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We discuss general on-shell couplings of a scalar with two Z bosons using an operator analysis. In

addition to the operator that originated from the Higgs mechanism, two dimension-five operators, one CP

even and one CP odd, are generated only at the loop level. Simple formulas are derived for the differential

decay distributions when the Z pair subsequently decays into four leptons by computing the helicity

amplitudes, from which it is shown the CP-odd operator merely induces a phase shift in the azimuthal

angular distribution between the two decay planes of the Z bosons. We also investigate new physics

scenarios giving rise to loop-induced decays of a scalar into the ZZ pair, and argue that the total decay

width of such a scalar would be an order-of-magnitude smaller than that of a Higgs boson, should such

decays be observed in the early running of the LHC. Therefore, the total decay width alone is a strong

indicator of the Higgs nature, or the lack thereof, of a scalar resonance in ZZ final states. In addition, we

study the possibility of using the azimuthal angular distribution to disentangle effects among all three

operators.

DOI: 10.1103/PhysRevD.81.015010 PACS numbers: 14.70.Pw, 12.60.Cn

I. INTRODUCTION

In the standard model (SM), the electroweak gauge
bosons obtain their masses through the Higgs mechanism,
which postulates the existence of a scalar particle whose
vacuum expectation value (VEV) breaks the electroweak
SUð2ÞL �Uð1ÞY symmetry down to Uð1Þem (where ‘‘em’’
refers to electromagnetism). If the scalar, the Higgs boson,
is a SUð2ÞL doublet denoted by H ¼ ðhþ; hÞT , then its
kinetic term

jD�Hj2 ¼
��������
�
@� � ig

�a

2
Wa

� � ig0
1

2
B�

�
H

��������
2

(1)

contains mass terms for electroweak gauge bosons after the

neutral component of the Higgs doublet gets a VEV, hHi ¼
ð0; vÞT= ffiffiffi

2
p

, where g and g0 are the gauge couplings for the
SUð2ÞL and Uð1ÞY , respectively, and �a are the Pauli
matrices. Using the mass eigenbasis

W�
� ¼ 1ffiffiffi

2
p ðW1

� � iW2
�Þ; Z� ¼ gW3

� � g0B�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ;

A� ¼ g0W3
� þ gB�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ;

(2)

one finds from Eq. (1) the following masses:

mW ¼ 1
2gv; mZ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
v; mA ¼ 0: (3)

Furthermore, there are also three-point and four-point cou-
plings from the Higgs kinetic term derived by replacing
mV ! mVð1þ h=vÞ in the gauge boson mass term:

�
1þ h

v

�
2
m2

VV�V
�; (4)

where V ¼ W, Z. The form of the hVV coupling is com-
pletely determined by the electroweak gauge invariance to
be

� 2i
m2

V

v
g��: (5)

Therefore, measurements of the three-point vertex in
Eq. (5) will be a striking confirmation of the Higgs
mechanism.
Experimentally, the hVV vertex plays an important role

in discovering the Higgs boson at the Large Hadron
Collider (LHC). For a Higgs mass above 150 GeV or so,
the branching ratio is dominated by decays into WW and
ZZ [1]. In particular, h ! ZZ ! 4‘ is the gold-plated
mode for the discovery of a moderately heavy ( *
180 GeV) Higgs boson, which is a very clean signature
with relatively small backgrounds. The excellent energy
resolution of the reconstructed electrons and muons leads
to a clear 4-lepton invariant mass peak, which allows for
precise measurements of the mass and width of the Higgs
boson [2].
Given that so far all data from collider experiments

agree with predictions of the SM quite well, there are
very few experimental hints on what could (and could
not) be seen at the LHC. Therefore, if a new scalar reso-
nance is observed in the WW and ZZ final states, it is
perhaps prudent to proceed without presuming the discov-
ery of a Higgs boson whose VEV gives masses to the W
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and Z bosons. Only until after one could verify the decay
indeed occurs through the three-point coupling in Eq. (5),
can one gain some confidence in the Higgs mechanism as
the origin of electroweak symmetry breaking.

In this work we study the physics giving rise to decays of
a scalar into two Z bosons, with an emphasis on probing the
Higgs nature of the scalar. Such a final state is interesting in
its own right because of the high degree of symmetry in
two identical spin-1 particles. Early studies of such sys-
tems resulted in the Landau-Yang theorem, which forbids
decays of a spin-1 particle into two photons [3]. Recently
similar arguments to the Landau-Yang theorem have been
extended to decays of a massive spin-1 particle, the Z0
boson, into two Z bosons [4]. There it was discovered that
the azimuthal angle between the two decay planes of the Z
is a very useful observable in discerning different interac-
tions of the Z0 with the Z bosons.

Here we consider the production of a scalar S in the
gluon fusion channel, which is the dominant production
mechanism of a Higgs boson at the LHC [1], and its
subsequent decays into two Z bosons. We do not assume
the scalar S plays the role of the Higgs boson in the Higgs
mechanism. In particular, we point out non–Higgs-like
couplings are induced only at the loop level, and inves-
tigate in detail implications on the underlying new physics.
Since we presume the scalar S and the Z bosons are all
produced on shell, implying mS � 2mZ, our analysis is
different and complementary to studies on anomalous
Higgs couplings in the vector boson fusion production,
where the vector bosons are off shell [5,6].1 (Measure-
ments of anomalous Higgs couplings at the linear collider
have been studied in [7].) Differential distributions of a
scalar decaying into ZZ ! 4‘ in the general case have
been computed in Refs. [8,9]. However, applying the sym-
metry argument as in Refs. [3,4] would allow us to simplify
the decay distributions dramatically, making transparent
the usefulness of the aforementioned azimuthal angle. We
also argue that the total width of a scalar decaying to ZZ
through loop-induced effects should be much smaller than
that of a Higgs-like scalar, if the loop-induced decays
should be observed at the LHC in the early running.
Therefore measurements on the total width alone is a
smoking gun signal for the Higgs nature of the scalar
resonance.

