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We consider supersymmetric models that include particles beyond the minimal supersymmetric

standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM

Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM

Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the

lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light

spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be

significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We

also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with

respect to both the standard model and the MSSM.
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I. INTRODUCTION

Supersymmetry (SUSY) offers an elegant solution to the
hierarchy problem, can explain electroweak symmetry
breaking (EWSB) dynamically through renormalization
group (RG) running and, if established experimentally,
could open a window into the physics associated with
length scales much shorter than can be probed directly.

The most studied SUSYextension is the minimal super-
symmetric standard model (MSSM). In the Higgs sector,
the model incorporates two Higgs doublets, Hu and Hd.
After EWSB, 5 physical scalars remain in the spectrum [1].
Assuming no CP violation, these can be classified as two
neutral CP-even scalars (h0 the lightest, H0 the heaviest),
one neutral CP-odd scalar (A0), and a charged Higgs pair
(H�). The phenomenology in the Higgs sector is largely
determined by the masses of these particles, by a mixing
angle � that governs the relation between gauge and mass
eigenstates in the CP-even sector, and by the ratio of the
Higgs vacuum expectation values (VEV’s), tan� ¼ vu=vd.
In theMSSM only two of these parameters are independent
and are conventionally chosen as mA and tan�.
Dependence on other sectors of the theory enters through
radiative corrections, most notably in the mass of the light-
est CP-even scalar, h0. This scalar is found to be below
about 130 GeV [2], and together with the direct bounds
imposed by LEP suggests the presence of some degree of
fine-tuning in the MSSM.

This has been one motivation to study extensions of the
MSSM that can either relax the upper bound on the lightest
Higgs mass [3,4], or alter its properties in a way that
weakens the LEP bounds [5]. Often the extensions consid-
ered aim at addressing theoretical issues such as the

� problem, i.e. how to link the supersymmetric Higgs
mass parameter to the scale of EWSB, which in turn is
set by the scale of SUSY breaking in the observable sector.
Further theoretical constraints are also often imposed, such
as the requirement of perturbativity up to a very high scale,
the preservation of gauge coupling unification, or various
simplifying assumptions that allow one to more easily
constrain the low-energy parameters. However, when ex-
ploring the Higgs collider phenomenology, it may be
healthy to keep an open mind regarding such theoretical
assumptions.
If the constraints on the MSSM are to be relaxed, it is

necessary to introduce new degrees of freedom (that inter-
act with the MSSMHiggs sector) at or near the weak scale.
It has been observed that even if the new particles in the
Higgs sector are slightly heavier than the EW scale, the
lightest Higgs boson mass may receive important contri-
butions that can relax the LEP constraints [6] (see also [7]
for examples with TeV scale vectorlike matter). The new
degrees of freedom may or may not be directly accessible
at the LHC, but in either case their presence could poten-
tially be inferred by studying the spectrum and couplings
of the lighter states. In particular, the observation of a SM-
like Higgs with a mass significantly above 130 GeV, to-
gether with the observation of other superpartners, would
provide a clear hint that the Higgs sector is more compli-
cated than in the MSSM.
We concentrate on supersymmetric scenarios with par-

ticles beyond those in the MSSM, under the assumption
that they have order one couplings to the MSSM Higgs
sector, and that they are heavier than, but close to, the weak
scale. This allows one to perform a model-independent
analysis of the properties of the lighter states (i.e. those

PHYSICAL REVIEW D 81, 015001 (2010)

1550-7998=2010=81(1)=015001(27) 015001-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.015001


of the MSSM) by encoding the effects of the heavy physics
via higher-dimension operators. As pointed out in [6],1 at
leading order (LO) in 1=M (where M is the scale of the
heavy physics) only two new parameters are introduced
(corresponding to two operators in the superpotential).
Therefore, even if the MSSM extension turned out to
include a large number of degrees of freedom, their low-
energy effects admit a rather simple parametrization.
Furthermore, it was found that the 1=M effects can give
rather important contributions to the mass of the lightest
Higgs state. That the effects of such 1=M-suppressed op-
erators can be as important as those of the renormalizable
terms can be understood by considering the structure of the
Higgs quartic couplings. In terms of the general two-Higgs
doublet model parametrization of [9] [see Eq. (8)], it is
well known that of the seven independent quartic couplings
only �1, �2, �3, and �4 receive contributions in the MSSM,
at tree level. The leading order higher-dimension operators
contribute to �5, �6, and �7, so that they lead to qualita-
tively new effects in the Higgs sector. This is the same
underlying reason that loop effects in the MSSM, which
turn on all possible quartic couplings, can give sizable
effects. Thus, the presence of the heavy physics allows a
Higgs spectrum consistent with the LEP bounds, even if
the SUSY-breaking terms (in the top-stop sector) are of the
order of a couple hundred GeV, thus alleviating the ten-
sions found within the MSSM.

Working still at leading order in 1=M, one finds not only
contributions to the quartic Higgs couplings, but also
higher-dimension operators in the Higgs potential. These
are essential in bounding the scalar potential from below. It
was observed in [10] that taking these operators into ac-
count leads to the existence of new vacua that can be
studied within the above effective field theory (EFT), and
that these vacua have distinct properties. For instance,
electroweak symmetry breaking is not necessarily con-
trolled by supersymmetry breaking but, unlike in the
MSSM, can occur already in the supersymmetric limit
(this possibility was considered in the early days of super-
symmetry [11], though not in light of the EFT approach;
see also Appendix B of Ref. [12], and more recently [13]).
These were dubbed ‘‘sEWSB vacua’’ (or supersymmetric
EWSB vacua) in [10]. Typical features of the Higgs phys-
ics in the sEWSB vacua are order one tan�, a heavy
CP-even Higgs (H0) with SM-like properties, and rela-
tively light charginos and neutralinos.

In this work, we further consider the next order in the
1=M expansion. On the one hand these lead to the ‘‘first
order corrections’’ to the physics in sEWSB vacua [10].

Second, even in MSSM-like vacua their effects can be
phenomenologically relevant. This can again be under-
stood by referring to the quartic couplings �1;2;3;4, whose

size is set at leading order by the electroweak (EW) gauge
couplings squared, and hence are numerically small (the
source of the lightness of the SM-like Higgs within the
MSSM). TheOð1=MÞ operators from the superpotential do
not contribute to these couplings, and therefore the
Oð1=M2Þ effects become the leading order contributions
from the heavy physics to the corresponding quartic op-
erators in the scalar potential. Furthermore, up to numeri-
cal factors, the heavy physics gives a contribution of order
v2=M2 which is comparable to the MSSM one for M�
v=g, with g an EW gauge coupling and v a Lagrangian
parameter of the order of the EW scale.2 At second order in
the 1=M expansion several new operators appear. Within a
given UV completion, the coefficients of these operators
may or may not be related to the coefficients of the leading
order operators (depending on the complexity of the
MSSM extension). Here we do not impose any correla-
tions, but vary the coefficients of the higher-dimension
operators (in the superpotential and Kähler potential) in-
dependently. Our purpose is to survey the possible signa-
tures in the Higgs sector, which could suggest the presence
of an extended sector that might be more difficult to ob-
serve directly (for instance if it consists of SM singlets).
Having developed the relevant formalism, in this paper

we start a study of the Higgs collider phenomenology. We
contrast the observed features against both the SM and
MSSM. For instance, we observe a general enhancement of
the gluon fusion production cross section of the SM-like
Higgs, which is interesting at hadron colliders. Also note-
worthy is the fact that the Higgs spectrum can be altered
sufficiently to allow for new decay modes with rather
significant branching fractions. Here we comment only
on some of the possible signals and defer a more complete
study of the Higgs collider phenomenology to [14].
Higher-dimension operators in the SUSY context were

considered in [8,15], and a more complete classification
was presented in [16], where field redefinitions were used
to reduce the number of independent operators. The issue
of the stability of the Higgs potential for MSSM-like
minima (as opposed to sEWSB minima [10]) was consid-
ered in [17], while the implications for fine-tuning in such
scenarios were considered in [18,19]. Higher-dimension
operators can also have interesting consequences for the
dark matter relic density [20,21] as well as for cosmology
[22] and EW baryogenesis [23–27].

1The earlier Ref. [8] also considered in detail the effects of
higher-dimension operators on the MSSM Higgs sector in the
context of low-scale supersymmetry breaking mediation. They
also considered effects similar to those we include below,
although they restrict to a study of the renormalizable part of
the scalar potential.

2Note that sizable effects at order 1=M2 do not necessarily
signal a breakdown of the 1=M expansion. In contrast, large
effects at order 1=M3 in general signal such a breakdown. We
take care to study parameter points where the next order effects
are expected to be small by a simple criterion described in
Sec. IVB.
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This paper is organized as follows. In Sec. II, we define
the effective theory to be studied and work out the general
expressions for the masses and couplings of the light Higgs
degrees of freedom to order 1=M2. In Sec. III we give
simple analytic formulas in certain limits that allow one to
understand the qualitative features of the effective theory.
In Sec. IV we present the strategy to be used in the
numerical study, to be undertaken in Sec. V. There we
comment on a selected number of features. A more com-
plete study of the collider phenomenology will be pre-
sented in [14]. We conclude in Sec. VI. In Appendix A,
we consider several possible UV completions that illustrate
how the higher-dimension operators in the EFT can arise.
In Appendixes B, C, and D we comment on custodial
symmetry violation, give the chargino/neutralino mass
matrices, and collect several Higgs trilinear couplings,
respectively.

II. EXTENDED SUPERSYMMETRIC HIGGS
SECTORS

We start by setting up the framework. Our point of
departure is a generic supersymmetric theory with an ex-
tended Higgs sector, but where the degrees of freedom
beyond those in the MSSM have masses of order M,
assumed to be slightly larger than the EW scale. In this
case, a model-independent effective field theory analysis is
useful. We further assume that all supersymmetry breaking
parameters are of the order of a couple hundred GeV, so
that the heavy spectrum is approximately supersymmetric,
with masses of orderM. In this case, it is useful to write the
effective theory in supersymmetric notation, keeping track
of supersymmetry breaking effects via a spurion superfield
that gets a VEV in its F component (we do not consider
D-term breaking here). In this section, we define the ef-
fective theory to be studied—which describes explicitly
only the MSSM Higgs degrees of freedom—and work out
the Higgs spectrum and their couplings.

A. Generalized SUSY Two-Higgs doublet model

The effects of heavy particles on the physical properties
of the MSSM Higgs fields can be described by a tower of
higher-dimension operators suppressed by powers of M.
Our ultimate goal is to study the associated collider phe-
nomenology, and we start by working out the spectrum and
couplings of the light states (light compared toM). For the
reasons spelled out in the Introduction, we work up to next-
to-leading order in the 1=M expansion. Next-to-next-to-
leading order contributions are expected to be small, pro-
vided the 1=M expansion converges, a point we address in
Sec. IVB.

At leading order in 1=M, the superpotential reads

W ¼ �HuHd þ !1

2M
ðHuHdÞ2; (1)

whereHuHd ¼ H0
uH

0
d �Hþ

u H
�
d and!1 is a dimensionless

parameter that we assume to be of order 1. Soft supersym-
metry breaking can be parametrized via a spurion super-
field X ¼ ms�

2, where ms sets the scale of SUSY breaking
(note that we choose X to be dimensionless). Each operator
in the superpotential (or Kähler potential) leads to an
associated SUSY-breaking operator through multiplication
by the spurion, X. We will assume here that the coefficients
of the SUSY-breaking operators are proportional to those
of the corresponding supersymmetric terms. Besides the
B� term, at leading order in 1=M one has

Wspurion ¼ �1

!1

2M
XðHuHdÞ2 (2)

for a dimensionless parameter �1, also taken to be of
order 1. This term leads directly to a quartic interaction
among the Higgs scalar fields.
At order 1=M2 there are no operators in the superpoten-

tial, but several operators enter through the Kähler poten-
tial:

K ¼ Hy
d e

2VHd þHy
u e2VHu þ �K6c þ�Kc; (3)

where

�K6c ¼ c1
2jMj2 ðH

y
d e

2VHdÞ2 þ c2
2jMj2 ðH

y
u e2VHuÞ2

þ c3
jMj2 ðH

y
u e2VHuÞðHy

d e
2VHdÞ; (4)

�Kc ¼ c4
jMj2 jHuHdj2 þ

�
c6
jMj2 H

y
d e

2VHd

þ c7
jMj2 H

y
u e2VHu

�
ðHuHdÞ þ H:c: (5)

We separated the higher-dimension contributions in the
Kähler potential into those that violate the custodial sym-

metry, K6c, and those that respect it, Kc [see Eqs. (32) and
(33), as well as Appendix B].
The above dimension-6 operators lead to associated

SUSY-breaking operators as follows:

K6c
spurion ¼

c1
jMj2 ½ð�1X þ ��

1X
yÞ þ �1X

yX�ðHy
d e

2VHdÞ2

þ c2
jMj2 ½ð�2Xþ ��

2X
yÞ þ �2X

yX�ðHy
u e2VHuÞ2

þ c3
jMj2 ½ð�3Xþ ��

3X
yÞ þ �3X

yX�ðHy
u e2VHuÞ

� ðHy
d e

2VHdÞ; (6)
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Kc
spurion ¼

c4
jMj2 ½ð�4X þ ��

4X
yÞ þ �4X

yX�jHuHdj2

þ
�

c6
jMj2 ð�6Xþ �6X

y þ �6X
yXÞHy

d e
2VHd

þ c7
jMj2 ð�7X þ �7X

y þ �7X
yXÞHy

u e2VHu

�
� ðHuHdÞ þ H:c: (7)

Here we used the fact that operators like XHy
d e

2VHd or

XHy
u e2VHu can be set to zero by a superfield redefinition

[16]. We did not write explicitly the usual soft breaking
masses m2

Hu
and m2

Hd
, which correspond to operators of the

form XyXHy
u e2VHu and XyXHy

d e
2VHd, although such

terms are understood. We assumed that each type of soft
breaking operator vanishes in the absence of the corre-
sponding SUSY-preserving one, i.e. we define the parame-
ters �i, �i, and �i by factoring out the associated ci. This
will be the case if the corresponding statement holds in the
UV theory that induces the higher-dimension operators we
are considering and is a property of several realistic SUSY-
breaking mediation mechanisms (in simple extensions one
obtains a strict proportionality, as illustrated in the ex-
amples described in Appendix A). Notice also that opera-
tors like XyðHuHdÞ2 or XyXðHuHdÞ2 in the Kähler
potential are equivalent to the superpotential operators of
Eqs. (1) and (2), and since we are taking !1 and �1 as free
parameters, there is no loss of generality in omitting them
from Eq. (7).

