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We explore the phase diagram and the critical behavior of QCD thermodynamic quantities in the

context of the so-called Polyakov–Nambu–Jona-Lasinio model. We show that this improved field

theoretical model is a successful candidate for studying the equation of state and the critical behavior

around the critical endpoint. We argue that a convenient choice of the model parameters is crucial to get

the correct description of isentropic trajectories. The effects of the regularization procedure in several

thermodynamic quantities is also analyzed. The results are compared with simple thermodynamic

expectations and lattice data.
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I. INTRODUCTION

Quantum chromodynamics (QCD) exhibits at zero tem-
perature and chemical potential two remarkable features
which play an essential role in our understanding of strong
interaction phenomena: the fundamental degrees of free-
dom are colorless bound states of hadrons (quark confine-
ment), and chiral symmetry is dynamically broken. As it is
well known these features characterize the nonperturbative
nature of the QCD vacuum. It is expected that, at large
energy densities, the so-called QCD phase transition oc-
curs: the interaction becomes weaker and weaker due to
asymptotic freedom [1,2] with the formation of a new state
of matter, the quark gluon plasma (QGP), and chiral sym-
metry gets restored.

The study of the QCD phase diagram in the ðT;�Þ-plane
and the search for signatures of the QGP have attracted an
intensive investigation over the last decades. The outputs
of this research are expected to play an important role in
our understanding of the evolution of the early universe
and of the physics of heavy-ion collisions at the
Brookhaven National Laboratory, and at LHC (CERN),
in the future.

Various results from QCD inspired models indicate (see
e.g. Refs. [3,4]) that at low temperatures the transition may
be first order for large values of the chemical potential; on
the contrary a crossover is found for small chemical po-
tential and large temperature. This suggests that the first
order transition line may end when the temperature in-
creases, the phase diagram thus exhibiting a (second order)
critical endpoint (CEP) [5–8] that can be detected [9,10] by
a new generation of experiments with relativistic nuclei, as
the CBM experiment (FAIR) at GSI. Fodor and Katz [11]
claim the values TCEP ¼ 162 MeV and �CEP ¼ 360 MeV
for such a critical point, although its precise location is still
a matter of debate [12]. In the chiral limit it is found, in

accordance with universality arguments, a tricritical point
(TCP) in the phase diagram, separating the second order
transition line from the first order one. So, the exploration
of the critical region of the phase diagram of strongly
interacting matter gains increasing attention, both experi-
mentally and theoretically.
As an approach complementary to first-principle lattice

simulations, one can consider several effective models.
One of them is the Nambu–Jona-Lasinio (NJL) model,
that is undoubtedly a useful tool for understanding chiral
symmetry breaking but does not possess a confinement
mechanism. As a reliable model that can treat both the
chiral and the deconfinement phase transitions, we can
consider the Polyakov loop extended NJL (PNJL) model
[13–16]. In the PNJL model the deconfinement phase
transition is described by the Polyakov loop. This im-
proved field theoretical model is fundamental for interpret-
ing the lattice QCD results and extrapolating into regions
not yet accessible to lattice simulations.
A nontrivial question in NJL type models is the choice of

the parameter set and of the regularization procedure. In
fact, one should keep in mind that this type of models are
used not only to describe physical observables in the
vacuum but also to explore the physics at finite temperature
and chemical potential. As it is well known, the order of the
phase transition on the axis of the ðT;�Þ-plane is sensitive
to the values of the parameters, most notably to the value of
the ultraviolet cutoff needed to regularize the integrals. In
the pure NJL model a large cutoff leads to a second order
transition, a small cutoff to a first order one [17]. An
interesting feature to be noticed is that the requirement of
global accordance with physical spectrum is obtained with
values of the cutoff for which the transition is first order on
the T ¼ 0 axis and a smooth crossover on the � ¼ 0 axis
of the phase diagram. However, it has also been shown that
different parameter sets, although providing a reasonable
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fit of hadronic vacuum observables and predicting a first
order phase transition, will lead to different physical sce-
narios at finite T and � [18,19]. For instance, the absolute
stability of the vacuum state at T ¼ 0 is not always insured.

The consequences of the choice of the parameter set for
the scenarios in the ðT;�Þ-plane have not been discussed in
the framework of the PNJL model, where the most popular
parameter set does not allow for the absolute stability of
the vacuum at T ¼ 0. In the present work, our main goal is
to analyze this problem and we will assume that the most
reliable parametrization of both NJL and PNJL models
positively predicts the existence of the CEP in the phase
diagram, together with the formation of stable quark drop-
lets in the vacuum state at T ¼ 0.

Finally, the physical relevance of our numerical solu-
tions is insured by requiring the agreement with general
thermodynamic requirements. In particular, we will verify
that the correct description of isentropic lines is closely
related with the parameter choice in the pure NJL sector.

Concerning the regularization of some integrals, since,
as it has been noticed by several authors, the three dimen-
sional cutoff is only necessary at zero temperature, the
dropping of this cutoff at finite T is carefully analyzed in
this work: this procedure allows for the presence of high
momentum quark states, leading to interesting physical
consequences, as it has been shown in [20], where the
advantages and drawbacks of this regularization have
been discussed. We will enlarge the use of this procedure
to the PNJLmodel and discuss its influence on the behavior
of several relevant observables.

Let us notice that the choice of a regularization proce-
dure is a part of the effective modeling of QCD thermody-
namic. Indeed the presence of high momentum quarks (no
cutoff on the temperature dependent part of the loop in-
tegrals) is required to ensure that the entropy scales as T3 at
high temperature. Hence we found that a comprehensive
study of the differences between the two regularization
procedures (with and without cutoff on the quark momen-
tum states at finite temperature) is necessary to have a
better understanding of the PNJL model and the role of
high momentum quarks around the phase transition. This is
one of the main purposes of this paper.

