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We consider extension of the standard model SUð2Þl � SUð2Þh � Uð1Þ where the first two families of

quarks and leptons transform according to the SUð2Þl group and the third family according to the SUð2Þh
group. In this approach, the largeness of top-quark mass is associated with the large vacuum expectation

value of the corresponding Higgs field. The model predicts almost degenerate heavy W0 and Z0 bosons
with nonuniversal couplings, and extra Higgs bosons. We present in detail the symmetry breaking

mechanism, and carry out the subsequent phenomenology of the gauge sector. We compare the model

with electroweak precision data, and conclude that the extra gauge bosons and the Higgs bosons whose

masses lie in the TeV range, can be discovered at the LHC.
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I. INTRODUCTION

As we enter the era of the Large Hadron Collider (LHC),
we anticipate the discovery of new physics. In the past
decade, we have witnessed many interesting theoretical
proposals, each with its own variety of new particles be-
yond the standard model (SM). Several of these proposals
require extra gauge bosons, for example, from a larger
gauge group [1], from extension to higher dimensions [2]
which leads to Kaluza-Klein type of mass ladders, or from
noncommuting extended technicolor [3]. Extensions of
SM with additional W’s and Z’s that have nonuniversal
couplings to quarks and leptons have also been considered.
In this paper, we analyze a model with extra weak gauge
bosons from the consideration of family structure.

The electroweak gauge group of our model is SUð2Þl �
SUð2Þh �Uð1ÞY , where l and h stand for light and heavy
families, respectively. The first two quark and lepton fam-
ilies are considered as light while the third as heavy. For
each SUð2Þ gauge group, the chiral fermionic particles are
the same as the SM particle contents and, therefore, the
model is anomaly-free. In this framework, the large mass
of the top quark is induced by a large vacuum expectation
value (VEV) of one Higgs field responsible for SUð2Þh
breaking. A logical extension of the idea would have been
to consider one SUð2Þ for each family. Such an idea has
already been proposed some time back by Li andMawhere
SUð2Þ for each generation was introduced [4]. With appro-
priate symmetry breaking patterns, the SUð2Þl �
SUð2Þh �Uð1ÞY model can be produced. Later several
authors have considered the same model and studied
some consequences of this model [3,5,6]. Some low energy
phenomenological [7] and cosmological [8] consequences
have also been analyzed.

The mechanism of generating the mass for the top and
the Higgs structure in the above-mentioned papers differ
from our treatment here. The mechanism in the SUð2Þl �

SUð2Þh �Uð1ÞY model that we are considering is a more
conventional approach with an explicit Higgs structure. We
shall first carry out the consequences of the breaking of
symmetry, then study the Yukawa, gauge interactions and
flavor-changing neutral-current (FCNC) interactions in
these sectors, and finally analyze the phenomenological
consequences. Our study of the Higgs structure clarifies
conditions necessary for the light Higgs to be flavor con-
serving. We also impose tight constraints based on elec-
troweak precision (EWP) data, where standard model
radiative corrections along with new physics to the lowest
order perturbatively are included. The allowed masses of
gauge bosons and Higgs are far more restricted as a
consequence.
We start with the electroweak group of SUð2Þ1 �

SUð2Þ2 �Uð1ÞY at a high-energy scale of the order of a
few TeV. For ease of notation, we hereafter use indices 1
and 2 for l and h, respectively. The first two families are
charged under SUð2Þ1, and the third family is charged
under SUð2Þ2. We note that such a group structure can
arise from a broken grand unified model based on SUð3Þ3
or SUð15Þ. We do not pursue this issue here though. The
quarks, leptons and Higgs bosons and their gauge group
representations in our model are as follows:

QjL: ð2; 1Þð1=3Þ; Q3L: ð1; 2Þð1=3Þ;
UiR: ð1; 1Þð4=3Þ; DiR: ð1; 1; Þð�2=3Þ;
LiL: ð2; 1Þð�1Þ; L3L: ð1; 2Þð�1Þ;
EiR: ð1; 1Þð�2Þ; �1: ð2; 1Þð1Þ;
�2: ð1; 2Þð1Þ; �: ð2; 2Þ;

(1)

where the two numbers in the first parentheses indicate the
SUð2Þ1 and SUð2Þ2 representations, respectively, and the
number in the second parentheses gives theUð1ÞY quantum
number.
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We require that the gauge group is broken to the SM
gauge group of SUð2ÞL �Uð1ÞY first, and then further
broken to the Uð1ÞEM group. These are realized by the
nonzero VEV of the Higgs fields. The self-dual bilinear
Higgs field �, charged under both SUð2Þ gauge groups,
acquires a VEV, h�i ¼ diagðu; uÞ, at scale u and breaks the
SUð2Þ1 � SUð2Þ2 group to the diagonal SUð2ÞL. The gauge
bosons corresponding to the broken generators develop
masses of order u. The other gauge bosons and fermions
remain massless at this point. The coupling of the surviving
SUð2ÞL is g, with

1

g2
¼ 1

g21
þ 1

g22
: (2)

The next stage of symmetry breaking is achieved by the
nonzero VEV’s vi of �i, breaking the remaining SUð2Þ �
Uð1ÞY to the Uð1ÞEM and rendering the usual W and Z
bosons and nonzero fermion masses. The coupling of the
surviving Uð1ÞEM is e, with

1

e2
¼ 1

g2
þ 1

g02
¼ 1

g21
þ 1

g22
þ 1

g02
; (3)

where g0 is the coupling of the Uð1ÞY gauge group.