It is straightforward to work out the scalar potential that
follows from Eqs. (1)–(3), (6), and (7) which, at the re-
normalizable level, takes the form

Vren: ¼m2
uH

y
uHu þm2

dH
y
dHd � ½bHuHd þH:c:�

þ 1
2�1ðHy

dHdÞ2 þ 1
2�2ðHy

uHuÞ2 þ�3ðHy
uHuÞðHy

dHdÞ
þ�4ðHuHdÞðHy

uH
y
d Þ þ f12�5ðHuHdÞ2

þ ½�6ðHy
dHdÞ þ�7ðHy

uHuÞ�ðHuHdÞ þH:c:g; (8)

where we added the soft masses m2
Hu
, m2

Hd
, and b, and

m2
u;d � m2

Hu;d
þ j�j2 also include the supersymmetric

mass term, j�j2. The quartic operators are defined in
such a way that the �i, i ¼ 1; . . . ; 7, map exactly to those
used in [9] with their alternate convention for the hyper-
charges of the two Higgs-doublet fields. In the MSSM
limit, the quartic couplings are

�ð0Þ
1 ¼ �ð0Þ

2 ¼ 1

4
ðg2 þ g02Þ; �ð0Þ

3 ¼ 1

4
ðg2 � g02Þ;

�ð0Þ
4 ¼ � g2

2
;

(9)

with the rest vanishing. At order 1=M (henceforth referred
to as dimension 5), only �5, �6, and �7 receive contribu-
tions:

��ð5Þ
5 ¼ ��1!1

ms

M
; ��ð5Þ

6 ¼ ��ð5Þ
7 ¼ !1

�

M
: (10)

At order 1=M2 all the quartic couplings receive contribu-
tions:

��ð6Þ
1 ¼ �2ðc3 þ c4Þ�

2

M2
þ 4c6�6

ms�

M2
� 2c1�1

m2
s

M2
;

��ð6Þ
2 ¼ �2ðc3 þ c4Þ�

2

M2
þ 4c7�7

ms�

M2
� 2c2�2

m2
s

M2
;

��ð6Þ
3 ¼ �ðc1 þ c2 þ 2c4Þ�

2

M2
þ 2ðc6�6 þ c7�7Þms�

M2
� c3�3

m2
s

M2
;

��ð6Þ
4 ¼ �ðc1 þ c2 þ 2c3Þ�

2

M2
þ 2ðc6�6 þ c7�7Þms�

M2
� c4�4

m2
s

M2
;

��ð6Þ
5 ¼ 2ðc6�6 þ c7�7Þms�

M2
;

��ð6Þ
6 ¼ �ðc6 þ 2c7Þ�

2

M2
þ ð2c1�1 þ c3�3 þ c4�4Þms�

M2
� c6�6

m2
s

M2
;

��ð6Þ
7 ¼ �ðc7 þ 2c6Þ�

2

M2
þ ð2c2�2 þ c3�3 þ c4�4Þms�

M2
� c7�7

m2
s

M2
; (11)

where we assumed, as we will do for simplicity in the rest of the paper, that all parameters are real. At this order we should
consider also dimension-6 operators in the scalar potential that give parametrically comparable effects. The dimension-6
operators generated by integrating out the F and D terms take the form

Vnonren: ¼ 1

M2
fjHuHdj2½ð�8H

y
dHd þ �0

8H
y
uHuÞÞ� þ ð�9jHuHdj2 þ �10ðHy

dHdÞ2 þ �11ðHy
uHuÞ2

þ �12ðHy
dHdÞðHy

uHuÞÞ½HuHd þHy
uH

y
d � þ �13ðHy

dHdÞ3 þ �14ðHy
dHdÞ2ðHy

uHuÞ
þ �15ðHy

dHdÞðHy
uHuÞ2 þ �16ðHy

uHuÞ3g; (12)

where
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�8 ¼ !2
1 � ðc1 þ c3Þ g

2

2
; �0

8 ¼ !2
1 � ðc2 þ c3Þ g

2

2
;

�9 ¼ �ðc6 þ c7Þ g
2

2
; �10 ¼ c6

ðg2 þ g02Þ
4

;

�11 ¼ c7
ðg2 þ g02Þ

4
; �12 ¼ ðc6 þ c7Þ ðg

2 � g02Þ
4

;

�13 ¼ c1
ðg2 þ g02Þ

4
; �14 ¼ c3

g2

2
� c1

ðg2 � g02Þ
4

;

�15 ¼ c3
g2

2
� c2

ðg2 � g02Þ
4

; �16 ¼ c2
ðg2 þ g02Þ

4
: (13)

The operators with coefficients �8 and �0
8 are essential in stabilizing the sEWSB vacua discussed in [10]. At order 1=M2,

higher-dimension operators involving two derivatives need also to be included, since after EWSB they lead to contribu-
tions to the Higgs kinetic terms. After canonical normalization, these give additional contributions to the masses and
couplings of the Higgs fields. These operators are found to be

L � � 1

M2
fc1ð½ðD2HdÞyHd�ðHy

dHdÞ þ ½ðD�HdÞyHd�½ðD�HdÞyHd�Þ þ c2ð½ðD2HuÞyHu�ðHy
uHuÞ þ ½ðD�HuÞyHu�

� ½ðD�HuÞyHu�Þ þ c3ð½ðD2HuÞyHu�ðHy
dHdÞ þ ½ðD2HdÞyHd�ðHy

uHuÞ þ 2½ðD�HuÞyHu�½ðD�HdÞyHd�Þ
� c4@�ðHy

uH
y
d Þ@�ðHuHdÞ þ ð½c6ðD2HdÞyHd þ c7ðD2HuÞyHu�ðHuHdÞ þ H:c:Þg; (14)

where D2 ¼ D�D
� and D� ¼ @� þ igW� þ ig0YB� is

the gauge covariant derivative (Y ¼ þ1=2 for Hu and Y ¼
�1=2 for Hd).

Finally, although there can be Oð1=M2Þ contributions to
the gauge kinetic terms, we do not consider them here (but
see [8]).

B. Higgs spectrum

We obtain the spectrum and couplings of the Higgs
fields in two steps: first we neglect the noncanonical kinetic
terms that follow from Eq. (14), minimize the potential
(which does not require canonical normalization), and
obtain general expressions for the (at this point unphysical)
masses and couplings in terms of

�i ¼ �ð0Þ
i þ ��ð5Þ

i þ��ð6Þ
i þ ��1-loop

i ; (15)

where the last term represents the 1-loop corrections (to be
included in the numerical analysis of Sec. V), which will
be discussed in Sec. IVE. In this section we concentrate on
the tree-level contributions [i.e. the first three terms in
Eq. (15)]. Second, we make a field redefinition to arrive
at canonical normalization in the presence of the operators
of Eq. (14), and rediagonalize to obtain the physical spec-
trum. The first step defines CP eigenstates h0, H0, A0, and
H�, with mass parameters m2

h0
, m2

H0 , m
2
A0 , and m2

H� as

follows:

H0
u

H0
d

 !
¼ 1ffiffiffi

2
p vu

vd

 !
þ 1ffiffiffi

2
p c� s�

�s� c�

 !
h0

H0

 !

þ iffiffiffi
2

p s� c�

�c� s�

 !
G0

A0

 !
; (16)

Hþ
u

H��
d

� �
¼ s� c�

�c� s�

� �
Gþ
Hþ

� �
; (17)

where s� ¼ sin� and c� ¼ cos� with t� ¼ vu=vd and

v2 ¼ v2
u þ v2

d 	 ð246 GeVÞ2. For small fluctuations,

G0;� are the eaten Goldstone bosons that will be set to
zero in the following. Minimization of the potential re-
quires

m2
u ¼ bt�1

� � v2

2
s2�½�2 þ 3�7t

�1
� þ ~�3t

�2
� þ �6t

�3
� �

� v4

4M2
s4�½3�16 þ 5�11t

�1
� þ 2~�0

8t
�2
� þ 3~�9t

�3
�

þ ~�8t
�4
� þ �10t

�5
� �; (18)

m2
d ¼ bt� � v2

2
t�s

2
�½�7 þ ~�3t

�1
� þ 3�6t

�2
� þ �1t

�3
� �

� v4

4M2
t�s

4
�½�11 þ ~�0

8t
�1
� þ 3~�9t

�2
� þ 2~�8t

�3
�

þ 5�10t
�4
� þ 3�13t

�5
� �; (19)

where �̂3 ¼ �3 þ �4, ~�3 ¼ �̂3 þ �5, ~�8 ¼ �8 þ �14,
~�0
8 ¼ �0

8 þ �15, and ~�9 ¼ �9 þ �12. The masses of the

CP-odd and charged Higgses, A0 and H�, can then be
written as

m2
A0 ¼ bt�

s2�
� v2

2
t�ð�7 þ 2�5t

�1
� þ �6t

�2
� Þ

� v4

4M2
t�s

2
�½�11 þ ~�9t

�2
� þ �10t

�4
� �; (20)
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m2
H� ¼ m2

A0 þ v2

2
ð�5 � �4Þ � v4

4M2
s2�ð�0

8 þ 2�9t
�1
� þ �8t

�2
� Þ: (21)

The mass matrix for the CP-even states in the ðhd; huÞ ¼ ðc�H0 � s�h
0; c�h

0 þ s�H
0Þ basis is

M 2 ¼ m2
A0s

2
�

1 �t�1
�

�t�1
� t�2

�

 !
þ v2s2�

�5 þ 2�6t
�1
� þ �1t

�2
� �7 þ �̂3t

�1
� þ �6t

�2
�

�7 þ �̂3t
�1
� þ �6t

�2
� �2 þ 2�7t

�1
� þ �5t

�2
�

 !
þ v4s4�

M2

�
~�9t

�1
� þ ~�8t

�2
� þ 4�10t

�3
� þ 3�13t

�4
� �11 þ ~�0

8t
�1
� þ 2~�9t

�2
� þ ~�8t

�3
� þ �10t

�4
�

�11 þ ~�0
8t

�1
� þ 2~�9t

�2
� þ ~�8t

�3
� þ �10t

�4
� 3�16 þ 4�11t

�1
� þ ~�0

8t
�2
� þ ~�9t

�3
�

 !
; (22)

which leads to mass eigenvalues and a mixing angle �
given by

m2
H0;ĥ0

¼ 1
2½TrM2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrM2Þ2 � 4 detM2

q
�; (23)

s2� ¼ 2M2
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTrM2Þ2 � 4 detM2

p ; (24)

c2� ¼ M2
11 �M2

22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTrM2Þ2 � 4 detM2
p : (25)

In order to find the physical masses at order 1=M2 we need
to include the operators in Eq. (14) that contribute to the
kinetic terms of h0, H0, A0, and H�. Canonical normal-
ization is achieved by the field redefinitions

h0 ! ð1� 1
2A1Þh0 � 1

2B1H
0; A0 ! ð1� 1

2E1ÞA0;

H0 ! ð1� 1
2D1ÞH0 � 1

2B1h
0; H� ! ð1� 1

2F1ÞH�;
(26)

where

A1 ¼ v2

2M2
s2�

�
c2ð1þ c2�Þ þ c1t

�2
� ð1� c2�Þ þ 1

2
c3½s�2

� � ð1� t�2
� Þc2� � 2t�1

� s2�� þ c4s
�2
� c2�þ�

þ c7½�s2� þ 2t�1
� ð1þ c2�Þ� þ c6t

�1
� ½2ð1� c2�Þ � t�1

� s2��
�
;

B1 ¼ v2

2M2
s2�

�
ðc2 � c1t

�2
� Þs2� � 1

2
c3½ð1� t�2

� Þs2� � 2t�1
� c2�� þ c4s

�2
� c�þ�s�þ� þ c7ðc2� þ 2t�1

� s2�Þ

þ c6t
�1
� ð�2s2� þ t�1

� c2�Þ
�
;