This paper is organized as follows: In Sec. II we present
the model and formalism starting with the deduction of the
self-consistent equations. We also extract the equations of
state and the response functions, and show the pertinence
and physical relevance of a convenient choice of the pa-
rametrization and regularization procedures of the model.
Section III is devoted to the study of the phase transition at
zero temperature, showing the important role of the choice
of parameters for the formation of quark droplets in me-
chanical equilibrium with the vacuum at zero pressure. In
Sec. IV we study thermodynamical quantities that, com-
pared with lattice results, point out the physically relevant
regularization procedure at T � 0. The enlargement to

� � 0 allows for the study of the phase diagram in the
ðT;�Þ-plane (Sec. V). In Sec. VI we discuss the important
role of the choice of the model parameters for the correct
description of isentropic trajectories. In Sec. VII we pro-
ceed to study the size of the critical region around the CEP
and its consequences for the susceptibilities and critical
exponents. Finally, some concluding remarks are presented
in Sec. VIII.

II. MODEL AND FORMALISM

A. Model Lagrangian and gap equations

The generalized Lagrangian of the quark model for
Nf ¼ 2 light quarks and Nc ¼ 3 color degrees of freedom,

where the quarks are coupled to a (spatially constant)
temporal background gauge field (represented in term of
Polyakov loops), is given by [14,15,21]:

L PNJL ¼ �qði��D� � m̂Þqþ 1
2g½ð �qqÞ2 þ ð �qi�5 ~�qÞ2�

�Uð�½A�; ��½A�;TÞ; (1)

where the quark fields q ¼ ðu; dÞ are defined in Dirac and
color spaces, and m̂ ¼ diagðmu;mdÞ is the current quark
mass matrix. The pure NJL sector contains three parame-
ters: the coupling constant g, the cutoff �, and the current
quark massm ¼ mu ¼ md, to be determined (see Sec. II C)
by fitting the experimental values of several physical
quantities.
The quarks are coupled to the gauge sector via the

covariant derivative D� ¼ @� � iA�. The strong coupling
constant gStrong has been absorbed in the definition of A�:

A�ðxÞ ¼ gStrongA
�
a ðxÞ �a

2 , where A�
a is the SUcð3Þ gauge

field and �a are the Gell–Mann matrices. Besides in the
Polyakov gauge and at finite temperature A� ¼ �

�
0 A

0 ¼
�i�

�
4 A

4.
The Polyakov loop � (the order parameter of Z3 sym-

metric/broken phase transition in pure gauge) is the trace of

the Polyakov line defined by: � ¼ 1
Nc

�
hhP expi

R�
0 d�A4ð ~x; �Þii�, where hh. . .ii� with � ¼ 1=T

is the thermal expectation value in the grand canonical
ensemble.
The pure gauge sector is described by an effective

potential Uð�½A�; ��½A�;TÞ that takes the form
Uð�; ��;TÞ

T4
¼ �b2ðTÞ

2
���� b3

6
ð�3 þ ��3Þ þ b4

4

�ð ���Þ2; (2)

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (3)

The coefficients T0, ai, and bi of the Polyakov loop effec-
tive potential are chosen (see Table I and [15]) to repro-
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duce, at the mean-field level, the results obtained in pure
gauge lattice calculations.

From the Lagrangian (1) in the mean-field approxima-
tion it is straightforward (see Ref. [22]) to obtain the
constituent quark mass M that is given by

M ¼ m� 2gh �qqi; (4)

where the quark condensate h �qqi has to be determined in a
self-consistent way. So, taking already into account Eq. (4),
the PNJL grand potential density in the mean-field ap-
proach is given by [15,23]:

�ð�; ��;M;T;�Þ ¼ Uð�; ��; TÞ þ 2gNfh �qqi2

� 2NcNf

Z d3p

ð2�Þ3 Ep

þ 2NfT
Z d3p

ð2�Þ3 ½lnN
þ
�ðEpÞ

þ lnN�
�ðEpÞ�; (5)

where Ep is the quasiparticle energy for the quarks, Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

p
, and by defining E�

p ¼ Ep ��, the upper sign

applying for fermions and the lower sign for antifermions,
the functions Nþ

� and N�
� are:

Nþ
�ðEpÞ � ½1þ 3ð�þ ��e��Eþ

p Þe��Eþ
p þ e�3�Eþ

p ��1;

(6)

N�
�ðEpÞ � ½1þ 3ð ��þ�e��E�

p Þe��E�
p þ e�3�E�

p ��1:

(7)

It was shown in Ref. [23] that all calculations in the NJL
model can be generalized to the PNJL one by introducing
the modified Fermi–Dirac distribution functions for parti-
cles and antiparticles:

fþ�ðEpÞ ¼ Mþ
�N

þ
� ;

Mþ
� ¼ ð�þ 2 ��e��Eþ

p Þe��Eþ
p þ e�3�Eþ

p ;
(8)

f��ðEpÞ ¼ M�
�N

�
� ;

M�
� ¼ ð ��þ 2�e��E�

p Þe��E�
p þ e�3�E�

p :
(9)

To obtain the mean-field equations we must search for
the minima of the thermodynamical potential density (5)

with respect to h �qqi, � and ��. In fact, by minimizing �
with respect to h �qqi, we obtain the equations for the quark
condensate:

h �qqi ¼ �6
Z d3p

ð2�Þ3
M

Ep

½�ð�2 � ~p2Þ � fþ�ðEpÞ

� f��ðEpÞ�: (10)

Let us stress that in the latter we used a cutoff� only for
the T ¼ 0 part of the integral (denoted case I in the
following); one could put a global cutoff

R
�
0 (denoted

case II in the above).
Furthermore, minimization of � with respect to � and

�� provides, respectively, the two additional mean-field
equations [23] (the integral that appears has to be under-
stood as

R1
0 for case I and

R
�
0 for case II):

0 ¼ T4

2
½�b2ðTÞ ��� b3�

2 þ b4� ��2�

� 12T
Z d3p

ð2�Þ3 ½e
�2�Eþ

p Nþ
� þ e��E�

p N�
��; (11)

0 ¼ T4

2
½�b2ðTÞ�� b3 ��

2 þ b4 ���2�

� 12T
Z d3p

ð2�Þ3 ½e
��Eþ

p Nþ
� þ e�2�E�

p N�
��: (12)

The solutions of the three coupled equations (4), (11),
and (12) allow us to obtain the behavior of M, and the
Polyakov loop expectation values as a function of T and�.