The Weinberg angle �W is defined by x0 ¼ sin2�W ¼
g02=ðg2 þ g02Þ. We will use sW and cW for the sine and
cosine of �W , respectively. For convenience, we also define
a mixing angle of the extended gauge group, �E, with sine
(sE) and cosine (cE) of this angle given by cE ¼ g=g1 and
sE ¼ g=g2. For the VEV’s of the doublets, we define an
angle � with tan� ¼ v2=v1.
The structure of this paper is as follows: In Sec. II, we

present a detailed analysis of the Higgs potential and the
Higgs mass spectrum. Following that, we give the Yukawa
couplings of the fermions and their mixing in Sec. III. In
Sec. IV, we compute the gauge boson mass spectrum and
their interactions with fermions at tree level. We then
analyze the phenomenological constraints from EWP
data, lepton universality, atomic parity violation, and
FCNC’s in Sec. V. We summarize our findings in Sec. VI.

II. THE HIGGS POTENTIAL AND THE HIGGS
BOSON MASSES

In this section, we provide some ideas about the Higgs
boson masses in the model. The most general Higgs po-
tential is given by

V ¼ X
�2

i�
y
i �i þ 1

4

X
�ijð�y

i �iÞð�y
j�jÞ þM2 Trð�y�Þ þ Trð ~M2 ~��þ H:c:Þ þ 1

4
h½Trð�y�Þ�2 þ 1

4
ð~h½Trð~��Þ�2

þ H:c:Þ þ Trð�y�ÞTrð~f ~��þ H:c:Þ þ 1

2

X
fið�y

i �iÞTrð�y�Þ þX
pi�

y
i ��

y�i þ
Xð~pi�

y
i ~���i þ H:c:Þ

þ ðt0�y
1��2 þ H:c:Þ þ ð~t�y

1 ~��2 þ H:c:Þ; (4)

where ~� ¼ �2�
��2 and �2 is one Pauli matrix. If no CP

violation originates from the Higgs potential, all the coef-
ficients will be real, as we will assume in our latter
discussions.

One can carry out a full detailed analysis for the Higgs
mass spectrumwith the above complete potential. Here, we
will provide a simplified analysis by noticing that the VEV
u is much larger than the VEVs vi and that the fields in �
become heavy and almost decouple from the fields in �i.
The fields that couple to fermions and therefore have
possible large observable effects are the �i fields. We
can approximate the Higgs potential involving �i by re-
placing � with its VEV u in Eq. (4). The effective Higgs
potential is now

V ¼ m2
1�

y
1�1 þm2

2�
y
2�2 þ 1

4�1ð�y
1�1Þ2 þ 1

4�2ð�y
2�2Þ2

þ 1
2�12ð�y

1�1Þð�y
2�2Þ þ tuð�y

1�2 þ�y
2�1Þ; (5)

where m2
1 ¼ �2

1 þ ðf1 þ p1 þ ~p1Þu2, m2
2 ¼ �2

2 þ ðf2 þ
p2 þ ~p2Þu2, �1 ¼ �11, �2 ¼ �22, and t ¼ t0 þ ~t.
We now proceed to to the next stage when �1 and �2

acquire VEV’s v1 and v2

h�1i ¼ 0
v1

� �
; and h�2i ¼ 0

v2e
i�

� �
; (6)

where v2
1 þ v2

2 ¼ v2 with v being the VEV related to
electroweak symmetry breaking close to 174 GeV in the
SM. Expanding �1 and �2 with respect to their VEV’s

�1 ¼ �þ
1

v1 þ Re�0
1 þ i Im�0

1

� �
; and

�2 ¼ �þ
2

v2e
i� þ Re�0

2 þ i Im�0
2

� �
;

(7)

the Higgs potential now becomes
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V ¼ m2
1½ð�þ

1 Þ2 þ ðv1 þ Re�0
1Þ2 þ ðIm�0

1Þ2� þm2
2½ð�þ

2 Þ2 þ ðv2 cos�þ Re�0
1Þ2 þ ðv2 sin�þ Im�0

2Þ2� þ 1
4�1½ð�þ

1 Þ2
þ ðv1 þ Re�0

1Þ2 þ ðIm�0
1Þ2�2 þ 1

4�2½ð�þ
2 Þ2 þ ðv2 cos�þ Re�0

2Þ2 þ ðv2 sin�þ Im�0
1Þ2�2 þ 1

2�12½ð�þ
1 Þ2

þ ðv1 þ Re�0
1Þ2 þ ðIm�0

1Þ2�½ð�þ
2 Þ2 þ ðv2 cos�þ Re�0

2Þ2 þ ðv2 sin�þ Im�0
1Þ2� þ tu½ð�þ

1 Þ��þ
2 þ ðv1 þ Re�0

1

� i Im�0
1Þðv2e

i� þ Re�0
2 þ i Im�0

2Þ þ ð�þ
2 Þ��þ

1 þ ðv2e
�i� þ Re�0

2 � i Im�0
2Þðv1 þ Re�0

1 þ i Im�0
1Þ�: (8)

In the above expression, we have removed a constant term
proportional to powers of the VEV of � and terms asso-
ciated with � field fluctuating around the VEV.

