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We calculate the neutral kaon mixing parameter BK in unquenched lattice QCD using asqtad-improved

staggered sea quarks and domain-wall valence quarks. We use the ‘‘2þ 1’’ flavor gauge configurations

generated by the MILC Collaboration, and simulate with multiple valence and sea-quark masses at two

lattice spacings of a � 0:12 fm and a � 0:09 fm. We match the lattice determination of BK to the

continuum value using the nonperturbative method of Rome-Southampton, and extrapolate BK to the

continuum and physical quark masses using mixed-action chiral perturbation theory. The ‘‘mixed-action’’

method enables us to control all sources of systematic uncertainty and therefore to precisely determine

BK; we find a value of BMS;NDR
K ð2 GeVÞ ¼ 0:527ð6Þð21Þ, where the first error is statistical and the second

is systematic.
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I. INTRODUCTION

The kaon B-parameter (BK), which parametrizes the
hadronic part of CP-violating neutral kaon mixing, plays
an important role in flavor-physics phenomenology. When
combined with an experimental measurement of indirect
CP-violation in the kaon sector, �K, BK constrains the apex
of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity tri-
angle. Because �K is known to subpercent accuracy, this
constraint is limited by the theoretical uncertainties in
several quantities, including BK. Physics beyond the stan-
dard model generically predicts additional quark-flavor-
changing interactions and CP-violating phases. These
will manifest themselves as apparent inconsistencies be-
tween measurements that are predicted to be identical
within the framework of the standard model. Thus precise
experimental measurements of quark-flavor-changing
weak-interaction processes are sensitive probes of new
physics, provided that the corresponding theoretical calcu-
lations are also sufficiently precise. In this work we calcu-
late BK using lattice QCD with all sources of systematic
uncertainty under control. This result is needed to interpret
the experimental measurement of �K as a constraint on the
CKM unitarity triangle, and hence to constrain physics
beyond the standard model.

Because an accurate determination of BK is essential for
flavor-physics phenomenology, many lattice QCD calcu-
lations of BK have been done over the past decade, each
improving upon the previous one. The benchmark calcu-
lation by the JLQCD Collaboration contains a thorough
study of the quark-mass and lattice-spacing dependence
[1]. Because it does not include the effect of sea-quark

loops, however, the final result for BK has a quenching
uncertainty which is difficult to estimate. The HPQCD
Collaboration eliminates this source of error in BK by using
dynamical staggered fermions at a single lattice spacing
[2]. The additional species of staggered quarks, referred to
as ‘‘tastes,’’ however, complicate the lattice-to-continuum
operator matching procedure, and lead to a�20% system-
atic error inBK due to neglected higher-order operators and
mixing with operators specific to staggered fermions that
break flavor symmetry. The RBC and UKQCD Col-
laborations’ calculation of BK contains the effects of three
flavors of dynamical domain-wall fermions and employs
nonperturbative operator renormalization [3]. Although
their result for BK has a �6% total uncertainty, it relies
on a single lattice spacing and an estimate of the size of
discretization errors based on the earlier quenched calcu-
lation in Ref. [4].
Our mixed-action lattice QCD calculation combines

domain-wall valence quarks and staggered sea quarks,
following the method of the LHP Collaboration [5]. We
use the ‘‘2þ 1’’ flavor asqtad-improved staggered lattices
generated by the MILC Collaboration, which include the
effects of three light dynamical quarks [6]. These configu-
rations are publicly available with a large range of quark
masses, lattice spacings, and volumes and allow for good
control over the systematic error from chiral and contin-
uum extrapolation [7]. We generate domain-wall valence
quark propagators using the Chroma lattice QCD software
package [8]. The approximate chiral symmetry of domain-
wall quarks simplifies both the extrapolations to physical
quark masses and zero lattice spacing and the lattice-to-
continuum operator matching. Because the mixed-action
�S ¼ 2 lattice operator used to calculate the BK matrix
element is composed of domain-wall valence quarks,
which do not carry the taste quantum number, it only mixes
with other operators of wrong chirality (due to small
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residual chiral symmetry breaking), not incorrect tastes.
This makes the relevant mixed-action chiral perturbation
theory (MA�PT) more continuumlike than in the purely
staggered case. There is only one new parameter in the
one-loop MA�PT expression for BK with respect to the
purely domain-wall case, and it can easily be determined
from the staggered pseudoscalar meson mass spectrum
[7,9]. Use of domain-wall valence quarks in the �S ¼ 2
lattice operator also makes the nonperturbative operator
matching via the Rome-Southampton method [10] as sim-
ple as in the purely domain-wall case. Thus the mixed-
action method combines the advantages of staggered and
domain-wall fermions without suffering from their primary
disadvantages and is well-suited to the calculation of BK.

The MILC gauge configurations make use of the rooting
procedure to remove the additional staggered quark species
(tastes) from the calculation of the fermion determinant.
Although the ‘‘fourth-root trick’’ has not been proven
correct, both theoretical arguments [11–14] and numerical
simulations [15–17] support the validity of the rooting
procedure. Most of this evidence is summarized in reviews
by Dürr, Sharpe, Kronfeld, and Golterman [18–21]. Given
the wealth of evidence substantiating the fourth-root trick,
we work under the plausible assumption that the contin-
uum limit of the rooted staggered theory is QCD.

Our calculation of BK relies upon the ability to correctly
extrapolate to the physical quark masses and zero lattice
spacing using MA�PT [22], which describes the pseudo-
Goldstone boson sector of the mixed-action lattice theory.
In Ref. [17] we have therefore performed a strong check of
the ability of MA�PT to accurately describe the quark-
mass and lattice-spacing dependence of the isovector sca-
lar correlator. The a0 correlator is particularly sensitive to
unitarity-violating discretization effects in the mixed-
action theory because it receives contributions from
flavor-neutral two-meson intermediate states. At next-to-
leading-order (NLO), the size and shape of these ‘‘bubble’’
contributions to the scalar correlator are completely pre-
dicted withinMA�PT [15], given knowledge of a few low-
energy constants that are easily determined in fits to pseu-
doscalar meson mass data. We find that, for all valence-sea
mass combinations on both the coarse and fine lattices, the
MA�PT prediction is in good quantitative agreement with
the numerical lattice data, despite the numerically large
discretization effects due to the staggered sea sector. Thus
we conclude that MA�PT describes the dominant
unitarity-violating effects in mixed-action lattice simula-
tions. For the case of most weak matrix elements, including
BK, NLO MA�PT predicts that unitarity-violating discre-
tization effects in one-loop chiral logarithms are below a
percent on the coarse and fine MILC lattices [9]. This fact,
in conjunction with our successful analysis of the scalar
correlator, substantiates the claim that we can useMA�PT
to remove these effects from BK and to precisely determine
its value in the continuum.

We have also performed a more general check of our
ability to control systematic errors in our mixed-action
numerical simulations by calculating the light pseudosca-
lar meson decay constants, f� and fK, and their ratio [23].
We use the same gauge configurations and domain-wall
valence quark masses as in the calculation of BK presented
in this work. We determine both f� and fK with �3%
accuracy, and their ratio with �2% accuracy. Given the
value of jVudj from superallowed �-decay, our result for
f� is consistent with experiment. Similarly, given the jVusj
determination from semileptonic kaon decays using non-
lattice theory, our result for fK is consistent with experi-
ment. Our result for the ratio fK=f�, which is independent
of the CKM matrix elements, is consistent with other
more precise lattice determinations [24–26]. Although
our decay constant calculation does not check the Rome-
Southampton nonperturbative renormalization (NPR) pro-
cedure, it does test the remaining ingredients in the calcu-
lation of BK, especially the chiral and continuum
extrapolation using MA�PT. Therefore the successful cal-
culation of the well-known quantities f� and fK bolsters
confidence in the calculation of the weak matrix element
BK presented in this work.
This paper is organized as follows. In Sec. II, we de-

scribe the details of our numerical mixed-action lattice
simulation; we present the actions and parameters used
and describe how the relevant 2-point and 3-point correla-
tors are analyzed. Next, in Sec. III, we describe two inde-
pendent calculations of the renormalization factor ZBK

needed to match the lattice matrix element to the contin-
uum. We compute ZBK

using the nonperturbative Rome-

Southampton approach; this is used in our preferred deter-
mination of BK. We also compute ZBK

to one-loop in mean-

field improved lattice perturbation theory to provide a
cross-check and aid in estimating the systematic error
associated with the matching. In Sec. IV, we describe the
extrapolation of BK to the physical quark masses and the
continuum using NLO MA�PT supplemented by higher-
order analytic terms to allow an interpolation about the
strange quark mass. Next, in Sec. V, we present the system-
atic error budget for BK, describing each individual uncer-
tainty in a separate subsection for clarity. Finally, in
Sec. VI, we compare our results to previous unquenched
lattice determinations and to the preferred values from the
unitarity triangle analyses. We conclude by discussing the
prospects for improvement in our mixed-action lattice
calculation and for its phenomenological impact on the
search for new physics.

II. LATTICE CALCULATION

In this section we describe the details of our numerical
mixed-action lattice calculation. We first present the va-
lence and sea-quark lattice actions and input parameters
(such as quark masses and lattice spacings) in Sec. II A.
Next, in Sec. II B, we present the 2-point and 3-point
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correlation functions needed to determine the unrenormal-
ized lattice value of BK. We give the valence quark propa-
gator source wave functions and boundary conditions. We
also describe the method used to extract BK from a ratio of
3-point and 2-point functions, and show example corre-
lated plateau fits with jackknife errors.

A. Actions and input parameters

We use the unquenched lattices generated by the MILC
Collaboration for our numerical lattice calculation of BK,
which include the effects of three dynamical flavors of
asqtad-improved staggered fermions [27]. Because the
MILC configurations are available at several light quark
masses and lattice spacings [6,28], they allow us to have
good control over the both the chiral extrapolation in the
sea sector and the continuum extrapolation. We calculate
BK on both the ‘‘coarse’’ (a � 0:12 fm) and ‘‘fine’’ (a �
0:09 fm) MILC ensembles, which have physical volumes
ranging from approximately ð2:5–3 fmÞ3. For each en-
semble, the masses of the up and down sea quarks are
degenerate; our lightest dynamical mass is approximately a
tenth of the physical strange quark. For most of our en-
sembles, the mass of the dynamical strange quark is close
to its physical value. At each lattice spacing, however, we
have data on one ensemble with an unphysically light
strange sea quark in order to better constrain the strange
sea-quark mass dependence and aid in the chiral extrapo-
lation. The left-hand side of Table I shows the parameters
of the MILC gauge configurations used to calculate BK.