B. Equations of state and response functions

From the thermodynamical potential �ðT;�Þ one can
derive equations of state which allow us to compare some
of our results with observables that have become accessible
in lattice QCD at nonzero chemical potential. The relevant
observables are the (scaled) quark number density, defined
as

	qðT;�Þ
T3

¼ � 1

T3

�
@�

@�

�
T
; (13)

and the (scaled) ‘‘pressure difference’’ given by

�pðT;�Þ
T4

¼ pðT;�Þ � pðT; 0Þ
T4

: (14)

As usual, the pressure, p, is defined such as its value is
zero in the vacuum state [18] and, since the system is
uniform, one has

pðT;�Þ ¼ ��ðT;�Þ
V

; (15)

where V is the volume of the system.
Our work also includes the study of the isentropic tra-

jectories due to their relevance for the study of the ther-
modynamics of matter created in relativistic heavy-ion
collisions. The equation of state for the entropy density s
is given by

TABLE I. Parameter set used for the Polyakov loop potential
(2) and (3).

a0 a1 a2 a3 b3 b4

6.75 �1:95 2.625 �7:44 0.75 7.5
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sðT;�Þ ¼
�
@p

@T

�
�
; (16)

and the energy density 
 comes from the following funda-
mental relation of thermodynamics


ðT;�Þ ¼ TsðT;�Þ þ�	qðT;�Þ � pðT;�Þ: (17)

The energy density, as well as the pressure, is defined
such that its value is zero in the vacuum state [18].

The baryon number susceptibility �q and the specific

heat C are the response of the baryon number density
	qðT;�Þ and the entropy density sðT;�Þ to an infinitesimal

variation of the quark chemical potential � and tempera-
ture, given, respectively, by:

�q ¼
�
@	q

@�

�
T
; and C ¼ T

V

�
@s

@T

�
�
: (18)

These second-order derivatives of the pressure are rele-
vant quantities to discuss phase transitions, mainly the
second order ones.

C. Model parameters and regularization schemes

As already stated, the pure NJL sector involves three
parameters: the coupling constant g, the current quark
massm, and the cutoff�. These parameters are determined
in the vacuum by fitting the experimental values of several
physical quantities. We notice that the parameters g and �
are correlated with each other: if we increase g in order to
provide a more significative attraction between quarks, we
must also increase the cutoff � in order to insure a good
agreement with experimental results. In addition, the value
of the cutoff itself does have some impact as far as the
medium effects in the limit T ¼ 0 are concerned.

We remember that different parametrizations may give
rise to different physical scenarios at T ¼ 0 and � � 0
[18], even if they give reasonable fits to hadronic vacuum
observables and predict a first order phase transition. Here,
we will use two different sets of parameters whose values
are presented in Table II. These two sets are the most
widely used in NJL type models: set A is taken from [6]
and set B from [24], the last one being commonly used in
the context of the PNJL model [15,23]. The main feature is
a lower (larger) value of the cutoff for set A (B), for which
we verify that �=M < 1:8 (> 1:8). We notice that the
transition between the regime of stable to the regime of
metastable quark matter occurs at the value �=M � 1:8

[25]. So, we will prove that only the set of parameters A
insures the stability conditions and, consequently, the com-
patibility with thermodynamic expectations. We notice that
set A also agrees with an empirical relation derived in [26]
which states that stable quark matter is only possible in
NJL model if M> 4f�.
On the other hand, the regularization procedure, as soon

as the temperature effects are considered, has relevant
consequences on the behavior of physical observables,
namely, on the chiral condensates and the meson masses
[27]. In PNJL model, the two types of regularization may
be found [15,23,28–30] as well as different sets of parame-
ters [15,23,27–29]. So, in order to compare the differences
between the use of different sets of parameters and of
regularization schemes, in the physical scenarios of the
PNJL model, we will consider sets A and B of parameters
and two different regularization procedures at T � 0:
Case I.—The cutoff is used only in the integrals that are

divergent (� ! 1 in the convergent ones; see Eqs. (10)–
(12) for example) at finite temperature, a procedure that
allows us to take into account the effects of high momen-
tum quarks [15,17,28,31].
Case II.—The regularization consists in the use of the

cutoff � in all integrals [23,29].
Advantages and drawbacks of these regularization pro-

cedures have been discussed in [20]. Here, our main goal is
to show nontrivial consequences of the regularization
scheme used in case I. We remind that the main drawback
of this regularization is that at high temperature there is a
too fast decrease of the quark masses that become lower
than their current values. This leads to a nonphysical
behavior of the quark condensates that, after vanishing at
the point where constituent and current quark masses
coincide, changes sign and acquires a nonzero value again.
Therefore, if we want to keep calculating observables in
this region, it seems sensible to impose the condition that
the quark masses take their current values and the quark
condensates remain zero. This is the approach used here.