This paper is organized as follows: in the next section we
compute the differential distribution of the decay of a
scalar into ZZ ! 4‘ using the helicity amplitudes method,
followed by a discussion on the possible new physics
giving rise to loop-induced couplings. In Sec. IV we per-
form simulations on the total decay width measurements as
well as azimuthal angular distributions between the two

decay planes of the Z boson. Then we conclude in Sec. V.
We also provide two appendices, one on a toy model in
which the loop-induced coupling is mediated by the heavy
W 0-boson loop and the other on the Lorentz-invariant
construction of the aforementioned azimuthal angle.

II. HELICITYAMPLITUDES FOR
S ! Zð�1; k1ÞZð�2; k2Þ ! ð‘1 �‘1Þð‘2 �‘2Þ

We use the notation ð�i; kiÞ, i ¼ 1, 2, to denote the
helicity state and momentum of the two Z bosons in the
laboratory frame. Assuming all three particles are on shell,
the possible helicity states ��1�2 of the Z pair are deter-
mined by conservation of angular momentum to be �þþ,
���, and �00, from which we see the parity-even combi-
nations are�þþ þ��� and�00 while the parity-odd one
is�þþ ����. In terms of effective Lagrangian, the three
helicity amplitudes are described by the following three
operators:

Leff ¼ 1

2
mSS

�
c1Z

�Z� þ 1

2

c2
m2

S

Z��Z��

þ 1

4

c3
m2

S

�����Z
��Z��

�
; (6)

where Z�� ¼ @�Z� � @�Z� is the field strength, and ci,

i ¼ 1, 2, 3 are dimensionless constants. A fourth operator,
Z��ðZ�@�S� Z�@�SÞ, is related to the c1 and c2 terms

upon the equation of motion. The tensor structure of the

decay amplitude of S ! Z1ðk�1 Þ þ Z2ðk�2 Þ is

��1 �
�
2M�� ¼ mS�

�
1 �

�
2

�
c1g�� � c2

m2
S

½g��ðk1 � k2Þ

� ðk1Þ�ðk2Þ�� þ c3
m2

S

���	
k
	
1k



2

�
; (7)

where ��1 and ��2 are the polarization tensors of Z1 and Z2,
respectively. Terms in Eq. (7) proportional to c2 and c3 are
the so-called anomalous Higgs couplings.
Following the method and convention in Ref. [4], we

calculate the helicity amplitudes M�1�2
:

M�� ¼ mS

2

�
2c1 � c2

�
1� 2m2

Z

m2
S

�
� ic3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Z

m2
S

s �
;

(8)

M 00 ¼ mS

�
c1

�
1� m2

S

2m2
Z

�
þ c2

m2
Z

m2
S

�
: (9)

Notice that M00 is real while the amplitudes M�� are
complex in the presence nonzero c3. Therefore, we can
parametrize the three helicity amplitudes in terms of two
real numbers, MT and ML, and one phase 
:

Mþþ ¼MTe
i
; M�� ¼MTe

�i
; M00 ¼ML;

(10)

1It is worth pointing out that at the LHC the production rate in
the gluon fusion channel is an order-of-magnitude larger than the
vector fusion production through out a wide range of Higgs
mass.
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where

MT ¼ mS

2

��
2c1 � c2

�
1� 2m2

Z

m2
S

��
2 þ c23

�
1� 4m2

Z

m2
S

��
1=2

;

(11)


 ¼ arctan
c3ð1� 4m2

Z=m
2
SÞ1=2

2c1 � c2ð1� 2m2
Z=m

2
SÞ
: (12)

When the two Z bosons further decay into ð‘1 �‘1Þð‘2 �‘2Þ, the
phase 
 enters into the differential distribution in a simple
way. To see this, recall that the angular distribution of the

decay Zi ! ‘i �‘i in the rest frame of Zi has the dependence
eimi�i , where mi ¼ 0,�1 is the spin projection along the z
axis and �i is the azimuthal angle. Since only the relative
angle � is physical we set �1 ¼ 0 and �2 ¼ �. (See
Fig. 1.) From Eq. (10) we see 
 only enters as a phase
shift in � ! �þ 
. Furthermore, the angular dependence
of the differential decay rate is schematically

d�

�d�
� ja1 þ a2e

ið�þ
Þ þ a3e
�ið�þ
Þj2

� b1 þ b2 cosð�þ 
Þ þ b3 cosð2�þ 2
Þ: (13)

For a Z0 boson decaying into the ZZ pair, the cos2� term is
absent in Eq. (13) and a similar phase shift 
0 enters as
� ! �þ 2
0 [4].

Using gL and gR to denote the coupling of the Z boson to
the left-handed and right-handed leptons, respectively, we

arrive at the differential distribution of S ! Z1Z2 !
ð‘1 �‘1Þð‘2 �‘2Þ following the method of helicity amplitudes
[10]:

d�

�d cos�1dcos�2d�

¼ 1

N

�
1

2
sin2�1sin

2�2 cosð2�þ 2
Þ þML

MT

�
1

2
sin2�1 sin2�2

þ 2

�
g2R � g2L
g2R þ g2L

�
2
sin�1 sin�2

�
cosð�þ
Þ

þM2
L

M2
T

sin2�1sin
2�2 þ 1

2
ð1þ cos2�1Þð1þ cos2�2Þ

þ 2

�
g2R � g2L
g2R þ g2L

�
2
cos�1 cos�2

�
; (14)

where the definition of �1, �2, and � are given in Fig. 1.
Integrating over the polar angles, we get the expression

d�

�d�
¼ 1

N

�
8

9
cosð2�þ 2
Þ þ 2

2

ML

MT

�
g2R � g2L
g2R þ g2L

�
2

� cosð�þ 
Þ þ 16

9

�
M2

L

M2
T

þ 2

��
: (15)