D1 ¼ v2

2M2
s2�

�
c2ð1� c2�Þ þ c1t

�2
� ð1þ c2�Þ þ 1

2
c3½s�2

� þ ð1� t�2
� Þc2� þ 2t�1

� s2�� þ c4s
�2
� s2�þ�

þ c7½s2� þ 2t�1
� ð1� c2�Þ� þ c6t

�1
� ½2ð1þ c2�Þ þ t�1

� s2��
�
;

E1 ¼ v2

2M2

�
1

8
ðc1 þ c2Þ½1� s4�ð1� 14t�2

� þ t�4
� Þ� þ 1

4
c3½3þ s4�ð1þ 2t�2

� þ t�4
� Þ� þ c4 þ 2t�1

� s2�½c6ð1þ s2�Þ

þ c7ð1þ t�2
� s2�Þ�

�
;

F1 ¼ v2

M2
s4�

�
1

8
c3ð3s�4

� þ 1� 6t�2
� þ t�4

� Þ þ t�1
� ðc6 þ c7t

�2
� Þ þ 1

2
ðc1 þ c2Þt�2

�

�
: (27)

At this point, one needs to perform a further rotation (by an
angle �) in the CP-even sector that rediagonalizes the
corresponding mass matrix:

h0 ! c�h
0 þ s�H

0; H0 ! c�H
0 � s�h

0; (28)

where, to order 1=M2,

t2� ¼ � m2
H0 þm2

h0

m2
H0ð1�D1Þ �m2

h0
ð1� A1Þ

B1: (29)

We do not expand the denominator to cover cases where
m2

H0 	 m2
h0
. The physical CP-even squared masses are

finally given by

m2
h ¼ m2

h0
ð1� A1Þc2� þm2

H0ð1�D1Þs2�
þ B1ðm2

H0 þm2
h0
Þc�s�;

m2
H ¼ m2

H0ð1�D1Þc2� þm2
h0
ð1� A1Þs2�

� B1ðm2
H0 þm2

h0
Þc�s�; (30)
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while the physical CP-odd and charged Higgs masses are
given by m2

A0ð1� E1Þ and m2
H�ð1� F1Þ, respectively.

Whenever � 
 1 we have m2
h 	 m2

h0
ð1� A1Þ and m2

H 	
m2

H0ð1�D1Þ. However, there are regions where the de-
nominator in Eq. (29) is small and all orders in � should be
kept, in spite of it formally being of order 1=M2.

There is one additional source of corrections at order
1=M2 that affect the spectrum, as well as the Higgs cou-
plings to be discussed in the next section. The two-
derivative operators in Eq. (14) give contributions to the
gauge boson masses as follows:

m2
Z ¼ 1

4
g2Zv

2

�
1þ v2

M2
s4�ðc2 þ t�1

� c7 þ t�3
� c6 þ t�4

� c1Þ
�
;

(31)

m2
W ¼ m2

Zc
2
Wð1þ � ~TÞ; (32)

where

� ~T ¼ � v2

2M2
s4�½c2 � 2t�2

� c3 þ t�4
� c1� (33)

is the contribution from the higher-dimension operators to
the Peskin-Takeuchi T parameter. Note that, as mentioned
in Sec. II A, only the operators in Eq. (4) contribute to T. At
loop level, there are other contributions to the T parameter
from the distorted Higgs spectrum (heavier SM-like Higgs
in addition to mass splittings among the nonstandard
Higgses), as well as from custodially violating mass split-
tings in the superpartner spectrum [28]. For the time being,
we note that by keeping mZ fixed at the observed value,
Eq. (31) implies a shift in v at order 1=M2:

�v

v
	 � v2

2M2
s4�ðc2 þ t�1

� c7 þ t�3
� c6 þ t�4

� c1Þ; (34)

so that the VEV v in this model differs from the SM value
of 246 GeV by terms of order 1=M2. At this order, only the
terms in Eqs. (21) and (22) that are proportional to �1, �2,
�3, and �4—which are nonvanishing in the MSSM limit—
are affected by the shift in the VEV (in particular,m2

A is not
affected). In practice, at this order in the 1=M expansion it
is sufficient to use v ¼ ð1þ �v=vÞ � 246 GeV in
Eqs. (16)–(30), with �v=v given in Eq. (34).

C. Higgs couplings to fermions and gauge bosons

Here we focus on the couplings of the Higgs scalars to
gauge bosons and fermions. Recall that in the MSSM the
couplings of the neutral Higgs bosons to fermion pairs,
relative to the SM value, gmf=2mW , read (for up-type and

down-type quarks)

h�tt: c�=s�; H�tt: s�=s�; A�tt: 1=t�;

h �bb: � s�=c�; H �bb: c�=c�; A �bb: t�;
(35)

while the couplings to a pair of gauge bosons relative to the
SM value (gmW for V ¼ W and gmZ=cW for V ¼ Z) are

hVV:s���; HVV:c���: (36)

These couplings are changed by the higher-dimension
operators in two ways: indirectly through the mixing angle
� [see Eqs. (22), (24), and (25)], and directly due to the
effects associated with the operators of Eq. (14), which
include the field redefinitions of Eqs. (26). The latter
involve a rescaling and therefore cannot be parametrized
as a rotation by an effective angle. These effects corre-
spond to the mixing of the MSSM Higgs fields with heavy
degrees of freedom that are not included explicitly in the
effective theory, and appear first at order 1=M2.
Since it is convenient to give the Higgs couplings rela-

tive to the SM values, we need to take into account the shift
in the Higgs VEV, Eq. (34), which implies a shift in the
Yukawa couplings relative to the SM values: �yf=yf ¼
��v=v. Together with the Higgs field redefinition of
Eqs. (26) these induce a shift in the Higgs- �ff couplings
at order 1=M2 compared to Eqs. (35) (on top of the shifts
implicit through the mixing angle �).
Similarly, the normalization of the Higgs-gauge boson

couplings to the SM value needs to take into account
the shifts in the gauge boson masses given in Eqs. (31) and
(32). In addition, the two-derivative operators in Eq. (14)
also give direct corrections to these vertices from the terms
quadratic in the gauge fields and linear in h0 or H0:

g2v

4c2W
ð�ghZZh0 þ �gHZZH

0ÞZ�Z
� þ g2v

2
ð�ghWWh

0

þ �gHWWH
0ÞWþ

�W
��;

where

�ghZZ ¼ v2

2M2
f4s3�ðc2c� � c1t

�3
� s�Þ þ s2�½c7ð2c�þ� þ c���Þ þ c6t

�2
� ð2c�þ� � c���Þ�g;

�gHZZ ¼ v2

2M2
f4s3�ðc2s� þ c1t

�3
� c�Þ þ s2�½c7ð2s�þ� þ s���Þ þ c6t

�2
� ð2s�þ� � s���Þ�g;

�ghWW ¼ v2

2M2
f2s3�ðc2c� � c1t

�3
� s�Þ þ 2c3t

�1
� s2�c�þ� þ s2�½c7ð2c�þ� þ c���Þ þ c6t

�2
� ð2c�þ� � c���Þ�g;

�gHWW ¼ v2

2M2
f2s3�ðc2s� þ c1t

�3
� c�Þ þ 2c3t

�1
� s2�s�þ� þ s2�½c7ð2s�þ� þ s���Þ þ c6t

�2
� ð2s�þ� � s���Þ�g:

(37)
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These should be combined with the field redefinitions Eqs. (26). Note that the corrections to the Z and W couplings are
different only due to the custodially violating coefficients c1, c2, and c3.

Putting all these ingredients together, the couplings of Eqs. (35) and (36) are then generalized as follows. For the light
CP-even Higgs, h0, we get

h�tt:
1

s�

�
c�þ�

�
1� �v

v
� 1

2
A1

�
� 1

2
B1s��� þ 1

2
ðD1 � A1Þs�s�

�
;

h �bb:� 1

c�

�
s�þ�

�
1� �v

v
� 1

2
A1

�
þ 1

2
B1c��� � 1

2
ðD1 � A1Þc�s�

�
;

hZZ:s�����

�
1þ�v

v
� 1

2
A1

�
� 1

2
B1c���þ� þ 1

2
ðD1 � A1Þc���s� þ c��ghZZ � s��gHZZ;

hWW:s�����

�
1þ �v

v
� 1

2
� ~T � 1

2
A1

�
� 1

2
B1c���þ� þ 1

2
ðD1 � A1Þc���s� þ c��ghWW � s��gHWW;

(38)

while for the heavy CP-even Higgs, H0, we get

H�tt:
1

s�

�
s�þ�

�
1��v

v
� 1

2
A1

�
� 1

2
B1c��� � 1

2
ðD1 � A1Þs�c�

�
;

H �bb:
1

c�

�
c�þ�

�
1� �v

v
� 1

2
A1

�
þ 1

2
B1s��� � 1

2
ðD1 � A1Þc�c�

�
;

HZZ:c�����

�
1þ�v

v
� 1

2
A1

�
� 1

2
B1s���þ� � 1

2
ðD1 � A1Þc���c� þ c��gHZZ þ s��ghZZ;

HWW:c�����

�
1þ �v

v
� 1

2
� ~T � 1

2
A1

�
� 1

2
B1s���þ� � 1

2
ðD1 � A1Þc���c� þ c��gHWW þ s��ghWW;

(39)

where � is determined by Eqs. (24) and (25). The cou-
plings to fermion pairs of theCP-odd and charged Higgses,
A0 and H�, which are independent of �, are obtained from
those in the MSSM by multiplication by ð1��v=v�
1
2E1Þ and ð1��v=v� 1

2F1Þ, respectively. Here � is defined
by Eq. (29), A1, B1, D1, F1, and E1 are as defined in
Eq. (27), �v=v is given in Eq. (34), � ~T is given in
Eq. (33),3 and �ghVV and �gHVV are given in Eqs. (37).
The hVV and HVV couplings in Eqs. (38) and (39) are

given relative to gmZ=cW and gmW , respectively, wheremZ

and mW include the order 1=M2 corrections as in Eqs. (31)
and (32). The Higgs couplings to fermion pairs are given
relative to gmf=2mW , which is the SM Yukawa coupling.
Trilinear interactions involving one gauge boson and

two Higgses are also of great phenomenological relevance
and receive corrections from the higher-dimension opera-
tors of Eq. (3):

L3 � � g

2cW
Z�fð�ZHAH

0@�A
0 � �ZAHA

0@�H
0Þ � ð�ZhAh

0@�A
0 � �ZAhA

0@�h
0Þg

� igc2W
2cW

�ZHþH�Z�ðHþ@�H� �H�@�HþÞ � ig

2
Wþ�fð�W�hH�h0@�H

� � �W�H�hH
�@�h0Þ

� ð�W�HH�H0@�H
� � �W�H�HH

�@�H0Þg þ H:c:� g

2
Wþ�f�W�H�AH

�@�A0 � �W�AH�A0@�H
�g þ H:c: (40)

We give the detailed form of the coefficients �ZhA, �ZAh,
�ZHA, �ZAH, and �ZHþH� , as well as those for the inter-
actions with a single W, in Appendix D.

III. GENERIC FEATURES

In the previous section we presented the effective theory
in the Higgs sector up toOð1=M2Þ, whereM is the scale of
the heavy physics. It is useful to obtain simple analytical
expressions that hold at order 1=M, since these will deter-
mine the qualitative features induced by the heavy physics.
In this section we perform such an analysis and consider
several limiting cases that clarify the generic features of the
numerical study to be undertaken in the next section.

3Equations (38) and (39) are the tree-level expressions. There
are loop-level contributions to �T, discussed in Sec. IVD, that
have to be added. Since experimentally �T is bound to be small,
one can neglect it in hWW and HWW for the phenomenolog-
ically allowed points.
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We start by considering the masses of the CP-even
Higgs states, m2

h0
and m2

H0 , as given in Eq. (23) with

Eqs. (9) and (10). Formally expanding to leading order in
1=M one has

m2
h0;H0 ¼ ðm2

h0;H0ÞMSSM þ ð�m2
h0;H0ÞDim-5 þ � � � ; (41)

where the well-known MSSM contributions, ðm2
h0
ÞMSSM

and ðm2
H0ÞMSSM, and the leading order corrections due to

the heavy physics, ð�m2
h0
ÞDim-5 and ð�m2

H0ÞDim-5, are given
by

ðm2
h0;H0ÞMSSM ¼ 1

2
ðm2

A þm2
Z �DÞ;

ð�m2
h0;H0ÞDim-5 ¼ 1

2
!1v

2

�
2s2�

�
�

M

��
1�m2

A þm2
Z

D

�

�
�
�1ms

M

��
1� c22�ðm2

A �m2
ZÞ

D

��
;

(42)

provided one has the inequality

D2 >!1v
2

�
2s2�

�
�

M

�
ðm2

A þm2
ZÞ

þ c22�

�
�1ms

M

�
ðm2

A �m2
ZÞ
�
;

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A þm2
ZÞ2 � 4c22�m

2
Am

2
Z

q
: (43)

For the opposite inequality, the expressions for m2
h0

and

m2
H0 in Eq. (42) should be interchanged. For typical values

of the parameters we are interested in, the inequality
Eq. (43) is generally obtained for large mA, while the
opposite inequality results for small mA. Near the point
where the two sides of (43) coincide, the formal expansion
to order 1=M can be rather inaccurate due to the near
degeneracy of the two states (the mixing angle � can
receive large corrections). Nevertheless the explicit expres-
sions in Eq. (42) are useful, for instance showing how the
sign of the correction to the MSSM result depends on the
signs of !1� and !1�1.

