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We address the problem of rationalizing the pattern of fermion masses and mixings by adding a non-

Abelian flavor symmetry in a grand unified framework. With this purpose, we include an A4 flavor

symmetry into a unified renormalizable supersymmetric grand unified theory SUð5Þ model. With the help

of the ‘‘type II seesaw’’ mechanism we are able to obtain the pattern of observed neutrino mixings in a

natural way, through the so-called tribimaximal matrix.
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I. INTRODUCTION

The experimental discovery of flavor oscillations of
neutrinos, with the consequence that their masses are
different from zero, is certainly a clear indication that there
is new physics beyond the content of the standard model
[1]. One of the most attractive and beautiful scenarios in
which we can set this information is represented by the
grand unification theories (GUT), that describes the merg-
ing of gauge couplings into a single one at a very high
energy (� 1016 GeV), as suggested by the running of the
gauge coupling constants. Inside a unification theory,
moreover, it is also possible to try to find an answer to
some important and unsolved questions in flavor physics:
the low energy data described in the quark sector by the
Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix as
well as the hierarchy between the quark masses. In the
leptonic sector the low energy information is far from
being as exhaustive as in the quark sector; one possibility
is to assume a particular form for the mixing matrix: the so-
called tribimaximalmatrix [2], which is consistent with our
information coming from neutrino oscillations on neutrino
mass splittings and mixing angles. The most acclaimed
possibility in order to explain the hierarchy between the
masses comes from the introduction of a continuous flavor
symmetry, as elegantly explained in [3–5], while the mix-
ing can be explained by introducing discrete symmetries.
For example, in [6–18] several attempts have been made to
face the flavor puzzle by introducing discrete flavor sym-
metries such as S3, S4, A4, T

0, and so on. Some attempts, as
in [19], have been done to embed the A4 flavor symmetry
into a large flavor symmetry in order to explain also the
hierarchy among the third and the other two generations; in
particular, the authors have shown that the discrete sym-
metry A4 can help us in solving both aspects of the flavor

problem: lepton-quark mixing hierarchy and family mass
hierarchy. The flavor symmetry A4, as shown, for example,
in [20,21], is very promising also in its extension to flavor
group compatible with SOð10Þ-like grand unification. For
example, by embedding A4 into a group like SUð3Þ �
Uð1Þ, as in [22], it is possible to explain both large neutrino
mixing and fermion mass hierarchy in SOð10Þ grand uni-
fied theory of flavor (GUTF). Considering as underlying
unification theory SUð5Þ instead of SOð10Þ, the situation
becomes very different: the standard model ordinary mat-
ter for each family is embedded in two distinct SUð5Þ
representations; this peculiarity makes the way in which
the matter content of the theory transforms under the action
of the A4 symmetry not obvious, allowing for different
combinations (see for instance [23,24]).
In this paper we introduce the flavor symmetry A4 in the

context of a unified SUð5Þ theory featuring a type II seesaw
mechanism for neutrino mass generation. Our starting
point is the model described in [25,26], which is a renor-
malizable model in which no matter fields besides the
standard model ones are introduced. To this model we
add two ingredients: the flavor symmetry, introduced in
order to produce tribimaximal mixing in the neutrino sec-
tor, and supersymmetry, which, as we shall see, makes the
needed vacuum alignment somehow more natural.

II. FIELD CONTENTAND SUð5Þ �A4 INVARIANCE

In order to clarify our notation we now open a small
window on the A4 proprieties, referring as an example to
[27] for a more detailed discussion. In particular, in this
work we use the basis where the A4 elements S and T act on
a 3 multiplet as

S ¼
�1 0 0
0 �1 0
0 0 1

0
@

1
A; T ¼

0 1 0
0 0 1
1 0 0

0
@

1
A: (1)

Given two triplets ða1; a2; a3Þ and ðb1; b2; b3Þ, three non-
equivalent singlets can be formed from the 3 � 3 compo-
sition:
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1 ¼ a1b1 þ a2b2 þ a3b3;

10 ¼ a1b1 þ!2a2b2 þ!a3b3;

100 ¼ a1b1 þ!a2b2 þ!2a3b3

(2)

while the two inequivalent triplets one can form are
fa2b3; a3b1; a1b2g and fa3b2; a1b3; a2b1g. Here as usual
! ¼ expð2�i=3Þ. From the decomposition of the direct
product 3 � 3 � 3 we have two different singlets, as fol-
lows:

ða2b3c1 þ a3b1c2 þ a1b2c3Þ;
ða3b2c1 þ a1b3c2 þ a2b1c3Þ:

(3)

We also introduce the 4 representation, which is really
simply a singlet added to a triplet; this is useful in order to
keep our notation compact. For instance the Higgs multi-
plet belonging to a 5 representation with respect to SUð5Þ
properties behaves as the direct sum 3 � 1 under A4:

5 H � 3 � 1 ! f5k¼1;2;3
H ; ~5Hg: (4)

We now give the SUð5Þ and A4 field properties we
choose in this work, for Higgs (H) and matter (T) repre-
sentations, as follows:

SUð5Þ 10T �5T �5H 5H 45H 45H 15H 15H 24H

A4 3 3 3 � 1 3 � 1 3 � 1 3 � 1 3 � 100 3 � 10 1

In the Higgs sector we will introduce 24H, �5H, 5H in
order to break spontaneously the gauge symmetry SUð5Þ
into the standard model one and subsequently into the

residual SUð3ÞC �Uð1Þem; moreover, 45H and 45H are
necessary in order to avoid the wrong prediction MT

D ¼
ME while 15H and 15H will generate the right path of
neutrino masses through the Higgs mechanism imple-
mented by the SUð2ÞL heavy scalar triplet contained in
the standard model decomposition of 15H.

The necessity to take into account the A4 assignments as
explained in the previous table is dictated by the observed
phenomenology of the masses. For instance, it is easy to
show that with the simpler choice of choosing 5H; �5H � 3

and 45H; 45H � 3, it is impossible to fit the measured
values for the fermion masses. Although the Higgs sector
of this model could seem rather cumbersome because of
the introduction of four dimensional reducible representa-
tions, we stress the fact that it rests the minimal way in
which we can preserve the predictivity of the A4 flavor
symmetry in the context of a renormalizable SUð5Þ model.

III. CHARGED FERMION MASS MATRICES

The relevant operators in the Yukawa sector that gen-
erate the charged fermion mass matrices are

W0 ¼ y110T �5T �5H þ y210T �5T45H þ y310T10T5H

þ y410T10T45H: (5)

As will be shown in Sec. V, in the flavor space �5H, 5H,

45H, 45H acquire their vacuum expectation value (VEV) in
the direction h1; 1; 1i. Under this condition, after sponta-
neous symmetry breaking the mass matrices obtained from
W0 through (5) are

Mf ¼
hf0 �f

1 �f
2

�f
2 hf0 �f

1

�f
1 �f

2 hf0

0
BBB@

1
CCCA ¼ ~U!M

diag
f

~Uy
!

where ~U! ¼ 1ffiffiffi
3

p
! !2 1

!2 ! 1

1 1 1

0
BB@

1
CCA; (6)

where we define:

hu0 ¼ 8~y3 ~v5 �u
1;2 ¼ 4v5ðy13 þ y23Þ�v45ðy14 � y24Þ

hd0 ¼ ~y1 ~v�5 þ 2~y2 ~v45 �d
1;2 ¼ 4v�5y

2;1
1 þ 2v45y

2;1
2

he0 ¼ ~y1 ~v�5 � 6~y2 ~v45 �e
1;2 ¼ 4v�5y

1;2
1 � 6v45y

1;2
2 (7)

where the VEVs of the singlets from 4 ¼ 3 � 1 are shown

with a tilde, yj¼1;2
i refers to the two independent parameters

from the singlets of 3 � 3 � 3, as in (3), written for the yi
Yukawa coupling in (5), while ~yi refers to the singlet from
3 � 3 � 1.

Here we notice that hf0’s, �
f
1’s, and �

f
2’s are independent

parameters. The masses are given by

mf
1 ¼ jhf0 þ �f

1!þ �f
2!

2j
mf

2 ¼ jhf0 þ �f
1!

2 þ �f
2!j mf

3 ¼ jhf0 þ �f
1 þ �f

2j
(8)

allowing a fit of experimental values as shown in [22].
As for mixing angles, since left up and down quarks

have the same mass matrix (6), the VCKM is unity in first
approximation. In order to produce the Cabibbo angle, we
now perturb the VEV directions by adding a small compo-
nent in the direction h0; 0; 1i. We obtain that the mass
matrices are perturbed by

�Mf ¼
0 �f1 0

�f2 0 0
0 0 0

0
B@

1
CA ) M

off diag
f ¼ ~Uy

!�Mf
~U!