III. PHASE TRANSITION AT ZERO
TEMPERATURE

Our study refers mainly to the finite temperature case.
However, the particular case of zero temperature is very
important due to the possibility of having, simultaneously,
a vanishing density and a finite chemical potential. This
feature depends on the choice of the parameters and is

TABLE II. Set of parameters ð�; g; mÞ used in the NJL sector of the PNJL model and the
physical quantities chosen to fix the parameters. The constituent quark mass obtained is also
included.

� [GeV] g [GeV�2] m [MeV] jh �c uc uij1=3 [MeV] f� [MeV] m� [MeV] M [MeV]

Set A 0.590 7.0 6.0 241.5 92.6 140.2 400

Set B 0.651 5.04 5.5 251 92.3 139.3 335
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necessary in order to insure the satisfaction of general
thermodynamic requirements.

Here we analyze the stability of the quark matter at T ¼
0. For this special case the PNJL model reduces to the NJL
one. We will now present a discussion about the stability of
the system along the same lines of [18,19,32], which will
allow us to choose the set of parameters corresponding to
the most convenient physical situation.

In the limit T ! 0 the normal Fermi-Dirac distribution
function reduces to the step function

�ð�� EpÞ ¼ �ðpF � pÞ�ð��MÞ; (19)

where the Fermi momentum is given by

pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �M2

q
�ð��MÞ ¼ ð�2	qÞ1=3�ð��MÞ:

(20)

The important point of our argumentation about the
choice of the model parameters comes from the compari-
son between the point (0, �c) of the phase diagram, where
�c is the position of the first order line at zero temperature,
and the point (0,Mvac), whereMvac ¼ M is the mass of the
u, d-quark in the vacuum. Two special cases are observed
[18]:

(i) For set A, the first order phase transition occurs at�c

such that�c<Mvac, and consequently [see Eq. (20)]
the phase transition connects the vacuum state (	q ¼
0) directly with the phase of partially restored chiral
symmetry (	q ¼ 	c).

(ii) For set B, �c >Mvac, so the phase transition con-
nects a 	q � 0 phase of massive quarks with the

phase of partially restored chiral symmetry (	q¼
	c).

So, although we can choose several sets of parameters
which fit physical observables in the vacuum, we notice,
however, that the value of the cutoff itself does have some
impact on the characteristic of the first order phase tran-
sition. Comparing the two sets of parameters we verify that
for larger values of the cutoff, as in set B, a more strong
attraction is necessary both to reproduce the physical val-
ues in the vacuum and to insure a first order phase tran-
sition. As we will argue in the sequel, the more reliable
case is provided by set A.

In case (i) the energy per particle reaches, at 	q ¼ 	c, an

absolute minimum 
 < 
ð0Þ ¼ Mvac. This is compatible
with the existence of stable quark matter, indicating the
possibility for finite droplets to be in mechanical equilib-
rium with the vacuum at zero pressure [18,19,31,33]. This
is due to the fact that the pressure has three zeros, respec-
tively, at 	 ¼ 0, 0:52	0, 4:3	0 (	0 ¼ 0:17 fm�3), that
correspond to extrema of the energy per particle. The third
zero of the pressure, located at 	c ¼ 4:3	0, corresponds to
an absolute minimum of the energy. The critical point of
the phase transition in these conditions satisfies to �c <
Mvac [18,34]. This can be seen by comparing �c ¼

383 MeV with the quark masses Mvac ¼ M ¼ 400 MeV.
Above 	q ¼ 	c, we have again a uniform gas phase. For

densities 0<	q < 	c the equilibrium configuration is a

mixed phase, where the equality of all intensive variables
(T, P and �) defines the condition for the phase equilib-
rium. So, the Gibbs criterion is satisfied and the phase
transition is a first order one [18,32].
On the contrary, the minimum at 	q ¼ 	c in case (ii)

corresponds to metastable quark matter, since 
 > 
ð0Þ ¼
Mvac. The pressure still has three zeros, respectively, at
	q ¼ 0, 1:51	0, 2:64	0, that correspond to extrema of the

energy per particle. The main difference now is that the
absolute minimum of the energy per particle is at 	q ¼ 0.

This means that, in spite of being in the presence of a first
order phase transition, there are no droplets in mechanical
equilibrium with the vacuum at zero pressure. In addition,
from the physical point of view, this scenario is unrealistic
because it predicts the existence of a low-density phase of
homogeneously distributed constituent quarks [18]. Other
implications of this scenario on the reliability of isentropic
trajectories will be discussed later.

IV. THERMODYNAMIC QUANTITIES

A significative information on the phase structure of
QCD at high temperature is obtained from lattice calcu-
lations in the limit of vanishing quark chemical potential.
The transition to the phase characteristic of this regime is
related with chiral and deconfinement transitions which are
the main features of our model calculation.
Following the argumentation presented in [15], we use

the reduced temperature Tc by rescaling the parameter T0

from 270 to 190 MeV (we do this rescaling only for the
remainder of this section). In this case we loose the perfect
coincidence of the chiral and deconfinement transitions:
they are shifted relative to each other by less than 35
(30) MeV for set A (B). As in Ref. [15], we define Tc as
the average of the two transition temperatures: we have
Tc ¼ 190ð184Þ MeV for set A (B) within the range ex-
pected from lattice calculations [35].
For comparison purposes with lattice findings, we start

by considering our numerical results at vanishing quark
chemical potential by checking the usefulness of the
present regularization procedure, case I. To this purpose,
we plot the scaled pressure, the energy and the entropy as
functions of the temperature in Fig. 1.
The transition to the high temperature phase is a rapid

crossover rather than a phase transition and, consequently,
the pressure, the entropy and the energy densities are
continuous functions of the temperature. For case I we
observe a similar behavior in the three curves: a sharp
increase in the vicinity of the transition temperature and
then a tendency to saturate at the corresponding ideal gas
limit. Asymptotically, the QCD pressure for Nf massless

quarks and (N2
c � 1) massless gluons is given, for � ¼ 0,

by
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pSB

T4 ¼ ðN2
c � 1Þ�

2

45
þ NcNf

7�2

180
; (21)

where the first term denotes the gluonic contribution and
the second term the fermionic one.