The normalization factor is given by integrating the above
expression,

N ¼ 32

9

�
M2

L

M2
T

þ 2

�
: (16)

Let us consider turning on ci one at a time:
(i) c1 � 0 and c2 ¼ c3 ¼ 0:

ML

MT

��������c1�0
¼ 1� m2

S

2m2
Z

and 
 ¼ 0: (17)

This is the case when S plays the role of the Higgs
boson in the Higgs mechanism. Since we assume
mS � 2mZ for on-shell production, we see
jML=MTjc1�0 � 1 and the longitudinal component

of the Z dominates over the transverse components
in the decay, especially in the limit of large mS.

(ii) c2 � 0 and c1 ¼ c3 ¼ 0:

ML

MT

��������c2�0
¼ �1

1�m2
S=ð2m2

ZÞ
¼ �

�
ML

MT

��������c1�0

��1
and 
 ¼ 0: (18)

In this case jML=MTjc2�0 < 1 and the transverse

polarization of the Z dominates in the decay.
(iii) c3 � 0 and c1 ¼ c2 ¼ 0:

ML

MT

��������c3�0
¼ 0 and 
 ¼ 

2
: (19)

This is a particularly simple case, as the normalized
differential distribution in Eq. (15) reduces to

d�

�d�
¼ 1

2

�
1� 1

4
cos2�

�
: (20)

A previous analysis assuming the SM Higgs boson can
be found in Ref. [11], while Refs. [12,13] addressed theCP
violation due to the simultaneous presence of c1 and c3
terms. Our general and simple result in Eqs. (14) and (15)
is in agreement with the lengthy expressions in Ref. [9].
Furthermore, our analysis makes it clear that the effect of a
nonzero c3, which is CP odd, is to induce a phase shift in
the azimuthal angular distribution.

FIG. 1. Two decay planes of Z1 ! ‘1 �‘1 and Z2 ! ‘2 �‘2 define
the azimuthal angle � 2 ½0; 2� which rotates ‘2 to ‘1 in the
transverse view. The polar angles �1 and �2 shown are defined in
the rest frame of Z1 and Z2, respectively.
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III. NEW PHYSICS AND LOOP-INDUCED DECAYS
OF S

Among the three operators in Eq. (6), c1 has the form of
the three-point coupling in the Higgs mechanism and could
be present at the tree-level,2 while both c2 and c3 are higher
dimensional operators induced only at the loop level [14].
If c1 ¼ 0 at the tree-level, the scalar S is not responsible for
giving W and Z bosons a mass. We also assume the
existence of the following gluonic operators:

cg2
4mS

SGa
��G

a�� and
cg3
8mS

S�����Ga
��G

a
��; (21)

so as to allow for the production of S in the gluon fusion
channel. In the SM it is well known that cg2 is induced by

the top-quark triangle loop when S is the Higgs boson. In
fact, c2 is also present in the SM through the W boson as
well as the top-quark loop [15], which is nonetheless over-
whelmed by the tree level c1 given in Eq. (5). On the other
hand, the CP-odd operators c3 and cg3 can be generated by

a fermion triangle loop when the fermion has an axial
coupling with the scalar S [12].

At the LHC, the event rate B�ðgg ! S ! ZZÞ is
B�ðgg ! S ! ZZÞ ¼ �ðgg ! SÞ � BrðS ! ZZÞ

¼ �ðgg ! SÞ � �ðS ! ZZÞ
�total

; (22)

where the total decay width �total is given by summing over
all decay channels, including possible decays into a SM
fermion pair �ff,

�total ¼
X

V¼g;W;Z;	

�ðS ! VVÞ þX
f

�ðS ! �ffÞ: (23)

A few model-independent observations are in order:
(i) While the decay channel into fermions may or may

not exist, electroweak symmetry ensures the exis-
tence of decay channels into WW and 		 once S !
ZZ is observed. Establishing the production gg ! S
also guarantees a decay channel into two gluons.

(ii) If the event rate B� is comparable to the SM expec-
tation of a Higgs boson, then the branching ratio into
the ZZ pair should be sizable

Br ðS ! ZZÞ * Oð10�1Þ: (24)

The SM Higgs production and decay gg ! h !
ZZ ! 4‘ has an event rate in the order of 5 fb after
multiplying �� Br with the preselection efficiency
[2]. Therefore if �� Br is an order-of-magnitude
smaller than that of a SM Higgs, it would require an
integrated luminosity of 300 fb�1 to achieve 5�

significance for discovery, which is clearly beyond
the early running of the LHC.

(iii) If S ! ZZ is observed to occur through the loop-
induced operators in the early LHC data, then a
sizable BrðS ! ZZÞ implies the total decay width

�tot ¼ �ðS ! ZZÞ
BrðS ! ZZÞ (25)

should also be one-loop suppressed.
(iv) Similarly, loop-induced S ! ZZ and a sizable

BrðS ! ZZÞ imply3

�ðS ! ZZÞ
�ðS ! ggÞ �O

�
c2i
c2gi

�
* Oð10�1Þ: (26)

Since we expect ci and cgi to be proportional to the

electroweak coupling �ew and the strong coupling
�s, respectively, a large multiplicity factor [ *
Oð1Þ] in ci should be present.