¼
!�f1 þ!2�f2 �f1 þ �f2 !2�f1 þ!�f2
�f1 þ �f2 !2�f1 þ!�f2 !�f1 þ!2�f2

!2�f1 þ!�f2 !�f1 þ!2�f2 �f1 þ �f2

0
B@

1
CA:
(9)

The Cabibbo angle can then be generated at least in two
ways:
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(1) As explained in [22], such small perturbations, if

they are of order �5mf
3 (where � is the Cabibbo

angle), generate the Cabibbo angle in the quark
sector and are irrelevant in the lepton sector. The
crucial point is that such assumption has the con-
sequences that our operators give negligible effects
in the down and charged lepton sectors, since for the

down and charged leptons Mdiag
d;e þMoff diag

d;e remain

diagonal. On the contrary, for the up quarks we have
that the off-diagonal entry ð1; 2Þ cannot be ne-

glected: the matrixMdiag
u þMoff diag

u is diagonalized
by a rotation in the 12 plane with sin�12 ’ �. This
rotation produces the Cabibbo angle in the CKM.

(2) Another possibility is given by assuming that the
Cabibbo angle comes from a rotation in the down
sector. This can be the case if the perturbations of

the �5H and 45H, i.e., of order �
5mtop ’ �3mbottom,

are bigger than the ones of the 5H and 45H, i.e., of
order �6mtop. Such correction also generates a small

perturbation to the tribimaximal lepton mixing ma-
trix of order of the Cabibbo angle. In particular, if
the dominant contribution comes from the �5H then
the tribimaximal lepton mixing matrix is multiplied

on the left byUy
CKM and the net result is the presence

of a nontrivial quark-lepton complementarity fully
compatible with the experimental data and a predic-
tion for the �13 lepton angle [28]. On the other side,

if the dominant contribution comes from the 45H
there is a Clebsch-Gordan coefficient between the
quark and lepton mixing corrections.

IV. NEUTRINO MASS MATRIX AND LEPTON
MIXING ANGLES

The relevant operators that generate the neutrino mass
matrix are

W1 ¼ ��5T �5T15H þm�15H15H: (10)

We assume that the triplet from 15H acquires a small VEV
in the direction h0; 0; 1i, while we use again the tilde for the
VEVof the singlet. Under this condition the neutrino mass
matrix obtained from W1 is given by

M� ¼
�~v15 �v15 0

�v15 !�~v15 0

0 0 !2�~v15

0
BB@

1
CCA ¼ V?Mdiag

� Vy

where V ¼
!ffiffi
2

p 0 � i!ffiffi
2

p

!2ffiffi
2

p 0 i!2ffiffi
2

p

0 1 0

0
BBB@

1
CCCA (11)

and the lepton tribimaximal mixing arises:

Vleptons ¼ ~Uy
! � V ¼

2ffiffi
6

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BB@

1
CCA: (12)

In (11) � is the common parameter for the two singlets
from 3 � 3 � 3, after considering that the demand for the
neutrino mass matrix to be symmetric forces in (3) the
relation �1 ¼ �2; � is the parameter from the singlet of
3 � 3 � 10 in (10). The neutrino masses are given by
fj!2�~v15þ�v15j; j!2�~v15j; j�!2�~v15þ�v15jg. Since
phenomenologically we have �m2

12 > 0 we obtain
j��v15 ~v15j< 0 which implies �m2

13 > 0, i.e., a normal

hierarchy; so as a consequence the inverted hierarchy is
completely ruled out in this model because of the same
underlying structure imposed by the A4 symmetry.
Finally we predict the absolute neutrino mass value and

the parameter jmeej relevant for the future experiments in
neutrinoless double beta decay, i.e.,

m2 � 1

2
ffiffiffi
2

p �m2
atm þ �m2

solffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm � �m2
sol

q ’ 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm

q
’ 0:02 eV;

(13)

and

jmeej � 2m1 þm2 � 3

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm

q
’ 0:05 eV: (14)

V. MINIMIZATION OF THE POTENTIAL

The potential V is written in terms of the superpotential
Wð	iÞ, which is an analytical function of the scalar fields
	i, in the following way:

V ¼ X
i

��������@W

@	i

��������2þVD terms þ Vsoft: (15)