The stability condition requires that sin� ¼ 0. The sign
of cos� depends on the sign of t, t cos� ¼ �jtj. The
stability conditions on v1 and v2 are

2m2
1v1 þ �1v

3
1 þ �12v1v

2
2 � 2jtjuv2 ¼ 0;

2m2
2v2 þ �2v

3
2 þ �12v

2
1v2 � 2jtjuv1 ¼ 0:

(9)

Hence, the mass-squared matrices of �þ
1;2 and Im�0

1;2 turn

out to be identical and are

M2
�þ ¼M2

Im�0

¼ m2
1 þ 1

2�1v
2
1 þ 1

2�12v
2
2 tu

tu m2
2 þ 1

2�2v
2
2 þ 1

2�12v
1
1

 !

¼
v2

v1
jtju tu

tu v1

v2
jtju

0
@

1
A: (10)

There are massless Goldstone modes associated with both
�þ and Im�0. At the tree level, �� and A0 have the same
mass

m2
�� ¼ m2

A0 ¼ v2

v1v2

jtju: (11)

The mass-squared matrix for neutral Higgs bosons is

M2
Re�0 ¼

m2
1þ 3

2�1v
2
1þ 1

2�12v
2
2

1
2�12v1v2þ tu

1
2�12v1v2þ tu m2

2þ 3
2�2v

2
2þ 1

2�12v
2
1

 !

¼
v2

v1
jtjuþ�1v

2
1 �12v1v2þ tu

�12v1v2þ tu v1

v2
jtjuþ�2v

2
2

0
@

1
A: (12)

In the two Higgs doublet models, there generally exist
FCNC’s when both doublets acquire VEV’s. To better
understand the FCNC structure, it is convenient to work
in the basis where the Goldstone bosons are singled out by
the following rotation:

�1

�2

� �
¼ c� s�

�s� c�

� �
�1

�2

� �
: (13)

Now only�1 acquires a VEV v. Expansions of�1 and�2

around their VEV’s are

�1 ¼ Gþ
vþ hþ iG0

� �
; and �2 ¼ Hþ

H0 þ iA0

� �
;

(14)

where Gþ and G0 are the Goldstone bosons, Hþ the
charged Higgs boson, A0 the pseudoscalar boson, and h,
and H0 the neutral light and heavy scalar bosons, respec-
tively. Note that in the reduced effective potential, Gþ and
G0 correspond to the Goldstone bosons ‘‘eaten’’ by the W
and Z bosons. In the full theory, there will in general be
mixings with component fields in �. The physical Higgs
mass-squared matrices are

M2
Hþ ¼ M2

A0 ¼
0 0
0 1

s�c�
jtju

 !
;

M2
h;H ¼ v2s�c�

1
s�c�

ð�1c
4
� þ �12s

2
�c

2
� þ �2s

4
�Þ ��1c

2
� � �12s

2
� þ �12c

2
� þ �2s

2
�

��1c
2
� � �12s

2
� þ �12c

2
� þ �2s

2
� � 1

s2�c
2
�

tu
v2 þ s�c�ð�1 � 2�12 þ �2Þ

0
@

1
A:

(15)

To reduce FCNC’s mediated by the SM Higgs boson, we
need to suppress the h-H mixing since H will induce tree-
level FCNC interactions in the Yukawa couplings. To
ensure that the off-diagonal terms vanish, it is required
that ��1c

2
� � �12s

2
� þ �12c

2
� þ �2s

2
� ¼ 0, or at least be

very small. In a specific realization of this condition, �1 ¼
�2 ¼ �12 ¼ �, the mass-squared matrix for the Re�0

fields is

M2
h;H ¼ 2�v2 0

0 � tu
s�c�

 !
: (16)

We therefore have a SM-like Higgs field h, and a degen-
erate heavy scalar doublet whose mass can be in the TeV
range. Since the heavy Higgs can mediate flavor-changing
processes, we will address mass constraints on this field in
Sec. VB.
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III. YUKAWA INTERACTIONS

The Yukawa interactions are

LYukawa ¼ fuij �uiR
~�y
1QjL þ gui3 �uiR

~�y
2Q3L þ fdij

�diR�
y
1QjL

þ gdi3
�Di�

y
2Q3L; (17)

where the family index i sums over 1, 2, 3 and j sums over
1, 2, the field uiR denotes right-handed up-type quarks and
diR the right-handed down-type quarks, and QjL ¼
ðujL; djLÞT and Q3L ¼ ðu3L; d3LÞT are left-handed quark

doublets. Here, fij and gij are the Yukawa couplings, and
~� is defined as ~� ¼ i�2�. Substituting Eqs. (13) and (14)
into Eq. (17), we have

