative and will determine the topology of the phase
structure. An explicit chiral symmetry breaking can be
introduced through, e.g.,

VSBðM;�Þ ¼ �h�� 
h2�; (2.7)

with constants h and 
. Note that a similar Lagrangian was
considered for a system with 2- and 4-quark states under
the symmetry breaking pattern without unbroken center
symmetry in [14] where their 4-quark states are chiral

1We consider � as any linear combination of �qq- �qq- and
�q �q -qq-type fields allowed by symmetries.
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singlet and the potential does not include quartic terms in
the fields.

B. Ginzburg-Landau effective potential

We first study possible phases derived from the effective
potential (2.6) taking2

Mij ¼ 1ffiffiffi
2

p ��ij; �ab ¼ 1ffiffiffi
3

p ��ab: (2.8)

One can reduce Eq. (2.6) as well as an explicit breaking
term to

Vð�;�Þ ¼ A�2 þ B�2 þ �4 þ �4 � h�þ C�2�

þD�3 þ F�2�2: (2.9)

We will take C ¼ �1 without loss of generality in the
following calculations.

We start with the potential for D ¼ F ¼ 0 and h ¼ 0,

V ¼ A�2 þ B�2 þ �4 þ �4 � �2�: (2.10)

Phases from this potential can be classified by the coeffi-
cients A and B. The expression of the phase boundaries is
summarized in Appendix A. Here we discuss the obtained
phase structure shown in Fig. 1. There are three distinct
phases characterized by two order parameters: Phase I
represents the system where both chiral symmetry and its
center are spontaneously broken due to nonvanishing ex-
pectation values �0 and �0. The center symmetry is re-
stored when �0 becomes zero. However, chiral symmetry
remains broken as long as one has nonvanishing �0, in-
dicated by phase II. The chiral symmetry restoration takes
place under �0 ! 0 which corresponds to phase III. The
phases II and III are separated by a second-order line, while
the broken phase I from II or from III is by both first- and
second-order lines. Accordingly, there exist two tricritical
points (TCPs) and one triple point. One of them, TCP2 in
Fig. 1, is associated with the center Z2 symmetry restora-
tion rather than the chiral transition.

Two phase transitions are characterized by susceptibil-
ities of the corresponding order parameters. We introduce a
2-by-2 matrix composed of the second derivatives of V as

Ĉ ¼ C�� C��

C�� C��

� �
; (2.11)

with

C�� ¼ @2V

@�2
; C�� ¼ @2V

@�2
;

C�� ¼ C�� ¼ @2V

@�@�
;

(2.12)

under the solutions of the gap equations, �0 and �0. A set

of susceptibilities is defined by the inverse of Ĉ [15];

�̂ ¼ 1

detĈ

C�� �C��

�C�� C��

� �
: (2.13)

We identify the susceptibilities associated with 2-quark
and 4-quark states as

�2Q ¼ �̂11; �4Q ¼ �̂22: (2.14)

The �2Q is responsible to the Z2 symmetry and the �4Q to

the chiral symmetry restoration.
We consider �2Q and �4Q around the TCP1 in Fig. 1

where the potential has zero curvature and thus detĈ ¼ 0.
When approaching the TCP1 from the broken phase I by
tuning A and B as A ! Acritical ¼ 0 and B ¼ 1=4, these
susceptibilities diverge as

�2Q � t�1; �4Q � t�2=3; (2.15)

where Acritical � A� t with the reduced temperature or
chemical potential, e.g. t ¼ j���cj=�c. The gap equa-
tions determine the scaling of 2-quark and 4-quark con-
densates as

�2
0 � t1=3; �0 � t1=3: (2.16)

Consequently, the quark number susceptibility �q ¼
�@2V=@�2 exhibits a singularity as

1st
T 2nd

TCP

0

B

A
TCP

σ
χ

=0
=0

σ
χ =0

=0/

/

=0
=0

σ
χ/

III

I II

1

0

0

0

0

0

0

2

FIG. 1 (color online). Phase diagram with D ¼ F ¼ 0 and
h ¼ 0. The solid and dashed lines indicate first- and second-
order phase boundaries, respectively. One tricritical point, TCP1,
is located at ðA;BÞ ¼ ð0; 1=4Þ and another, TCP2, at ðA; BÞ ¼
ð1=4;�1=8Þ. The triple point represented by T is at ðA; BÞ ¼
ð1=8; 0Þ.