Here we are interested in the SUð5Þ and A4 breaking that
takes place at scales of the order of the GUT scale; we can
therefore neglect supersymmetry breaking terms of the
order of the TeV scale, described by Vsoft: the latter play
a crucial role in electroweak symmetry breaking, that we
do not discuss. In the following we minimize the first term
in (15), neglecting also D terms: minimization then
amounts to imposing @W

@	i
¼ 0 8 i. After imposing this,

we show that there is a finite region in parameter space
where VD terms ¼ 0, justifying a posteriori our assumption.
In order to obtain a correct SUð5Þ ! SUð3Þ � SUð2Þ �

Uð1Þ symmetry breaking we impose the following struc-
ture with respect to the SUð5Þ symmetry:

h45Hii5i ¼ v45; i ¼ 1; 2; 3; h45Hi454 ¼ �3v45;

(16)
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h45Hiii5 ¼ v45; i ¼ 1; 2; 3; h45Hi445 ¼ �3v45;

(17)

h24Hi

 ¼ diagvs
24ð2vs

24; 2v
s
24; 2v

s
24;�3vs

24 þ vt
24;

� 3vs
24 � vt

24Þ; (18)

h5Hi
 ¼ v5ð0; 0; 0; 0; 1ÞT; h�5Hi
 ¼ v�5ð0; 0; 0; 0; 1ÞT:
(19)

Moreover we assume that in flavor space the triplet from
15H acquires a small VEV in the direction ð0; 0; 1Þ.
Let us now come to potential minimization. The renor-

malizable Higgs superoperators allowed under supersym-
metric SUð5Þ � A4 invariance are

W2 ¼ m�24H24H þ ��24H24H24H þm5
�5kH5

k
H þm�15

k
H15

k
H þm4545

k
H45

k
H þ ~m5

~�5H~5H þ ~m�
f15Hf15H þ ~m45

f45Hf45H;
(20a)

W3 ¼ �H
�5kH24H5

k
H þ cH �5

k
H24H45

k
H þ bH45

k
H24H5

k
H þ aH45

k
H45

k
H24H þ ~�H

~�5H24H~5H þ ~cH
~�5H24Hf45H

þ ~bH
f45H24H~5H þ ~aH

f45Hf45H24H; (20b)

W4 ¼ h115
k
H24H15

k
H þ hlmn

2 15lH5
m
H5

n
H þ hlmn

3 15lH
�5mH

�5nH þ hlmn
4 15lH45

m
H45

n
H þ hlmn

5 15lH45
m
H45

n
H þ ~h1

f15H24Hf15H
þ ~h2

f15Hð51H51H þ!252H5
2
H þ!53H5

3
HÞ þ ~h0215

k
H5

k
H
e5H þ ~h3f15Hð�51H �51H þ!�52H

�52H þ!2 �53H
�53HÞ þ ~h0315kH �5kH

~�5H

þ ~h4f15Hð451H451H þ!452H45
2
H þ!2453H45

3
HÞ þ ~h0415kH

f45H45kH þ ~h5
f15Hð451H451H þ!2452H45

2
H þ!453H45

3
HÞ

þ ~h0515
k
H
f45H45kH; (20c)

where �, �, aH, bH, and cH and the y’s, �’s, m’s, and h’s
are the coupling constants of the model. The invariant
combinations from 3 � 3 � 3, e.g., as abbreviated in
hlmn
2 15lH5

m
H5

n
H, have to be understood following (3).

We now impose @W
@	i

¼ 08 i, the superpotentialW being

given by the sum of the terms (20a) and (20c). The first
equations we discuss are the ones obtained by imposing

@W=@45kH ¼ @W=@45kH ¼ 0:

vk
45
A ¼ �cHv

s
24v

k
�5
; (21a)

3vk
45
B ¼ � cH

2
ð�3vs

24 þ vt
24Þvk

�5
; (21b)

vk
45A ¼ �bHv

s
24v

k
5; (21c)

3vk
45B ¼ �bH

2
ð�3vs

24 þ vt
24Þvk

5; (21d)

where

A 	 m45 þ vs
24

�
2a1H þ a2H

2

�
þ vt

24

a2H
2
; (22a)

B 	 �m45 þ 3vs
24ða1H � a2HÞ � vt

24a
1
H: (22b)

Equations (21) imply that v5ðv�5Þ is aligned with v45ðv45Þ
in flavor space.