LYukawa ¼ � �URM
uUL

�
1þ h

v

�
� �DRM

dDL

�
1þ h

v

�

þ �URð�u
1 � �u

2ÞULðH0 � iA0Þ
þ �DRð�d

1 � �d
2ÞDLðH0 þ iA0Þ

� �URð�u
1 � �u

2ÞDLH
þ þ �DRð�d

1 � �d
2ÞULH

�

þ H:c:; (18)

where UT
L;R ¼ ðu; c; tÞL;R and DT

L;R ¼ ðd; s; bÞL;R. The cou-
pling matrices �u;d

i and the mass matricesMu;d
i are given by

�u
1 ¼

fu11 fu12 0
fu21 fu22 0
fu31 fu32 0

0
@

1
A; �u

2 ¼
0 0 gu13
0 0 gu23
0 0 gu33

0
@

1
A;

Mu ¼ vðc��u
1 þ s��

u
2Þ;

(19)

and

�d
1 ¼�

fd11 fd12 0
fd21 fd22 0
fd31 fd32 0

0
B@

1
CA; �d

2 ¼�
0 0 gd13
0 0 gd23
0 0 gd33

0
B@

1
CA;

Md ¼ vðc��d
1 þ s��

d
2Þ:

(20)

It is clear that if v2 is much larger than v1, one can
naturally explain why the third-generation quark masses
are much larger than those in the first two generations.

The quark mass matrices can be diagonalized by bi-
unitary transformations of the following form:

SyUMuTU ¼ diagfmu;mc;mtg ¼ M̂u; and

SyDMdTD ¼ diagfmd;ms;mbg ¼ M̂d:
(21)

In the quark mass eigenstate basis, we have

LYukawa ¼ � �URM̂
uUL

�
1þ h

v

�
� �DRM̂

dDL

�
1þ h

v

�

þ �UR�
uULðH0 � iA0Þ þ �DR�

dDLðH0 þ iA0Þ
� �UR�

uVKMDLH
þ þ �DR�

dVy
KMULH

�

þ H:c:; (22)

where �u¼SUð�u
1��u

2ÞTy
U¼�Mu=vs�þð1þc�=s�Þ�

SU�
u
1T

y
U and �d ¼ SDð�d

1 � �d
2ÞTy

D ¼ �Md=vs� þ ð1þ
c�=s�ÞSD�d

1T
y
D. Here, VKM ¼ TUT

y
D is the Cabbibo-

Kobayashi-Maskawa mixing matrix.
It is not possible to solve for these matrices of the model

without specifying fij and gij. For some simplified cases,

one can completely know the FCNC structure by Higgs

exchange, for example: a) SU ¼ TU ¼ SD ¼ 1, then TD ¼
Vy
KM, and b) SD ¼ TD ¼ SU ¼ 1, then TU ¼ VKM. In

Case a), Mu ¼ M̂uVKM and in Case b), Md ¼ M̂dVy
KM.

The coupling matrices in these two cases are then com-
pletely determined by the quark eigen masses and the
Cabbibo-Kobayashi-Maskawa matrix.
One can also easily work out the couplings in the lepton

sector. The results are similar to the quark sector and can be
obtained by replacing DL;R with EL;R ¼ ðeL;R; �L;R;	L;RÞ.
If three right-handed neutrinos 
R ¼ ð
R1; 
R2; 
R3ÞT are
introduced into the theory, then the relevant Yukawa cou-
plings can be obtained by replacing UL;R by 
L;R ¼
ð
e

L;R; 

�
L;R; 


	
L;RÞT .

Note that the tree-level FCNC’s are associated with the
heavy Higgs bosons,H0 and A0, and the Yukawa couplings

are given by ð1þ c�=s�ÞSi�i
1T

y
i . We will comment on the

constraints from FCNC data on the Higgs masses and
Yukawa couplings when we study the phenomenology in
Sec. V.

IV. GAUGE INTERACTIONS

Gauge bosons interact with Higgs and fermions through
the covariant derivative terms:

ðD��iÞyðD��iÞ; Tr½ðD��ÞyðD��Þ�; i �c��D
�c ;

(23)

where c indicates a generic fermion fields in the model.
The covariant derivatives are given by

iD��i ¼
�
i@� þ g1

2
W

�
1 þ g2

2
W

�
2 þ g0

2
YB�

�
�i;

iD�c ¼
�
i@� þ g1

2
W�

1 þ g2
2
W�

2 þ g0

2
YB�

�
c ;

iD�� ¼
�
i@� � g1

2
W�

1 þ g2
2
W�

2

�
�;

(24)

where W�
i ¼ W�a

i �a with �a the Pauli matrices.
After the Higgs boson fields develop VEV’s, the gauge

bosons corresponding to the broken generators will be-
come massive. We obtain the mass-squared matrix for
the charged gauge bosons in the ðW1; W2Þ basis as follows:

M2
W ¼ 1

2

g21ðv2
1 þ 2u2Þ �2g1g2u

2

�2g1g2u
2 g22ðv2

2 þ 2u2Þ
� �

: (25)