2The potential (2.6) does not exclude a possibility of hc i � 0
leading to pion condensation. This corresponds to a further
breaking of the symmetry down to Uð1Þ. This is favored in a
limited range of the parameters. In this paper we will not
consider this case but focus on the specific symmetry breaking
pattern Eq. (2.1) and their consequences on the hadronic observ-
ables. The pion condensation is in fact unfavored when e.g. �	1 ¼
0 is taken.
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�q � �2
0 � �2Q � t�2=3: (2.17)

This critical exponent is same as the one in the 3-d Ising
model. The coincidence can be understood due to the same
Z2 symmetries.3

The critical behavior near the TCP2 involves more:
When the A is approached as 1=4� t with B ¼ �1=8
fixed, �2Q and �4Q diverge as

�2Q � t�1; �4Q � t�1=2; (2.18)

and only �0 vanishes as �2
0 � t1=2. As a result, the quark

number susceptibility �q diverges as

�q � t�1=2: (2.19)

Note that the critical exponent 1=2 is different from the one
near the TCP1, which may reflect different symmetries
possessed by the system at TCP2, SUð2ÞV and the center
Z2, from that at TCP1, SUð2ÞL � SUð2ÞR including its
center ðZ2ÞL � ðZ2ÞR. Those exponents at TCP1;2 are

changed when D � 0 (see below).
When the second-order phase transition separating

phase I from II or from III is approached from the broken
phase with a fixed B, we have

�2Q � t�1; �4Q � 1

B
; (2.20)

where B is a finite number, which thus gives no singular-
ities in �4Q. The 2-quark condensate scales as �

2
0 � t1 and

the quark number susceptibility �q is finite along the

second-order phase transition line:

�q � �2
0 � �2Q � t0: (2.21)

Nevertheless, �q is enhanced toward the phase transition

induced by �2Q and becomes small above the phase tran-

sition. Such abrupt changes in �q indicate the phase tran-

sition, especially for a negative B which is driven by the
center symmetry restoration rather than the chiral phase
transition.

Near the second-order chiral transition between phases
II and III, one obtains from B� t,

�2
0 � t1; �4Q � t�1: (2.22)

Since the chiral symmetry including the center symmetry
prohibits the Yukawa-type coupling of � to a fermion and
an antifermion in the fundamental representation, the cou-
pling of � to the baryon number current would be highly
suppressed. Therefore, �q shows less sensitivity around the

chiral transition.4

Once small h is turned on, chiral symmetry and its center
are explicitly broken. Second-order phase boundaries are
replaced with a crossover and the two TCPs with two
critical points. The singularity in �q is now governed by

the Z2 universality class of 3-d Ising systems. Thus, the
scaling of �q at the critical points (CPs) will be given by

�q � t�2=3: (2.23)

A cubic term in � modifies the previous phase structure
shown in Fig. 1. The phase diagram from the potential,

V ¼ A�2 þ B�2 þ �4 þ �4 � �2�þD�3; (2.24)

is classified by the following regions of D:
(a) �1<D< 0, (b) D � �1, (c) 0<D< 1, and
(d) 1 � D. One observes a deformation of the boundary
lines depending onD as in Fig. 2. The phase transition line
separating phase II from phase III becomes of first order
due to the presence ofD�3. For any negativeD, (a) and (b),
a critical point CP1 appears as a remnant of TCP1 for D ¼
0. TCP2 remains on the phase diagram for �1<D< 0,
(a), which eventually coincides with the triple point atD ¼
�1, (b). For positive D, (c) and (d), the transition line
which separates phase I from phase II turns to be of first
order everywhere. The triple point approaches the TCP1
and coincides when a positive D reaches unity. The differ-
ent order of phase transition between phase I and phase II
for �1<D< 0 to that for 0<D< 1 can be understood
as follows: For D ¼ 0 (see Fig. 1) the vacuum expectation
value (VEV) �0 is positive in phase I near the phase
boundary between phases I and II due to the existence of
the ��2� term in the potential. In phase II, on the other
hand, when the positive �0 provides a local minimum of
the potential, ��0 also does, and both coincide with the
global minima. These two vacua are physically equivalent,
so that the phase transition from phase I to phase II can be
of second order. When we add the D�3 term with negative
D to the potential, the local minimum corresponding to the
positive �0 is only the global minimum in phase II. This
can be smoothly connected to the vacuum in phase I where
the VEV �0 is positive. On the other hand, when D is
positive, the negative �0 gives the global minimum in
phase II. Thus, there is a mismatch of �0 along the phase
boundary separating phase I from phase II, which indicates
a first-order transition.
D also affects the quark number susceptibility �q. As in