We construct the 2-point and 3-point correlation func-
tions needed to determine BK using domain-wall valence
quark propagators [29,30]. The approximate chiral sym-
metry of domain-wall fermions simplifies both the non-
perturbative determination of the renormalization
coefficient, ZBK

, and the extrapolation of BK to physical

quark masses and the continuum; these advantages will be
discussed in greater detail in Secs. III and IV, respectively.

We compute the domain-wall propagators using the
Chroma software system for lattice QCD [8]. We use the
same input parameters as the LHP Collaboration [5]; this
allows us to check simple quantities such as the pion
masses and the residual quark mass. We first smear the
MILC lattices using the standard hypercubic blocking
(HYP) parameters given in Ref. [31] in order to reduce
the size of explicit chiral symmetry breaking and proximity
to the Aoki phase [32]. On both the coarse and fine ensem-
bles we simulate with a domain-wall height of M5 ¼ 1:7
and a fifth dimension of length Ls ¼ 16. For each sea-
quark ensemble, we calculate BK at several valence quark
masses; this allows us both to extrapolate the numerical
lattice data to the physical up/down quark mass and to
interpolate to the physical strange quark mass. Our lightest
valence quark mass is chosen to be as light as possible
while keeping finite-volume effects under control.
Specifically, we restrict the quantity m�L * 3:5 to keep
one-loop MA�PT finite-volume effects for BK below 1%.
Thus the mass of our lightest domain-wall pion is
�280 MeV on the 2.5 fm ensembles, and �240 MeV on
the 3.5 fm ensemble. The fifth column of Table I shows the
bare domain-wall masses used to calculate BK.
In most mixed staggered sea, domain-wall valence lat-

tice simulations, the bare domain-wall quark mass is tuned
so that the mass of the domain-wall pion is equal to the
mass of the lightest staggered pion in the sea sector [5].
Although this procedure does not eliminate unitarity-
violating discretization effects in the mixed-action theory
at nonzero lattice spacing, tuning the domain-wall pion to
one of the staggered pion masses allows one to approach
full QCD as the continuum limit is taken numerically, even
for quantities for which mixed-action chiral perturbation
theory expressions do not exist or are not applicable.
Fortunately, for the case of BK, we can use MA�PT
[9,22] to properly account for and remove these discretiza-
tion errors in fits to quantities evaluated at multiple lattice

TABLE I. Parameters of the MILC improved staggered gauge configurations and domain-wall valence quark propagators used to
calculate the unrenormalized lattice value of BK . Columns one and two list the approximate lattice spacings and lattice volumes (in
lattice-spacing units). Columns three and four show the nominal up/down (ml) and strange quark (mh) masses in the sea, along with the
corresponding pseudoscalar taste pion mass. Columns five and six list our partially quenched valence quark masses (mx), along with
our lightest available domain-wall pion mass. Column seven shows the number of configurations analyzed on each ensemble.

Sea sector Valence sector

a (fm) ðLaÞ3 � T
a aml=amh am� amx am� Nconf

0.09 403 � 96 0:0031=0:031 0.10538(06) 0.004, 0.0186, 0.046 0.0999(12) 150

0.09 283 � 96 0:0062=0:0186 0.14619(14) 0.0062, 0.0124, 0.0186, 0.046 0.1212(17) 160

0.09 283 � 96 0:0062=0:031 0.14789(18) 0.0062, 0.0124, 0.0186, 0.046 0.1222(12) 210

0.09 283 � 96 0:0124=0:031 0.20635(18) 0.0062, 0.0124, 0.0186, 0.046 0.1216(11) 198

0.12 243 � 64 0:005=0:05 0.15971(20) 0.007, 0.02, 0.03, 0.05, 0.065 0.1718(11) 216

0.12 203 � 64 0:007=0:05 0.18891(20) 0.01, 0.02, 0.03, 0.04, 0.05, 0.065 0.1968(08) 268

0.12 203 � 64 0:01=0:03 0.22357(19) 0.01, 0.02, 0.03, 0.05, 0.065 0.1946(18) 160

0.12 203 � 64 0:01=0:05 0.22447(17) 0.01, 0.02, 0.03, 0.05, 0.065 0.1989(08) 220

0.12 203 � 64 0:02=0:05 0.31125(16) 0.01, 0.03, 0.05, 0.065 0.1949(13) 117
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spacings and valence and sea-quark masses. Thus we do
not make any attempt to tune the bare domain-wall quark
masses in our lattice calculation.

In order to convert dimensionful quantities calculated in
our mixed-action lattice simulations into physical units, we
need the value of the lattice spacing, a, which we deter-
mine by computing a known physical quantity that can be
directly compared to experiment. Although all of the
coarse (or fine) MILC lattices have approximately the
same lattice spacing, slight variations exist due to the
choice of simulation parameters in the gauge action. We
account for these differences by converting all of our data
from lattice-spacing units into r1 units before performing
any chiral fits. Because r1 is related to the force between
static quarks, r21Fðr1Þ ¼ 1:0 [33], this method has the
advantage that the ratio r1=a can be determined precisely
from a fit to the static quark potential [28,34]. The absolute
scale, r1, can then be determined in several ways. In this
work we use the scale r1 ¼ 0:3108ð15Þðþ26

�79Þ fm to convert

our simulation results into physical units. This value is
obtained by combining the recent MILC determination of
r1f� with the experimentally measured value of f� [24].
We use an alternative determination of r1 from the �
splitting [35,36], r1 ¼ 0:318ð7Þ fm, in order to estimate
the systematic error due to the scale uncertainty.

B. Three-point correlation functions

BK parametrizes the nonperturbative QCD contribution
to CP-violating neutral kaon mixing. Kaon mixing occurs
via electroweak box diagrams. Integrating out the heavy
intermediateW-bosons to isolate the hadronic contribution
leads to the following �S ¼ 2 operator in the effective
Hamiltonian:

O �S¼2
K ¼ ½ �s��ð1� �5Þd�½�s��ð1� �5Þd�; (1)

where we omit the color indices for simplicity. In order to
ensure that the value of BK is close to unity, BK is defined
as a ratio:

BK � h �K0j½ �s��ð1� �5Þd�½�s��ð1� �5Þd�jK0i
8
3 h �K0j�s��ð1� �5Þdj0ih0j�s��ð1� �5ÞdjK0i ; (2)

where the numerator is the desired�S ¼ 2matrix element,
and the denominator is the same matrix element as in the
numerator evaluated in the vacuum saturation approxima-
tion. Because the matrix element in the denominator is
related to the kaon decay constant, Eq. (2) is often sim-
plified as

BK ¼ h �K0jO�S¼2
K jjK0i

8
3m

2
Kf

2
K

: (3)

In this work we calculate BK numerically from the
following ratio of lattice correlation functions:

Blat
K ¼ L3

8
3

hc Pðtsrc þ TÞO�S¼2
K ðtÞc PðtsrcÞyi

h�AðtÞc PðtsrcÞyih�AðtÞc Pðtsrc þ TÞyi ; (4)

where T is the temporal extent of the lattice and we include
the superscript ‘‘lat’’ to emphasize that the quantity in
Eq. (4) needs to be renormalized in order to recover BK

in a continuum regularization scheme. We fix the locations
of the source and sink kaons in the numerator 3-point
function at tsrc and tsrc þ T, respectively, and vary the
position of the four-quark operator, O�S¼2

K , over all time
slices t in between. We use wall sources for our kaons
throughout the calculation, but use local sinks for both the
four-quark operator in the 3-point function and the axial-
current operator in the 2-point functions:

c PðtÞ ¼
X
~x; ~y

�sð ~x; tÞ�5dð ~y; tÞ; (5)

�AðtÞ ¼
X
~x

�sð ~x; tÞ�5��dð ~x; tÞ: (6)

The volume factor L3 in the numerator of Eq. (4) accounts
for the differing normalizations of the wall sources and
point sources used in the determination of Blat

K .
For each domain-wall valence quark mass on a given

MILC configuration, we compute two Coulomb gauge-
fixed wall-source propagators starting from the same lat-
tice time slice, tsrc: one with periodic and another with
antiperiodic boundary conditions in the temporal direction.
The spatial boundary conditions are always periodic. The
Coulomb gauge-fixed wall-source is used to reduce con-
tamination from excited states. We then take symmetric
and antisymmetric linear combinations in order to produce
forward- and backward-moving propagators beginning at
tsrc. We use these symmetrized propagators in the interpo-
lating operators c and � in order to effectively double the
number of lattice time slices. This ensures that finite-size
effects due to pions circling the lattice in the temporal
direction are negligible. Using the same time slice for the
source of the forward- and backward-moving propagators
also allows us to save a factor of 2 in computing time.1

In order to make the best use of our computing resour-
ces, we generate domain-wall quark propagators on every
fourth recordedMILC gauge configuration (typically every
20th or 24th trajectory) in order to reduce autocorrelation
errors. Our earliest runs have propagators with tsrc ¼ 0,
which we chose for simplicity. In order to take advantage
of the large temporal extent of the MILC lattices and
further reduce autocorrelations, however, our later runs
use a randomly chosen tsrc. Although the two data sets
are expected to have somewhat different autocorrelation
times, there is nothing a prioriwrong with combining them
in an ensemble average.

1This method was suggested to us by N. Christ [37].
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Figure 1 shows a representative plateau fit on a coarse
ensemble for Blat

K =ð4L3Þ with a nondegenerate kaon made
up of a light quark with mass around ms=6 and a heavier
quark with mass close to ms. Figure 2 shows a similar
plateau fit on a fine ensemble where the heavier quark mass
is again close to ms, and the light-quark mass is around
ms=10. The confidence levels of the fits are computed
using the full correlation matrix in the minimization of
�2 in order to assess the quality of the plateaus. The
statistical errors in the fit are determined by performing a
separate fit to each single-elimination jackknife sample;
the correlation matrix is remade for each jackknife fit.
Excellent fits to a constant are found, and the confidence
levels of the fits in Fig. 1 (CL ¼ 0:71) and Fig. 2 (CL ¼
0:94) are typical of our numerical data. Although our
plateau region appears to be quite long by inspection, a

correlated fit requires a fit to a smaller span of the time
extent so that the correlation matrix does not become too
large to resolve with our current statistics (� 150–270
configurations per ensemble). Thus, we limit our plateau
fits to�10–15 time slices. In practice, this is not much of a
limitation, since we fold our data in the time direction.
Typical statistical errors on the raw Blat

K lattice data are at
the sub-percent level, with 1–2% errors on the points with
the lightest quark masses.
Autocorrelation errors were studied on the two longest

runs on the coarse (aml=amh ¼ 0:007=0:05) and fine
(aml=amh ¼ 0:0031=0:031) ensembles. These errors are
investigated by blocking the data before performing the
single-elimination jackknife estimate of the statistical er-
ror. However, there is also a correction to the statistical
error coming from the fact that the correlation matrix is not
known perfectly, but is determined approximately from the
data set for a given fit. It has been shown in Ref. [38] that a
jackknife fit with an estimate of the covariance matrix
remade with each jackknife sample leads to a slight over-
estimate of the variance. This correction to the statistical
error is at the �5–10% level for our data set, and tends to
cancel the expected (and difficult to resolve) slight increase
in the statistical errors due to autocorrelations. Corrections
to the statistical errors due to autocorrelations are at most a
few percent. Given the rather small total correction to the
statistical error due to the combination of these effects, we
do not adjust the errors ‘‘by hand’’ as input to later (chiral
and continuum extrapolation) fits. This correction to the
statistical error due is also a small fraction of our final total
error, and can be neglected.