Since the large VEV u breaks the SUð2Þ1 � SUð2Þ2 to a
diagonal SUð2ÞL, it is convenient to work in a basis
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ðWH;WLÞ. In the limit that vi go to zero, the mass of WL

goes to zero and it can be identified as one of the gauge
boson fields in the unbroken SUð2ÞL. The relations be-
tween W1;2 and WL;H are

W1 ¼ g2WL þ g1WHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q ; and W2 ¼ g1WL � g2WHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q ;

(26)

The WL;H mass-squared matrix, with nonzero vi, becomes

M2
W ¼ 1

2

ðg21 þ g22Þu2 þ g4
1
v2
1
þg4

2
v2
2

g2
1
þg2

2

g2ðg1g2 v2
1 � g2

g1
v2
2Þ

g2ðg1g2 v2
1 � g2

g1
v2
2Þ g2ðv2

1 þ v2
2Þ

0
@

1
A:
(27)

The mass eigenvalues for lightWl and heavyWh bosons
can be easily obtained by diagonalizing the above mass
matrix. For convenience, we give the approximate expres-
sion to order �2 ¼ v2=u2 as follows:

m2
Wl

¼ 1
2g

2v2 � 1
2g

2v2ðs2� � s2EÞ2�2 þOð�4Þ;

m2
Wh

¼ 1
2g

2u2
1

s2Ec
2
E

½1þ ðs2� � 2s2�s
2
E þ s4EÞ�2� þOð�4Þ:

(28)

The lighterWl boson corresponds to the SMW boson, and
has almost the same mass as that in the SM, except for a
correction of order �2. The heavier Wh has a squared mass
around ð1=2Þg2u2. The WL and WH fields are almost the
mass eigenstates. The mixing angle ! defined by

Wl ¼ c!WL � s!WH; Wh ¼ s!WL þ c!WH; (29)

is given, to order �2, by

tan2! ¼ 2sEcEðc2Es2� � c2�s
2
EÞ�2 þOð�4Þ: (30)

Since in our Higgs sector, we anticipate a large tan�, to a
good approximation we can set s2� to unity and c2� to zero.

The charged currents of the quarks are

LW ¼ g1ffiffiffi
2

p W�
1 ½ �u��PLdþ �c��PLs� þ g2ffiffiffi

2
p W�

2
�t��PLb

¼ gffiffiffi
2

p W
�
L ½ �u��PLdþ �c��PLsþ �t��PLb�

þ gffiffiffi
2

p W�
H

�
sE
cE

ð �u��PLdþ �c��PLsÞ

� cE
sE

�t��PLb

�
: (31)

In the quark mass eigenstate basis, we have

LW � gffiffiffi
2

p W�
l ½ �UL��VKMDL �! �UL��T

y
UNTDDL�

þ gffiffiffi
2

p W
�
h ½ �UL��T

y
UNTDDL þ! �UL��VKMDL�;

(32)

where

N � diag

�
sE
cE

;
sE
cE

;� cE
sE

�
¼ diag

�
g1
g2

;
g1
g2

;� g2
g1

�
; (33)

and PL is the projection operator for the left-handed cur-
rents. Hence, WL has the same coupling as the SM W
boson, but has a small mixing with the heavier WH. On
the other hand, WH couples differently to the third family
compared to the first two, depending on the values of g1
and g2. In Eq. (32), we have taken the approximations
sin! � ! and cos! � 1 for small mixing angle ! and
kept only terms up to order �2.
Similarly, we can obtain the charged currents for leptons

by replacing UL and DL with 
L and EL, respectively.
Since the couplings involving the charged leptons in the
first two generations are different than that for the third
generation, the universality of leptonic charged currents is
affected and can result in observable effects. We will
consider the universality of the charged current interac-
tions later.
The mass-squared matrix for the neutral gauge bosons in

the basis of the third components Z1;2 of the SUð2Þ1;2 gauge
bosons and the Uð1ÞY gauge boson B is

M2
Z ¼ 1

2

g21ðv2
1 þ u2Þ �g1g2u

2 �g0g1v2
1

�g1g2u
2 g22ðv2

2 þ u2Þ �g0g2v2
2

�g0g1v2
1 �g0g2v2

2 g0v2

0
B@

1
CA; (34)

g0 is related to g and e by 1=e2 ¼ 1=g2 þ 1=g02, and e is
the usual electromagnetic coupling. The electroweak mix-
ing angle connects these couplings, i.e., g ¼ e=sW and
g0 ¼ e=cW . It can be easily checked that the photon field
A having zero mass is

A ¼ g0g2Z1 þ g0g1Z2 þ g1g2Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02ðg21 þ g22Þ þ g21g

2
2

q : (35)

Again it is convenient to work in the basis ðZH; ZL; AÞ. In
the limit of vi going to zero, the mass of ZL, corresponding
to the SM Z boson, also goes to zero. We find