the case ofD ¼ 0, the �q exhibits a more relevant increase

toward the Z2 symmetry restoration than at the chiral phase
transition. The critical exponents of �q are summarized in

Table I. One finds that the two regions, D � 0 and 0<D,
correspond to different universality. The cubic term plays a
similar role to an explicit symmetry breaking term in the
potential. This may be an origin for the appearance of a
critical point.
For �1<D< 0, TCP2 for h ¼ 0 becomes a critical

point, CP2, for finite h. When the value of h is increased,

3The Z2 symmetry in the 3-d Ising system is not the center of
the two-flavor chiral group, but emerges in the direction of a
linear combination of quark number and scalar densities [16].

4As we will show below, the phase transition from phase II to
phase III is of first order in a more general parameter choice.
Thus, �q exhibits a jump at the chiral phase transition point.
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the CP2 approaches the triple point and coincides with it
for a certain value of h, h0. The topology of the phase
diagram for larger h � h0 agrees with that for D � �1.
Similarly, the TCP1 in the 0<D< 1 phase diagram be-
comes a critical point CP1 and disappears for a sufficiently
large h. On the other hand, the CP1 stays in the phase
diagram Fig. 2(a) and 2(b) for any value of h. The scaling
of �q there will be given by

�q � t�2=3: (2.25)

We note that adding finite F to the potential does not
generate any essential differences from the above result
with F ¼ 0.

III. HYPOTHETICAL PHASE DIAGRAM AND
QUARK NUMBER SUSCEPTIBILITY

From the above observations one would expect phase
diagrams mapped onto the ðT;�Þ plane. In the chiral limit a

new phase where the center symmetry is unbroken but
chiral symmetry remains broken might appear in dense
matter since at � ¼ 0 this phase is strictly forbidden by
the no-go theorem. With an explicit breaking of chiral
symmetry one would draw a phase diagram as in Fig. 3.
The intermediate phase remains characterized by a small
condensation j�0j � j�0j. One would expect a new criti-
cal point associated with the restoration of the center
symmetry, CP2, rather than that of the chiral symmetry if
dynamics prefers a negative coefficient of the cubic term in
�. Multiple critical points in principle can be observed as
singularities of the quark number susceptibility.
It has been suggested that a similar critical point in lower

temperature could appear in the QCD phase diagram based
on the two-flavored Nambu–Jona-Lasinio model with vec-
tor interaction [17] and a Ginzburg-Landau potential with
the effect of an axial anomaly [18]. There the interplay
between the chiral (2-quark) condensate and BCS pairings
plays an important role. In our framework without di-
quarks, the critical point discussed in Fig. 3 (left) is driven
by the interplay between the 2-quark and 4-quark conden-
sates, and is associated with the restoration of the center
symmetry where anomalies have nothing to do with its
appearance. Nevertheless, the crossover in low tempera-
tures may have a close connection to the quark-hadron
continuity [19] and it is an interesting issue to explore a
possibility of dynamical center symmetry breaking in mi-
croscopic calculations. The present potential (2.9) leads to
a first-order transition of chiral symmetry even with an
explicit breaking. This may be replaced with a crossover

TABLE I. The critical exponents of the quark number suscep-
tibility for vanishing and nonvanishing D at two tricritical points
(TCP1 and TCP2) and at the critical point (CP1).