III. RENORMALIZATION OF THE �S ¼ 2
OPERATOR

In this section we describe the calculation of the renor-
malization factor, ZBK

, which is needed to match the lattice

matrix element to the continuum. We present the result

renormalized in the MS scheme at 2 GeV. We determine
ZBK

using two independent methods: lattice perturbation

theory and the nonperturbative Rome-Southampton ap-
proach. Although we use the nonperturbatively determined
ZBK

to calculate our central value for BK, the lattice

perturbation theory calculation provides a valuable cross-
check on the nonperturbative renormalization and an in-
dication of the size of the systematic uncertainty on the
renormalization factor.

A. Lattice perturbation theory calculation of ZBK

In this subsection, we use lattice perturbation theory to

match our lattice calculation of BK to theMS scheme using
naive dimensional regularization (NDR). Although naive
lattice perturbation theory appears to converge slowly, two
main causes of this have been identified in Ref. [39]. The
first is that the bare gauge coupling is a poor expansion
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FIG. 1 (color online). Plateau fit to Blat
K =ð4L3Þ on the coarse

aml=amh ¼ 0:007=0:05 ensemble. The legend shows the non-
degenerate pair of quark masses making up the kaon in the three-
point correlation function. The correlated �2=dof and confidence
level of the fit are given in the title.
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FIG. 2 (color online). Same as Fig. 1 but on the fine
aml=amh ¼ 0:0031=0:031 ensemble.
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parameter, and the second is that tadpole diagrams tend to
have large coefficients. If a renormalized coupling is used
and one restricts oneself to quantities for which tadpole
diagrams largely cancel, then lattice perturbation theory
appears to converge as well as continuum perturbation
theory. The difficulties with large tadpole corrections are
present even in chiral fermion formulations, where they are
just as serious as in other formulations. We address this
issue here.

In the case of domain-wall quarks, the domain-wall
height M5 is additively renormalized, and large tadpole
corrections can appear. It has been shown that mean-field
improvement is then necessary to get correct results from
lattice perturbation theory for domain-wall quarks [40–42].
Our calculations do not suffer from large tadpole correc-
tions because we use HYP-smeared domain-wall quarks in
our simulations. This HYP-smearing smoothes the gauge
fields, and has the effect of dramatically reducing the tad-
pole contributions in lattice perturbation theory for our
simulation parameters. Thus, the difference between naive
and mean-field improved lattice perturbation theory in our
renormalization of BK is small. Even so, we adopt the
correct mean-field improvement in all results presented
here.

The renormalization factor matching the lattice calcu-

lation of BK to the MS scheme can be written as [43]

ZBK
ð�aÞ ¼ ð1� w2

0Þ�2Z�2
w Zþð�aÞ

ð1� w2
0Þ�2Z�2

w Z2
Að�aÞ ¼

Zþð�aÞ
Z2
Að�aÞ ; (7)

where Zþ is the renormalization factor for the operator
O�S¼2

K , ZA renormalizes the axial current, w0 ¼ 1�M5,
and Zw is the quantum correction to the normalization
factor 1� w2

0. It is useful to define ZBK
in this way, since

the tadpole and self-energy corrections cancel. The renor-
malization factor contains the running of the operator from
the lattice scale a�1 to the continuum scale�. The relevant
Feynman diagram for our particular lattice calculation is
shown in Fig. 3, and the necessary Feynman rules are given

in Appendix A. In theMS scheme with NDR, we have [43]

ZMS;NDR
BK

ð�aÞ ¼ 1þ �MSðq�Þ
4�

�
�4 lnð�aÞ � 11

3
þ 2 ln�2

þ 2

3
ð16�2ÞðIS � IVÞ

�
; (8)

with IS;V defined in Eq. (A37).

Given the cancellation of tadpoles in Eq. (7), the only
effect of mean-field improvement in the one-loop renor-
malization factor ZBK

is to shift the domain-wall height

M5 ! MMF
5 ¼ M5 � 4ð1� u0Þ, where u0 is the fourth-

root of the plaquette. This shift would be appreciable if
not for the HYP smearing of the domain-wall quarks, since
u0 � 0:87 on the MILC coarse and fine lattices. However,
for our calculation it is appropriate to take the HYP-
smeared plaquette in the mean-field improvement factor,

and this leads to uMF;coarse
0 ¼ 0:984 and uMF;fine

0 ¼ 0:987
and a significantly smaller shift in MMF

5 . The final result

for ZBK
decreases by only about 1% (at both coarse and

fine lattice spacings) after adopting the mean-field
improvement.
We adopt the Brodsky, Lepage, and Mackenzie (BLM)

scheme for setting the scale in the coupling �MSðq�Þ [44].2
The BLM prescription for obtaining q� is

ln½ðaq�Þ2� ¼
R
d4kfðkÞ lnðk2ÞR

d4kfðkÞ ; (9)

where fðkÞ is the one-loop integrand, and the numerator is
the first log moment. Note that throughout this section and
in Appendix A, all momentum integrals run over �� �
k� � �, with k� in lattice units. This prescription for

computing q� is well defined for finite lattice integrals. In
the case of BK, however, where there is an anomalous
dimension, the BLM prescription needs to be modified.
We follow the prescription introduced by C. Bernard et al.
[45], and discussed in detail by DeGrand [46]. A generic

integral evaluated in theMS schemewill take the following
form:

IMS ¼ 16�2
Z d2!k

ð2�Þ2! ð�2Þ2! 1

k2ðk2 þ 	2Þ ðAþ B�Þ

¼ A

�
1

�
� �E þ logð4�Þ

�
þ A log

�2

	2
þ Aþ B; (10)

where 2! ¼ 4� 2� is the dimension of the integral and
where the term in curly brackets is discarded to give a finite
integral, IF

MS
. The log moment of the divergent part of the

one-loop expression must be handled with care. The log

FIG. 3. Vertex diagram for the correction to bilinear operators
in lattice perturbation theory.

2We actually compute �Vðq�Þ, the strong coupling constant in
the V scheme, and exploit the fact that �MS ¼ �V to the order
we are working. The scales used to determine the coupling in
each scheme are related by ln½ðaq�VÞ2� ¼ ln½ðaq�

MS
Þ2� þ 5=3 in

the first-order BLM prescription where only the first log moment
is required. The V scheme is defined with respect to the heavy-
quark potential [39,44].
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moments of the finite lattice integrals IV and IS are straight-
forward to evaluate using Eq. (9), and are denoted I�V and I�S
in Table II. However, we need the log moment correspond-
ing to the entire term in brackets in Eq. (8), including the
anomalous dimension. The log moment corresponding to
the anomalous dimension [the first three terms in brackets
in Eq. (8)] can be defined as the log moment of the
following finite integral [46],

IF
MS

¼ AJ1 þ BJ2; (11)

where the F stands for finite, and

J1 ¼ 16�2
Z d4k

ð2�Þ4
�
1� 
ð�2 � k2Þ

ðk2Þ2 � 1

ðk2 þ�2Þ2
�
;

(12)

J2 ¼ 16�2
Z d4k

ð2�Þ4
�

1

k2ðk2 þ�2Þ �
1

ðk2 þ�2Þ2
�
; (13)

where � is the MS scale (in lattice units), and 
 is the
Heaviside step function. The values of A and B for ZBK

in

the MS, NDR scheme are�2 and�5=3, respectively. The
log moment of the one-loop expression for ZBK

can then be

used to compute q� using

lnðaq�Þ2 ¼ ðIF
MS

Þ� þ 2
3 ð16�2ÞðI�S � I�VÞ

�4 lnð�aÞ � 11
3 þ 2 ln�2 þ 2

3 ð16�2ÞðIS � IVÞ
;

(14)

where ðIF
MS

Þ� signifies that the first log moment is taken in

the momentum integrals appearing in Eq. (11). The com-
puted values for the integrals IV and IS, as well as their first
log moments, are given in Table II. The resulting q�’s and
the final values for ZMS;NDR

BK
are also given. All integrals

were evaluated numerically using the Mathematica pack-
age [47], and results in Ref. [43] using the same action but
without HYP-smearing were reproduced.

B. Nonperturbative determination of ZBK

1. Rome-Southampton method

We compute the renormalization coefficient for BK non-
perturbatively in the RI/MOM scheme devised by the

Rome-Southampton group [10]. In this scheme, the simple
renormalization condition is that the renormalized n-point
functions in Landau gauge are equal to their tree-level
values. Because the RI/MOM scheme is regularization-
invariant, it is useful for both perturbative or nonperturba-
tive techniques. Thus it is well suited to lattice QCD
simulations. Once ZBK

has been determined nonperturba-

tively in the RI/MOM scheme, it can easily be converted to

the MS scheme and run to the scale � ¼ 2 GeV using
continuum perturbation theory.
The Rome-Southampton nonperturbative renormaliza-

tion technique has already been successfully applied to
lattice QCD calculations of BK with domain-wall valence
and sea quarks by the RBC and UKQCD Collaborations in
Refs. [48,49]. We can determine the renormalization factor
ZBK

in the same simple manner for our mixed-action lattice

QCD simulations because the properties of the mixing
coefficients are largely determined by the symmetries of
the valence sector. In particular, errors of OðaÞ are sup-
pressed by �e��Ls . Furthermore, mixings between the
desired BK four-fermion operator and other operators of
incorrect chirality are suppressed due to the approximate
chiral symmetry, as we show in Appendix C.
Our primary goal is to determine the renormalization

coefficient of the four-quark operator given in Eq. (1):

O �S¼2
K � OVVþAA ¼ ½�s��ð1� �5Þd�½�s��ð1� �5Þd�;

where we now show explicitly the chirality of the operator.
Because chiral symmetry is slightly broken in our simula-
tions, however, this operator can mix with other �S ¼ 2
operators of different chiralities:

O VV�AA ¼ ½ �s��ð1� �5Þd�½�s��ð1þ �5Þd�; (15)

O SS	PP ¼ ½ �sð1� �5Þd�½�sð1
 �5Þd�; (16)

O TT ¼ ½ �s���ð1� �5Þd�½�s���ð1� �5Þd�: (17)

Thus the renormalized BK operator in principle receives
contributions from all of the above operators, and is given
in terms of bare lattice operators by

O ren
K ¼ X

i

ZVVþAA;iO0
i ; (18)

TABLE II. Computed values of ZBK
in the BLM prescription. The first column labels the

approximate lattice spacing in fm. The second column is the numerical evaluation of the integral
IV , and the third is that of the integral IS. The fourth and fifth columns are the first moments of IV
and IS, respectively. The sixth column is aq�BLM, and the seventh column is ZMS;NDR

BK
ð2 GeVÞ.