Then, from @W=@f15H ¼ @W=@f15H ¼ 0 we obtain:

12~h4½ðv1
45
Þ2 þ!ðv2

45
Þ2 þ!2ðv3

45
Þ2


þ ~h3½ðv1
�5
Þ2 þ!ðv2

�5
Þ2 þ!2ðv3

�5
Þ2
 ¼ 0 (23a)

12~h5½ðv1
45Þ2 þ!ðv2

45Þ2 þ!2ðv3
45Þ2


þ ~h2½ðv1
5Þ2 þ!ðv2

5Þ2 þ!2ðv3
5Þ2
 ¼ 0: (23b)

For generic values of the superpotential parameters ~hi,
these equations are identically satisfied (recall that ! ¼
exp½2�i3 
) if v1

5 ¼ v2
5 ¼ v3

5 and the same holds for vi
45, v

i
45
,

vi
�5
: this realizes the desired vacuum alignment since all

triplets VEVs must be proportional to the direction ð1; 1; 1Þ
in flavor space.
Let us now consider the remaining equations, with the

purpose of showing that a nontrivial solution indeed exists,
provided certain conditions are fulfilled by the parameters
of the superpotential.
(i) From @W=@5kH ¼ 0 and @W=@�5kH ¼ 0 we obtain:

vk
5
 ¼ 3cHv

k
45ð�5vs

24 þ vt
24Þ; (24a)

vk
�5

 ¼ 3bHv

k
45
ð�5vs

24 þ vt
24Þ; (24b)
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(ii) from @W=@f45H ¼ 0 and @W=@f45H ¼ 0:

~v45
~A ¼ �~cHv

s
24 ~v�5; (25a)

3~v45
~B ¼ � ~cH

2
ð�3vs

24 þ vt
24Þ~v�5; (25b)

~v45
~A ¼ �~bHv

s
24v5; (25c)

3~v45
~B ¼ �

~bH
2
ð�3vs

24 þ vt
24Þ~v5; (25d)

(iii) from @W=@~5H ¼ 0 and @W=@~�5H ¼ 0:

~v5 ~
 ¼ 3~cH ~v45ð�5vs
24 þ vt

24Þ; (26a)

~v�5 ~
 ¼ 3~bH ~v45ð�5vs
24 þ vt

24Þ; (26b)

(iv) from @W=@15kH ¼ 0 and @W=@15kH ¼ 0 for every
l � m � k we obtain:

12ðh14 þ h24Þvl
45
vm
45
þ 12~h04 ~v45v

k
45
þ ðh13 þ h23Þvl

�5
vm
�5

þ ~h03 ~v�5v
k
�5
¼ 0; (27a)

12ðh15 þ h25Þvl
45v

m
45 þ 12~h05 ~v45v

k
45 þ ðh12 þ h22Þvl

5v
m
5

þ ~h02 ~v5v
k
5 ¼ 0; (27b)

(v) from @W=@24H ¼ 0:

2vs
24�1 þ

X3
k¼1

½ð2a1H � a2HÞvk
45
vk
45 þ bHv

k
45
vk
5

þ cHv
k
45v

k
�5

 þ ð2~a1H � ~a2HÞ~v45

~v45 þ ~bH ~v45
~v5

þ ~cH ~v45 ~v�5 ¼ 0 (28)

ð�3vs
24 þ vt

24Þ�2 þ 3

�X3
k¼1

½3ð2a1H � a2HÞvk
45
vk
45

� bHv
k
45
vk
5 � cHv

k
45v

k
�5

 þ 3ð2~a1H � ~a2HÞ~v45 ~v45

� ~bH ~v45
~v5 � ~cH ~v45 ~v�5

�
¼ 0

ð�3vs
24 � vt

24Þ�3 þ
X3
k¼1

½�Hv
k
�5
vk
5 � 12a2Hv

k
45
vk
45


þ ~�H ~v�5 ~v5 � 12~a2H ~v45 ~v45 ¼ 0 (29)

ð�3vs
24 � vt

24Þ�3 þ
X3
k¼1

½�Hv
k
�5
vk
5 � 12a2Hv

k
45
vk
45


þ ~�H ~v�5 ~v5 � 12~a2H ~v45 ~v45 ¼ 0; (30)

where we have defined the following combinations:


 	 m5 � �Hð3vs
24 þ vt

24Þ; (31a)