CP1 TCP1 TCP2

D< 0 2=3 � � � 1=2
D ¼ 0 � � � 2=3 1=2
D> 0 � � � 1=2 � � �

1st

2nd
B

CP

0 TCP
A

σ
χ

=0
=0

σ
χ

=0
=0/

σ
χ

=0
=0
/
/

I II

III1

2

0

0

0

0

0

0

2nd
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B

0
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A
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=0/

σ
χ =0

=0
/
/

III
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(d)
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III
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0

0
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0
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1
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A0
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σ
χ

=0
=0

σ
χ

=0
=0/

σ
χ =0

=0
/
/

III
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1

0

0

0

0

0

0 1st
2nd

0

B

A

=0
=0

=0
=0/

=0
=0
/
/

σ
χ

χ
σ

χ
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I
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0

0

0

0

0
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FIG. 2 (color online). Phase diagram for different values of D under F ¼ 0 and h ¼ 0. The solid and dashed lines indicate first- and
second-order phase boundaries, respectively.
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when one considers higher order terms in fields and other
symmetry breaking terms as well as in-medium correla-
tions to baryonic excitations, which is beyond the scope of
this paper.

The appearance of the above intermediate phase seems
to have a similarity to the notion of quarkyonic phase
[10,13], which is originally proposed as a phase of dense
matter in the large Nc limit. The transition from the had-
ronic to quarkyonic world can be characterized by a rapid
change in the net baryon number density. This feature is
driven by the restoration of center symmetry and is due to
the fact that the Yukawa coupling of � to baryons is not
allowed by the Z2 invariance. Figure 4 shows an expected
behavior of the quark (baryon) number susceptibility
which exhibits a maximum when across the Z2 crossover.
This can be interpreted as the realization of the quarkyonic
transition in the Nc ¼ 3 world. How far �z2 from �chiral is
depends crucially on its dynamical-model description.5

It should be noticed that the critical point in the low
density region, indicated by CP1 in Fig. 3 (left), is different
from a usually considered CP [20] in the sense that the CP1
is not on the crossover line attached to the T ¼ 0 axis.
When we take a path from the broken phase (both �0 and
�0 are large) to the symmetric phase (both �0 and �0 are
small) passing near the CP1, the �2Q may exhibit two

peaks; one is located near CP1 and another is on the
crossover line. We show a schematic behavior of �2Q as

a function of temperature, together with �0 and �0 in
Fig. 5. The appearance of two peaks in �2Q reflects the

fact that �0 becomes small across the CP1 and the cross-
over. The first decrease in �0 near CP1 is caused by a
dropping of �0, while the second is by the chiral symmetry
restoration.

IV. HADRON MASS SPECTRA AND PION DECAY
CONSTANT

In this section we derive meson mass spectra in a linear
sigma model. The Lagrangian with the potential (2.6) is
expressed in terms of the mesonic fields as

L¼ 1
2ð@��@��þ@� ~� �@� ~�Þ
þ 1

2ð@��@��þ@� ~c �@� ~c Þ�Uð�;�;�;c Þ; (4.1)

σ χ2Q

0

CP1 chiralTT
T

0

χ

FIG. 5 (color online). A schematic behavior of the suscepti-
bility �2Q near the CP1 as a function of the temperature assum-

ing the phase diagram of Fig. 3 (left).

µ

σ
χ χB

0

0

µz2 µchiral

FIG. 4 (color online). The behavior of the baryon number
susceptibility as a function of the chemical potential assuming
the phase diagram of Fig. 3 (left). The condensates and the
susceptibility show a jump also at �z2 when the phase structure
of Fig. 3 (right) is preferred.

σ
χ

σ
χ

small
small

large
large

CP

CP σ µsmall χlarge

T

1

2
0

0 0

0

0

0 χ
σ

large
large

CP
T

µχ

small
small

small
σ
χ

large
0

0

0

0

0

σ0

1

FIG. 3 (color online). Schematic phase diagram mapped onto the ðT;�Þ plane with a negative D (left) and with a positive D (right).
The solid lines indicate first-order phase boundaries, and dashed lines correspond to the crossover.