It is interesting to consider the t� dependence of the

correction tom2
h0
andm2

H0 . In the following we assume that

the inequality Eq. (43) holds. As discussed above, the
complementary region can be obtained by simply inter-
changing h0 and H0 in the relevant statements below. For
t� of order 1 (s2� 	 1, c2� 	 0), one has

ð�m2
h0
ÞDim-5 	 1

2
!1v

2

�
4�� �1ms

M

�
; (44)

while for large t� (i.e. s2� 	 0, jc2�j 	 1) one has

ð�m2
h0
ÞDim-5 	

�
0 mA  mZ;
�!1v

2ð�1ms

M Þ mA <mZ:
(45)

Thus, the corrections are most important in the small t�

regime (if mA  mZ), and this region will allow one to
more easily evade the LEP bound on mh0 . This is a well-
appreciated feature in models extended by singlet fields,
such as the NMSSM and its relatives. We can easily
estimate how large mh0 can be for t� 	 1, where the

MSSM contribution vanishes. Setting �1 ��1 and ��
ms, we have

mh0 � ffiffiffiffiffiffi
!1

p vffiffiffi
2

p �Oð5�=MÞ1=2: (46)

For!1 � 1 this can easily be above the LEP bound. For the
case of large t� the dimension-6 corrections can play a

crucial role in lifting the lightest Higgs mass from the
MSSM limit, as will be illustrated in the numerical analysis
of the next section (notice that dominant dimension-6
effects do not signal a breakdown of the EFT analysis if
the dimension-5 contributions are small due to a t� sup-

pression or an accidentally small coupling !1).
It is also interesting to consider the decoupling limit.

Expanding in powers of m2
Z=m

2
A, one gets

ð�m2
h0
ÞDim-5 	 1

2
!1v

2s2�

�
4�� s2��1ms

M

�
; (47)

which shows that in a large region of parameter space the
leading order correction tomh0 is only suppressed by about
s2� compared to Eq. (46) [in general, this correction has to

be added in quadrature to the MSSM result, according to
Eq. (41)].
In Fig. 1 we show the maximum tree-level value of the

lightest Higgs massmh as a function ofmA, for small tan�,
fixed representative values of the dimensionful parameters,
and assuming that all dimensionless parameters take values
at most equal to 1 in absolute value. We show the tree-level
value of mh up to order 1=M, which is obtained for !1 ¼
��1 (dash-dotted curve). We also show the maximal val-
ues of mh up to 1=M2 effects (dashed curve), and the
MSSM (solid) curve for comparison. We see that the
effects of the higher-dimension operators can be quite
substantial. We emphasize that the effects of order 1=M3

or higher are expected to be much smaller, as mentioned in
the Introduction and discussed in Sec. IVB.
For the heavy CP-even state we find that ð�m2

H0ÞDim-5 	
� 1

2!1v
2�1ms=M for tan� 	 1. For tan� � 1,

ð�m2
H0ÞDim-5 	 �!1v

2�1ms=M if mA  mZ, and

ð�m2
H0ÞDim-5 	 0 if mA <mZ. In the decoupling limit

m2
A � m2

Z, we get

ð�m2
H0ÞDim-5 ¼ � 1

4
!1v

2½3þ cosð4�Þ�
�
�1ms

M

�
: (48)

Hence, the heavy CP-even state receives corrections at the
leading order in the 1=M expansion only due to the SUSY-
breaking operator, Eq. (2).
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Similarly, the charged Higgs mass takes the form

m2
H� ¼ m2

W þm2
A � 1

2
!1v

2

�
�1ms

M

�
; (49)

and, at leading order in 1=M, gets corrections only from the
SUSY-breaking operator, Eq. (2).

Lastly, we consider the corrections to the Higgs cou-
plings at leading order in 1=M. We start from the mixing
angle � which, at this order, is given by

t2� ¼ t2�

�
m2

A þm2
Z

m2
A �m2

Z

�

þ!1v
2ð�2�ðm2

A �m2
ZÞ þ s2�ðm2

A þm2
ZÞ�1msÞ

Mc2�ðm2
A �m2

ZÞ2
:

(50)

In the decoupling limit this simplifies to

t2� ¼ t2� þ 2t2�xþ !1v
2

m2
Ac2�

1

M
½�2�þ s2��1ms�; (51)

where x ¼ m2
Z=m

2
A. Taking into account that � is in the

fourth quadrant, while � belongs to the first one, one gets

� ¼ �� 	

2
þ s2�c2�xþ!1v

2

2m2
A

c2�
M

½�2�þ s2��1ms�

� �� 	

2
þ Að1Þxþ Að2Þ=M: (52)

This implies that the couplings of the CP-even Higgs fields
to two gauge bosons [see Eqs. (36)] are

hVV:1þOðx2; v2=M2Þ; HVV:Að1ÞxþAð2Þ=M: (53)

Note that the couplings of the light state to gauge bosons do
not receive corrections at order 1=M and are not expected
to deviate very much from the MSSM ones, while those of
the heavy state are expected to get larger corrections. The
couplings to fermion pairs relative to the SM are [see
Eqs. (35)]

h�tt: 1þ t�1
� ðAð1Þxþ Að2Þ=MÞ;

H�tt: � t�1
� ½1� t�ðAð1Þxþ Að2Þ=MÞ�;

h �bb: 1� t�ðAð1Þxþ Að2Þ=MÞ;
H �bb: � t�½1þ t�1

� ðAð1Þxþ Að2Þ=MÞ�:

(54)

Thus, in the decoupling limit there could be important
variations of the light state couplings to the up and down
sectors with respect to the SM predictions. However, the
h�tt coupling remains SM like in the large tan� regime.
Similarly important variations occur in the couplings of the
heavy Higgs to the up-type and down-type fermions, ex-
cept for the H �bb coupling in the large tan� regime, where
the variations are small.

IV. NUMERICAL ANALYSIS: PARAMETERS AND
CONSTRAINTS

In the previous sections we worked out the spectrum and
couplings of the Higgs sector in a softly broken super-
symmetric theory, under the assumption that there is a set
of particles that couple to the MSSM Higgs fields, but that
have masses parametrically larger than the weak scale. We
also assumed that the SUSY-breaking mass splittings in the
heavy supermultiplets are small, so that their masses have a
nearly supersymmetric origin. In this section we define the
regions or parameter space and discuss several constraints
that will be used in the numerical exploration of the effects
of the heavy physics on the MSSM Higgs sector, per-
formed in Sec. V, and further expanded in [14].

A. Parameter space

We start by defining our region of parameter space. We
assume that all SUSY-breaking mass parameters (as well as
�) are of the order of the EW scale (a couple hundred
GeV). For definiteness, we take �¼ms ¼ 200 GeV,
where ms is the F component of the spurion superfield.
We also set M ¼ 1 TeV. In addition, we scan over the
dimensionless parameters defined in Eqs. (1)–(7) as fol-
lows:
(i) j!1j, jc1j, jc2j, jc3j, jc4j, jc6j, jc7j 2 ½0; 1�.
(ii) j�1j, j�ij, j�ij, j�ij 2 ½1=3; 1� for i ¼ 4, 6, 7.

Recall that the coefficients !1, c1, c2, c3, c4, c6, and c7 set
the size of the 1=M and 1=M2 suppressed operators (both
SUSY preserving and SUSY breaking). To be definite we
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M 1 TeV

tan 2

pars 1

max mh to O 1 M2

max mh to O 1 M

MSSM

0 100 200 300 400
0

50

100

150

200

250

300

350

mA GeV

m
h

G
eV

FIG. 1 (color online). Lightest CP-even Higgs tree-level mass,
mh, as a function of mA, for tan� ¼ 2. The dashed blue line
corresponds to the maximum value of mh to Oð1=M2Þ when the
dimensionless coefficients of the higher-dimension operators are
allowed to be as large as 1 (in absolute magnitude). The dash-
dotted red line corresponds to the maximum value of mh to
Oð1=MÞ under the same assumption. The solid green line
corresponds to the tree-level MSSM result.
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assume that their values are at most one in absolute mag-
nitude, but it should be clear that if they were larger the
physical effects would be correspondingly larger. Our
choice for the ranges of j�2j, j�ij, j�ij, and j�ij reflects
our assumption that the SUSY-breaking operators are pro-
portional to the corresponding SUSY-preserving ones, so
that these are parameters of order 1.

We consider two representative values of tan�: tan� ¼
2 and tan� ¼ 20. We also vary the CP-odd mass up to
400 GeV, which is still below M, ensuring a proper sepa-
ration between the light and heavy scales, as required by
the EFT analysis.

Note that scaling �, ms, and M by a common factor
leaves the corrections due to the higher-dimension opera-
tors, Eqs. (10) and (11), unchanged [though not those of
Eqs. (12) and (14)]. In particular, the leading order
(dimension-5) operators depend on �, ms, and M only
through the ratios �=M and ms=M. Thus, these effects
could be relevant even if the scale of new physics is much
higher than we envision here, if SUSY breaking and/or �
are correspondingly larger. Even though we do not scan
over the values of �, ms, and M (but rather fix them as
specified above), our results should be qualitatively appli-
cable when all these scales are higher, keeping the ratios
fixed [the difference arises at Oð1=M2Þ through the opera-
tors of Eqs. (12) and (14)].

B. Uncertainty from higher orders and the EFT
expansion

As was mentioned in the Introduction (see also Fig. 1),
the contributions of order 1=M and 1=M2 can be phenom-
enologically sizable: the 1=M effects turn on Higgs quartic
couplings not present in the MSSM at tree level, while the
1=M2 effects can easily be comparable to the MSSM
contribution which is set by the weak gauge couplings.
However, one should make sure that the next order can be
reasonably expected to give a small contribution, since
otherwise it could signal the need to resum the 1=M effects
to all orders (in which case the details of the UV comple-
tion are essential and the EFT approach ceases to be
useful). It can also happen (and does happen in our random
numerical scans) that there are accidental cancellations
between the MSSM contributions proportional to g2 and
those at order 1=M2 [see Eq. (11)], or also, if !1 is some-
what suppressed, between the order 1=M and 1=M2 effects.
In such cases, the next order corrections can have a larger
impact than naively expected, and our 1=M2 analysis
would fail to capture the quantitative properties of such
points in parameter space.

We perform a simple test to assess the robustness of a
given point in parameter space against higher-order cor-
rections that have not been computed (and that would
depend on new coefficients that are arbitrary from the
EFT point of view). Since the most important effects are
expected to enter through the Higgs quartic couplings, we

model the next order corrections as follows4: keeping all
the Lagrangian parameters fixed (m2

u,m
2
d, b,!1, ci, �1, �i,

�i, �6, �7, for i ¼ 1, 2, 3, 4, 6, 7), we modify the quartic
couplings by hand as

�i ! �i � 2maxfj!1j; jc1j; jc2j; jc3j; jc4j; jc6j; jc7jg
�
�

M

�
3
;

i ¼ 1; . . . ; 7; (55)

i.e. we allow for 1=M3-suppressed operators with dimen-
sionless coefficients as large as those of the leading two
orders in the 1=M expansion [the factor of 2 models
numerical factors that may appear, as we have seen in
the order 1=M2 expressions, Eqs. (11)]. We then solve
the minimization equations, (18) and (19), with these
new �i’s, which leads to values of v and tan� that are
slightly different from their values in the absence of the
modification. The amount by which these two observables
change should give a reasonable measure of the sensitivity
of the given parameter point (truncated at order 1=M2) to
effects from the next order.5 We restrict ourselves to pa-
rameter points for which the above procedure leads to a
change of no more than 10% in v. This should be taken as
no more than an order of magnitude estimate of the un-
certainties associated with the truncation of the tower of
higher-dimension operators at order 1=M2. We impose a
looser constraint on tan�: for points with tan� ¼ 2, the
point is allowed if 1:5< tan�< 2:5 after the modification
Eq. (55); for points with tan� ¼ 20, the point is allowed if
15< tan�< 25 after the modification of the �’s. The
rationale for a looser constraint in the shift in tan� is that
these shifted values would still be representative small and
large tan� cases, respectively, and no dramatic change in
the Higgs properties is expected within the above ranges.

C. Global versus local minima

The potential given by Eqs. (8) and (12), V ¼ Vren þ
Vnonren:, has in general several minima, which may also

4Notice that at order 1=M3 there are only two new operators:
the superpotential term ðHuHdÞ3 and the associated SUSY-
breaking operator. There are no new Kähler operators at this
order. However, there are 1=M3 effects associated with the
lowest order coefficients, e.g. proportional to !1ci.