Our results follow the expected tendency and go to the
free gas values, a feature that was also found with this type
of regularization in the context of the PNJL model [13,15].
For what concerns the NJL model [17] let us notice that if
indeed a tendency to saturate is found, the asymptotic value
is at about half the ideal gas limit. Hence the inclusion of

the Polyakov loop effective potential Uð�; ��Þ (it can be
seen as an effective pressure term mimicking the gluonic
degrees of freedom of QCD) is required to get the correct
limit.

The inclusion of the Polyakov loop together with the
regularization procedure implemented in case I, is essential
to obtain the required increase of extensive thermodynamic
quantities, insuring the convergence to the Stefan-
Boltzmann (SB) limit of QCD [36]. Some comments are
in order concerning the role of the regularization procedure
for T > Tc. In this temperature range, due to the presence
of high momentum quarks, the physical situation is domi-
nated by the significative decrease of the constituent quark
masses by the q �q interactions. This allows for an ideal gas
behavior of almost massless quarks with the correct num-
ber of degrees of freedom.
The advantage of our phenomenological model is the

possibility to provide equations of state at nonzero chemi-
cal potential too. So, we can also test its ability to repro-

FIG. 1 (color online). Scaled pressure (p), energy per particle (
), and entropy (s) as a function of the temperature at zero chemical
potential for both sets of parameters A and B, and both regularization procedures.
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duce recent progress in lattice QCD with small nonvanish-
ing chemical potential.

In order to do this, we plot in Fig. 2 the scaled pressure
and the quark number density for � ¼ 0:6Tc (it was done
in [15] for set B). The parameters are the same as in Fig. 1
and only case I for the cutoff procedure is considered. The
agreement with the lattice data is fairly good, showing that
the general pattern of these quantities and the behavior at
large T is reproduced. The more significative deviations
are observed in the scaled baryon number density at inter-
mediate temperatures as is evident from Fig. 2 (right side).
However, there are some advantage with respect to the
employed parametrization A, where an improvement of
the results is observed as shown in the left panel of Fig. 2.

In conclusion, by introducing finite chemical potential
we are able to compare the obtained results with lattice
data and check the validity of both sets of parameters.
From Fig. 2 we conclude that, for case I, both sets of
parameters are in good agreement with lattice results, in
particular, to �p=T4 and 	q=T

3 at � ¼ 0:6Tc.

V. PHASE STRUCTURE

The phase diagram for both sets of parameters (see
Fig. 3) is determined by the behavior of the orderlike

parameters h �qqi, � and �� together with the grand canoni-
cal potential as a function of temperature and chemical
potential. To draw the phase diagram we will use T0 ¼
270 MeV as given by pure gauge lattice calculations, a
choice that ensures the very important physical outcomes
of lattice calculations that chiral and deconfinement tran-
sitions coincide in the PNJL model..

We start our analysis in the limit T ¼ 0, where the first
order phase transition occurs at the same chemical poten-

tial for both cases I and II: � ¼ 383ð344Þ MeV for set
A (B). This is due to the fact that at T ¼ 0 all the integrals
are regularized with the cutoff�. As a matter of fact, in this
limit the Fermi functions in the gap equations become a
step function of the form �ð�� pFÞ where pF is the
hadronic matter Fermi momentum. So, the integration
occurs between pF and � for both cases.
From Fig. 3 we also see that, at � ¼ 0, the crossover

takes place for set A at T ¼ 235ð272Þ MeV for case I (II),
while for set B the crossover takes place at T ¼
229ð256Þ MeV for case I (II).
At nonzero chemical potential, as the temperature in-

creases, it is well know that the first order transition
persists up to the CEP. At the CEP the chiral transition
becomes of second order. For temperatures above the CEP
a smooth crossover takes place.
These general characteristics are qualitatively similar

for both cases, in the two sets of parameters, as it was
expected. The relevant point is the distance between the
CEP’s, in cases I and II, is bigger for set A than for set
B. This is due to fact that the CEP’s for set A are at a
higher temperature than for set B. As the temperature
increases, the high momentum quarks, that are taken into
account in case I (� ! 1), are more and more relevant
leading to a visible splitting of the lines of first order
phase transition and, consequently, to other location of
the CEP in the phase diagram. For set B this splitting is
smaller, once lower critical temperatures are observed. In
the chiral limit (m ¼ 0 and m� ¼ 0), the transition is of
second order at � ¼ 0 and, as � increases, the line of
second order phase transition will end in a first order line
at the TCP. The location of the tricritical points are also
included in Table III. Nevertheless, in this case, the TCP is
located at higher temperature than the CEP (see Fig. 3,

FIG. 2 (color online). Comparison of the scaled pressure difference (left panel) and the scaled quark number density (right panel), as
a function of temperature at finite chemical potential for sets A and B, with the lattice data taken from Ref. [46].
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right panel), and we already see a bigger shift between
them.

VI. NERNST PRINCIPLE AND ISENTROPIC
TRAJECTORIES

The isentropic lines play a very important role in the
understanding of thermodynamic properties of matter cre-
ated in relativistic heavy ion collisions. Most of the studies
on this topic have been done on lattice calculations for two
flavor QCD at finite � [37] but there are also studies using
different type of models [34,38,39]. Some model calcula-
tions predict that in a region around the CEP the properties
of matter are only slowly modified as the collision energy
is changed, as a consequence of the attractor character of
the CEP [9].