Z1

Z2

B

0
@

1
A¼

g1=n1 g1g
2
2=n2 g0g2=n3

�g2=n1 g2g
2
1=n2 g0g1=n3

0 �g0ðg21þg22Þ=n2 g1g2=n3

0
B@

1
CA ZH

ZL

A

0
@

1
A;

(36)

where n1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21þg22

q
, n2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½g21g22þg02ðg21þg22Þ�ðg21þg22Þ

q
and n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21g

2
2 þ g02ðg21 þ g22Þ

q
.
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In the new ðZH; ZL; AÞ basis, we have

M2
Z ¼ 1

2

ðg21 þ g22Þu2 þ g4
1
v2
1
þg4

2
v2
2

g21þg22
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ðg1g2 v2
1 � g2

g1
v2
2Þ 0

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p ðg1g2 v2
1 � g2

g1
v2
2Þ ðg2 þ g02Þðv2

1 þ v2
2Þ 0

0 0 0

0
BB@

1
CCA: (37)

Because the off-diagonal terms are nonzero, the ZH and ZL

fields are not mass eigenstates. The squared masses of the
lighter and heavier Z bosons, Zl and Zh, are

m2
Zl
¼ 1

2
g2v2 1

c2W
� 1

2
g2v2 1

c2W
ðs2� � s2EÞ2�2 þOð�4Þ;

m2
Zh

¼ 1

2
g2u2

1

s2Ec
2
E

þ 1

2
g2u2

ðs2� � 2s2�s
2
E þ s4EÞ

s2Ec
2
E

�2

þOð�4Þ: (38)

The light Zl boson reproduces the SM Z boson mass,
except for a correction of order �2. The mixing angle
between ZL and ZH is

tan2
 ¼ 2sEcE
cW

ðc2Es2� � s2Ec
2
�Þ�2 þOð�4Þ: (39)

Note that to order �2,Wh and Zh are degenerate. This is an
important test of this model.

In this basis the neutral current interactions can be
written as

Lneutral ¼ �c��

�
1

2
g0B�Y þ g1Z

�
1 T

1
3 þ g2Z

�
2 T

2
3

�
c

¼ �c��

�
A�Qþ g

cW
Z
�
L ½ðT1

3 þ T2
3Þ � s2WQ�

þ gZ�
H

�
sE
cE

T1
3 �

cE
sE

T2
3

��
c

� �c��

�
A�Qþ gZZ

�
l ½T3 � s2WQ

� �2ðs2Ec2ET1
3 � c4ET

2
3Þ� þ gZ�

h

�
sE
cE

T1
3 �

cE
sE

T2
3

þ �2
sEc

3
E

c2W
ðT3 � s2WQÞ

��
c ; (40)

where c can be one of the left- or right-handed quarks and
leptons, Q ¼ Y=2þ T1

3 þ T2
3 with T1

3 and T2
3 being the

isospin generators for SUð2Þ1 and SUð2Þ2, respectively,
and gZ ¼ g=cW . Since both SUð2Þ groups are left-handed,
T1
3 and T2

3 are both nonzero for left-handed fields only.

Moreover, T1
3 is zero for the third family and T2

3 is zero for

the first two. Here, we have assumed small mixing angle 

and large tan�.

One can easily translate the above interactions to those
in the quark mass eigenstates. There are FCNC interactions

due to exchanges of Zl;h at the tree level. They are given by

LFCNC ¼
�
gZ
2
c2E�

2Z�
l � g

2cEsE
Z�
h

�
ð �UL��T

y
U�TUUL

� �DL��T
y
D�TDDLÞ; (41)

where � is a diagonal matrix given by � ¼ diagð0; 0; 1Þ.
The Zl FCNC coupling is a special case discussed in
Ref. [9].

V. COMPARING WITH THE SM

A. Precision test of the model

In comparison with the SM, we require eSM ¼ e,GSM
F ¼

GF, and m
SM
Z ¼ mZl

. Hereafter, we denote all SM parame-

ters with a subscript 0, e.g., x0 ¼ sin2�SMW . Our input
parameters are the observed values of e, GF and mZl

in

the new model as they are in the SM. An important point to
remember is that the value of GF comes from the � decay.
We now have twoW’s contributing to this process: Wl and
Wh, and the mixing parameter inWl also has to be retained.
We get the following relations between the new VEV v,
coupling g and x ¼ sin�W and the SM parameters:

v ¼ v0

�
1þ 1

2
�2ð1� 2c2EÞ2

�
;

x ¼ x0

�
1þ 1� x0

1� 2x0
fE�

2

�
;

g ¼ g0

�
1� 1

2

1� x0
1� 2x0

fE�
2

�
:

(42)

Hence,

gZ ¼ g

cW
¼ gZ0

�
1� 1

2
fE�

2

�
: (43)

Here, we define fE ¼ 1� 4c2E þ 3c4E. The vector and

TABLE I. Couplings of the Zl boson to fermions, in units of
the corresponding SM coupling gZ.