5Notice that the way to interpret a VEV different from
246 GeV in the presence of the modification Eq. (55) is as
follows: one should rescale all mass parameters by an appro-
priate factor so that one recovers the ‘‘observed’’ value for v.
This corresponds to normalizing to the measured Z mass and
does not change the physics since all mass ratios are kept fixed.
Since all mass scales, in particular, the physical Higgs masses,
are rescaled by the same factor, we see that the change in the
VEV due to the modification Eq. (55) corresponds directly to a
change in the spectrum. There can be additional contributions to
the spectrum from the higher-dimension operators, not associ-
ated with the shift in the VEV, but we expect that these are of the
same order as the effect from the shift in the VEV we have
described. We therefore consider the above a reasonable estimate
of the uncertainties associated with the higher-order operators.
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include CP-violating or charge breaking VEV’s. Without
loss of generality, we can parametrize all minima by
hHui¼ ð0;vuÞ and hHdi¼ ðvdþ iv�;vCBÞ, where vu, vd,
v�, and vCB are real. We can choose this form for hHui by
performing an appropriate SUð2ÞL rotation. It is also clear
from the fact that the scalar potential depends only on

Hy
uHu, H

y
dHd, and HuHd that, having set Hþ

u ¼0, it de-
pends only on jH�

d j�vCB, so we can assume that this latter

VEV is real and non-negative. We look numerically for all
solutions of the minimizations conditions @vu

V¼@vd
V¼

@v�
V¼@vCB

V¼0, which are polynomial in the variables,

in order to check that the minimum being considered is the
global one, and, in particular, preserves charge and CP. In
this work we do not consider the possibility of explicit nor
spontaneous CP violation. Also, we do not consider cases
where the minimum is metastable but long lived, although
such a case can in principle occur and could be phenom-
enologically viable.

We also recall here the possibility of having different
types of (global) minima, as emphasized in [10]. The point
is that at the level of quartic couplings, the �6 and �7

operators in Eq. (8) lead to runaway directions. These are
stabilized by dimension-6 operators in the scalar potential,
Eq. (12). As a result minima can appear that arise from
balancing renormalizable versus nonrenormalizable terms.

A simple way to characterize them is to test the scaling v /ffiffiffiffiffi
M

p
in the large M limit, keeping all other Lagrangian

parameters fixed (see [10] for more details). In contrast, for
MSSM-like minima the VEV reaches a finite constant in
this limit. We will use this criterion to characterize the type
of vacua.

D. Electroweak constraints

Lastly, to assess the viability of a given parameter point,
we also estimate the contributions to the oblique parame-
ters in order to select points that are in reasonable agree-
ment with the EW precision constraints. As seen in
Eq. (33), the heavy physics can induce tree-level contribu-
tions to the Peskin-Takeuchi T parameter [29] (see also
Appendixes A and B). If one requires jTj � 0:2 and con-
strains c1, c2, and c3 one at a time, one sees that for tan�>
1 and M ¼ 1 TeV, the strongest constraint is c2 < 0:1.
Because of the t�4

� and t�2
� suppression in Eq. (33), c1

and c3 are less constrained for tan�> 1. For instance, if
tan� ¼ 2 one has c1 < 1:3 and c3 < 0:15 (and are virtually
unconstrained for tan� ¼ 20). Notice also that there can be
partial cancellations in Eq. (33).6 Thus, even if c1, c2, and
c3 are of order 1, providedM� 1 TeV, these contributions

to T are not necessarily much larger than the experimental
limit for a reference Higgs mass of mHref

¼ 117 GeV.

There are other contributions to T that can be compa-
rable to the tree-level one—which is suppressed by
v2=M2—from loops of the MSSM Higgs fields (SM-like
Higgs heavier than mHref

, and mass splittings among the

nonstandard Higgses) as well as from custodially violating
mass splittings in the (light) superpartner sector. The for-
mer give the following contributions to T and S [31,32]:

�THiggs 	 �

16	s2Wm
2
W

fð�eff
W�H�AÞ2fðmH� ; mAÞ

þ ð�eff
W�H�hÞ2fðmH� ; mhÞ

þ ð�eff
W�H�HÞ2fðmH� ; mHÞ � ð�eff

ZhAÞ2fðmh;mAÞ
� ð�eff

ZHAÞ2fðmH;mAÞg þ�
SMðmhÞ
þ �
SMðmHÞ � �
SMðmHref

Þ; (56)

SHiggs 	 1

12	
fð�eff

ZhAÞ2Fðmh;mAÞ þ ð�eff
ZHAÞ2FðmH;mAÞ

� ð�eff
ZH�H�Þ2 lnm2

H� þ hZZ2 lnm2
h

þHZZ2 lnm2
H � 5

6
� lnm2

Href
g; (57)

where � is the fine structure constant, Href is the reference
SM Higgs mass used in the fit to the EW precision mea-
surements, hVV=HVV with V ¼ Z, W are defined in
Eqs. (38), �eff

W�H�A � 1
2 ð�W�H�A þ �W�AH�Þ, with

�W�H�A, �W�AH� as defined in Eqs. (40) (and similar
definitions for the other �eff’s), and

fðx; yÞ ¼ 1

2
ðx2 þ y2Þ � x2y2

x2 � y2
ln

�
x2

y2

�
;

�
SMðHiÞ ¼ 3�

16	s2Wm
2
W

½HiZZ
2fðmHi

; mZÞ

�HiWW2fðmHi
;MWÞ� � �

8	c2Wm
2
W

;

Fðm1; m2Þ ¼ lnðm1m2Þ þ 2m2
1m

2
2

ðm2
1 �m2

2Þ2

þ ðm2
1 þm2

2Þðm4
1 þm4

2 � 4m2
1m

2
2Þ

ðm2
1 �m2

2Þ3
ln

�
m1

m2

�
;

where Hi ¼ h;H. It should be noticed that the expressions
(56) and (57) are only approximate since there can be
logarithmically divergent terms in the loop computation
of the T and S parameters, in the effective theory with
higher-dimension operators, that scale like v2=M2 (the
quadratically divergent contributions to the gauge boson
self-energies vanish by gauge invariance). However, due to
the loop suppression, these contributions are expected to be
much smaller than the tree-level one, given by Eq. (33),

6As shown in Appendix A, Higgs triplets give c1, c2, c3 > 0.
This corresponds to a positive tree-level contribution to T from
triplets with zero hypercharge and negative from triplets with
Y ¼ �1. Reference [30] points out that for lighter triplets it is
also possible to have a cancellation in T arising from the inter-
play between the triplet mass and the � term.
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and are therefore negligible for points where the latter is
within the experimental limits (the logarithmic enhance-
ment is small for the scale of new physics we consider).

As remarked in [28] when the SUSY particles are light
there can be additional relevant contributions to the T
parameter. These depend on parameters that do not affect
directly the Higgs sector. As a result, we do not perform
here a detailed fit to the EW data. However, we use
Eqs. (56) and (57) plus the tree-level contribution,
Eq. (33), to estimate whether a given point can be reason-
ably expected to agree with the precision constraints if
appropriate SUSY contributions were added. In Ref. [28]
it was found that such SUSY contributions are positive and
easily as large as �TSUSY � 0:2. Taking�0:2< Ttot < 0:3
(95% C.L.),7 we therefore allow only points with �0:4<
~T þ THiggs < 0:3. After this cut we find that all points in
the scan satisfy �0:05< SHiggs < 0:08, so that we do not
impose any further cuts on S.

E. Loop effects

We have implemented our tree-level expressions for the
spectrum and Higgs couplings in HDECAY V3.4 [36]. This
allows us to also take into account the QCD radiative
corrections that are known to be sizable. In addition, we
include the radiative corrections derived from the 1-loop
RG improved effective potential due to the supersymmetric
particles, as computed in [37]. Loop contributions from the
heavy physics that has been integrated out are suppressed
by both a loop factor and by powers of M; hence they are
expected to be negligible.

As we will argue in the next section (see also Fig. 1),
already at tree level the Higgs spectrum satisfies the
bounds from LEP in large regions of parameter space.
Hence, the motivation for taking rather large stop masses
is absent in the extensions that we study. Keeping with the
philosophy that the SUSY-breaking scale is small com-
pared to M, we consider a relatively light superpartner
spectrum. For concreteness we take the superpartner soft
parameters to have a common value MSUSY ¼ 300 GeV
and At ¼ Ab ¼ 0.8 Thus, the SUSY loop contributions to
the Higgs masses are modest, but the loop contributions to
the Higgs couplings are more important and sensitive to the
details of the SUSY spectrum [38,39]. The point to remem-
ber is that the relevant loop-level effects can be fully
computed given the MSSM superpartner spectrum, and
are only mildly dependent on the details of the UV theory
that gives rise to the EFT that we study.

V. NUMERICAL ANALYSIS: RESULTS

In this section we present the results for the Higgs
spectrum and couplings that arise from a scan over the
parameter region defined in Sec. IVA. We make sure that
we concentrate on parameter points that are expected to be
relatively insensitive to higher orders in the 1=M expan-
sion, that they correspond to global minima, and that they
can be in agreement with the EW precision constraints,
given the uncertainties from the SUSY spectrum, as dis-
cussed in Secs. IVB, IVC, and IVD. Since our choice of
points depends on the ‘‘robustness’’ criterion described in
Sec. IVB, we start in Sec. VA by commenting on the
consequences of this prescription. We present these results
in the tree-level approximation, so as to emphasize the
effects of the higher-dimension operators.
Next we present the results for some selected observ-

ables, such as the gluon fusion production cross section
relevant at hadron colliders, and comment on certain ‘‘ex-
otic’’ branching fractions. For these we include the super-
symmetric radiative effects to the Higgs masses and
couplings, as described in Sec. IVE. We will present a
more complete study of the Higgs phenomenology in [14],
where we will also include the detailed bounds from LEP
and the Tevatron on the Higgs spectrum.

A. Sensitivity against higher-order corrections

We described in Sec. IVB a simple prescription to
estimate the sensitivity of a given point in parameter space
against Oð1=M3Þ effects. In this section we illustrate the
dependence on the allowed variation in v by requiring that
the VEV change by less than 5%, 10%, and 20% if the next
order corrections take a ‘‘typical’’ size, as estimated in
Sec. IVB. As an example, we show in Fig. 2 mh as a
function of mA for tan� ¼ 2 (left panel) and tan� ¼ 20
(right panel). We have scanned over a total of 105 points,
but show only those points that correspond to a global
minimum and that can be in reasonable agreement with
the EW precision constraints, as explained in Sec. IVD.
For tan� ¼ 2 ( tan� ¼ 20), we find that about 70% (80%)
of the points in the scan correspond to global minima of the
potential V ¼ Vren: þ Vnonren:, defined by Eqs. (8) and (12),
while the rest are only local minima that we discard. The
EW precision constraints further reduce the number of
potentially viable points in the scan by 70% (80%). In
Fig. 2 we exhibit how the number of points is further
reduced by requiring �v=v < 0:2 (greenþ blueþ red re-
gions), �v=v < 0:1 (greenþ blue), and �v=v < 0:05
(green region), following the prescription of Sec. IVB (in
the figures we apply the requirements on � tan� described
in that section). Recall that this gives a measure of the
sensitivity of a given point against higher orders in the 1=M
expansion. The points shown in gray are the additional
points that would change by �v=v > 0:2 under the modi-
fication of Eq. (55), and without any restriction on � tan�

7We use the code of Ref. [33] with mt ¼ 173:1� 1:3 GeV=c2

[34], MW ¼ 80:432� 0:039 GeV=c2 [35], and mHref
¼

117 GeV.
8We denote the soft breaking masses by MSUSY. We evaluate

the scale inside the logarithms associated with SUSY loops atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

SUSY þm2
t

q
	 347 GeV.
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(i.e. in Fig. 2 we show all the points in the scan that are
global minima and obey the EW precision constraints).

We observe that the points with smaller mh are more
easily affected by order 1=M3 corrections (for instance,
they can lead to no EWSB after such a perturbation). This
is not to say that there can be no models with smallmh, but
only that points where mh is heavier are relatively insensi-
tive to those higher-order corrections. The reason is that
largermh indicates that both the 1=M and 1=M2 effects are
contributing fully, without major accidental cancellations
(see Sec. IVB). The next order is then suppressed by order
v=M, as expected (again, note that all our dimensionless
couplings are at most 1). Note also that for tan� ¼ 20, the
points with small mA are found to be rather sensitive to the
higher-order corrections and tend to be discarded using our
prescription. Again, this is not to say that viable models
with large tan� and small mA do not exist, but only that
their properties may not be correctly captured at the order
we are working, so we choose not to concentrate on such
cases. In the following, we restrict to points that satisfy
�v=v < 0:1, which should be interpreted as points for
which the higher-order corrections introduce an uncer-
tainty of at most the order of 10%. However, for many
points the expected uncertainty should be smaller.

In the figure we also show the maximal value of mh for
the parameter region defined in Sec. IVA. This envelope
was obtained by optimizing the values of the dimensionless
model parameters so as to maximize mh. The reason that
the points in the scan itself do not reach such large values
of mh is that there is a low probability that all the model

parameters simultaneously attain the optimal values that
maximize mh.