In the following we investigate new physics scenarios
where the production and decay into ZZ of S occur pre-
dominantly through loop-induced operators. Such possi-
bilities arise naturally if S is a SM singlet and couples to
SM matter only through a messenger sector. In particular
we focus on cases with a sizable branching ratio BrðS !
ZZÞ as in Eq. (24), so that Swould have a comparable event
rate to that of a SM Higgs boson.

A. Fermion loop-induced S ! gg

In the SM gluon fusion production is induced by the top-
quark loop [1],

cðSMÞ
g2 ¼

ffiffiffi
2

p
�s

3

mS

v
: (27)

It is well known that this coefficient is related to the top
contribution to the gluon two-point function from the
Higgs low-energy theorem [16]. If the messenger sector
contains a pair of heavy vectorlike fermions ðQc;QÞ in the
fundamental representation of SUð3Þc with the interaction

mQQ
cQþ yQSQ

cQ; (28)

then its contribution to the gluon two-point function is

� 1

4

�
1� g2s

162
bð3ÞF log

M2
QðSÞ
�2

�
Ga

��G
a��; (29)

where bð3ÞF ¼ 2=3 is the contribution to the one-loop beta
function of QCD from a Dirac fermion and MQðSÞ ¼
mQ þ yQS is the mass of the new heavy fermion Q when

turning on the scalar as a background field S ! S. To
obtain the scalar-gluon-gluon coupling, the Higgs low-
energy theorem instructs us to expand Eq. (29) to the first

2c1 could also be generated through dimension-five operators
such as SjD�Hj2, which are suppressed by a high mass scale
comparing to Eq. (5). We will not consider this possibility
further in this work.

3In Eq. (26) we have neglected an extra factor for decaying
into massive gauge bosons, which is of order unity unless mS is
very close to the 2mZ threshold.
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order in S [17]:

cg2 ¼ �s

3

mS

mQ

yQ: (30)

Strictly speaking, the low-energy theorem applies only
when the mass of the particle in the loop is much larger
than the scalar mass, m2

S=ð4m2
QÞ � 1, so that the loop

diagram can be approximated by a dimension-five opera-
tor. We will always work in this limit in the present study.
The partial width of S ! gg can be computed:

�ðS ! ggÞ ¼ 1

8
c2g2mS ¼ �2

s

723

m3
S

m2
Q

y2Q: (31)

B. Fermion loop-induced S ! ZZ

Next we consider the case when the messenger sector
contains vectorlike fermions ðLc; LÞ charged under the
electroweak gauge group with the interaction

mLL
cLþ yLSL

cL; (32)

where ðLc; LÞ are in the fundamental representation of
SUð2ÞL and carry the hypercharge YL under Uð1ÞY . The
contribution of L to the two-point function of the Z boson
is simply

� 1

4

�
1� e2Nc

162c2ws
2
w

ðc4wbð2ÞF þ s4wb
ð1Þ
F Y2

Ld
ð2Þ
F Þ

� log
M2

LðSÞ
�2

�
Z��Z

��; (33)

where bð2ÞF ¼ 2=3, bð1ÞF ¼ 4=3, Nc is the dimensionality of

the SUð3Þc representation L belongs to, and dð2ÞF ¼ 2 is the
dimensionality of the SUð2Þ fundamental representation.
In addition, cw and sw are the cosine and sine of the
Weinberg angle. Then we compute

cL2 ¼ �em

3

Nc

c2ws
2
w

ðc4w þ 2s4wY
2
Ld

ð2Þ
F ÞmS

mL

yL; (34)

�ðfÞðS ! ZZÞ ¼ P
�
m2

Z

m2
S

�
1

64
ðcL2 Þ2mS; (35)

¼ P
�
m2

Z

m2
S

�
�2
em

5763

N2
c

c4ws
4
w

ðc4w þ 2s4wY
2
Ld

ð2Þ
F Þ2 m

3
S

m2
L

y2L; (36)

where P ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

p ð1� 4xþ 6x2Þ is a factor correct-
ing for the massive final states in the decay width. Notice
the additional difference between Eq. (31) and Eq. (35) due
to a color factor of 8 since there are eight gluons in the final
states for S ! gg.

It is worth commenting that, since SUð2ÞL is broken and
gauge invariance does not forbid a mass term for the Z
boson, one might expect a contribution to c1 be generated
at the one-loop level. However, recall that vectorlike fer-

mions do not give one-loop corrections to the Z boson mass
term, and thus make no contributions to the m2

ZZ�Z
�

operator which would have given a contribution to c1 after
applying the Higgs low-energy theorem. This argument
suggests that any contribution to c1 at one-loop level would
come from applying the Higgs low-energy theorem to
operators with four derivatives such as ðhZ�Þ2, which
upon using the equation of motion is suppressed by
ðmZ=mLÞ4 and can be safely neglected for a heavy mL.
We explicitly computed the fermion triangle loop diagram
in a large mass expansion, mL ! 1, and verified that the
first contribution to c1 indeed starts at ðmZ=mLÞ4.

C. Gauge boson loop-induced S ! ZZ

The last possibility we consider is when the messenger
sector includes a new set of heavy electroweak gauge
bosons ðW 0; Z0Þ. In the SM the W contribution to the
loop-induced decay of the Higgs into 		 dominates over
the one from the top-quark loop due to a large beta function
coefficient ‘‘7’’ multiplying the W loop result [16]. One
may expect a similar situation for the W 0 contribution to
the loop-induced decay into ZZ. Given the existence of two
sets of electroweak gauge bosons, the simplest model must
contain two copies of gauged SUð2Þ. Schematically, the
symmetry breaking pattern is a two-step process:

SUð2Þ1 � SUð2Þ2 �Uð1ÞY ! SUð2ÞL �Uð1ÞY
! Uð1Þem; (37)

where the two SUð2Þ’s are broken down to the vectorial
subgroup, identified with SUð2ÞL, at a high scale f1 using a
linear sigma model. Subsequently SUð2ÞL �Uð1ÞY is bro-
ken down to Uð1Þem at a low scale f2 ¼ v following the
Higgsless model [18].
In Appendix A we explicitly construct a toy model

whose gauge sector is the same as the three-site
Higgsless model [19–21], although we are interested in a
different corner of parameter space, � 	 ðf2=f1Þ2 � 1.
For example, if f1 
 1 TeV and f2 ¼ v 
 246 GeV, we
have � 
 0:06 � 1. In this case the W 0 and Z0 can be as
light as several hundred GeV for weakly coupled theories.
We computed theW 0 contribution to the ZZ self-energy. At
leading order in �,

� 1

4

�
1� e2

162c2ws
2
w

ð7c4wÞ log
M2

W 0 ðSÞ
�2

�
Z��Z

��; (38)

where we see the same large coefficient as in the scalar
coupling to two photons. In the set up we have in
Appendix A, M2

W0 ðSÞ ¼ 1
2 ðg21 þ g22Þðf1 þ SÞ2 at leading

order in �, which leads to

cW
0

2 ¼ 7�em

2

c2w
s2w

mS

f1
: (39)

Using Eq. (35) we arrive at
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�ðW 0ÞðS ! ZZÞ ¼ P
�
m2

Z

m2
S

�
49�2

em

2563

c4w
s4w

m3
S

f21
: (40)

There is also a contribution to c1 induced at one-loop by
the W 0 boson that is suppressed by �, which we ignore.

Given Eqs. (31), (35), and (40), we can now compare
�ðS ! ggÞ with �ðS ! ZZÞ and see that the decay width
into ZZ can easily be comparable to the decay width into
two gluons. This is especially the case for the W 0 loop due
to the large coefficient in Eq. (39):

�ðW 0ÞðS ! ZZÞ
�ðS ! ggÞ � 0:75� P

�
m2

Z

m2
S

� m2
Q

f21y
2
Q

: (41)

Even in the case of a purely fermionic contribution in S !
ZZ, assuming the fermion ðLc; LÞ carries no hypercharge,
the ratio of the two partial widths is

�ðfÞðS ! ZZÞ
�ðS ! ggÞ � 0:01N2

c � P
�
m2

Z

m2
S

�m2
Qy

2
L

m2
Ly

2
Q

; (42)

which could still be Oð0:1Þ if the multiplicity factor Nc *
3. This could be achieved if the fermion ðLc; LÞ is also in
the fundamental representation of SUð3Þc, resulting in
Nc ¼ 3. In the end, we have demonstrated that new physics
scenarios giving rise to loop-induced decays of S into
gauge bosons could easily give a significant branching
ratio into ZZ bosons.

IV. OBSERVABLES AND SIMULATIONS

In this section we discuss two observables which could
be useful in disentangling whether the scalar coupling to Z
bosons is as predicted by the Higgs mechanism or induced
by new physics at the loop level.

A. The line shape

Among the three possible on-shell couplings of S with Z
bosons, only c1 could be present at the tree level with an
order unity coupling when S plays the role of the Higgs
boson in the Higgs mechanism, while both c2 and c3 are
nonzero only at the one-loop level. This observation sug-
gests that the total width of a scalar decaying through c2
and c3 must be much smaller than that of a scalar decaying
through c1, in order for the decay channel to be observable
in the early LHC running. Using the SM Higgs as an
example, the partial decay width �ðh ! VVÞ is


VP
�
m2

V

m2
h

�
GFm

3
h

16
ffiffiffi
2

p

; V ¼ W;Z; (43)

where GF is the Fermi constant and 
W ¼ 2
Z ¼ 2.
Comparing with the partial decay width of a W 0–loop-
induced decay, we see

�ðW0ÞðS ! ZZÞ
�ðh ! ZZÞ � 10�3; (44)

for a W 0 mass as light as 500 GeV. As emphasized pre-
viously, in order for the event gg ! S ! ZZ to be observ-
able at the LHCwith say 30 fb�1 luminosity, the branching
ratio BrðS ! ZZÞ should be sizable and comparable to that
of a SM Higgs into ZZ. It then follows that

�totðSÞ
�totðhÞ

¼ �ðS ! ZZÞ
BrðS ! ZZÞ �

Brðh ! ZZÞ
�ðh ! ZZÞ � 10�3: (45)

In other words, we would observe an extremely narrow
peak in the ZZ invariant mass spectrum if the scalar S only
decays via c2 and c3. In fact, the peak is so narrow that the
width is completely below the detector resolution. In this
study we use a 2 GeV bin size which is comparable to the
energy resolution of the detector. On the other hand, a
scalar participating in the electroweak symmetry breaking
like the Higgs boson would have a width above the detector
resolution at the LHC except when its mass is below
200 GeV. Therefore, the Breit-Wigner line shape of a scalar
resonance in the ZZ invariant mass spectrum is a strong
indicator on the Higgs nature (or the lack thereof) of the
scalar.
In Fig. 2 we show the total decay widths of a SM Higgs

boson and a scalar S decaying through loop-induced op-
erators, and compare with the detector resolution at the
LHC using the following lepton energy smearing:


E

E
¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=GeV
p � b; (46)

where a ¼ 13:4%, b ¼ 2%, and � denotes a sum in quad-
rature [22]. We see while the width of the SM Higgs could
be resolved above a 200 GeVmass, the small width of the S
is completely buried in the detector resolution. The narrow
width of S implies, in the invariant mass distribution of the
two Z bosons, all the events would be concentrated in just
one bin, resulting in a spectacular resonance peak even if

tot h

tot S

tot

200 250 300 350 400 450
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1
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100

mS GeV

G
eV

FIG. 2 (color online). The dashed line is the total decay width
for a SM Higgs boson and the solid line is that of a scalar S
whose width is 3 orders of magnitude smaller. The yellow
(shaded) region is the detector resolution.
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the event rate is smaller than that of a SM Higgs. However,
for a sufficiently small bin size, one would resolve the
peak, albeit with a form which is dominated by the detector
resolution (a Gaussian, if the usual assumptions of detector
smearing are made). In Fig. 3 we simulate the ZZ invariant
mass distribution for a SM Higgs and the S scalar using a
2 GeV bin size. To be conservative, in the plot we assume
the event rate B�ðgg ! S ! ZZ ! 4‘Þ is only 10% of the
SM Higgs. It is then clear that the total width measurement
would allow for a distinction between the Higgs and a
scalar S which decays only at the loop level, except
when the Higgs has a mass below 200 GeV and its width
is comparable to the detector resolution.

B. Angular distributions in �

In the following we consider the dependence on the
azimuthal angle between the two Z decay planes in the

normalized differential rate in Eq. (15), by turning on one
operator at a time. By considering the normalized rate, the
dependence on the magnitude of the coefficients ci in
Eq. (6) drops out and the angular dependence is largely
determined by kinematics. It is worth mentioning that in
Eq. (15) the cosð�þ 
Þ term is highly suppressed due to
the approximate symmetry g2L 
 g2R in the leptonic decays,
so only the cosð2�þ 2
Þ term and the constant term will
contribute. As can be seen from Eq. (17), for a Higgs-like
scalar, c1 � 0, the constant term becomes more dominant
as the mass gets larger. On the other hand, for c2 � 0 the
cos2� terms are more important for a heavy scalar.
In Fig. 4 we simulate the azimuthal angular dependence

in the normalized decay distribution for two different
scalar masses: 200 and 400 GeV. To facilitate future ex-
perimental analysis, we provide in Appendix B Lorentz-
invariant expressions for various angular variables in the

h
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FIG. 3 (color online). The ZZ invariant mass distribution for a SM Higgs boson and a scalar S decaying through loop-induced
effects, using a 2 GeV bin size. The narrow width of S is below the detector resolution, resulting in a concentration of all events in just
one bin. Note that for a sufficiently small bin size one would resolve the peak, albeit with a form which is dominated by the detector
resolution (a Gaussian, if the usual assumptions of detector smearing are made). In the plot we assume the event rate of gg ! S !
ZZ ! 4‘ is only 10% of rate for the SM Higgs boson.
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FIG. 4 (color online). The normalized azimuthal angular distributions for 200 and 400 GeV scalar masses, turning on one operator at
a time.
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decay into ZZ ! 4‘, including the azimuthal angle �. We
select the events by requiring the following cuts on the
lepton transverse momentum pT and rapidity �:

pT � 15 GeV and j�j � 2:4: (47)

In the simulation we assume the SM background coming
from q �q ! ZZ ! 4‘ has been reduced in the data sample
using existing procedures for searching for a SM Higgs
boson [2]. The angular dependence of the SM background
and its interplay in the Higgs search was studied in
Ref. [23]. In the case of loop-induced decays, one can
take advantage of the extremely narrow width and impose
stringent cuts on the ZZ invariant mass to reduce the
backgrounds. Therefore we do not include backgrounds
in the plot.

From Fig. 4 we see that the CP-odd case can be distin-
guished from the CP-even case in the angular distribution,
which has been discussed in Refs. [11,24]. The comparison
of tree-level versus loop-induced operators in the CP-even
case, however, does not seem to exist in the literature, to
the best of our knowledge. We see that, even though c1 � 0
and c2 � 0 have the same phase in the angular distribution,
the magnitudes are different even for a low mass of
200 GeV. Recall that this is also the mass range where
the width measurement could be biased by the detector
resolution. So one could use the angular distribution as an
extra handle to distinguish a Higgs boson from a
non–Higgs-like scalar.

V. CONCLUSION

In this work we considered the most general on-shell
couplings of a scalar with two Z bosons. In the SM the
decay of the Higgs boson into ZZ final states is the gold-
plated mode for discovery due to excellent energy resolu-
tion for charged leptons. However, in order to verify the
Higgs mechanism as the origin of mass for the electroweak
gauge bosons, it is necessary to measure the coupling
between the scalar and the gauge bosons. By using an
operator analysis for the most general couplings, we point
out that dimension-five operators responsible for the
anomalous Higgs couplings are generated only at the
loop level, while the Higgs mechanism would lead to a
dimension-three operator at the tree level.

Using the method of helicity amplitudes, we computed
the differential decay distribution of a scalar decaying into
ZZ ! 4‘. Our formulas are simpler than and agree with
previous calculations. Furthermore, our results make clear
the advantage of using the azimuthal angle between the
two decay planes of the Z bosons in discerning effects
between CP-odd and CP-even operators.

If the scalar is produced in the gluon fusion channel,
which gives the largest production cross section for the
Higgs boson at the LHC, a decay channel into two gluons
must also exist. Then in order for the event gg ! S ! ZZ
to be observable at the LHC in the early running, the partial

decay width should be comparable to the partial width into
two gluons. We investigated new physics scenarios giving
rise to such a possibility by considering fermion loop and
W 0 loop-induced couplings of a scalar with ZZ bosons.
One important implication of loop-induced operators is

that the total width of a non–Higgs-like scalar, if its decay
were discovered at the LHC early on, should be order-of-
magnitude smaller than that of a Higgs-like scalar, which
decays through tree-level processes. Again this is a corol-
lary of requiring a sizable branching ratio into ZZ final
states from loop-induced effects. Therefore measurements
of the total width of a scalar resonance in final states with
two Z bosons is a strong indicator on the Higgs nature of
the resonance, except when the scalar mass is below
200 GeVand the SMHiggs width is comparable to detector
resolution. In this regard, azimuthal angular distribution
could provide an extra handle in determining not only the
CP property of the scalar but also whether the decay is loop
induced. Only when the scalar coupling with the Z bosons
is verified to be the one as predicted by the Higgs mecha-
nism, can one gain confidence in the Higgs mechanism as
the origin of electroweak symmetry breaking as well as the
discovery of a Higgs boson.
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APPENDIX A: ZZ SELF-ENERGY FROM THE
HEAVY GAUGE BOSON LOOP