Errors from numerical approximation of the integrals are no more than one digit in the last
displayed decimal.

a (fm) IV IS I�V I�S aq�BLM ZMS;NDR
BK

ð2 GeVÞ
0.12 0.0158 �0:0161 0.0336 �0:0150 1.56 0.909

0.09 0.0158 �0:0155 0.0336 �0:0154 1.42 0.955
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where i2 fVVþAA;VV�AA;SSþPP;SS�PP;TTg.
The theoretical arguments of Ref. [49] suggest that the
wrong chirality mixing coefficients should be of
O½ðamresÞ2�, and our data is consistent with this expecta-
tion within statistical errors. Thus, despite the fact that
chiral perturbation theory predicts the corresponding B
parameters of these operators to diverge in the chiral limit
[48,50], their contributions to BK are negligible.

In order to calculate ZBK
via the Rome-Southampton

approach [10], we first compute the 5� 5 matrix

Mij ¼ P̂j½�latt
i �; (19)

where �latt
i is the amputated four-point Green’s function in

momentum space, i, j 2 fVV þ AA; VV � AA; SSþ PP;

SS� PP; TTg, and the projector P̂j selects out the compo-

nent with chirality j. The details of this procedure are
described thoroughly in Appendix B of Ref. [48]. We
also compute the tree-level value of this matrix by setting
all of the momentum-space propagators in the amputated
Green’s functions equal to the identity:

Mtree
ij ¼ P̂j½�tree

i �: (20)

We then impose the RI/MOM renormalization condition,

Zij

Z2
q
Mjk ¼ Mtree

ik ; (21)

where Zq is the quark wave function renormalization fac-

tor, in order to obtain the quantity

Zij

Z2
q
¼ Mtree

ik M�1
jk : (22)

The renormalization coefficients for the various four-
fermion operators are then given by

Zij

Z2
A

¼ Zij

Z2
q

�
Zq

ZA

�
2
; (23)

where ZA is the renormalization factor for the axial current.
For example, the dominant contribution to the BK lattice
operator renormalization comes from the diagonal mixing
coefficient:

ZBK
� ZVVþAA;VVþAA

Z2
A

¼ ZVVþAA;VVþAA

Z2
q

�
Zq

ZA

�
2
: (24)

In order to determine the four-fermion operator mixing
coefficients using Eq. (23), we also need the ratio Zq=ZA.

Fortunately, the renormalization factors for the quark bi-
linears can also be calculated in a simple manner using the
Rome-Southampton method. The renormalization coeffi-
cients relate the bare and renormalized quark bilinear
operators in the following manner:

½ �u�d�ren ¼ Z�½ �u�d�0: (25)

In order to determine Z�, we first compute the bare Green’s
functions between off-shell quarks in momentum space.
We then amputate the Green’s function and separately
project out the components with each chirality to obtain
the bare vertex amplitudes:

�S ¼ 1

12
Tr½Gamp

1 1�; (26)

�P ¼ 1

12
Tr½Gamp

�5
�5�; (27)

�V ¼ 1

48
Tr

�X
�

Gamp
��

��

�
; (28)

�A ¼ 1

48
Tr

�X
�

Gamp
���5

�5��

�
; (29)

�T ¼ 1

72
Tr

�X
�<�

G
amp
���

���

�
: (30)

Finally, we impose the RI/MOM renormalization condition

�i;ren ¼ Zi

Zq

�i ¼ 1: (31)

The renormalization coefficients for the quark bilinears are
then given by

Zi

Zq
¼ 1

�i

: (32)

In the RI/MOM prescription, the four-fermion operator
renormalization coefficients are given as functions of the
momenta in the amputated Green’s functions used to de-
termine Zij=Z

2
q, which are chosen to be identical for all

four quarks in our computation of ZBK
. We therefore need

to extract ZBK
at a sufficiently high momentum that had-

ronic effects are negligible and the momentum-
dependence can be described by perturbation theory. We
cannot use too high a momentum, however, or lattice
discretization errors will become large. Thus use of the
Rome-Southampton technique requires the existence of a
momentum window in which both hadronic effects and
discretization errors can be neglected:

�QCD � p � a�1: (33)

In practice, however, we need to work in the region
ðapÞ2 * 1 in order to avoid large violations of chiral
symmetry, which we observe at low momenta.
Fortunately, discretization effects in the region of interest,
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p � 2 GeV, are generally rather small and can be taken
into account by a simple linear fit in ðapÞ2, as discussed in
Ref. [51]. This is the approach that we take in the calcu-
lation of ZBK

in Sec. III B 3.

2. Chiral symmetry breaking and �A ��V

Although the calculation of ZBK
only requires the renor-

malization factor for the axial current, ZA, the vector and
axial-vector current renormalization factors should be
equal in the chiral limit for sufficiently large momenta
due to chiral symmetry:

ZA ¼ ZV; (34)

or equivalently,

�A ¼ �V: (35)

Thus we can take the average of these two quantities in
order to reduce the statistical error in Zq=ZA using the

relationship

�A ¼ 1

2
ð�A þ�VÞ: (36)

In practice, however,�A � �V in the chiral limit for any
value of the momentum in our nonperturbative determina-

tion. Figure 4 shows the extrapolation of the quantity
2ð�A ��VÞ=ð�A þ�VÞ on the coarse lattice to the chiral
limit at p � 2 GeV using a function that is linear in both
the valence and sea-quark masses. This quantity provides
an indication of the amount of chiral symmetry breaking in
the computation. At nonzero quark mass, 2ð�A �
�VÞ=ð�A þ�VÞ can be as large as�1% in the momentum
region ðapÞ2 * 1 that we are using to extract ZBK

. The

difference between �A and �V decreases towards the
chiral limit, as is expected, but never becomes consistent
with zero. Figure 5 shows 2ð�A ��VÞ=ð�A þ�VÞ versus
ðapÞ2 on the aml=amh ¼ 0:007=0:05 coarse ensemble for
the five available valence quark masses and in the chiral
limit. Again, it decreases in magnitude as expected at
larger momenta, but is never zero. We observe similar
behavior on the fine lattice. This persistent difference
between �A and �V has also been observed and studied
in detail by the RBC and UKQCD Collaborations
[49,51,52], and can be attributed to several sources.
The first source is explicit chiral symmetry breaking due

to the nonzero quark masses used in simulations [49]. Use
of the operator product expansion shows that �A and �V

can receive contributions proportional to

m2
q

p2
;

mqh �qqi
p4

; (37)

at lowest order in 1=p2 [51]. Because these operators are
proportional to mq, they explicitly break chiral symmetry
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FIG. 4 (color online). Chiral extrapolation of 2ð�A �
�VÞ=ð�A þ�VÞ on the coarse lattice at ðapÞ2 ¼ 1:468 using a
linear function in mx and ml. Although only the data points with
filled symbols were used in the fit, the fit line does a reasonable
job of describing the heavier data points that were not included.
The cyan error band shows the extrapolation/interpolation for
points where the domain-wall pion mass is tuned to equal the
lightest (taste pseudoscalar) staggered pion mass.
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FIG. 5 (color online). The quantity 2ð�A ��VÞ=ð�A þ�VÞ
versus ðapÞ2 on the aml=amh ¼ 0:007=0:05 coarse ensemble for
several valence quark masses and in the chiral limit amx ¼
aml ¼ 0.
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and need not contribute equally to �A and �V . The con-
tribution of the operators in Eq. (37) can be seen clearly in
the data. As Fig. 5 shows, the difference between �A and
�V increases rapidly as the momentum approaches zero
and decreases slowly as the momentum becomes larger
than � 2 GeV. The contributions from the operators in
Eq. (37) can be removed by extrapolating to the chiral
limit at fixed momentum. Figures 4 and 5 show that,
although this procedure does indeed reduce the splitting
between �A and �V , it does not eliminate the difference.
Thus there must be additional sources of chiral symmetry
breaking, which we now discuss.

The next source is chiral symmetry breaking due to the
use of a finite Ls. Theoretical arguments suggest, however,
that this would lead to errors that are much smaller, of
OððamresÞ2Þ � 10�6 in our numerical simulations [49,52].
This would produce a negligible difference between �A

and �V , and cannot account for the size of the difference
that we observe in the data.

A more significant source of chiral symmetry breaking
that does not vanish in the chiral limit is the choice of
kinematics used to compute both Zij=Z

2
q and �i. As in the

standard RI/MOM prescription, we are using ‘‘exceptional
momenta’’ configurations in which there is no momentum
transferred between the initial and final states, or more
precisely

pi ¼ pf � p; (38)

where pi;f are the momenta of the initial and final states. It

was shown in Ref. [49] that this, unfortunately, leads to
contributions to �A ��V of the form

h �qq �qqi
p2

: (39)

Because this operator is not proportional to the quark mass,
it does not vanish in the chiral limit at fixed momentum.
This contribution can be removed by performing the non-
perturbative renormalization calculation at nonexceptional
kinematics, in which the sum of any subset of external
momenta is nonzero. In this case we have

p2
i ¼ p2

f ¼ ðpi � pfÞ2 � p2; (40)

but pi � pf. In order to check that this is indeed the source

of the difference between �A and �V in our data, we have
also computed 2ð�A ��VÞ=ð�A þ�VÞ at nonexceptional
kinematics; the results are shown in Fig. 6. Although the
statistical errors are not as small, the results in the chiral
limit are consistent with zero for sufficiently large values of
ðapÞ2.

For the calculation of ZBK
in this work, we use excep-

tional kinematics, despite the resulting chiral symmetry
breaking. This is because the continuum perturbation the-
ory needed to convert the result from the RI/MOM scheme

to the MS scheme has not yet been calculated for nonex-
ceptional kinematics.3 We therefore include the difference
between �A and �V as a source of systematic uncertainty
in ZBK

.