B. Higgs masses: Comparison to the MSSM

We start by presenting our results for the Higgs spectrum
and comparing it to the MSSM one. We do this at tree-level
only. Recall that the radiative corrections are ‘‘common’’
in the MSSM and in the effective theory under study,
arising mainly from QCD and the MSSM superpartner
sector. The observed differences can therefore be inter-
preted as arising directly from the heavy physics through
the higher-dimension operators. We present in Figs. 3–5
the results of the scan formh,mH, andmH� as a function of
mA, for tan� ¼ 2 (left panels) and tan� ¼ 20 (right pan-
els). The tree-level MSSM curve is shown for the corre-
sponding mA and tan�. We also indicate which points
correspond to sEWSB vacua (red points) and MSSM-like
vacua (blue crosses), as described at the end of Sec. IVE.
We use the criterion described in [10], which is based on
the fact that for largeMwith all other parameters fixed, the

VEV in sEWSB vacua scales like v / ffiffiffiffiffi
M

p
. We see that for

small tan� a large number of points are of the sEWSB
type, while for large tan� most points correspond to
MSSM-like vacua.
As expected from our discussion in Sec. III, the correc-

tions to mh are more important at low tan�. However, the
scan shows that they can also be relevant at large tan�. As
already remarked in Sec. VA there are significantly fewer
points with small mh, which is a consequence of the
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FIG. 2 (color online). Illustration of the sensitivity of mh against higher-order effects in the 1=M expansion, as a function of mA, for
tan� ¼ 2 (left panel) and for tan� ¼ 20 (right panel). The regions in (green, greenþ blue, greenþ blueþ red) correspond to the
requirement (�v=v < 0:05, �v=v < 0:1, �v=v < 0:2), according to the prescription described in Sec. IVB. The gray points are the
additional points in the scan that do not obey any of these three requirements. The dashed blue line corresponds to the maximum tree-
level value of mh when the dimensionless coefficients of the higher-dimension operators are allowed to be as large as 1 (in absolute
magnitude). The region of parameter space in the scan is described in the main text.
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‘‘robustness against higher-order corrections’’ criterion
described in Sec. IVB.

It is also interesting that most points in Fig. 3 present
significant deviations from the corresponding MSSM val-
ues. Our parameter region includes the case where all
higher-dimension operators vanish, and therefore includes
the MSSM limit. However, in the scan it is unlikely that

all of them become small simultaneously, which explains
why there tends to be more points that exhibit impor-
tant deviations in mh with respect to the MSSM. In
the large tan� case, the overlap with the MSSM for
sufficiently large mh is possible mainly because many of
the operators are 1= tan� suppressed, and hence, at large
tan� the number of relevant coefficients that contribute
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FIG. 3 (color online). Lightest CP-even Higgs tree-level mass, mh, as a function of mA, for tan� ¼ 2 (left panel) and for tan� ¼ 20
(right panel). The dashed blue line corresponds to the maximum value of mh when the dimensionless coefficients of the higher-
dimension operators are allowed to be as large as 1 (in absolute magnitude). The region of parameter space in the scan is described in
the main text. The solid green line corresponds to the tree-level MSSM result. Red points correspond to sEWSB vacua, while blue
crosses correspond to MSSM-like vacua.
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FIG. 4 (color online). Heavy CP-even Higgs tree-level mass, mH, as a function of mA, for tan� ¼ 2 (left panel) and for tan� ¼ 20
(right panel). The solid green line corresponds to the tree-level MSSM result. The region of parameter space in the scan is described in
the main text. Red points correspond to sEWSB vacua, while blue crosses correspond to MSSM-like vacua.
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to the departure of the Higgs spectrum from the MSSM
one is smaller than at low tan�. This implies that at large
tan� there is a higher probability to effectively turn off
all the effects from the higher-dimension operators and
reproduce the MSSM values for mh. Our study simply
encapsulates the picture of heavy physics of mass M ( ¼
1 TeV) with couplings of order 1 to the MSSM Higgs
sector. For instance, the light CP-even Higgs can become
sufficiently heavy for the WþW� and ZZ channels to
be kinematically accessible, thus potentially allowing for
a SM search of the light supersymmetric Higgs in the
dilepton plus missing energy as well as the four-lepton
channels.

Figures 4 and 5 show theH andH� spectra as a function
of the CP-odd Higgs mass for two values of tan�, respec-
tively. The deviations in mH and mH� from the MSSM
values are less dramatic in the largemA region, but they can
be phenomenologically significant for lower values of mA.
Notice for instance that for mA � 100 GeV, mH can be
sufficiently large for the decay H ! AA to be kinemati-
cally open. Similarly, the decay H� ! W�A can be open.
We will further comment on these decay channels in the
next section.

C. Higgs couplings to gauge bosons and fermions

In Fig. 6 we present the tree-level couplings (normalized
by the SM values) of the CP-even Higgses to Z pairs and
up-type and down-type fermions, as a function of mA. The
solid curves show the corresponding MSSM tree-level
prediction, making it clear that large deviations from the
MSSM can be induced via the higher-dimension operators.

The plots in the upper row of Fig. 6 show the couplings
of the CP-even Higgses to Z pairs for tan� ¼ 2 (left panel)

and tan� ¼ 20 (right panel). We will refer to the Higgs
state that has the largest coupling to the Z as ‘‘SM like’’
(i.e. h is SM like if jghZZj> jgHZZj, while H is SM like if
jgHZZj> jghZZj). Recall that the couplings toWW and ZZ
are different as a result of the corrections given in Eq. (37).
The difference appears at order 1=M2 and is of the order of
a few percent when these couplings are sizable (e.g. for the
SM-like Higgs). For a non-SM-like Higgs with a very
small coupling to W’s and Z’s, the relative difference
between the two can be significant. We also note that in
the present scenarios g2hZZ þ g2HZZ need not add up to 1,

reflecting the fact that there are additional (heavy) degrees
of freedom that have been integrated out. This effect also
arises at order 1=M2 and we find that for the chosen
parameters it can be as large as 7% (this can be seen
more clearly in the large mA region of the figures).
For large mA, h becomes SM like to a very good ap-

proximation, as in the MSSM. However, we also see that in
this limit H can have less suppressed couplings to Z pairs
than in the MSSM. These are the properties anticipated in
Eq. (53). At low mA and for tan� ¼ 2, we see that H
becomes SM like to a better degree of approximation
than in the MSSM, while h has more suppressed couplings
to Z pairs than in the MSSM. There are also a large number
of models with intermediate mA where both CP-even
Higgses couple significantly to gauge boson pairs. For
tan� ¼ 20 the situation is similar in the large mA region.
However, there are very few points at lowmA (see Sec. VA
for an explanation).
We also notice several features of the t�th and b �bh (t�tH

and b �bH) couplings, which are relevant for gluon fusion
induced processes. We consider first the case of low tan�.
The t�th coupling can present a small enhancement over
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FIG. 5 (color online). Charged Higgs tree-level mass, mH� , as a function of mA, for tan� ¼ 2 (left panel) and for tan� ¼ 20 (right
panel). The solid green line corresponds to the tree-level MSSM result. The region of parameter space in the scan is described in the
main text. Red points correspond to sEWSB vacua, while blue crosses correspond to MSSM-like vacua.
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both the SM and the MSSM of up to about 1.2 when mA >
100 GeV (for smaller mA it can present an enhancement of
up to 50% with respect to the MSSM). This would imply a
factor of up to 1.4 with respect to the SM prediction for
gluon fusion production relevant for searches at the
Tevatron and the LHC. In addition, given that there is no
need for large radiative corrections to mh from the squark
sector to avoid the bounds on the light Higgs, if a light stop
spectrum of the order of a few hundred GeV is present,
additional relevant contributions to the gluon fusion pro-
cess will be expected. These can lead to an additional

enhancement of the reach in gluon fusion induced channels
[40]. The b �bh coupling is suppressed both with respect to

the SM and the MSSM whenmA>200GeV, and reaches a
value at most equal to tan� in the low mA region (as in the
MSSM). However, notice that there are a number of mod-
els with suppressed couplings to b �b pairs for mA<
140GeV.
For low tan� the contribution to gluon fusion is gov-

erned by the top Yukawa coupling, and therefore there is a
net enhancement with respect to the SM for many models,
as seen in the upper left panel of Fig. 7, where we present
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FIG. 6 (color online). Tree-level couplings of the CP-even Higgs states (normalized to the SM ones) to gauge bosons (upper plots),
to top pairs (middle plots) and to bottom pairs (lower plots), as a function of mA, for tan� ¼ 2 (left panels) and tan� ¼ 20 (right
panels). The blue crosses correspond to the couplings of h, and the red dots to those of H. The solid green lines correspond to the tree-
level MSSM result. The region of parameter space in the scan is described in the main text.
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the gluon fusion cross section for h production normalized
to the SM one, as a function of mh.

9 In this figure we
include the radiative effects to the Higgs masses and
couplings assuming a SUSY spectrum as described in

Sec. IVE. Most of the models with mh < 115 GeV are
excluded by LEP, while the Tevatron excludes some of the
models with mh in a window around 170 GeV. A detailed
analysis of all the cross sections and branching fractions to
determine the allowed models will be presented elsewhere
[14]. In Fig. 7 we indicate by red crosses the models where
h is SM like, as per the definition at the beginning of this
section, and by blue dots those models whereH is SM like.
The t�tH coupling at low tan�, shown in Fig. 6, is found

to be generically suppressed with respect to both the SM
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FIG. 7 (color online). Gluon fusion cross section at LO in �s, including light SUSY particle loops and normalized to the SM, for the
light (upper panels) and heavy (lower panels) CP-even Higgses, and for tan� ¼ 2 (left panels) and tan� ¼ 20 (right panels). The
region of parameter space in the scan is described in the main text. We indicate by red crosses those points where h is SM like
(jghZZj> jgHZZj) and by blue dots those points where H is SM like (jgHZZj> jghZZj). The dashed line corresponds to the MSSM
result.

9We compute �ðgg!hÞ=�SMðgg!hÞ	�ðh!ggÞ=�SMðh!
ggÞ, which holds at leading order in �s [39,41,42]. The values of
�ðh ! ggÞ and �SMðh ! ggÞ are calculated at LO using a
version of HDECAY [36], modified to include the tree-level
expressions in the presence of the higher-dimension operators.
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and the MSSM, except for the region mA < 200 GeV
where some enhancement may be possible. The b �bH
coupling is generically enhanced with respect to the SM
and even with respect to the tan� enhanced value in the
MSSM for large mA. However, the bottom loop contribu-
tion to the gluon fusion process is subdominant, as seen in
the lower left panel of Fig. 7, where a net suppression with
respect to the SM is observed for mH > 200 GeV, gov-
erned by the suppression in the t�tH coupling. In this figure
we also see an enhancement with respect to the SM for
mH < 200 GeV, which reflects the enhancement of the t�tH
coupling for mA < 200 GeV mentioned above, in addition
to the enhancement due to light stop contributions.

At large tan�, there is no significant variation in t�thwith
respect to the SM or the MSSM for mA > 200 GeV, but
there is a small suppression for 100 GeV<mA <
200 GeV, and there can be an enhancement with respect
to the MSSM for mA < 100 GeV. The b �bh coupling is
enhanced with respect to the SM and the MSSM in a large
number of models, and achieves the largest values for
mA < 100 GeV, although it is smaller than the tan� value
that occurs in the MSSM. For mA > 200 GeV there are
many models where the b �bh coupling is strongly sup-
pressed. As shown in the upper right panel of Fig. 7, in
many models the regions of enhanced b �bh coupling lead to
a relevant enhancement of the gluon fusion cross section
with respect to the SM one.

At large tan�, the t�tH coupling can have an enhance-
ment with respect to the MSSM in the region 100 GeV<
mA < 200 GeV, but is generically suppressed with respect
to the SM. The b �bH coupling presents the familiar tan�
enhancement of the MSSM at large mA, although there
could be some suppression in the intermediate region
100 GeV<mA < 200 GeV. At low mA we see a few
models with a significant enhancement of the b �bH cou-
pling with respect to the SM and the MSSM.