Fermions gV=gZ gA=gZ


e, 
�
1
4 ð1� c2Es

2
E�

2Þ � 1
4 ð1� c2Es

2
E�

2Þ

	

1
4 ð1þ c4E�

2Þ � 1
4 ð1þ c4E�

2Þ
e, � 1

4 ð�1þ 4xþ c2Es
2
E�

2Þ 1
4 ð1� c2Es

2
E�

2Þ
	 1

4 ð�1þ 4x� c4E�
2Þ 1

4 ð1þ c4E�
2Þ

u, c 1
4 ð1� 8

3 x� s2Ec
2
E�

2Þ 1
4 ð�1þ c2Es

2
E�

2Þ
d, s 1

4 ð�1þ 4
3 xþ c2Es

2
E�

2Þ 1
4 ð1� c2Es

2
E�

2Þ
b 1

4 ð�1þ 4
3 x� c4E�

2Þ 1
4 ð1þ c4E�

2Þ
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axial-vector couplings of Zl to fermions are summarized in
Table I.

The � parameter is now

� ¼ ðg2 þ g02Þm2
Wl

g2m2
Zl

¼ 1� s2Wc
2
Es

2
Eðs2� � s2EÞ2
c2W

�4 þOð�6Þ:

(44)

It is interesting to note that the correction is of Oð�4Þ.

As mentioned before, we assume that the measured mZ

is mZl
in our model. We now consider a whole range of

parameters measured at the Z pole that are used in preci-
sion tests of the SM. We consider shifts from loop-
corrected SM predictions of all these parameters to order
�2. We express all observables in terms of the SM expres-
sions of x0, g0, gZ0 through Eqs. (42) and (43):

�Z ¼ �SM
Z ½1þ ð�1:35þ 3:70c2E � 1:8c4EÞ�2�; Re ¼ RSM

e ½1þ ð�0:28þ 1:41c2E � 0:63c4EÞ�2�;
R	 ¼ RSM

	 ½1þ ð�0:28� 0:73c2E � 0:63c4EÞ�2�; Rb ¼ RSM
b ½1þ ð0:06þ 1:59c2E þ 0:14c4EÞ�2�;

Rc ¼ RSM
c ½1þ ð�0:12� 0:12c2E � 0:27c4EÞ�2�; Ae;� ¼ ASM

e;�½1þ ð�17:4þ 57:4c2E � 40c4EÞ�2�;
A	 ¼ ASM

	 ½1þ ð�17:4þ 69:6c2E � 40c4EÞ�2�; Au;c ¼ ASM
u;c ½1þ ð�1:7þ 5:64c2E � 3:9c4EÞ�2�;

Ad;s ¼ ASM
d;s ½1þ ð�0:22þ 0:74c2E � 0:52c4EÞ�2�; Ab ¼ ASM

b ½1þ ð�0:22þ 0:90c2E � 0:52c4EÞ�2�;
Ae
FB ¼ Ae

FB
SM½1þ ð�34:8þ 114:8c2E � 80:0c4EÞ�2�; A	

FB ¼ A	
FB

SM½1þ ð�34:8þ 126:9c2E � 80:0c4EÞ�2�;
Au;c
FB ¼ Au;c

FB
SM½1þ ð�19:1þ 63:0c2E � 43:9c4EÞ�2�; Ad;s

FB ¼ Ad;s
FB

SM½1þ ð�17:6þ 58:13c2E � 40:5c4EÞ�2�;
Ab
FB ¼ Ab

FB
SM½1þ ð�17:6þ 58:29c2E � 40:5c4EÞ�2�;

(45)

All SM quantities above include radiative corrections.1

As mentioned earlier, our model also predicts violation
of universality in charged lepton decays. We now consider
the constraint obtained from this consideration. First, there
is no violation of universality for the first two generations
in the model. Therefore, the universality between 	 !
� �
�
	 and 	 ! e �
e
	 are not affected. But they are

different from the � ! e �
e
� process. We will thus com-

pare 	 ! ð�; eÞ �
�;e
	 with� ! e �
e
�. The decay widths

of these modes

� / G‘‘0

192�3
m5

‘; (46)

where ‘ and ‘0 denote the leptons in the initial and final
states, respectively. As said above, we take G�e as the SM

GF. Then the model gives

G2
	e

G2
F

¼ G2
	�

G2
F

¼ ½1� �2ð1� 2c2EÞ�2: (47)

Note that the corrections here are also of order �2 at the
amplitude level. Experimentally [10],

G2
	e

G2
F

¼ 1:0012� 0:0053;
G2

	�

G2
F

¼ 1:0087� 0:0185;

(48)

respectively. Here, we have taken into account the finite
m� phase space effect in the second line of Eq. (48).

We now combine the above-mentioned EWP data,
Eq. (46), and the lepton universality constraints, Eq. (48),
to perform a global fit to available data [10] for our theory
parameters, cE and �. The best-fitted values are cE ¼ 0:633
and � ¼ 0:059 with �2

min ¼ 16:28, in comparison with the

SM �2
min ¼ 18:86. These values of parameters correspond

to both mWh
and mZh

around 2.8 TeV, well within the reach

of the LHC.
Since mZl

is fixed to the experimentally measured value

mSM
Z in our analysis, the value of mWl

is shifted from the

SM value in the following way:

m2
Wl

� ðmSM
W Þ2 ¼ �ðmSM

W Þ2 fE�
2x0

1� 2x0
: (49)

Therefore, mWl
is smaller than mWx

SM by about 7 MeV.