3. Nonperturbative renormalization factor calculation

We now present the nonperturbative determination of
ZBK

, which we compute from the quantity

ZVVþAA;VVþAA

Z2
q

�
�A þ�V

2

�
2

(41)

using the method of Rome-Southampton. Table III shows
the parameters used in generating the NPR lattice data set.
We have several valence and sea-quark mass combinations
on both the coarse and fine lattices in order to allow an
extrapolation of ZBK

to the chiral limit. For those ensem-

bles that are listed as ‘‘blocked’’ in the table, we computed
ZBK

on every sixth trajectory and blocked the data in

groups of four in order to reduce autocorrelations. On those
ensembles for which the data was not blocked, we com-
puted ZBK

only on every 24th trajectory.

Because we must extrapolate ZBK
to the chiral limit in

both the valence and sea-quark sectors, on the coarse lattice
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FIG. 6 (color online). The quantity 2ð�A ��VÞ=ð�A þ�VÞ
versus ðapÞ2 computed using nonexceptional momenta on the
aml=amh ¼ 0:007=0:05 coarse ensemble for several valence
quark masses and in the chiral limit amx ¼ aml ¼ 0.

3The expressions needed to convert the quark bilinears from
the RI/MOM scheme to the MS scheme have recently been
computed to one-loop order for nonexceptional kinematics by
Sturm et al. in Ref. [53].
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we have generated data on three ensembles at the nominal
strange quark mass (amh ¼ 0:05) and on one ensemble
with a lighter than physical strange sea-quark mass
(amh ¼ 0:03). At our current level of statistics the results
for ZBK

on the aml=amh ¼ 0:01=0:05 and aml=amh ¼
0:01=0:03 coarse ensembles are consistent. Because we
do not observe any dependence on the strange sea-quark
mass in our data, we fit our data assuming only a depen-
dence on the light sea-quark mass to determine the central
value of ZBK

. We use an alternative fit that includes strange

sea-quark mass dependence to estimate the systematic
error associated with extrapolating the strange sea-quark
mass to the chiral limit.

We first extrapolate ZBK
using a polynomial function in

the valence and sea-quark masses:

fnsea;nvalð�val; �sea;p
2Þ ¼ ZRI=MOM

BK
ðp2Þ þXnsea

i¼1

Ci;seaðp2Þ�i
sea

þXnval
i¼1

Ci;valðp2Þ�i
val; (42)

where

�sea ¼
2�stag

ð4�f�Þ2
ð2mlÞ; (43)

�val ¼ 2�dw

ð4�f�Þ2
½2ðmx þmresÞ�; (44)

are dimensionless ratios <1, and the parameters �stag and

�dw are obtained from tree-level MA�PT fits to the pseu-
doscalar meson masses. In order to determine the preferred
fit ansatz, we independently increase nsea and nval until the
correlated confidence level of the fit no longer increases
significantly. We find that this occurs when nsea ¼ 1 and
nval ¼ 2. We use the fits with additional terms to estimate
the systematic uncertainty due to the choice of fit function.

Figures 7 and 8 show the chiral extrapolation of ZBK
on

the coarse and fine lattices at p2 � ð2 GeVÞ2 using a fit
function linear in the light sea-quark mass and quadratic in
the valence quark mass. Although this extrapolation is
nominally at ‘‘fixed ðapÞ2,’’ this is not quite true. This is

because, although all of the coarse (or fine) MILC ensem-
bles are generated with approximately the same lattice
spacing, there are slight fluctuations in the lattice spacing
from ensemble to ensemble. Thus data on different ensem-
bles with the same value of ðapÞ2 do not correspond to
precisely the same physical momentum. We convert our
data into r1 units using the value of r1=a determined on
each ensemble before performing the chiral extrapolation,
so that everything is in the same units. Fortunately, the
variation in r1 leads to only a slight variation in the
momentum-squared, of �0:1%. Because this is even
smaller than the statistical errors in our data points, the
resulting systematic error can be safely neglected.
Next we attempt to remove discretization errors in ZBK

due to the fact that we are extracting ZBK
at momenta that

TABLE III. Lattice QCD data used in the nonperturbative renormalization of BK. For those configurations that were blocked, ZBK

was computed on every 6th configuration and blocked in groups of 4. For those configurations that were not blocked, ZBK
was

computed on every 24th configuration.

a (fm) ðLaÞ3 � T
a aml=amh amx Nconf Blocked?

0.09 283 � 96 0:0062=0:031 0.0119, 0.0171, 0.0287, 0.04 387 no

0.09 283 � 96 0:0093=0:031 0.0287 251 no

0.09 283 � 96 0:0124=0:031 0.0287 381 no

0.12 203 � 64 0:007=0:05 0.01, 0.02, 0.033, 0.038, 0.056 836 yes

0.12 203 � 64 0:01=0:05 0.01, 0.02, 0.033, 0.038, 0.056 540 yes

0.12 203 � 64 0:02=0:05 0.01, 0.02, 0.033, 0.038, 0.056 484 yes

0.12 203 � 64 0:01=0:03 0.01, 0.02, 0.03 81 no
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FIG. 7 (color online). Chiral extrapolation of ZRI=MOM
BK

on the
coarse lattice at ðapÞ2 ¼ 1:468. Note that the fit lines for the
aml=amh ¼ 0:01=0:05 and aml=amh ¼ 0:01=0:03 ensembles
are identical because we have not included any strange sea-quark
mass dependence in the fit function. The cyan band shows the
extrapolation along the trajectory mval

� ¼ msea
� .
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are of Oða�1Þ. Following the same procedure as in
Ref. [49], we use the continuum one-loop perturbation

theory expressions in Eqs. (B5)–(B8) to convert ZRI=MOM
BK

to ZSI
BK
. This is shown in Fig. 9 (Fig. 10) for the coarse (fine)

lattice. Although the quantity ZSI
BK

should be scale-

invariant, we observe that ZSI
BK

in fact has an approximately

linear dependence upon ðapÞ2 in the region of interest. We
believe that this scale-dependence is primarily from lattice
artifacts that can be removed by performing a linear ex-
trapolation in ðapÞ2. We therefore fit the data to the form

Aþ BðapÞ2 (45)

and interpret the intercept A as the true ZSI
BK
. We extrapolate

ZSI
BK

to its true value as shown in Figs. 9 and 10 using the

momentum range 2 GeV & p & 2:5 GeV. This choice
satisfies the criterion p � �QCD needed to avoid hadronic

effects. Specifically, for the coarse data, we fit within 1:5<
ðapÞ2 < 2:3 and for the fine data we fit within 0:8<
ðapÞ2 < 1:2. Variations of these fit regions do not alter
the final results significantly. We obtain

ZSI;coarse
BK

¼ 1:2822ð29Þ; ZSI;fine
BK

¼ 1:3033ð93Þ;

where the errors are statistical only. We note, however, that
some of the scale-dependence in ZSI

BK
may in fact be due to

the lack of higher-order terms in the matching factor. We
therefore account for this and other errors due to the
truncation of perturbation theory in the systematic error
budget for ZBK

.

Finally, we convert ZSI
BK

to ZMS
BK

and run it to 2 GeVagain

using Eqs. (B5)–(B8). We obtain
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FIG. 8 (color online). Chiral extrapolation of ZRI=MOM
BK

ðp2Þ on
the fine lattice at ðapÞ2 ¼ 0:744. The cyan band shows the
extrapolation along the trajectory mval

� ¼ msea
� .
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the filled circles and the true value of ZSI
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ZMS;coarse
BK

ð2 GeVÞ ¼ 0:9339ð21Þ;
ZMS;fine
BK

ð2 GeVÞ ¼ 0:9493ð68Þ;
where the errors are statistical only. We estimate the sys-

tematic uncertainties in ZMS
BK

ð2 GeVÞ later in Sec. VD.

IV. DETERMINATION OF BK

In this section we describe the extrapolation of BK to
physical quark masses and the continuum. In Sec. IVA, we
present the expression for BK at next-to-leading order
(NLO) in MA�PT and describe those features that are
most relevant for the chiral-continuum extrapolation. We
then discuss the details of the chiral-continuum extrapola-
tion procedure in Sec. IVB.

A. BK at NLO in MA�PT

We first review the tree-level mass relations for light
pseudoscalar mesons in MA�PT since they are useful in
understanding the leading-order lattice-spacing contribu-
tions to mixed-action numerical simulations [22]. In a
mixed-action theory one can have mesons composed of
two sea quarks, two valence quarks, or one of each. At tree-
level in MA�PT, discretization effects lead to different
additive shifts to the masses of the three types of mesons.
These mass-shifts are the only new parameters as com-
pared to the continuum at this order, and their values have
all been determined for our choice of mixed-action simu-
lation parameters. The tree-level mass-shifts on both the
coarse and fine MILC lattices are given in Table IV.

In the sea sector of the mixed-action theory, each flavor
of staggered quark comes in four species, or ‘‘tastes’’;
consequently, each flavor of staggered pseudoscalar meson
comes in 16 tastes. In the continuum, these tastes are
identical and are related by an SUð4Þ symmetry [27]. At
nonzero lattice spacing, however, discretization effects
split the degeneracies among the 16 pseudoscalar meson
tastes [54]:

m2
ss0;t ¼ �stagðms þms0 Þ þ a2�t; (46)

where s and s0 are the staggered quark flavors, �stag is a

regularization-dependent continuum low-energy constant,

and �t is the mass-splitting of a pion with taste t. At
leading-order in staggered �PT (S�PT), a residual SOð4Þ
taste symmetry ensures that the mass-splittings are identi-
cal for pions in the same SOð4Þ-irrep: P, V, A, T, I [54]. An
exact Uð1ÞA symmetry protects the taste pseudoscalar me-
son from receiving a mass-shift to all-orders in S�PT,
implying that �P ¼ 0.
At NLO in the mixed-action theory, the only nonzero

staggered mass-splitting that is relevant is that of the taste-
singlet, �I [22]. This is because the domain-wall valence
quarks do not carry the taste quantum number; therefore
mixed valence-sea four-fermion operators must contain
two domain-wall quarks and two taste-singlet staggered
quarks in order to be overall taste-invariant. The mass-
splitting �I has been calculated by the MILC
Collaboration on both the coarse and fine MILC lattices
[7], and is given in Table IV. Because the parameter �I is
known, we reduce the number of free parameters in the
chiral and continuum extrapolation of BK by fixing �I to
the values in Table IV. The mass-splitting�I turns out to be
the largest of the taste-splittings, and comparable to the
taste-Goldstone pion mass on the coarse MILC lattices, so
the taste-singlet sea-sea mesons are quite heavy on the
coarse lattices. Because the mass-splittings arise from dis-
cretization effects, however, they become smaller as the
lattice spacing decreases. Specifically, the staggered taste-
splittings scale as Oð�2