Our numerical results for the isentropic lines in the
ðT;�Þ-plane are shown in Fig. 4, where we have used set
A of parameters and both regularization procedures.

We start the discussion by analyzing the behavior of the
isentropic lines in the limit T ! 0. We point out that, as
already referred by other authors [34], in this limit:

(i) s ! 0, according to the third law of thermodynam-
ics; and

(ii) for s=	q¼ const, we have to insure that also 	q !
0.

However, the satisfaction of the condition (ii) is only
provided when � � Mvac. In spite of the general use of set
B in the literature of the PNJL model, only set A satisfies
this ansatz. We remember (Sec. II C) that with set Awe are,
at T ¼ 0, in the presence of droplets (states in mechanical
equilibrium with the vacuum state at P ¼ 0).
Consequently, even without reheating in the mixed

phase as verified in the ‘‘zigzag’’ shape of [37–40], all
isentropic trajectories directly terminate at the first order
transition line at T ¼ 0. So, for set A it is verified that s !
0 and 	q ! 0 in the limit T ! 0, as it should be.

In conclusion, our convenient choice of the model pa-
rameters allows a first order phase transition that is
stronger than in other treatments of the NJL (PNJL) model.
This choice is crucial to obtain important results: the
criterium of stability of the quark droplets [18,19] is ful-
filled, and, in addition, simple thermodynamic expecta-
tions in the limit T ! 0 are verified.
At T � 0, in the first order line, the behavior we find is

somewhat different from those claimed by other authors
[38,41] where a phenomena of focusing of trajectories
towards the CEP is observed. For case I (see Fig. 4, left
panel) we see that the isentropic lines with s=	q ¼ 1; . . . ; 4

come from the region of symmetry partially restored and
attain directly the phase transition, going along with the
phase transition as T decreases until it reaches T ¼ 0. The

FIG. 3 (color online). Phase diagrams for cases I and II in the chiral limit (boxes) or not (circles) using the parameters set A (left
panel) and B (right panel). The solid part of the curves denotes a first order transition, the dashed part to the second order transition and
the dotted line the crossover transition.

TABLE III. Location of the CEP and the TCP at the ðT;�Þ-plane for both sets of parameters and regularization procedures.

Parameter set Regularization procedure TCEP [MeV] �CEP [MeV] TTCP [MeV] (chiral limit) �TCP [MeV] (chiral limit)

Set A Case I: � ! 1 172.48 286.35 206.50 192.87

Case II: � ¼ const 169.11 321.32 207.66 270.80

Set B Case I: � ! 1 87.99 328.84 162.39 253.06

Case II: � ¼ const 87.71 329.51 163.06 268.05
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same behavior is found for case II when s=	q ¼ 1, 2 (see

Fig. 4, right panel). For case II, we also observe, in a small
range of s=	q around 3, a tendency to convergence of these

isentropic lines towards the CEP. These lines come from
the region of symmetry partially restored in the direction of
the crossover line. For smaller values of s=	q, the isen-

tropic lines turn about the CEP and then attain the first
order transition line. For larger values of s=	q the isen-

tropic trajectories approach the CEP by the region where
the chiral symmetry is still broken, and also attain the first
order transition line after bending toward the critical point.
As already pointed out in [34], this is a natural result in
these type of quark models with no change in the number
of degrees of freedom of the system in the two phases. As
the temperature decreases a first order phase transition
occurs, the latent heat increases and the formation of the
mixed phase is thermodynamically favored.

In the crossover region, for both cases, the behavior of
the isentropic lines is qualitatively similar to the one ob-
tained in lattice calculations [37] or in some models
[38,42,43]. On the other hand, the isentropic trajectories
in the phase diagram indicate that the slope of the trajec-
tories goes to large values for large T. We can also con-
clude that, in the PNJL model, the entropy and the baryon
number density are very sensitive to the regularization
procedure used [17,20], and this effect is also relevant for
the present situation.

VII. SUSCEPTIBILITIES AND CRITICAL
EXPONENTS

The grand canonical potential (or the pressure) contains
the relevant information on thermodynamic bulk properties

of a medium. Susceptibilities, being second order deriva-
tives of the pressure in both chemical potential and tem-
perature directions, are related to fluctuations that are
supposed to represent signatures of phase transitions of
strongly interacting matter. In particular, the quark number
susceptibilities play a role in the calculation of event-by-
event fluctuations of conserved quantities such as net
baryon number. Across the quark hadron phase transition
they are expected to become large, what can be interpreted
as an indication for a critical behavior. We also remember
the important role of the second derivative of the pressure
for second order points like the CEP.
In previous works [27,32], we have studied the CEP

within the restrictions imposed by the regularization in
case II. It is important to investigate if the type of regu-
larization plays a significant role in the critical properties
of physical observables, such as the baryon number sus-
ceptibility and the specific heat, and respective critical
exponents, in the vicinity of the CEP. The relevance of
these physical observables is due to the size of the critical
region around the CEP which can be found by calculating
the baryon number susceptibility, the specific heat and their
critical behaviors. The size of this critical region is impor-
tant for future searches of the CEP in heavy-ion collisions
[38].
In our calculations, we will use only the set A of pa-

rameters due to the advantages of this set as explained in
the previous sections. In Fig. 5 we plot the phase diagram
in a region around the CEP for both cases.
The way to estimate the critical region around the CEP is

to calculate the dimensionless ratio �q=�
free
q , where �free

q is

obtained taking the chiral limit m ¼ 0. Figure 5 shows a
contour plot for three fixed ratios (�q=�

free
q ¼ 2:0, 3.0, 5.0)

FIG. 4 (color online). Isentropic trajectories in the ðT;�Þ-plane for case I (left panel) and case II (right panel) using the parameter set
A. The following values of the entropy per baryon number have been considered: s=	q ¼ 1, 2, 3, 4, 5, 6, 8, 10, 15 (anticlockwise

direction).
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in the phase diagram around the CEP. We notice an elon-
gation, in the direction parallel to the first order transition
line, of the region where �q is enhanced, indicating that the

critical region is heavily stretched in that direction.
The elongation of the critical region in the ðT;�Þ-plane,

along the line of the phase transition (or the crossover), is
larger in case I (see for example �q=�

free
q ¼ 2:0 in Fig. 5).