5Thus, the present analysis does not exclude the possibility
that both transitions take place simultaneously and in such a case
enhancement of �B is driven by chiral phase transition. The
phase with �0 � 0 and �0 ¼ 0 does not seem to appear in the
large Nc limit [5–7]. It would be expected that including 1=Nc
corrections induce a phase with unbroken center symmetry.
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with

U ¼ �m2

2
ð�2 þ ~�

2Þ þ 	2

4
ð�2 þ ~�

2Þ2 � �m2

2
ð�2 þ ~c 2Þ

þ
�	2
1

4

�
1

3
�4 þ 2

3
�2 ~c 2 þ 1

2
ð ~c 2Þ2

�
þ

�	2
2

4
ð�2 þ ~c 2Þ2

� g

�
1

2
ffiffiffi
3

p �ð3�2 � ~�
2Þ þ ffiffiffi

2
p

� ~� � ~c

�

þ g3ffiffiffi
3

p
�
1

3
�3 þ 1

2
� ~c 2

�
; (4.2)

where g1 	 �gðg > 0Þ and g2 ¼ 0 were taken. In addi-
tion, we set g4 ¼ 0 since the g4 term generates only a shift
in m2 for Nf ¼ 2. We also set the explicit breaking being

zero.
The condensate of the mesonic fields in the phase where

both the chiral symmetry and its center Z2 are broken are
determined from the coupled gap equations given by

�2
0 ¼

2ffiffiffi
3

p
g

� �	2

3
�2
0 � �m2 þ g3ffiffiffi

3
p �0

�
�0;

�0 ¼ 1ffiffiffi
3

p
g
ð	2�2

0 �m2Þ;
(4.3)

with �	2 	 �	2
1 þ 3 �	2

2. Shifting the fields as

� ! �þ �0; � ! �þ �0; (4.4)

the potential reads

U ¼ 1
2m

2
��

2 þ 1
2m

2
�
~�
2 þ 1

2m
2
��

2 þ 1
2m

2
c
~c 2 � ffiffiffi

3
p

g�0��

� ffiffiffi
2

p
g�0

~� � ~c þ . . . ; (4.5)

where ellipses stand for the terms including the fields more
than three, and

m2
� ¼ 2	2�2

0; m2
� ¼

ffiffiffi
3

p
2

g

�0

�2
0 þ

2

3
�	2�2

0 þ
1ffiffiffi
3

p g3�0;

m2
� ¼ 4ffiffiffi

3
p g�0; m2

c ¼
ffiffiffi
3

p
2

g

�0

�2
0: (4.6)

The mass terms thus become

Uð2Þ ¼ 1

2
ð�;�Þ m2

� � ffiffiffi
3

p
g�0

� ffiffiffi
3

p
g�0 m2

�

 !
�

�

 !

þ 1

2
ð ~�; ~c Þ

m2
� � ffiffiffi

2
p

g�0

� ffiffiffi
2

p
g�0 m2

c

0
@

1
A ~�

~c

 !
: (4.7)

Obviously, the determinant of the above mass matrix for�
and c is zero and thus massless pseudoscalar fields are a
mixture of 2-quark and 4-quark states.

The mass eigenstates are introduced with a rotation
matrix as

S

S0

 !
¼ cos� sin�

� sin� cos�

 !
�

�

 !
;

~P

~P0

 !
¼ cos �� sin ��

� sin �� cos ��

 !
~�

~c

 !
;

(4.8)

with the angles

tanð2�Þ ¼ 2
ffiffiffi
3

p
g�0

m2
� �m2

�

; tanð2 ��Þ ¼ 4
ffiffiffi
6

p
�0�0

3�2
0 � 8�2

0

: (4.9)

The masses of scalar mesons are given by

m2
S ¼ m2

�cos
2�þm2

�sin
2�� ffiffiffi

3
p

g�0 sinð2�Þ;
m2

S0 ¼ m2
�cos

2�þm2
�sin

2�þ ffiffiffi
3

p
g�0 sinð2�Þ;

(4.10)

and those of pseudoscalar mesons by

mP ¼ 0; m2
P0 ¼ gð3�2

0 þ 8�2
0Þ

2
ffiffiffi
3

p
�0

; (4.11)

with

cos �� ¼
ffiffiffi
3

p
�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�2
0 þ 8�2

0

q ; sin �� ¼ 2
ffiffiffi
2

p
�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�2
0 þ 8�2

0

q : (4.12)