sa
2Þ since the asqtad staggered

action is Oða2Þ-improved. Thus a2�I is already more
than a factor of 2 smaller on the fine MILC lattices than
on the coarse.
In the valence sector of the mixed-action theory,

domain-wall quarks receive an additive contribution to
their mass from explicit chiral symmetry breaking [29,30]:

m2
vv0 ¼ �dwðmv þmv0 þ 2mresÞ; (47)

where v and v0 are the domain-wall quark flavors and mres

is the residual quark mass. The size of mres parametrizes
the amount of chiral symmetry breaking in the valence
sector, and is controlled by the length of the fifth dimen-
sion. We have determined the value of mres in our mixed-
action simulations in a previous publication (Ref. [17]) and
present the results in Table IV. On the coarse MILC latti-
ces, we find that the value ofmres in the chiral limit is about
3=4 the physical light quark mass; mres is approximately a
factor of 3 smaller on the fine MILC lattices, i.e. 1=4 the
physical light quark mass. The small values of the residual
quark mass indicate that chiral symmetry breaking is under
control in our mixed-action lattice simulations.
In order to reduce the number of fit parameters in our

chiral and continuum extrapolation of BK, we fix the value
ofmres in our chiral fits. We do not, however, use the values
of mres given in Table IV, which are found by taking the
chiral limit (ml ¼ mh ¼ mx ¼ 0) in both the valence and
sea sectors. Instead, for each lattice data point, we fix mres

to the value determined at that particular combination of

TABLE IV. Tree-level mass-shifts on the coarse and fine
MILC lattices for our choice of mixed-action simulation pa-
rameters. The taste-singlet mass-splitting, �I , is independent of
the valence sector [7], while the residual quark mass, mres, and
mixed meson mass-splitting, �mix, both depend upon the choice
of HYP-smearing [17]. Errors shown are statistical only.

Sea sector Valence sector Mixed sector

a (fm) r21a
2�I r1mres r21a

2�mix

0.12 0.537(15) 0.0044(1) 0.207(16)

0.09 0.206(17) 0.0016(2) 0.095(20)
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valence and sea-quark masses. This effectively includes
higher-order corrections to mres and improves the confi-
dence levels of our chiral fits to f� and m2

�.
Because the mixed-action lattice theory has new four-

fermion operators, the chiral effective theory has new low-
energy constants due to discretization effects. It turns out,
however, that the mixed-action chiral Lagrangian has only
one new constant at lowest order [22]. This coefficient
combines with coefficients coming from the taste-
symmetry breaking operators in the staggered sector [55]
to produce an Oða2Þ shift to the mixed valence-sea meson
mass-squared:

m2
vs ¼ �dwðmv þmresÞ þ�stagms þ a2�mix; (48)

where v is the domain-wall quark flavor, s is the staggered
quark flavor, and �mix is the effective mixed valence-sea
meson mass-splitting obtained in lattice simulations.4 We
have calculated the value of �mix for the parameters of our
mixed-action lattice simulations in Ref. [17], and present
the results in Table IV. We find that the size of �mix is less
than half of the taste-singlet staggered mass-splitting, �I,
on both the coarse and fine MILC lattices.

We do not need to fix the value of �mix during the chiral
and continuum extrapolation of BK because it turns out that
the parameter �mix does not enter the expression for BK in
MA�PT at NLO, Eq. (49) [9]. Although the mass-splitting
enters the mixed-action expression for fK, it cancels ex-
actly at NLO between the numerator and denominator in
the ratio of matrix elements that defines BK, Eq. (2).

Finally, we note that, for the purpose of our chiral and
continuum extrapolation of BK, it is useful to express the
tree-level meson masses in terms of the bare lattice quark
masses given in Table I, not in terms of the renormalized
quark masses. Because the valence and sea quarks are
renormalized according to different schemes, we absorb
the scheme-dependent quark-mass renormalization factors
into separate coefficients of proportionality,�dw and�stag,

in the tree-level mass relations, Eqs. (46)–(48).
The NLO �PT expression for BK in a mixed-action

domain-wall valence, staggered sea theory with 2þ 1
flavors of dynamical sea quarks is [9]

�
BK

B0

�
PQ;2þ1 ¼ 1þ 1

16�2f2xym
2
xy

½Iconn þ I2þ1
disc � þ c1a

2

þ 8

f2xy

�
c2m

2
xy þ c3

ðm2
X �m2

YÞ2
m2

xy

þ c4ð2m2
LP

þm2
HP
Þ
�
; (49)

where m2
XðYÞ is the mass-squared of a meson composed of

two xðyÞ valence quarks andm2
LPðHPÞ is the mass-squared of

a taste-pseudoscalar meson composed of two lðhÞ sea
quarks. The one-loop chiral logarithms are separated into
contributions from quark-level connected and discon-
nected diagrams. The parameter B0 is the tree-level value
of BK obtained in the continuum and SUð3Þ chiral limits.
The four analytic terms, c1-c4, are the only additional free
parameters in the expression for BK at NLO. Although the
analytic term proportional to a2 is not present in the con-
tinuum, it is present for chiral lattice fermions. Thus BK in
the mixed-action theory, Eq. (49), has no more undeter-
mined coefficients than in the purely domain-wall case.
The connected contribution to BK is

Iconn ¼ 2m4
xy
~‘ðm2

xyÞ � ‘ðm2
XÞðm2

X þm2
xyÞ

� ‘ðm2
YÞðm2

Y þm2
xyÞ: (50)

The chiral logarithms, ‘ and ~‘, are defined as

‘ðm2Þ ¼ m2

�
ln
m2

�2
�

þ 
FV
1 ðmLÞ

�
;


FV
1 ðmLÞ ¼ 4

mL

X
~r�0

K1ðj~rjmLÞ
j~rj ;

(51)

~‘ðm2Þ ¼ �
�
ln
m2

�2
�

þ 1

�
þ 
FV

3 ðmLÞ;


FV
3 ðmLÞ ¼ 2

X
~r�0

K0ðj~rjmLÞ;
(52)

where the difference between the finite and infinite volume
result is given by 
FV

i ðmLÞ, and K0 and K1 are modified
Bessel functions of imaginary argument. The disconnected
contribution to BK is

I2þ1
disc ¼ 1

3
ðm2

X �m2
YÞ2

@

@m2
X

@

@m2
Y

�
�X

j

‘ðm2
j Þðm2

xy þm2
j ÞR½3;2�

j ðfM½3�
XY;Ig; f�½2�

I gÞ
�
;

(53)

where

R½n;k�
j ðfmg; f�gÞ �

Q
k
a¼1ð�2

a �m2
j ÞQ

n
i¼1;i�jðm2

i �m2
j Þ
; (54)

fM½3�
XY;Ig � fmX;mY;m�I

g; (55)

f�½2�
I g � fmLI

; mHI
g: (56)

When the up and down sea-quark masses are degenerate,
the flavor-neutral, taste-singlet mass eigenstates are

m2
�0
I

¼ m2
LI
; m2

�I
¼ m2

LI

3
þ 2m2

HI

3
; (57)

4The explicit expression for the effective mixed meson mass
splitting �mix, given as a linear combination of the staggered sea
taste-splittings and the new splitting unique to the mixed-action
theory, is derived in Ref. [55].
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and the disconnected contribution to BK simplifies:

I2þ1
disc ¼ 1

3
ðIX þ IY þ I�Þ; (58)

with

IX ¼ ~‘ðm2
XÞ

ðm2
xy þm2

XÞðm2
LI
�m2

XÞðm2
HI

�m2
XÞ

ðm2
�I

�m2
XÞ

� ‘ðm2
XÞ
�ðm2

xy þm2
XÞðm2

LI
�m2

XÞðm2
HI

�m2
XÞ

ðm2
�I

�m2
XÞ2

þ 2ðm2
xy þm2

XÞðm2
LI
�m2

XÞðm2
HI

�m2
XÞ

ðm2
Y �m2

XÞðm2
�I

�m2
XÞ

þ ðm2
LI
�m2

XÞðm2
HI

�m2
XÞ � ðm2

xy þm2
XÞðm2

HI
�m2

XÞ � ðm2
xy þm2

XÞðm2
LI
�m2

XÞ
ðm2

�I
�m2

XÞ
�
; (59)

IY ¼ IXðX $ YÞ; (60)

I� ¼ ‘ðm2
�Þ

ðm2
X �m2

YÞ2ðm2
xy þm2

�I
Þðm2

LI
�m2

�I
Þðm2

HI
�m2

�I
Þ

ðm2
X �m2

�I
Þ2ðm2

Y �m2
�I
Þ2 : (61)

All of the sea-quark dependence in the chiral logarithms
appears in the disconnected terms, the sum of which van-
ishes for degenerate valence quark masses. The contribu-
tion I� vanishes identically when mX ¼ mY . In the limit
that mX ! mY , IX ! �IY . Thus the sum IX þ IY þ I� !
0.

B. Chiral and continuum extrapolation of BK

We use the SUð3Þ MA�PT formula of Eq. (49) in the
extrapolation of our numerical lattice data to the contin-
uum and to physical quark masses. The choice of SUð3Þ
�PT is appropriate given the parameters of our numerical
simulations because our light pion masses range from 240–
500 MeVand are not much lighter than the physical kaon,
which is integrated out in SUð2Þ �PT. Furthermore, the
largest of the taste-splittings on the coarse lattices is not
much smaller than the kaon mass [a2�I � ð460 MeVÞ2],
though on the fine lattices it is a factor of 2.7 times smaller
[a2�I � ð280 MeVÞ2].