In this Appendix, we compute the one-loop corrections
to the Z self-energies which are needed to construct the
SZZ effective coupling using the low-energy Higgs theo-
rem. For concreteness, we consider a simple gauge exten-
sion of the SM which is based on the gauge group
SUð2Þ1 � SUð2Þ2 �Uð1ÞY . We use two link fields �1

and �2,

�1 ¼ S

f1
ei

a
1
�a=f1 ; hSi ¼ f1; (A1)

�2 ¼ ei
a
2�

a=f2 ; (A2)

which transform as bidoublets under SUð2Þ1 � SUð2Þ2 and
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SUð2Þ1 �Uð1ÞY , respectively. The remaining unbroken
gauge group is identified with Uð1Þem, whose generator is
Q ¼ Tð1Þ

3 þ Tð2Þ
3 þ Y=2. Notice that the gauge sector of this

model is identical to the so-called three-site Higgsless
model studied in Refs. [19–21], except that we are allow-
ing for a scalar degree of freedom in the radial excitation of
�1. More importantly, we are interested in the limit � 	
ðf2=f1Þ2 � 1, which is also different from the three-site
Higgsless model.

The covariant derivatives are written as

D��1 ¼ @��1 � ig1
�a

2
Wa

1��1 þ i�1g2
�a

2
Wa

2�; (A3)

D��2 ¼ @��2 � ig2
�a

2
Wa

2��2 þ i�2g
0 �

3

2
B�; (A4)

where Wa
i� and gi are the gauge fields and coupling

strengths belonging to SUð2Þi, i ¼ 1, 2, respectively.
Similarly B� and g0 correspond to the gauge field and

coupling of the Uð1ÞY . The gauge bosons in the model
obtain masses through the kinetic terms

f21
2
ðD��1ÞyðD��1Þ þ f22

2
ðD��2ÞyðD��2Þ; (A5)

which lead to the mass matrix for neutral gauge bosons
ðW3

1 ; W
3
2 ; BÞ:

1

2

g21f
2
1 �g1g2f

2
1 0

�g1g2f
2
1 g22ðf22 þ f21Þ �g0g2f22

0 �g0g2f22 g02f22

0
B@

1
CA: (A6)

This matrix can be diagonalized by means of an orthogonal

matrix which we shall call R:

W3
1�

W3
2�

B�

0
B@

1
CA ¼ Ry

A�

Z�

Z0
�

0
B@

1
CA; (A7)

where the mass eigenstates are denoted by A, Z, and Z0.
The eigenstate A is massless and identified as the photon.
The couplings of our theory are related to the electric
charge by

g1 ¼ e

cos� sin�W
; g2 ¼ e

sin� sin�W
; g0 ¼ e

cos�W
;

(A8)

where �W is the weak mixing angle (in the limit � ! 0) and
� is an additional mixing angle. The other two eigen-
masses are

m2
Z ¼ 1

2
f22ðg2 þ g02Þ

�
1� �f21

g42
ðg21 þ g22Þ

�
; (A9)

m2
Z0 ¼ 1

2
f21ðg21 þ g22Þ

�
1� �f21

g42
ðg21 þ g22Þ

�
; (A10)

where we have dropped Oð�2Þ terms and

1

g2
	 1

g21
þ 1

g22
: (A11)

Clearly, Z is identified with the SM Z boson while Z0 is
referred to as the heavy Z boson. For small �, the mixing
matrix R has the following approximate form:

R ¼
cos� sin�W sin� sin�W cos�W

cos� cos�W þ � cos3�sin2�
cos�W

sin� cos�W � � sin�cos4�
cos�W

� sin�W
� sin�þ � sin�cos4� cos�þ �sin2�cos3� �� tan�W sin�cos3�

0
B@

1
CA; (A12)

from which it is simple to verify that tree-level couplings
between the scalar S and the Z boson start only at order �2.
In other words, in this model c1 ¼ 0 at tree level if we only
keep terms up toOð�Þ. The charged gauge boson sector can
be worked out in a similar way, where the light mass
eigenstate is identified with the SMW boson and the heavy
eigenstate is denoted by W 0. The couplings between S and
the W 0 and Z0 bosons have the form as predicted by the
Higgs mechanism:

m2
V0

�
1þ S

f1

�
2
V 0
�V

0�; V ¼ W;Z; (A13)

which is valid at leading order in �.
We would like to compute the one-loop correction to the

Z self-energy arising from loops of W 0 gauge bosons.
Unfortunately, much like the analogous corrections in the
SM, the corrections to the two-point functions depend

nontrivially on the particular R� gauge used to define the

W 0 propagator [25]. However, by extracting R� gauge-

dependent pieces from other one-loop corrections (i.e.,
vertex and box corrections) and summing these with those
from the two-point function one can obtain an expression
which is independent of the particular gauge chosen to do
the calculation. This method, which is known as the pinch
technique, has been applied to the SM to obtain gauge-
independent expressions for the gauge boson self-energies
[26]. More recently, though, it has been extended to models
with extended gauge sectors such as the model considered
here [27–29]. In this work, we will directly apply the
results from the above references by taking the limit of
our interest, � ¼ ðf2=f1Þ2 � 1. We refer interested readers
to Ref. [27] for details and only make the following two
comments. First, our results are obtained by taking the so-
called ‘‘ideal localization’’ limit for the delocalized fer-
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mion introduced in Ref. [20].4 Such a limit has the advan-
tage of reducing the tree-level S parameter in the model.
However, the main reason in our case is to decouple the
delocalized fermion from theW 0 boson, so as to remove the
extra pinch contribution to the two-point function that is
unnecessary for maintaining the gauge invariance. Second,
even though we are allowing for a scalar degree of freedom
in the radial excitation of �1, which is absent in the three-
site Higgsless model, the computation in Ref. [27] still
carries through because S has no couplings to the Z boson
in the order we are working. Therefore the Z self-energy in
the nonlinear sigma model (Higgsless model) is the same
as in the (partially) linear sigma model we consider.