The pion decay constant is read from the Noether current,

J
�
A � �0@

��þ 4=
ffiffiffi
6

p
�0@

�c , as

F� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þ
8

3
�2
0

s
: (4.13)

Since we consider a system in the chiral limit, the massive
P0 state is decoupled from the current and F�0 ¼ 0, as it
should be. It should be noted that, when j�0j 
 j�0j, the
Nambu-Goldstone (NG) boson is dominantly the 2-quark
state. The 4-quark component becomes more relevant forffiffiffi
3

p j�0j<
ffiffiffi
8

p j�0j, i.e. �� > �=4.
When the coupling g3 is negative, which corresponds to

D< 0 in the Ginzburg-Landau potential given in Sec. II,
the phase transition from phase I (�0 � 0 and �0 � 0) to
phase II (�0 ¼ 0 and �0 � 0) can be of second order. In
such a case, the restoration of the center Z2 symmetry is
characterized by vanishing �0. Approaching the restora-
tion from the broken phase, one finds the lowest scalar
meson mass degenerate with the P state, while the pion
decay constant remains finite due to �0 � 0;

mS ! mP ¼ 0; F� !
ffiffiffi
8

3

s
�0; (4.14)

with

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 �m2

�	2
þ
� ffiffiffi

3
p

g3
2 �	2

�
2

s
�

ffiffiffi
3

p
g3

2 �	2
: (4.15)

The vanishing S-state mass corresponds to a divergence
of the susceptibility �2Q, which is responsible to the res-
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toration of the center symmetry. The scalar S and pseudo-
scalar P states thus become the chiral partners on the phase
boundary. In the Z2 symmetric phase the meson masses are
found from the potential (4.2) as

m2
� ¼ �m2 � ffiffiffi

3
p

g�0; m2
� ¼ �m2 þ gffiffiffi

3
p �0;

m2
� ¼ 2

3
�	2�2

0 þ
g3ffiffiffi
3

p �0; m2
c ¼ 0:

(4.16)

There is no mixing in this phase, tan� ¼ tan �� ¼ 0, so that
�, �, �, c are the mass eigenstates.6 This implies that the
pure 4-quark state c is the massless NG boson in the Z2

symmetric phase. Because of the broken chiral symmetry,
� and� states are not degenerate in mass.7 The vector and
axial-vector states are neither degenerate in mass [6], since
both vector and axial-vector currents are invariant under
the Z2 transformation but broken chiral symmetry does not
dictate the same masses.

When jg3=gj � 1, the chiral phase transition from
phase II (�0 ¼ 0 and �0 � 0) to phase III (�0 ¼ 0 and
�0 ¼ 0) will be of weak first order. In this case, �0 then F�

approach zero near the phase transition point. This is
controlled by �m approaching zero, which corresponds to
B approaching zero in the Ginzburg-Landau potential dis-
cussed in Sec. II B. The isospin 2 state will become very
light near the phase transition. This may suggest that, when
the g3Det� term is small and the chiral phase transition is
of weak first order, a light exotic state with I ¼ 2 might
exist in dense baryonic matter. When there exists the non-
negligible g3Det� term, on the other hand, such a state
never becomes light since the chiral phase transition is of
strong first order.

In two flavors, the system would prefer the parity dou-
bling for baryons in the Z2 symmetric phase where the
VEV �0 does not generate the baryon masses [6]. In the
parity doubling scenario [21], all the baryons have their
parity partners and then each pair of parity partners has a
degenerate mass. On the other hand, in the naive scenario
the lightest baryon does not have a parity partner, so that it
becomes massless in the Z2 symmetric phase. We list
hadron mass spectra expected in phase I and phase II in
Table II.