There have been several studies showing that NLO
SUð3Þ mixed-action and staggered chiral perturbation the-
ory accurately describe the lattice discretization effects
even at the rather large taste-splittings on the coarse
MILC lattices [16,17,56,57]. For example, the agreement
between the NLO mixed-action SUð3Þ �PT prediction of
the scalar correlator at large times and the lattice data is
excellent over the range of masses and lattice spacings
used in the present calculation of BK [17]. The agreement
is good to within the statistical accuracy of the scalar
correlator data, which is about 10%. This agreement is a
highly nontrivial test because the heavy taste-singlet �
plays the dominant role in modifying the continuum �PT
form of the correlator. The MILC Collaboration also finds
that the scalar correlator in the staggered theory is well
described by staggered chiral perturbation theory, and that

when the low-energy constants in the prediction for the
scalar correlator are allowed to vary, they agree with those
determined in fits to the light pseudoscalar sector [16].
The statistical errors on Blat

K are �0:5%–2% for most of
our data points. It is now well established that NLO �PT
does not describe quantities such as pseudoscalar masses,
decay constants, or BK to percent-level accuracy at the
physical kaon mass, nor is it expected to based on power
counting. Our data set confirms this picture for BK. In order
to get good fits to our BK data in the region of interest we
must include next-to-next-to-leading-order (NNLO) ana-
lytic terms. Fits without these terms give terrible correlated
�2=d:o:f:’s and miniscule confidence levels. The two-loop
NNLO logarithmic corrections, however, are not known
for BK. These expressions would also have to be modified
to account for the staggered sea sector, though, given our
experience with the one-loop modifications due to the
mixed action, this is likely a small effect. In the region
where the NNLO analytic terms that we have added are
important, we expect the NNLO logarithms to vary slowly
enough that their effect is well approximated by the ana-
lytic terms. We vary the assumptions we make for the (thus
far unknown) NNLO behavior in order to estimate a sys-
tematic error for the chiral extrapolation. When we apply
the same approach to our calculation of f�, fK, and their
ratio [23], we find systematic errors due to the chiral
extrapolation of a similar size to other lattice determina-
tions [26] and in excellent agreement with phenomenology.
This good agreement between our lattice calculations and
known quantities lends confidence in our methods for
quantities such as BK that are not known from experiment.
Our approach to chiral fits using SUð3Þ �PT plus higher-

order analytic terms is related to the approach of other
groups using SUð2Þ �PT with the kaon integrated out [58]
in the following way. The chiral logarithms due to pion
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loops are common to SUð3Þ and SUð2Þ �PT, and are the
dominant nonanalytic contribution when the strange quark
is much heavier than the two lightest quarks. In order to get
acceptable fits, we need to introduce polynomial depen-
dence in the valence quark mass at higher order than NLO
in the chiral expansion, as discussed above. This is neces-
sary to describe the data in the region where the SUð3Þ �PT
is not especially convergent, and higher-order corrections
are important. Nonetheless, our simulations interpolate
about the physical strange quark mass, so the higher-order
dependence of the SUð3Þ expansion, with terms involving
kaon and eta masses, is expected to be well described.
Towards the physical value of BK, where we extrapolate
in the light quark masses, the heavier meson masses in the
SUð3Þ expansion decouple and the SUð3Þ form becomes
that of SUð2Þ. In this decoupling region, the taste-breaking
in the heavier mesons containing the strange quark reduces
to terms analytic in a2 and the light quark masses, which
are included in the fits. Thus, we expect our fit function to
describe our light-mass data well, and we expect the addi-
tional analytic terms to capture higher-order effects in the
heavier-mass region where terms beyond NLO are neces-
sary. Recent work by the MILC Collaboration corroborates
this approach. They find excellent agreement between
SUð2Þ and SUð3Þ staggered chiral perturbation theory ap-
proaches for f� and light quark masses [59,60]. The �-�
scattering results of NPLQCD also show good agreement
for the I ¼ 2 scattering length aI¼2

�� between SUð2Þ and
SUð3Þ NLO MA�PT determinations [56,57].

There are six new continuum NNLO analytic terms for
BK, as well as NNLO terms that modify the NLO constants
c1-c4 by terms proportional to a2. We include only a subset
of the NNLO terms that are needed to obtain good corre-
lated �2 values, and include the others in alternative fits for
systematic error estimation. The number of new continuum
low-energy constants can be constrained using CPS sym-
metry [61], chiral symmetry, and the fact that there is only
one mass scale in the tree-level diagrams with the external
kaons at rest. The new continuum analytic NNLO contri-
butions to BK are

d1m
4
xy; d2ðm2

X �m2
YÞ2; d3ð2m4

LP
þm4

HP
Þ;

d4ð2m2
LP

þm2
HP
Þ2; d5ðm2

xyÞð2m2
LP

þm2
HP
Þ;

d6
ðm2

X �m2
YÞ2

m2
xy

ð2m2
LP

þm2
HP
Þ:

(62)

We also test for higher-order analytic terms proportional to
a2. We find an improvement to the fit when including a
term of the form a2m2

xy. Our systematic error estimate

includes the effects of generic NNLO nonanalytic terms
on the extrapolation and an estimate of the size of NNLO
taste-violations not accounted for in the fitting procedure.

Figure 11 shows our preferred fit to the data using NLO
partially quenched MA�PT supplemented by some of the
above NNLO analytic terms. In order to obtain a fit with a

good correlated confidence level, we include the NNLO
continuum analytic terms proportional to d1, d2, d5 and d6
in Eq. (62) plus an NNLO analytic term containing dis-
cretization effects, da2m2

xy
ð8=f2xyÞa2m2

xy. We fix the follow-

ing parameters in the fit: the tree-level (continuum)
coefficients �dw and �stag, the decay constant fxy, and

the taste-splitting a2�I. We take for the parameters �dw

and �stag the values obtained from fits to the light pseudo-

scalar masses squared to the tree-level forms given in
Eqs. (46) and (47). This accounts for higher-order chiral
corrections and is more accurate than using � obtained in
the chiral limit (which is found by fitting to the one-loop
pseudoscalar mass and decay constant expressions), giving
a better approximation to the pion mass squared at a given
light quark mass. The values for �dw and �stag are given in

Table V. We take the decay constant fxy, which appears as

TABLE V. Tree-level �-parameters, defined in Eqs. (46) and
(47), on the coarse and fine MILC lattices. The staggered
coefficient, r1�stag, is independent of the valence sector [7],

while the domain-wall coefficient, r1�dw, depends upon the
choice of HYP-smearing [17].

a (fm) r1�stag r1�dw

0.12 6.234 4.13

0.09 6.382 3.83
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FIG. 11 (color online). BK versus degenerate light valence
quark mass r1ðmx þmresÞ on different ensembles. The fit lines
are the same partially quenched contours as the data. Note that
all of the coarse fit lines lie on top of each other, and likewise for
the fine, indicating very little sea-quark dependence. The band is
the degenerate quark mass full-QCD curve (mx ¼ my ¼ ml ¼
mh) in the continuum limit. The y-intercept of the full-QCD
curve gives the low-energy constant B0, which is the value of BK

in the SUð3Þ chiral limit.
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the inverse square in the coefficient of the chiral loga-
rithms, to be the physical fK ¼ 156:5 MeV [24] for our
preferred fit, though we vary fxy in order to estimate the

systematic error. We use the value for the taste-singlet
splitting a2�I obtained by the MILC Collaboration in
Ref. [7] and given in Table IV. Given these choices, our
preferred combined chiral-continuum extrapolation fit
function contains only ten free parameters.

Figure 11 shows only the degenerate valence mass
points and the corresponding partially quenched fit lines,
although the fit includes nondegenerate masses as well.
The heaviest valence kaon masses included in this fit are
slightly larger than the physical kaon mass. We restrict the
degenerate valence ‘‘kaon’’ masses to below 500 MeV, but
we allow slightly heavier nondegenerate valence kaons up
to masses of around 600 MeV in order to interpolate about
the physical strange quark mass. In the sea sector, we
restrict the taste-pseudoscalar pions to be less than
550 MeV on the coarse ensembles and less than
500 MeV on the fine ensembles. Our lightest degenerate
valence ‘‘kaon’’ is �230 MeV, while our lightest taste-
pseudoscalar sea pion is �240 MeV. Given these mass
restrictions, the number of data points in our preferred fit is
69, which is more than sufficient to constrain ten
parameters.

Although most of our degenerate-mass data points are
far from the physical kaon mass, including this data in the
fit allows us to constrain the parameters of the SUð3Þ chiral
Lagrangian and to study the convergence of SUð3Þ �PT.
The (cyan) band in Fig. 11 shows the full QCD curve with
statistical errors in the SUð3Þ (mx ¼ my ¼ ml ¼ mh) and

continuum limits that is obtained from our preferred fit. In
order to examine the convergence of SUð3Þ �PT, we plot
the separate contributions to the degenerate SUð3Þ curve
through LO, NLO, and ‘‘all orders’’ in Fig. 12. The right-
most part of the x-axis corresponds to �ms=2 (i.e., a
500 MeV pion), where we do not expect �PT to be espe-
cially convergent. Because we are interpolating in the
quark mass in this region, we expect the ‘‘all orders’’ curve
to be accurate, with the NNLO terms approximating the
correct higher-order behavior. Closer to the physical pion
mass, however, the NLO contributions are the dominant
corrections, and the particular choice of NNLO analytic
terms has little impact on the fit result in this light quark-
mass region as long as the fit has a good correlated con-
fidence level.

It should be noted that the relative contributions of NLO
versus NNLO terms can change significantly, depending
on whether one uses bare expansion parameters or the
physical masses and decay constants in the one-loop ex-
pressions. Following Bijnens [62], we prefer to use the
physical masses and decay constants because the chiral
logs are created by particles propagating with their physi-
cal momentum, and (though not relevant forBK) thresholds
appear in the right places at each order in perturbation

theory. Using the bare parameters in our fits yields poor
confidence levels, and we do not consider them further.
Using the physical parameters in the expansion, we find the
results of our fits to be consistent with the expectations
from chiral power-counting. This is consistent with the
findings of the JLQCD Collaboration that using a re-
summed physical expansion parameter significantly im-
proves the ability of NLO (or NNLO) �PT to describe
data at heavier masses near the kaon by accelerating the
convergence of the chiral expansion [63]. The NPLQCD
Collaboration also uses the physical parameters in the
SUð3Þ MA�PT expansion for their determination of the
�-� scattering length, and they find good agreement be-
tween their data and the leading-order form, which is
completely predicted [56,57]. When NPLQCD include
the NLO SUð3Þ corrections, they also find good fits to their
lattice data. Despite these successes of the SUð3Þ formal-
ism, it would be valuable to continue our BK study with
the complete NNLO formula once it is available. It
should also be noted that the systematic error in the chiral
extrapolation to the SUð3Þ chiral limit is fairly large,
since the simulated strange quark masses in the sea
are close to the physical value. Thus, there is a large
systematic error in the value of the leading-order term
B0, and the picture in Fig. 12 may change appreciably
once we can better constrain the approach to the SUð3Þ
limit. Given the central value of our current best fit, how-
ever, the convergence of the chiral expansion appears
reasonable.