In the large tan� region both top and bottom loops
contribute to the gluon fusion cross section with different
weights depending on the ratio of the fermion to Higgs
masses and the specific (large) value of tan�. The lower
right panel of Fig. 7 shows that for values ofmH larger than
200 GeV there is always a suppression with respect to the
SM gluon fusion cross section for H, similar to the MSSM
case.
The couplings of the CP-odd and charged Higgs bosons

differ from those of the MSSM only at order 1=M2, due to
the corrections to their kinetic terms [see comments after
Eq. (39)]. These deviations are far less significant than for
the CP-even Higgs states. As an example, we show in
Fig. 8 the couplings of the CP-odd Higgs to up-type and
down-type fermion pairs, which follows closely the tan�
enhancement/suppression familiar in the MSSM [see also
Eq. (35)].
We postpone a detailed discussion of all the relevant

branching fractions and the consequences for Higgs
searches at the Tevatron and the LHC to Ref. [14]. Here
we comment on a number of selected exotic channels that
can motivate new search strategies, in particular, regarding
the heavy CP-even and charged Higgs bosons. These are
mostly related to the distortion of the Higgs spectrum with
respect to the MSSM which can lead to the opening of new
decay channels, as mentioned at the end of Sec. VB. For
example, we show in the left panel of Fig. 9 the branching
fraction forH ! AA, which can be significant formH up to
about 200 GeV. It can be in fact much larger than in the
MSSM, where such values of mH are already near the
decoupling limit so that such decays are highly suppressed
by phase space. Similarly, there can be important branch-
ing fractions for H ! AZ, as seen in the right panel of
Fig. 9. Note that for most of these points it is H that is SM
like.
We also show in the left panel of Fig. 10 that for low

tan� there is a generic suppression of the H ! hh channel
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FIG. 8 (color online). Tree-level couplings of the CP-odd Higgs to fermion pairs as a function of mA, for tan� ¼ 2 (left panel) and
tan� ¼ 20 (right panel), and normalized to the SM value, gmf=2mW . The blue crosses correspond to the couplings of A to t�t, and the

red dots to those of A to b �b. The solid green lines correspond to the tree-level MSSM result. The region of parameter space in the scan
is described in the main text.
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compared to the MSSM, except above the t�t threshold
where some enhancement is possible (the pronounced dip
at mH � 108 GeV in the MSSM curve is due to an acci-
dental cancellation of the Hhh coupling; in this small
window H decays mostly into b’s). The above suppression
can be very significant for 170 GeV<mH < 250 GeV,

reflecting a relatively heavy h so that the channel is closed.
At large tan�, however, there are large regions where
BRðH ! hhÞ is enhanced with respect to the MSSM, and
in fact H ! hh can be a significant decay channel in this
case (see the right panel of Fig. 10).
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FIG. 9 (color online). Branching fractions for H ! AA (left panel) and H ! AZ (right panel). The dashed lines correspond to the
MSSM results. SUSY and QCD radiative corrections are included. The plots are for tan� ¼ 2, M ¼ 1 TeV, � ¼ ms ¼ 200 GeV,
MSUSY ¼ 300 GeV, At ¼ Ab ¼ 0, and a scan over the ranges defined in Sec. IVA. We indicate by red crosses those points where h is
SM like (jghZZj> jgHZZj) and by blue dots those points where H is SM like (jgHZZj> jghZZj).
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SM like (jghZZj> jgHZZj) and by blue dots those points where H is SM like (jgHZZj> jghZZj).

CARENA et al. PHYSICAL REVIEW D 81, 015001 (2010)

015001-20



Finally, we comment on certain charged Higgs decays.
In the upper row plots of Fig. 11 we present the branching
fractions forH� ! W�hðW��hÞ, which show a significant
suppression with respect to the MSSM at low tan� (except
above the t�t threshold, where some enhancement is pos-
sible), while for large tan� there is an enhancement com-
pared to the MSSM in a large number of models. In the
lower row plots of Fig. 11, we see that the branching
fraction for H� ! W�AðW��AÞ can be sizable at low
tan� and for 100 GeV<mH� < 180 GeV, while it re-
mains small for large tan� (although it can still be en-

hanced compared to the MSSM). Since at low tan�,
BRðH� ! W�AÞ can be close to unity, one may therefore
expect to produce a large number of CP-odd Higgs bosons
in top decays. Note also that a large fraction of the points
with such a property present the ‘‘inverted hierarchy’’
where H is SM like.

VI. CONCLUSIONS

We have considered a large class of supersymmetric
scenarios with physics beyond the MSSM that couples
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FIG. 11 (color online). Branching fractions for H� ! W�ð�Þh (upper panels) and H� ! W�ð�ÞA (lower panels), for tan� ¼ 2 (left
panels) and tan� ¼ 20 (right panels). The dashed lines correspond to the MSSM results. SUSY and QCD radiative corrections are
included. We indicate by red crosses those points where h is SM like (jghZZj> jgHZZj) and by blue dots those points where H is SM
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appreciably to the MSSM Higgs sector. Our main assump-
tion is that the degrees of freedom beyond the MSSM are
heavier than the weak scale, and that their SUSY mass
splittings can be treated as a perturbation. We call this
approximately supersymmetric threshold M. As a result,
a model-independent analysis can be set up, based on an
approximately supersymmetric effective theory of the
MSSM that includes higher-dimension operators sup-
pressed by powers of 1=M. These higher-dimension opera-
tors can encapsulate different types of physics beyond the
MSSM, such as singlet or triplet Higgses, heavy Z0 andW 0,
etc. (we illustrate the detailed connection in Appendix A).

We argued, based on the structure of the induced Higgs
quartic couplings, that both the leading and next-to-leading
order in the 1=M expansion can be phenomenologically
relevant, and computed the Higgs spectrum and couplings
up to this order. This included a careful treatment of
degenerate cases and the inclusion of kinetic term renor-
malization that contains information about the mixing of
the light and heavy degrees of freedom. The most impor-
tant effects of the new physics enter through the angle �
that characterizes the mixing in the CP-even sector, but we
have systematically included all the effects to order 1=M2.
This allows us to include in our analysis the recently
discussed sEWSB vacua [10], which depend crucially on
certain dimension-6 operators.

We were especially careful to single out points in the
effective theory that can be expected to be reliably de-
scribed by the EFT. We also made sure that these points
correspond to global minima of the effective potential (we
did not consider the possibility of long-lived metastable
minima). In addition, we took into account the EW preci-
sion constraints, making sure that the study points can be in
agreement with precision tests when possible effects from
squarks and sleptons not directly related to the Higgs sector
are included.

The large class of SUSY models presented in this study
has in part already been explored by various Higgs
searches at LEP and the Tevatron. We will present these
constraints in the accompanying paper [14]. Similarly, we
defer a more complete study of the Higgs collider phe-
nomenology to that work. Here we simply pointed out a
few interesting features that arise from our study: a generic
enhancement of the gluon fusion production cross section
of the SM-like Higgs, the presence of new channels with
significant branching fractions, such as H ! AA and
H� ! W�A, and the possible suppression of decay modes
such as H ! hh.

We find it interesting that a study of the light Higgs
sector can indirectly reveal the presence of new physics
that either may not be within reach, or may not be easy to
produce, as was also emphasized recently in [43,44]. The
measurement of the Higgs spectrum and observation of
some of their decay modes, together with the observation
of some of the SM superpartners, can give a striking

evidence for a more complicated structure beyond the
MSSM.
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APPENDIX A: UV COMPLETIONS

Here we consider possible UV completions to exemplify
how the operators of the effective theory can be generated.
We consider the addition of singlets, of vectorlike triplets
(Y ¼ �1), of a triplet with a Majorana mass and Y ¼ 0,
and an SUð2Þ gauge extension under which Hu and Hd

transform as doublets. This illustrates how the higher-
dimension operators on which the EFT analysis presented
in the main text is based can arise, and also shows that the
coefficients of these operators can be fairly uncorrelated if
the extension is sufficiently complicated. This justifies our
approach of scanning over these coefficients without tak-
ing into account the correlations that may arise in a given
UV model.

1. MSSMþ singlet

The simplest model we consider shares structural fea-
tures with the NMSSM. In the NMSSM, a new singlet S is
added to the MSSM to solve the � problem, through a
VEV for S and the superpotential interaction �SSHuHd. In
this model, the low-energy theory contains additional sca-
lar states from S, and after EWSB the singlet state mixes
with the Higgs. However, there is a different region of
parameter space, where the singlet S has a mass somewhat
larger than the electroweak scale and is integrated out of
the effective theory. Although the � problem is not ad-
dressed in this limit, the low-energy theory contains mod-
ifications in the Higgs sector that can help solve the little
SUSY hierarchy problem.
The superpotential and Kähler potential are

W ¼ �HuHd þ 1
2MSS

2 þ �SSHuHd � Xða1�HuHd

þ 1
2a2MSS

2 þ a3�SSHuHdÞ; (A1)
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K ¼ Hy
u eVHu þHy

d e
VHd þ SyS� XyXðb1Hy

dHd

þ b2H
y
uHu þ b3S

ySÞ; (A2)

where the ai and bi are dimensionless, and an � tensor is
understood in the contraction HuHd � Hu�Hd. One can
consider a cubic coupling S3, but it does not contribute to
the effective theory up to the order 1=M2 we have ana-
lyzed; hence we do not write it explicitly in Eq. (A1). The
parameters b1, b2, and a1 map into m2

Hd
, m2

Hu
, and the B�

term, respectively. Integrating out S at tree level induces
nonzero !1, �1, c4, �4, and �4 in Eqs. (1)–(7) as follows:

M ¼ MS; !1 ¼ ��2
S;

�1 ¼ a2 � 2a3; c4 ¼ j�Sj2;
�4 ¼ a2 � a3; �4 ¼ ja2 � a3j2 � b3; (A3)

while all other EFT coefficients vanish.

2. MSSMþ SUð2ÞL Higgs triplets

Consider an extension with two SUð2ÞL triplets, T and �T,
with hypercharges Y ¼ �1 and Y ¼ þ1, respectively. The
superpotential and Kähler potential are

W ¼ �HuHd þMTT �T þ 1
2�THuTHu þ 1

2� �THd
�THd

� Xða1�HuHd þ a2MTT �T þ 1
2a3�THuTHu

þ 1
2a4� �THd

�THdÞ; (A4)

K ¼ Hy
d e

2VHd þHy
u e2VHu þ Tye2VT þ �Tye2V �T

� XXyðb1Hy
dHd þ b2H

y
uHu þ b3T

yT þ b4 �T
y �TÞ:
(A5)

An epsilon tensor is understood in the contractions
HuTHu ¼ Hu�THu, etc. The parameters b1, b2, and a1
map into m2

Hd
, m2

Hu
, and the b� term, respectively.

Integrating out the triplets, one can write the effective
Lagrangian in terms of the operators defined in Eqs. (1)–
(7), with10

M¼MT; !1 ¼ 1
4�T� �T; �1 ¼ a2 � a3 � a4;

c1 ¼ 1
4j� �Tj2; �1 ¼ a2 � a4; �1 ¼ ja2 � a4j2 � b3;

c2 ¼ 1
4j�Tj2; �2 ¼ a2 � a3; �2 ¼ ja2 � a3j2 � b4;

(A6)

and all other dimensionless coefficients vanishing.
If on the other hand one considers an extension with a

single SUð2ÞL triplet with hypercharge Y ¼ 0 and a

Majorana mass MT , the superpotential and Kähler poten-
tial are

W ¼ �HuHd þ 1
2MTT

2 þ �THuTHd

� Xða1�HuHd þ 1
2a2MTT

2 þ a3�THuTHdÞ; (A7)

K ¼ Hy
d e

2VHd þHy
u e2VHu þ Tye2VT

� XXyðb1Hy
dHd þ b2H

y
uHu þ b3T

yTÞ; (A8)

and after integrating out the triplet, one obtains the effec-
tive theory of Eqs. (1)–(7), with

M¼MT; !1 ¼�1
4�

2
T; �1 ¼ a2 � 2a3;

c3 ¼ 1
2j�Tj2; �3 ¼ a2 � a3; �3 ¼ ja2 � a3j2 � b3;

c4 ¼�1
4j�Tj2; �4 ¼ a2 � a3; �4 ¼ ja2 � a3j2 � b3;

(A9)

while all other EFT coefficients vanish.

3. SUð2Þ Extensions
The higher-dimension operators induced by integrating

out a massive Uð1Þ0 were worked out in Ref. [6]. Here we
consider a product gauge group SUð2Þ1 � SUð2Þ2 �Uð1ÞY
with gauge couplings g1, g2, and g0, respectively. We
concentrate on the SUð2Þ1 � SUð2Þ2 factor since the
Uð1ÞY factor enters in a trivial way. The MSSM Higgs
superfields are assumed to transform like ð2; 0Þ under
SUð2Þ1 � SUð2Þ2. The gauge group is broken down to
the diagonal by a � field transforming like ð2; 2Þ under
SUð2Þ1 � SUð2Þ2, which gets a nonzero VEV, h�i / �2. In

this case, the kinetic term for �, Trðe2g2VT
2 �ye2g1V1�Þ,

leads to the structure Trðe2g2V2e2g1V1Þ, which contains a
mass term for the linear combination V 0 � ðg1V1þ
g2V2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
. The orthogonal combination V �

ðg2V1 � g1V2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
remains massless and can be

identified with the SM W gauge bosons. Therefore, we
take as the starting point the Kähler potential

K ¼ Hy
u e2g1V1Hu þHy

d e
2g1V1Hd

þ M2
V0

2ðg21 þ g22Þ
Tr½e2g2V2e2g1V1�; (A10)

where g1V1 ¼ ~gV 0 þ gV, g2V2 ¼ ðg22=g21Þ~gV0 � gV, and

g ¼ g1g2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
is the SM SUð2ÞL gauge coupling

while ~g ¼ g21=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
is the coupling of the massive

V0. The term of second order in V 0 in the last term of
Eq. (A10) identifiesMV0 as the gauge boson mass. In order
to integrate out V0 to order 1=M2

V0 , it is sufficient to keep

terms up to quadratic order in V 0 in the ‘‘mass term,’’ while
keeping up to linear order in the terms not proportional to
M2

V0 . We can also assume that V is in the Wess-Zumino

10Here we use the identity
R
d4�Aye2VA ¼ 1

2 �R
d4�ðHye2VHÞ2, where A ¼ AaXa with Aa ¼ H��aH,

and Xa are the SUð2Þ generators in the adjoint representation
while H is in the fundamental representation of SUð2Þ. One also
has