V. CONCLUSIONS

We have discussed a new phase where chiral symmetry
is spontaneously broken while its center symmetry is re-
stored. This might appear as an intermediate state between
chirally broken and restored phases in the ðT;�Þ plane. The
appearance of the intermediate phase with unbroken Z2

also suggests a new critical point associated with the center
symmetry in low temperatures. A tendency of the center
symmetry restoration is carried by the net baryon number
density which shows a rapid increase and this is reminis-
cent of the quarkyonic transition. The Uð1ÞA symmetry
remains broken and the heavy 
 mass can be controlled
with a certain anomaly coefficient.
There are subtleties in baryon masses since the existence

of the center symmetry does not immediately dictate the
parity doubling for a general number of flavors: Here we
consider the case in massless three flavors. The g3 term in
(2.6) now generates a �8 contribution, while the g4 term
does a �3 one. It follows that D�3 is removed from (2.9)
and another cubic term �3 is added. Omitting the cubic
term �3 results in the same phase diagram as Fig. 1 with
two TCPs. When the cubic term �3 is included, it is
conceivable that phase II and phase III in Fig. 2 are
separated by a second-order phase boundary, which will
become a first-order one when we take quantum fluctua-
tions into account [22]. The topologies are expected to be
quite similar to those shown in Fig. 2, so that we expect a
strong enhancement of the quark number susceptibility at
the Z3 restoration point. Unlike the case for Nf ¼ 2, the

�ab field is allowed to couple to the octet baryon states as,
e.g. �Ba�abBb, and the baryon number current couples to
the � state which becomes massless at the chiral restora-
tion point. As a result, the quark number susceptibility
might show another peak at the chiral restoration. Hadron
masses in the Z3 symmetric phase are slightly different
from those under Z2 invariance: In the mesonic sector the

TABLE II. The mass spectra of mesons and baryons in differ-
ent phases for Nf ¼ 2. Baryons transform with the naive chi-

rality assignment as c R;L ! gR;Lc R;L, while with the mirror

assignment as c 1R;L ! gR;Lc 1R;L and c 2R;L ! gL;Rc 2R;L with

gR;L 2 SUð2ÞR;L where two nucleons c 1 and c 2 belong to the

same chiral multiplets.

Phase I: �0 � 0, �0 � 0 Phase II: �0 ¼ 0, �0 � 0

SUð2ÞV SUð2ÞV � ðZ2ÞA
mS � 0, mP ¼ 0 mS � mP � 0, mP0 ¼ 0
mV � mA mV � mA

F� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þ ð8=3Þ�2
0

q
F� ¼ ffiffiffiffiffiffiffiffi

8=3
p

�0

mNþ � 0 (i) naive:

8<
:
mNþ ¼ 0 ðground stateÞ
mN0þ ¼ mN0� � 0
ðexcited statesÞ

(ii) mirror:

�
mNþ ¼ mN� � 0
ðall statesÞ

6When we approach the phase boundary from the Z2 sym-
metric phase to the Z2 broken phase, m2

� in Eq. (4.16) ap-
proaches zero, since �m2 ¼ ffiffiffi

3
p

g�0 is satisfied at the phase
boundary. The pseudoscalar mass m2

� approaches 4ffiffi
3

p g�0 which
coincides with the mass of P0 in the Z2 broken phase [see
Eq. (4.11)].

7In Ref. [6] the degeneracy of the massive scalar and pseudo-
scalar mesons made of 4-quarks carrying the same isospin for a
general number of flavors was shown. In the case of Nf ¼ 2 the
Uð1ÞA anomaly generates a mass difference between the � state
and the pseudoscalar meson with I ¼ 0 (
). In the present
analysis, we did not include the I ¼ 0 pseudoscalar and the I ¼
1 scalar mesons from the beginning by assuming that they are
very heavy.
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party partners are degenerate and the degeneracy does not
generally occur in the baryonic sector [6]. Following
Ref. [6], possible operators for the baryons are expressed as

B1
L ¼ ðqLqLqRÞL; B2

L ¼ ðqLqRqRÞL;
B3
L ¼ ðqLqLqLÞL; B1

R ¼ ðqRqRqLÞR;
B2
R ¼ ðqRqLqLÞR; B3

R ¼ ðqRqRqRÞR;
(5.1)

where the color and flavor indices are omitted. For the octet
baryons, the representations under the chiral SUð3ÞL �
SUð3ÞR of these baryonic fields are assigned as

B1
L � ð�3; 3Þ; B2

L � ð3; �3Þ; B3
L � ð8; 1Þ;

B1
R � ð3; �3Þ; B2

R � ð�3; 3Þ; B3
R � ð1; 8Þ: (5.2)

When the B3 is the lightest octet baryon, which we call the
naive assignment, it is still massive in the Z3 symmetric
phase, since the Yukawa coupling of the 4-quark state �ab

is possible as, e.g. �Ba�abBb. When the lightest baryons are
described by a combination of B1 and B2, which we call the
mirror assignment, they are degenerate with each other in
the Z3 symmetric phase. We summarize these features in
Table III. The baryon masses crucially depend on a way of
chirality assignment. It would be an interesting issue to
clarify this within a more elaborated model.