The one-loop expression for the Z self-energy computed
using the pinch technique are then given by [up to Oð�2Þ]:

�ðW0Þ
ZZ ðp2Þ ¼ �em

4s2wc
2
w

�
� 3

2
�2

m4
W 0

m2
W

cos6�sin6�

þ p2ð7c4w � 14�cos2� cos2�c2wÞ
�
log

�2

m2
W0

;

(A14)

where � is the cutoff of our effective theory. Notice that
formally ðmW0=mWÞ2 � 1=� so the longitudinal piece is
considered m2

W 0 �Oð�Þ, while the leading term in the

transverse component has a large coefficient ‘‘7,’’ the
same as in the SM W contribution to the photon self-
energy, which is to be expected.

APPENDIX B: A LORENTZ-INVARIANT
CONSTRUCTION OF �

In this Appendix we provide a Lorentz-invariant expres-
sion for the azimuthal angle � between the two decay
planes of the ZZ pair, so as to facilitate the analysis of
angular distribution in�. Let p1 and p2 be the momenta of

the lepton pair coming from one Z, and p3 and p4 be the
momenta of the lepton pair from the other Z. The parent
momentum is P ¼ p1 þ p2 þ p3 þ p4, which satisfies the
on-shell dispersion relation P2 ¼ M2. We follow the nota-

tion in Ref. [4], p1 ¼ ‘1, p2 ¼ �‘1, p3 ¼ ‘2, p4 ¼ �‘2. (See
also Fig. 1.)
In the rest frame of P, our azimuthal angle � is given by

p1 � p2

jp1jjp2j sin ��12 � p3 � p4

jp3jjp4j sin ��34
¼ � cos�; (B1)

where the triple products in the numerator can be written in
a Lorentz-invariant fashion:

ðp1 � p2Þi ¼ 1

M
���i�p1�p2�P� 	 1

M
�p1p2iP;

ðp3 � p4Þi ¼ 1

M
�p3p4iP:

(B2)

Note that we define �1230 ¼ 1 ¼ �0123 ¼ ��0123. Then it
follows

ðp1 � p2Þ � ðp3 � p4Þ ¼ �g��

�p1p2�P�p3p4�P

M2

¼ 1

M2

��������
p1 � p3 p1 � p4 p1 � P
p2 � p3 p2 � p4 p2 � P
P � p3 P � p4 M2

��������:

(B3)

To arrive at a covariant expression for Eq. (B1), we need to
cast the denominator in the covariant form as well:

jp1j ¼ 1

M
p1 � P; cos ��12 ¼ 1� m2

12

2jp1jjp2j ; (B4)

where m2
ij 	 ðpi þ pjÞ2, and similarly for jp2j, jp3j, and

jp4j. In the end we have

cos� ¼ �
M2

�����������
p1 � p3 p1 � p4 p1 � P
p2 � p3 p2 � p4 p2 � P
P � p3 P � p4 M2

�����������
ðp1 � PÞðp2 � PÞðp3 � PÞðp4 � PÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� M2m2

12

2p1�Pp2�PÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1� M2m2
34

2p3�Pp4�PÞ2
r : (B5)

On the other hand, sin� can be evaluated by the following relation:

sin� ¼ � 1

M

�p1p2p3p4 jp1 þ p2j
jp1jjp2jjp3jjp4j sin ��12 sin ��34

; (B6)

where

4In our model ideal localization is achieved by choosing the delocalization parameter x1, which is defined in Ref. [20], to be
sin2�=ðsin2�� cos2�Þ.
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�p1p2p3p4 ¼ �����p
�
1 p

�
2p

�
3p

�
4 ¼

����������������

E1 px
1 py

1 pz
1

E2 px
2 py

2 pz
2

E3 px
3 py

3 pz
3

E4 px
4 py

4 pz
4

����������������
¼ �Mp3 � p4 � p1: (B7)

The covariant form is given by

sin� ¼ � 1

2

M4�1=2�p1p2p3p4

ðp1 � PÞðp2 � PÞðp3 � PÞðp4 � PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� M2m2

12

2p1�Pp2�PÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1� M2m2
34

2p3�Pp4�PÞ2
r ; (B8)

with �	1þm4
12=M

4þm4
34=M

4�2m2
12=M

2�2m2
34=M

2�
2m2

12m
2
34=M

4.
We can also determine the polar angle of p1 in the rest

frame of the 12 pair. A simple Lorentz boost gives

�E 1 ¼ 	E1ð1þ � cos�Þ ¼ �E1 þ �E2

m12

m12

2
ð1þ � cos�1Þ;

(B9)

which leads to

cos�1 ¼
�E1 � �E2

jp1 þ p2j ¼
2

M2�1=2
ðp1 � P� p2 � PÞ: (B10)

For the polar angle of p3 in the rest frame of the 34 pair,
simply replace p1 and p2 by p3 and p4, respectively, in the
above.
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