R
d4�Aye2VA ¼ R

d4�f12 ðHy
u e2VHuÞðHy

d e
2VHdÞ �

1
4 jHu�Hdj2g for Aa ¼ Hu��

aHd.
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gauge so that we can expand to quadratic order in V
everywhere. Note that the term proportional to M2

V0 con-

tains terms in addition to the pure mass term for V 0:

M2
V0

2ðg21 þ g22Þ
Z

d4�Tr½e2½ðg22=g21Þ~gV0�gV�e2ð~gV 0þgVÞ�

¼ 1

2
M2

V0
Z

d4�

�
V 0aV0a � g2

3
½ðVaV0aÞ2

� ðVaVaÞðV0bV 0bÞ�
�
:

(A11)

The terms quartic in the vector multiplets are essential for
maintaining the low-energy gauge invariance.11 The equa-
tion of motion for V0, to order 1=M2

V0 , gives

V0a ¼ � 2~g

M2
V0

X
i¼u;d

Hy
i

��
1� g2

6
VbVb

�
�a

þ 1

6
gVað3þ 2gVa�a þ 2gVb�bÞ

�
Hi; (A12)

where there is no summation over a (but there is over b),
and �a are the SUð2Þ generators in the fundamental repre-
sentation. Replacing back in the action leads to the effec-
tive Kähler potential

Keff ¼ Hy
u e2gVHu þHy

d e
2gVHd � ~g2

2M2
V0
fðHy

u e2gVHu

þHy
d e

2gVHdÞ2 � 4jHu�Hdj2g; (A13)

where we restored the terms in V into the exponential form,
and the hypercharge vector multiplet can be put back in a
trivial way. Therefore, the massive W 0 induces the opera-
tors of Eqs. (1)–(7) with coefficients

c1 ¼ �~g2; c2 ¼ �~g2; c3 ¼ �~g2; c4 ¼ 2~g2;

(A14)

M ¼ MV0 , and all other EFT coefficients vanishing.
There are also excitations of the � field (a SM singlet

and triplet) with masses proportional to h�i. These may be
split by SUSY breaking and generate further contributions
to the dimension-6 operators in the effective Kähler poten-
tial. These were considered in Ref. [4] in the opposite limit
that interests us here, namely, when SUSY breaking is
comparable to the SUSY-preserving contribution.

For completeness, we also record here the SUSY-
preserving operators induced by integrating out a massive
Uð1Þ0 gauge field, i.e. integrating out V 0 from

K ¼ Hy
u e2Qug

0V0
Hu þHy

d e
2Qdg

0V0
Hd þ 1

2M
2
V0V02; (A15)

where g0 is theUð1Þ0 gauge coupling andQu;d are theUð1Þ0
charges ofHu;d, respectively (for simplicity, we have omit-

ted the SM gauge factors, which are implicitly under-
stood). Unlike in the non-Abelian case, the c4 operator is
not induced, while

c1 ¼�4Q2
dg

02
1 ; c2 ¼�4Q2

ug
02; c3 ¼�4QuQdg

02:
(A16)

From the examples above, it should be clear that MSSM
extensions including singlet and triplet Higgses, plus
Abelian or non-Abelian gauge factors can generate all of
the operators we considered in the main text, with essen-
tially arbitrary coefficients, except for the c6 and c7 opera-
tors. We have nevertheless included the latter operators in
our phenomenological analysis, since they are allowed by
supersymmetry.

APPENDIX B: COMMENTS ON CUSTODIAL
SYMMETRY

Neglecting the Yukawa couplings, the Higgs sector in
the MSSM can be written in terms of a chiral superfield

� ¼ H0
d Hþ

u

H�
d H0

u

� �

as

K � Hy
u e2gWþg0BHu þHy

d e
2gW�g0BHd

¼ Tr

(
�ye2gW� e�g0B 0

0 eg
0B

 !)
;

W � �Hu�Hd ¼ 1

2
Tr�T�T��;

where W and B are the SUð2ÞL and Uð1ÞY vector super-
fields, while � is the antisymmetric 2-index tensor. This
shows that in the limit g0 ! 0 (and neglecting Yukawa
couplings), the theory is invariant under SUð2ÞL �
SUð2ÞR where� ! UL�Uy

R. The SUð2ÞL factor is gauged
and can be complexified. The global SUð2ÞR implies that in
the limit vu ¼ vd the theory has a custodial SUð2ÞLþR

global symmetry. This symmetry has a somewhat limited
use since it is broken away from tan� ¼ 1.
However, at tree level (and for g0 ¼ 0) the Higgs (scalar)

sector of the MSSM exhibits an SUð2ÞlocalL � SUð2ÞglobalR

symmetry such that the Higgs scalar components

�u ¼ 1ffiffiffi
2

p H0�
u Hþ

u

�H�
u H0

u

� �
; �d ¼ 1ffiffiffi

2
p H0

d �Hþ
d

H�
d H0�

d

� �
;

transform as �u;d ! UL�u;dU
y
R. In fact, if the Higgsinos

are taken to be singlets under the SUð2ÞR transformation,
only the Higgs-Higgsino-gaugino couplings (apart from
the superpotential Yukawa terms) violate this global sym-
metry. Thus, for arbitrary expectation values, vu and vd,
contributions to the T parameter enter only at one loop
level.
The fact that in the MSSM the tree-level gauge boson

masses satisfy the SM relation 
 ¼ 1 can be seen directly

11These terms are not present in the Uð1Þ0 case. For instance
gauging only the Uð1Þ2 � SUð2Þ2 generated by �3, i.e. setting
V1
2 ¼ V2

2 ¼ 0, the last two terms in Eq. (A11) cancel out.

CARENA et al. PHYSICAL REVIEW D 81, 015001 (2010)

015001-24



from the identities Hy
u ð2gWÞ2Hu ¼ Tr�y

u ð2gWÞ2�u and

Hy
d ð2gWÞ2Hd ¼ Tr�y

d ð2gWÞ2�d, which lead to the gauge

boson mass terms in the Kähler potential after replacing the
chiral superfields by their scalar components,�u;d ! �u;d.

This observation also implies that higher-dimension opera-

tors such as ðHy
u e2VHuÞðHu�Hd þ H:c:Þ or ðHy

d e
2VHdÞ�

ðHu�Hd þ H:c:Þ, i.e. those in Eq. (5), lead to 
 ¼ 1 at tree
level. On the other hand, the higher-dimension operators of
Eq. (4) contribute to the gauge boson mass terms through
the linear term in e2V ¼ 1þ 2V þ � � � , and these terms do
not respect a custodial symmetry. This was seen explicitly
in Eq. (33). As shown above, an exception is the operator

ðHy
u e2VHu þHy

d e
2VHdÞ2, in the limit vu ¼ vd. This op-

erator is naturally induced by massiveW primes, as shown
in Appendix A 3.

APPENDIX C: CHARGINOS AND NEUTRALINOS

Although our focus is on the scalar Higgs sector, neu-
tralinos and charginos can provide important decay chan-

nels, and the effects of the higher-dimension operators on
their masses play an important role. We have implemented
in HDECAY the corresponding mass formulas to order 1=M,
as computed in [10]. At order 1=M2 there are additional
contributions to the mass matrix as well as to the kinetic
terms that are needed to compute the physical chargino/
neutralino masses. Given that these states tend to be near
the experimental limits, it would be interesting to compute
these next order corrections, but we postpone it to future
work. For completeness, we collect the mass matrices to
order 1=M.
The chargino mass matrix is

ð ~Wþ; ~Hþ
u Þ M2

ffiffiffi
2

p
mWc�ffiffiffi

2
p

mWs� �ð1� 
s2�Þ
 !

~W�
~H�
d

 !
; (C1)

where 
 � !1v
2=ð4�MÞ takes into account the effects

from the heavy physics. The neutralino mass matrix is

1

2
ð ~B; ~W3; ~H0

d;
~H0
uÞ

M1 �mZsWc� mZsWs�
M2 mZcWc� �mZcWs�

�mZsWc� mZcWc� 2�
s2� ��ð1� 2
s2�Þ
mZsWs� �mZcWs� ��ð1� 2
s2�Þ 2�
c2�

0
BBB@

1
CCCA

~B
~W3

~H0
d

~H0
u

0
BBB@

1
CCCA; (C2)

where cW stands for the weak-mixing angle cos�W . M1 and M2 are the SUð2ÞL and Uð1ÞY gaugino soft breaking
parameters.

APPENDIX D: HIGGS COUPLINGS

The couplings between the Z gauge boson and two Higgs fields, defined in Eq. (40), are given by

�ZhA ¼ c���f1� 1
2½ðA1 þ E1Þc� � B1s��g þ 1

2½ðD1 þ E1Þs� � B1c��s��� þ c���ZhA � s���ZHA;

�ZAh ¼ c���f1� 1
2½ðA1 þ E1Þc� � B1s��g þ 1

2½ðD1 þ E1Þs� � B1c��s��� þ c���ZAh � s���ZAH;

�ZHA ¼ s���f1� 1
2½ðD1 þ E1Þc� þ B1s��g � 1

2½ðA1 þ E1Þs� þ B1c��c��� þ c���ZHA þ s���ZhA;

�ZAH ¼ s���f1� 1
2½ðD1 þ E1Þc� þ B1s��g � 1

2½ðA1 þ E1Þs� þ B1c��c��� þ c���ZAH þ s���ZAh;

��ZHþH� ¼ 1� F1 þ ��ZHþH� ;

(D1)

where � is defined by Eq. (29), A1, B1, D1, F1, and E1 are defined in Eq. (27), and

��ZhA ¼ v2

M2
s�f3t�1

� s2�ðc2c� þ c1t
�1
� s�Þ þ t�1

� s2�½c6ð2s� � t�1
� c�Þ � c7ðs� � 2t�1

� c�Þ�g;

��ZAh ¼ v2

M2
s�

�
t�1
� s2�ðc2c� þ c1t

�1
� s�Þ þ 1

2
c6t

�1
� ð3� c2�Þs� þ 1

2
c7ð3þ c2�Þc�

�
;

��ZHA ¼ v2

M2
s�f3t�1

� s2�ðc2s� � c1t
�1
� c�Þ � t�1

� s2�½c6ð2c� þ t�1
� s�Þ � c7ðc� þ 2t�1

� s�Þ�g;

��ZAH ¼ v2

M2
s�

�
t�1
� s2�ðc2s� � c1t

�1
� c�Þ � 1

2
c6t

�1
� ð3� c2�Þc� þ 1

2
c7ð3þ c2�Þs�

�
;

��ZHþH� ¼ v2

M2
s4�

�
1

4

c2W
c2W

c3ð1þ 3s�4
� � 6t�2

� þ t�4
� Þ þ t�1

�

�
c6 � s2W

c2W
ðc1 þ c2Þt�1

� þ c7t
�2
�

��
:

(D2)

Similarly, the couplings between the W and the two Higgs fields, defined in Eq. (40), are given by
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�W�hH� ¼ c���f1� 1
2½ðA1 þ F1Þc� � B1s��g þ 1

2½ðD1 þ F1Þs� � B1c��s��� þ c���W�hH� � s���W�HH� ;

�W�H�h ¼ c���f1� 1
2½ðA1 þ F1Þc� � B1s��g þ 1

2½ðD1 þ F1Þs� � B1c��s��� þ c���W�H�h � s���W�H�H;

�W�HH� ¼ s���f1� 1
2½ðD1 þ F1Þc� þ B1s��g � 1

2½ðA1 þ F1Þs� þ B1c��c��� þ c���W�HH� þ s���W�hH� ;

�W�H�H ¼ s���f1� 1
2½ðD1 þ F1Þc� þ B1s��g � 1

2½ðA1 þ F1Þs� þ B1c��c��� þ c���W�H�H þ s���W�H�h;

�W�H�A ¼ 1� 1
2ðE1 þ F1Þ þ ��W�H�A; �W�AH� ¼ 1� 1

2ðE1 þ F1Þ þ ��W�AH� ;

(D3)

where

��W�hH� ¼ v2

M2
s3�

�
1

8
c3½ð3þ s�2

� � 9t�1
� Þs� � ðt�1

� ð9� s�2
� Þ � 3t�3

� Þc�� þ 3

2
t�1
� ðc1t�1

� s� þ c2c�Þ
�
;

��W�H�h ¼ v2

2M2
s3�fc3ðs� þ t�3

� c�Þ þ t�1
� ðc1t�1

� s� þ c2c�Þg;

��W�HH� ¼ v2

2M2
s3�

�
1

4
c3½ð3þ s�2

� � 9t�2
� Þc� þ ðt�1

� ð9� s�2
� Þ � 3t�3

� Þs�� þ 3t�1
� ðc1t�1

� c� � c2s�Þ
�
;

��W�H�H ¼ v2

2M2
s3�fc3ðc� � t�3

� s�Þ þ t�1
� ðc1t�1

� c� � c2s�Þg;

��W�H�A ¼ v2

2M2
s4�

�
3ðc1 þ c2Þt�2

� � 1

4
c3ð1� 5s�4

� � 6t�2
� þ t�4

� Þ
�
;

��W�AH� ¼ v2

8M2
s4�f4t�2

� ðc1 þ c2Þ þ c3ð1þ 3s�4
� � 6t�2

� þ t�4
� Þg:

(D4)
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