The main assumption in this paper is a dynamical break-
ing of chiral symmetry SUðNfÞL � SUðNfÞR down to a

nonstandard SUðNfÞV � ðZNf
ÞA although this seems to be

theoretically self-consistent. Calculations using the
Swinger-Dyson equations or Nambu–Jona-Lasinio–type
models with careful treatment of the quartic operators
may directly evaluate this reliability. Besides, anomalously
light NG bosons, m2

� �Oðm2
qÞ, could lead to an s-wave

pion condensation as discussed in [23]. It is interesting to
explore how this phase is embedded in the current analysis.
This will be reported elsewhere. A calculation using the
Skyrme model shows a similar intermediate phase [9].
Although the above nonstandard pattern of symmetry
breaking was not imposed in the Skyrme Lagrangian, the
result could suggest an emergent symmetry in dense me-
dium. This intermediate phase would be an intriguing
candidate of the quarkyonic phase if it could sustain in
actual QCD at finite density and would lead to a new
landscape of dense baryonic matter.
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APPENDIX A: PHASE BOUNDARIES FROM
GINZBURG-LANDAU POTENTIAL

The relevant expressions for the phase boundaries ob-
tained from the potential (2.9) are given below. We will
take D ¼ F ¼ 0 and the chiral limit h ¼ 0.
(i) Second-order phase transition when B � 1=4:

A ¼ 0: (A1)

The solutions for � and � on this boundary are given
by

ð�0; �0Þ ¼ ð0; 0Þ: (A2)

(ii) First-order phase transition when 0 � B< 1=4 and
0<A � 1=8:

A ¼
�
3

8
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

8

�
2 þ 1

2

�
B� 1

4

�s �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

8
� 2

�
B� 1

4

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

8

�
2 þ 1

2

�
B� 1

4

�svuut
:

(A3)

The solutions for � and � on this boundary are
given by

ð�0; �0Þ ¼ ð0; 0Þ; (A4)

�
�
�
1

2

�
1

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

8

�
2 þ 1

2

�
B� 1

4

�s �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

8
� 2

�
B� 1

4

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

8

�
2 þ 1

2

�
B� 1

4

�svuut �
1=2

;

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

8
� 2

�
B� 1

4

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

8

�
2 þ 1

2

�
B� 1

4

�svuut �
: (A5)

TABLE III. Same as in Table II but for Nf ¼ 3.

Phase I: �0 � 0, �0 � 0 Phase II: �0 ¼ 0, �0 � 0

SUð3ÞV SUð3ÞV � ðZ3ÞA
mS � 0, mP ¼ 0 mS ¼ mP � 0, mP0 ¼ 0
mV � mA mV � mA

mNþ � 0 (i) naive: mNþ � 0
(ii) mirror: mNþ ¼ mN� � 0
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(iii) First-order phase transition when �1=8<B< 0
and 1=8< A< 1=4:

A ¼ 1
8 � B: (A6)

The solutions for � and � on this boundary are
given by

ð�0; �0Þ ¼
�
0;�

ffiffiffiffiffiffiffiffi
�B

2

s �
;

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
Bþ 1

8

�s
;
1

4

�
:

(A7)

(iv) Second-order phase transition when B � �1=8 and
A � 1=4:

A ¼
ffiffiffiffiffiffiffiffiffi
�B

2

s
: (A8)

The solutions for � and � on this boundary are
given by

ð�0; �0Þ ¼
�
0;�

ffiffiffiffiffiffiffiffi
�B

2

s �
: (A9)

(v) Second-order phase transition when A > 1=8:

B ¼ 0: (A10)

The solutions for� and � on this boundary are given
by

ð�0; �0Þ ¼ ð0; 0Þ: (A11)
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