This is well within the uncertainties after taking into
account radiative corrections due to Higgs and top-quark
exchanges. We have also verified the effect of our modifi-
cation on atomic parity violation experiments. The change
in value of QW is 0.1% and is too small to be observed.

B. FCNC in the model

In this model there are two types of tree-level FCNC’s,
with one from Zl and Zh exchanges and the other from
Higgs exchanges. The relevant parts are given by

1We note that EWP corrections in many models with extended
groups have been considered in Ref. [6]. Our results differ from
theirs because of different inputs and new data.
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LZ-FCNC ¼
�
gZ
2
c2E�

2Z
�
l � g

2cEsE
Z
�
h

�
�fL��

~�z
fT3fL;

LY-FCNC ¼
�
1þ c�

s�

�
½ �UR

~�Y
uULðH0 � iA0Þ

þ �DR
~�Y
dDLðH0 þ iA0Þ�; (50)

where ~�z
f ¼ Ty

f�Tf and ~�Y
f ¼ Sf�

f
1T

y
f .

Since the interactions depend on the unknown mixing
matrices Si, Ti and �i

1 even if we know the mass scale of
new physics, it is not possible to make definite predictions.
There are many FCNC processes which can be used to
constrain the parameters. A complete FCNC analysis is out
of the scope of this paper. We will, as an example, show
that the central values of � and cE are allowed by the FCNC
constraint from recent Bd;s- �Bd;s mixing data.

At the quark level, the contributions to the mixing from
the above gauge and Yukawa interactions are given by

M12 ¼
�

g2Z
4m2

Zl

ðc2E�2Þ2 þ
g2

4c2Es
2
Em

2
Zh

�
hBqjð~�z

qb �q�
�LbÞ2j �Bbi

þ 1

m2
H

�
1þ c�

s�

�
2hBqjð �qð~�Y

qbLþ ~�Y�
bqRÞbÞ2j �Bqi

� 1

m2
A

�
1þ c�

s�

�
2hBqjð �qð~�Y

qbL� ~�Y�
bqRÞbÞ2j �Bqi:

(51)

For the gauge interaction, the contribution from Zl ex-
change is suppressed by �4 and can be neglected compared
with that from Zh exchange. Using the leading approxima-
tion m2

Zl
=m2

Zh
¼ �2c2Es

2
E=c

2
W , we have a simple expression

M12 ¼ g2Z
4m2

Zl

�2hBqjð~�z
qb �q�

�LbÞ2j �Bbi: (52)

The effective coupling characterizing the contribution to

the mixing is �~�qb. In general, they are not known and can

be constrained from available data. If it turns out that the
couplings are given by the two scenarios in Sec. III, wewill
obtain for Case a):

Case aÞ: ~�db ¼ �V�
tdVtb � 5� 10�4;

~�sb ¼ �V�
tsVtb � 2:5� 10�3:

Taking the above couplings as an estimate, we find that
these are 1 order of magnitude smaller than the experimen-
tal bounds on these couplings.

For the Higgs exchange contributions with Case b), we

have ~�Y
d ¼ �d

1VKM. As long as
~�Y
db;bd and

~�Y
sb;sd are not too

much larger than 5� 10�3 and 2:5� 10�2, the heavy
Higgs masses can be as low as 2.7 TeV, as allowed formZh

.

We have also checked constraints on gauge boson ex-
changes that come from rare B decays and K � �K mixing.
These contributions are highly suppressed with the allowed
values of � and cE and offer no constraints. There are also
FCNC interactions involving charged leptons. These inter-
actions are determined by another set of parameters similar
to what we have discussed for the quark sector. Since these
parameters are in principle independent of the parameters
in the quark sector, one can always adjust the parameters to
satisfy experimental bounds without spoiling the relatively
low mass of new gauge bosons allowed by the precision
tests discussed earlier.
We conclude that the FCNC parameters can be easily

adjusted to be consistent with data while allowing the
heavy gauge boson and Higgs boson masses to be as low
as a few TeV.

VI. SUMMARY

Motivated by the reach of the LHC for discovery of
heavy gauge bosons, we have explored the family
SUð2Þl � SUð2Þh �Uð1Þ model. Such a model can throw
some light on the origin of the family structure. We con-
front the model with electroweak precision data on one
hand and consistency in the Higgs sector on the other. We
conclude from the best fit, which has a slightly lower �2

min

than the SM, that the best values for the model parameters
are cE ¼ 0:633 and � ¼ 0:059. This yields for the heavy
gauge boson masses:

mWh
¼ mZh

¼ mWl
=ðsEcE�Þ ¼ 2:77 TeV: (53)

This value is substantially higher than what previous stud-
ies have assumed. Besides, in consideration of FCNC
effects, we find that the heavy Higgs doublet is also at
least as high in mass. The gauge sector in the model also
exhibits characteristic violation of universality, which dis-
tinguishes this class of models from others that have large-
mass gauge bosons.
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