It means that the divergence of the correlation length at the
CEP affects the phase diagram quite far from the CEP,
particularly in case I, and a careful analysis including
effects beyond the mean-field needs to be done [44].

We remember that one of the main effects of the
Polyakov loop is to shorten the temperature range where
the crossover occurs [23]. On the other hand, this behavior
is boosted by using� ! 1: at� ¼ 0 the crossover occurs
between about 180 MeV and 270 MeV, for case I, and
between about 210 MeV and 325 MeV, for case II. The
combination of both effects results in higher baryonic
susceptibilities even far from the CEP. This effect of the
Polyakov loop is driven by the fact that the one- and two-
quark Boltzmann factors are controlled by a factor propor-
tional to �: at small temperature � ’ 0 results in a sup-
pression of these contributions [see Eq. (5)] leading to a

partial restoration of the color symmetry. Indeed, the fact
that only the 3-quarks Boltzmann factors e3�Ep contribute
to the thermodynamical potential at low temperature, may
be interpreted as the production of a thermal bath contain-
ing only colorless 3-quarks contributions. When the tem-
perature increases, � goes quickly to 1 (this is faster in
case I due to the higher momentum quarks present in the
system) resulting in a (partial) restoration of the chiral
symmetry occurring in a shorter temperature range. The
crossover taking place in a smaller T range can be inter-
preted as a crossover transition closest to a second order
one, a feature that is more clear in case I than in case II.
This ‘‘faster’’ crossover may explain the elongation of the
critical region in case I, compared to case II, giving raise to
a greater correlation length even far from the CEP.
Now, we will investigate the behavior of �q and C in the

vicinity of the CEP and their critical exponents, for both
cases. The calculated critical exponents at the CEP and the
TCP, together with the universality/mean-field predictions,
are presented in Table IV and will be discussed in the
sequel.
In the left panel of Fig. 6 the baryon number suscepti-

bility is plotted as a function of � for three different
temperatures around the CEP in the context of case I.
The behavior is very similar in both cases. For T < TCEP,
the phase transition is first order and�q has a discontinuity;

for T ¼ TCEP, the slope of the baryon number density tends
to infinity at � ¼ �CEP and �q diverges; for T > TCEP, the

discontinuity of �q disappears at the transition line. A

similar behavior of �q is found for case II, as we can see

from the right panel of Fig. 6.
The behavior of the specific heat for both cases, as a

function of temperature for three different chemical poten-
tials around the CEP, is presented in Fig. 7. The behavior
found for C around the CEP is very similar to the behavior
of �q for both Cases as we can see from Fig. 7.

It is interesting to notice that the high momentum quarks
introduced in case I (� ! 1), and that are not taken into
account in case II, have no significant effect on both 
 and
�. However, we observe that the peak at the critical points
TCEP or �CEP is sharper in the PNJL model in case I (as it
can be expected from the analysis of the stretching of the
critical region done above).

FIG. 5 (color online). Phase diagram in the PNJL (case I and
case II) for the parameter set A. The size of the critical region
around the CEP is plotted for �q=�

free
q ¼ 2, 3, 5.

TABLE IV. The arrow ) ð"Þ indicates the path in the �ðTÞ-direction to the CEP/TCP for �<
�CEP (T < TTCP).

Quantity critical exponents/path Case I Case II Universality

�q 
=from leftð)Þ 0:66� 0:01 0:66� 0:01 2=3

0=from rightð(Þ 0:69� 0:01 0:69� 0:02 2=3
�q=from leftð!Þ 0:53� 0:02 0:51� 0:01 1=2

C �=from belowð*Þ 0:64� 0:01
�1 ¼ 0:58� 0:01

0:62� 0:02
�1 ¼ 0:52� 0:01

2=3
���

�0=from aboveð+Þ 0:68� 0:01 0:68� 0:01 2=3
�=from belowð"Þ 0:50� 0:01 0:47� 0:02 1=2
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To better understand the extreme behavior of �q and C

near the CEP, we will determine the critical exponents (in
our case 
 and � are the critical exponents of �q and C,

respectively). These critical exponents will be determined
by following two directions, temperature-like and
magnetic-field-like, in the ðT;�Þ-plane near the CEP, be-
cause, as pointed out in [45], the form of the divergence
depends on the route that is chosen to approach the CEP.

Starting with the baryon number susceptibility, for both
cases, if the path chosen is asymptotically parallel to the
first order transition line at the CEP, the divergence of �q

scales with an exponent �q. In the mean-field approxima-

tion it is expected to find �q ¼ 1 for this path. For direc-

tions not parallel to the tangent line, the divergence scales
as 
 ¼ 2=3. These values are responsible for the elongation

FIG. 6 (color online). Left panel: Baryon number susceptibility for case I as function of� for different temperatures around the CEP:
TCEP ¼ 172:48 MeV and T ¼ TCEP � 10 MeV. Right panel: Baryon number susceptibility for case II as function of � for different
temperatures around the CEP: TCEP ¼ 169:11 MeV and T ¼ TCEP � 10 MeV.