�1 	 ð2m� þ 6��v
s
24Þ; (31b)

�2 	 ½2m� þ 3��ð�3vs
24 þ vt

24Þ
; (31c)

�3 	 ½2m� þ 3��ð�3vs
24 � vt

24Þ
; (31d)

with similar relations for ~A, ~B [see Eqs. (22)] and ~
,
obtained considering the substitutions of the ‘‘nontilded’’
parameters with the ‘‘tilded’’ ones.
Comparing the first equation in (21) with the second one,

as well as the third with the fourth, and performing the
same analysis with (25), we obtain the relations:

�
6Bvs

24 ¼ Að�3vs
24 þ vt

24Þ
6 ~Bvs

24 ¼ ~Að�3vs
24 þ vt

24Þ
! B

A
¼ ~B

~A
; (32)

from (21) and (24) we have, instead:

� 3bHcHvs
24ð�5vs

24 þ vt
24Þ ¼ �
A

3~bH~cHv
s
24ð�5vs

24 þ vt
24Þ ¼ �~
 ~A

! 
A

bHcH
¼ ~
 ~A

~bH~cH
;

(33)

it is possible, at this point, to use the system of (32) and
(33) in order to obtain vs;t

24 as functions of the parameters in
the superpotential. The allowed solutions are

vt
24 ¼

3�� ffiffiffiffiffiffiffi
2’

p
4�

; vs
24 ¼

�� ffiffiffiffiffiffiffi
2’

p
12�

; (34)

where

� 	 ð2a1H � a2HÞm5bHcH þ ð2a1H � a2HÞ2m5�H; (35a)

� 	 ½bHcH þ �Hð2a1H � a2HÞ
2; (35b)

’ 	 m5�½3m45bHcH þ ð2a1H � a2HÞ
� ð3m45�H þm5ða1H þ a2HÞÞ
: (35c)

From (27) we obtain:

~v5 ¼ �
~A

A

�
12ðh15 þ h25ÞðbHvs

24Þ2 þ A2ðh12 þ h22Þ
12~h05bH ~bHðvs

24Þ2 þ ~h02A ~A

�
v5

	 �
~A

A
�1v5; (36a)

~v�5 ¼ �
~A

A

�
12ðh14 þ h24ÞðcHvs

24Þ2 þ A2ðh13 þ h23Þ
12~h04cH~cHðvs

24Þ2 þ ~h03A ~A

�
v�5

	 �
~A

A
�2v�5 (36b)

and

~v45 ¼ �
~bHv

s
24

A
�1v5; (37a)

~v45 ¼ � ~cHv
s
24

A
�2v�5: (37b)
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These relations allow us to express v45, ~v45, and ~v5 as
functions of v5, as well as v45, ~v45, and ~v�5 as functions of

v�5. Considering the relations obtained in (36) and (37), we
can rewrite the three equations from (28)–(30) as three
compatible relations that allow us to write the product v5v�5

as a function of the parameters of the superpotential.
We now show that it is possible to choose the (super)

potential parameters in such a way that the D term’s con-
tributions appearing in (15) are zero. For a supersymmetric
gauge theory the D terms can be written as

1

2

X
G

X



X
i;j

g2Gð	y
i T



G	iÞð	y

j T


G	jÞ; (38)

where we take into account that, for the minimal super-
symmetric standard model, G ¼ SUð3ÞC; SUð2ÞL; Uð1ÞY ,
with different couplings gG and generators TG.

Let us first consider contributions for 5H; �5H represen-
tations. The following decomposition holds:

5H ¼ ð3; 1;�1=3Þ � ð1; 2; 1=2Þ;
�5H ¼ ð�3; 1; 1=3Þ � ð1; �2;�1=2Þ:

(39)

Since we only consider contributions to D terms coming
from the VEVs h5Hi; h�5Hi, only the SUð2Þ �Uð1Þ doublet
in (39) contributes. Moreover, the off-diagonal SUð2Þ gen-
erators T1; T2 also give zero contribution, so we need only
to consider the effect of T3 and the hypercharge Y. Also
taking into account that in flavor space the VEVs have the
structure h5H; �5Hi ¼ v5;�5ð1; 1; 1Þ, a straightforward calcu-

lation gives:

hj5yHT

5 5HjSUð2ÞL þ j�5yHT


�5
�5HjSUð2ÞLi

¼ 3

2
ð�jv5j2 þ jv�5j2Þ þ

1

2
ð�j~v5j2 þ j~v�5j2Þ (40)

while the Uð1Þ contribution reads:

hj5yHT

5 5HjUð1ÞY þ j�5yHT


�5
�5HjUð1ÞY i

¼ 3

2
ðjv5j2 � jv�5j2Þ þ

1

2
ðj~v5j2 � j~v�5j2Þ: (41)

Similar considerations hold for the 45H; 45H representa-
tions, decomposed as

45 H ¼ ð8; 2; 1=2Þ � ð�6; 1;�1=3Þ � ð3; 3;�1=3Þ
� ð�3; 2;�7=6Þ � ð3; 1;�1=3Þ � ð�3; 1; 4=3Þ
� ð1; 2; 1=2Þ (42)

and for which only the doublet component contributes. The
24H instead

24H ¼ ð8; 1; 0Þ � ð1; 3; 0Þ � ð3; 2;�5=6Þ � ð�3; �2; 5=6Þ
� ð1; 1; 0Þ (43)

acquires a nonzero VEV along the ð1; 1; 0Þ component,
which is an isospin singlet with zero hypercharge and

therefore does not contribute to D terms. Overall,
D terms can be written as

g2 þg02

2

��
3

2
ð�jv5j2 þjv�5j2Þþ

1

2
ð�j~v5j2 þj~v�5j2Þ

þ 3

2
ð�jv45j2 þjv45j2Þþ

1

2
ð�j~v45j2 þj~v45j2Þ

��
2
: (44)

Since all VEVs appearing in (44) are expressed as
functions of v5 and v�5 through Eqs. (21), (36), and (37),
imposing vanishing D terms implies:

jv5j2
�
3

2
þ 1

2

�������� ~A

A
�2

��������2þ 3

2

��������cHA v2
24

��������2þ 1

2

�������� ~cH
A

�2

��������2
�

¼ jv�5j2
�
3

2
þ 1

2

�������� ~A

A
�1

��������2þ 3

2

��������bHA v2
24

��������2þ 1

2

��������
~bH
A

�1

��������2
�
:

(45)

So, while the minimization conditions discussed above
fix the value of the product v5v�5, requiring vanishing
D terms adds Eq. (45) and fixes the value of v5 and v�5

(and therefore of all the remaining VEVs) as functions of
the potential parameters.
As a conclusion we have that vacuum alignment in

flavor space vi / ð1; 1; 1Þ, that allows us to obtain the
correct phenomenology in the context of the considered
model, can be obtained in a finite region of the parameter
space of the superpotential, under the condition that the
triplet from the 15H acquires a VEV in the direction
ð0; 0; 1), and that this VEV can be neglected in comparison
with the other scales of the model.

VI. CONCLUSIONS

In this paper we have achieved the possibility to repro-
duce the nice features of the A4 group, with regard to the
mixing of leptons, inside a renormalizable SUð5Þ theory.
Even if the GUT scale is very close to the Planck scale, in
fact, we think that renormalizability has to be a fundamen-
tal characteristic of the considered unification theory, in
order to avoid the presence of higher dimensional operators
as fundamental blocks in the construction of the mass
matrices and to improve the predictivity of the model.
In our model the neutrino mass matrix comes from the

presence of a heavy SUð2ÞL scalar triplet embedded into
the 15H representation of SUð5Þ, while in order to obtain
the correct phenomenology at GUT scale we need to
introduce an extended Higgs sector, as described in
Sec. II where the presence of the four dimensional reduc-
ible representations of A4 is claimed. As expected [14,29]
we are not able to reproduce with only the aid of A4

symmetry the hierarchy between the masses; on the con-
trary, the mixing angles in the CKM matrix and in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, the
latter being described by the tribimaximal mixing, are
reproduced in a very clear way. With respect to our pre-

CIAFALONI et al. PHYSICAL REVIEW D 81, 016004 (2010)

016004-6



vious work [24], where a combination of type I and type III
seesaw mechanisms was considered for generating neu-
trino masses, the model considered here with a type II
mechanism constitutes an improvement, since under the
assumption that 15H acquires a VEV in the direction
ð0; 0; 1Þ, the alignment of the remaining triplets vi /
ð1; 1; 1Þ is obtained in a natural way in a finite region of
the parameter space of the superpotential.
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