FIG. 7 (color online). Left panel: Specific heat for case I as a function of T for different values of � around the CEP: �CEP ¼
286:35 MeV and � ¼ �CEP � 10 MeV. Right panel: Specific heat for case II as a function of T for different values of � around the
CEP: �CEP ¼ 321:32 MeV and � ¼ �CEP � 10 MeV.
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of the critical region, �q being enhanced in the direction

parallel to the first order transition line (see Fig. 5).
To study the critical exponents for the baryon number

susceptibility [Eq. (18)] we will start with a path parallel to
the �-axis in the ðT;�Þ-plane, from lower � towards the
CEP ðTCEP; �CEPÞ. Using a linear logarithmic fit ln�q ¼
�
 lnj���CEPj þ c1, where the term c1 is independent
of �, we obtain 
 ¼ 0:66� 0:01, which is consistent with
the mean-field theory prediction, 
 ¼ 2=3. This value is
also similar to the value found in case II as we can see from
Table IV (see also Ref. [27]).

We also study the baryon number susceptibility from
higher � towards the critical �CEP for both cases. The
logarithmic fit used now is ln�q ¼ �
0 lnj���CEPj þ
c01. Our result for case I shows that 
0 ¼ 0:69� 0:01 � 
.
This means that the size of the region we observe is
approximately the same independently of the direction
we choose for the path parallel to the �-axis. Once again,
this value is similar to the critical exponent for case II and
is consistent with the mean-field theoretical prediction 
 ¼
2=3 (see the results presented in Table IV).

On the other hand, in the chiral limit (where the CEP
becomes a TCP), it is found that the critical exponent for
�q, denoted by �q, has the value �q ¼ 0:53 �0:02 (�q ¼
0:51 �0:01), for case I (II). Again, these results are in
agreement with the mean-field value (�q ¼ 1=2).

Let us pay attention to the specific heat around the CEP.
We can calculate the critical exponent using a path parallel
to the T-axis in the ðT;�Þ-plane from lower T towards the
CEP. We observe that, as already found in Ref. [27] for
case II, the slope of data points change for jT � TCEPj
around 0.3 MeV. So, for case I (II) we obtain the critical
exponents � ¼ 0:64� 0:01 (0:62� 0:02) and �1 ¼
0:58� 0:01 (0:52� 0:01). As pointed out in [10], this
change of the exponent can be interpreted as a cros-
sover of different universality classes, with the CEP being
affected by the TCP due to the small physical quark
masses.

The value of � in both cases is consistent with the one
suggested by universality arguments in [10]: it is expected
that �q and C should be essentially the same near the TCP

and the CEP which implies � ¼ 
 ¼ 2=3. In addition, if
we compare �1 for both cases, we conclude that �1 in
case I is closer to � than in case II. It seems that the high
momentum quarks allowed in case I affect the crossover of
different universality classes making �1 getting closer to �
which is already consistent with � ¼ 
 ¼ 2=3.

When the critical point is approached from above the
following exponents are obtained: �0 ¼ 0:68� 0:01
(0:68� 0:01) for case I (II).

Finally, concerning the behavior of the specific heat
around the TCP, we find as shown in Table IV, � ¼ 0:50�
0:01 for case I and � ¼ 0:47� 0:02 for case II. These
values are in agreement with the respective mean-field
value (� ¼ 1=2).

VIII. CONCLUSIONS

We have considered the PNJL model as one of the
prototype models of dynamical symmetry breaking of
QCD (both chiral and ‘‘color’’ symmetry) and investigated
the phase structure at finite T and �. Evaluating the ther-
modynamical potential we find the critical curves on the
ðT;�Þ-plane. Working out of the chiral limit, a CEP which
separates the first and the crossover line is found. First and
second derivatives of the thermodynamical potential are
also evaluated.
The critical phenomena related with the explicit break-

ing and partial restoration of Z3 and chiral symmetry are
analyzed. Two different sets of parameters have been used
with the emphasis on the parameter choice which is com-
patible with the formation of stable droplets at zero tem-
perature. The effects of two regularization procedures at
finite temperature, one that allows high momentum quark
states to be present (I) and the other not (II), have also been
discussed.
We have found that the presence of the Polyakov loop

provides a substantial enhancement of the critical tempera-
ture, bringing it to a better agreement with the most recent
results of lattice calculations. Another interesting effect of
the coupling of quarks to the Polyakov loop is that the
phase transition becomes steeper, showing a sharper peak
in the baryon number susceptibility and the specific heat.
This effect is reinforced when regularization I is used.
The observation of differential observables, like the

entropy and the heat capacity and its temperature and
density behavior, serve as important probes that, together
with lattice data, are important for the phenomenology of
heavy-ion collisions and cosmology. In both cases A and B,
as well as in both cutoff procedures, the gross structure of
the phase diagram expected for QCD is obtained. The
location of the CEP depends on the model parameters
and, in the chiral limit, a TCP is found according to
universality arguments.
Two important points of our model calculation concern

the choice of the model parameters and the regularization
procedure at finite temperature as already referred. We
conclude that the choice of the model parameters has
important consequences in order to obtain the correct
asymptotic low temperature behavior. In the zero tempera-
ture limit, the chemical potential approaches a finite value
that must satisfy to the condition �c <Mvac. Only the set
of parameters A insures this condition that allows us to
obtain both s ¼ 0 and 	q ¼ 0. The regularization proce-

dure is important for obtaining agreement with the asymp-
totic behavior above Tc.
Observables like � and C, which are obtained as deriva-

tives of the thermodynamical potential with respect to �
and T respectively, allow us to explore the effects of the
Polyakov loop on the thermodynamical properties. The
successful comparison with lattice results shows that the
model calculation provides a convenient tool to obtain
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information for systems from zero to nonzero chemical
potential which is of particular importance for the knowl-
edge of the equation of state of hot matter, relevant for the
upcoming LHC experiments at CERN, and for dense mat-
ter, relevant for the CBM one at FAIR.
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