We obtain a value of BMS
K ð2 GeVÞ ¼ 0:5273ð64Þ from

our preferred fit when the matching factor is calculated
using NPR, where the error is statistical only. We take this
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FIG. 12 (color online). Comparison of higher-order �PT cor-
rections for BK. The right-most point on the graph corresponds to
�ms=2.
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result as our central value. For comparison, the value for
BK obtained using lattice perturbation theory to compute

the matching factor is BMS
K ð2 GeVÞ ¼ 0:541ð6Þ. The result

of our preferred fit is shown in Fig. 13. All data points used
in the fit are shown. The upper band is the full QCD
continuum-extrapolated curve with the strange quark fixed
to its tuned value. The lower band is the degenerate quark
mass, full-QCD band, as in Fig. 11. The extrapolated value
of BK at the physical quark masses with statistical errors is
shown as an ‘‘X’’ with solid black error bars.

Table VI shows the low-energy constants determined in
our preferred fit, with statistical errors only. We do not
attempt to estimate a systematic uncertainty in these pa-
rameters because this is not necessary for determining BK

at the physical quark masses. We expect that the systematic
uncertainties, however, will be large given the size of the
extrapolation to the SUð3Þ chiral limit. We present the
values only to illustrate a few important points.
Discretization errors in our data are small; this can be
seen from the size of the parameters c1 and da2m2

xy
.

Further, we do not observe any clear sea-quark mass
dependence in our data, as shown by the fact that c4, d5,
and d6 are zero within errors. We estimate the systematic

uncertainty in BK due to the choice of chiral and continuum
extrapolation fit function in the following section.

V. SYSTEMATIC UNCERTAINTIES

In the following subsections, we examine the uncertain-
ties in our calculation due to the chiral/continuum extrapo-
lation, scale and light quark mass uncertainties, finite-
volume effects, and uncertainties in the matching factor
ZBK

.

A. Chiral and continuum extrapolation errors

We estimate the systematic error in the chiral extrapo-
lation by varying the fit function used to extrapolate the
data over a variety of different reasonable choices and
taking the spread between them. By reasonable, we mean
theoretically motivated fits that also describe the data with
good confidence levels, determined by the correlated �2

per degree of freedom. These fits always involve the known
one-loop mixed-action chiral logarithms, since including
them incorporates the leading nonanalytic dependence on
the light quark masses. We consider variations of the fit
function by including different types of terms beyond NLO
that still give acceptable confidence levels and in order to
determine the systematic error in the chiral extrapolation.
We also vary other assumptions, such as the values of
parameters used in the prediction for the chiral logarithms,
and the lattice-spacing dependence of the continuum ex-
trapolation. Each of these variations is addressed in turn.
We combine the chiral and continuum extrapolations

using MA�PT to control the approach to physical light
quark masses and to the continuum. Combining the data
sets on coarse and fine lattices, we have seven different
valence quark masses and nine different sea-quark mass
combinations. Our valence kaons range from around

TABLE VI. Fit parameters obtained in our preferred fit. Errors
shown are statistical only, and do not include the extrapolation
uncertainty. The coefficient B0 in the top panel is the only
leading-order low-energy constant, the coefficients in the middle
panel are the NLO low-energy constants, and the coefficients in
the bottom panel are the NNLO parameters included in the fit.
Definitions of the parameters are given in Eqs. (49) and (62).

B0 0.338(12)

c1 0.057(25)

c2 0.00531(60)

c3 0.00033(15)

c4 0.00003(15)

d1 0.351(23)

d2 �0:004ð38Þ
d5 �0:006ð27Þ
d6 0.006(35)

da2m2
xy

�0:00049ð29Þ
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FIG. 13 (color online). BK versus light valence quark mass
r1ðmx þmresÞ. All data points used in the fit (same fit as in
Fig. 11) are shown. The upper band is the full-QCD continuum-
extrapolated curve with the strange quark fixed to its tuned value.
The lower band is the degenerate quark mass, full-QCD band, as
in Fig. 11. The extrapolated value of BK at the physical quark
masses with statistical errors is given by the ‘‘X’’ with solid
black error bars.
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600 MeV down to as light as 230 MeV. These lighter kaons
are useful for constraining the low-energy constants of the
chiral Lagrangian. As can be seen in Fig. 12, even at the
physical kaon mass near the right-most part of the plot, the
chiral behavior is mostly accounted for by a combination
of leading-order and NLO terms. The combinations of sea-
quark masses include values of the simulated strange sea
quark above and below the physical strange quark mass on
both the coarse and fine lattices, allowing us to interpolate
in the strange sea-quark mass.

The light sea-quark masses used in our simulation are as
low as ms=10, and this translates into a taste-Goldstone
pion (the lightest of the staggered pions) of around
240 MeV. In the chiral extrapolation of BK, however, the
only sea pion mass that appears in the NLO MA�PT
expression is the taste-singlet pion mass (the heaviest of
the staggered pions), the lightest of which in our simula-
tions is still a rather heavy 370 MeV. Fortunately, the sea-
quark contribution to the NLO chiral logarithms vanishes
for degenerate valence quarks, and gives only a small
contribution for nondegenerate valence quarks (the region
of interest for the physical kaon). This is in part because the
terms that contain the taste-singlet pion are suppressed by a
factor of 1=Nsea. The taste-breaking is corrected for ex-
plicitly through NLO, and partially at NNLO by including
analytic terms proportional to a2 and a2m2

xy.

As described in the previous subsection, we take as our
central value the result of a fit that includes all of the terms
through NLO, the NNLO continuum analytic terms pro-
portional to d1, d2, d5 and d6 in Eq. (62), and an NNLO
analytic term containing discretization effects proportional
to a2m2

xy. We estimate the systematic uncertainty due to the

chiral extrapolation by including additional NNLO ana-
lytic terms and taking the difference between the new value
of BK and that obtained with the preferred fit. The largest
contribution to the systematic error comes from adding
terms quadratic in the sea-quark masses to the above fit
and taking the spread between the two. Although we
analyze ensembles with different light and strange sea-
quark masses, we do not observe any clear sea-quark
mass dependence in our data. When we include the terms
proportional to d3 and d4 in Eq. (62) to our fit the result
shifts to 0.5175(72), yielding a difference of 1.9%. We take
this as the error due to approximating higher-order terms in
the chiral expansion.

We also consider NNLO nonanalytic terms of the ge-
neric form m2 logðm2Þ to estimate higher-order effects. A
term of the form m4

X½logðm2
X=�

2
�Þ� appears at NNLO [in

both SUð2Þ and SUð3Þ �PT], but it is subleading in the
chiral expansion and should therefore have a smaller
impact than the terms that we are already including as
mX approaches the physical m�. In order to test that the
effects of such a term are indeed small, we added this
term to our preferred fit leaving its coefficient as a free
parameter. We obtain a small coefficient for such a term,

which leads to a slight 0.9% shift upwards in our central
value. This is within our estimate of the error due to
approximating higher-order terms in the chiral expansion.
Higher-order taste-breaking is considered as well. If we

set the staggered singlet taste-splitting to zero in the NLO
logarithms this amounts to using the continuumlike ex-
pression appropriate to a purely domain-wall simulation; if
we do this it shifts our chiral extrapolation to BK at the
physical quark masses by only 0.7%. Thus, the discretiza-
tion effects particular to the use of staggered quarks in the
sea sector are small. The formulas we use do not explicitly
remove taste-breaking at NNLO. Note, however, that the
higher-order analytic term a2m2

xy is needed to get good

confidence levels in our fits, and is expected to absorb some
of the higher-order taste-violating effects, especially those
in the kaon sector of SUð3Þ �PT in the limit that the kaon
can be integrated out. We estimate the residual effect of the
higher-order taste-breaking by varying the splittings used
for the sea-mesons in the analytic terms [Eq. (62)] over the
full range of staggered meson masses. When we do this, we
find that the central value decreases by 1.8%, which is
within our systematic error due to neglecting higher-order
terms in the chiral expansion.
We consider other variations to the fit, but they lead to a

much smaller shift in the central value. Although we fix the
tree-level (continuum) coefficients �dw and �stag, the de-

cay constant fxy, and the taste-splitting a2�I in the NLO

chiral extrapolation formula, we vary them within their
statistical uncertainties in order to estimate their contribu-
tion to the error in BK. The staggered and domain-wall
�tree parameters are well determined, and their error is
negligible in BK. In the chiral fit used for our central value
we take the decay constant fxy, which appears as the

inverse square in the coefficient of the chiral logarithms,
to be the physical fK. We vary this coefficient between f�
and fK as an additional way of estimating higher-
order corrections. Note that a change in the coefficient of
the chiral logarithms will change the other fit parameters,
so that this produces a much smaller effect than simply
changing the overall coefficient of the chiral logarithms
in the final result by a factor of ðfK=f�Þ2 � 1:4.
The change of fxy from fK to f� leads to a 0.1% shift

in the value for BK. The approximately 10% statistical
error in a2�I leads to a similarly negligible error in BK.
Although we include terms proportional to a2 in the

preferred fit, there is some ambiguity (with only two lattice
spacings) in the dominant source of discretization errors,
which may be purely a2 corrections, taste-breaking terms
proportional to �2

sa
2, or chiral symmetry breaking terms

proportional to mresa
2. It is also possible that the different

sources lead to discretization effects of the same size. We
therefore vary the change in the effective a2 between
coarse and fine lattice spacings, taking the resulting spread
in the value of BK as part of the systematic error. If
discretization effects decrease as mresa

2 or as �2
sa

2 then
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they should go down by about a factor of 3 from our coarse
to fine lattices. If they decrease as a2 they should decrease
by about a factor of 2. This difference leads to a 0.3%
change in the continuum-extrapolated central value.

In summary, the largest source of chiral-continuum ex-
trapolation error comes from uncertainty in the sea-quark
mass dependence. The parametric uncertainty on quanti-
ties used as inputs in the chiral logarithms is negligible, and
the residual errors due to the lattice-spacing dependence in
the continuum extrapolation are small. Adding the uncer-
tainty due to approximating higher-order terms in the
chiral expansion and the residual continuum extrapolation
error in quadrature, we quote a total systematic error due to
the chiral and continuum extrapolation of 1.9%.

Figure 14 illustrates the chiral extrapolation error. This
is the same fit as that shown in Fig. 13, but with a subset of
the data points. In this case the valence masses are non-
degenerate, with the heavier mass fixed close to the strange
quark mass. The light quark mass is the lightest simulated
on each ensemble. The fit curve is the full QCD
continuum-extrapolated curve with the strange quark fixed
to its tuned value. We extrapolate the light valence quark
mass to the physical d quark mass, while we extrapolate
the light sea-quark mass to the average of the u and d quark
masses. The band shows the full-QCD curve ending at the
full-QCD d quark mass. The error bar is centered on the

final result, which has a small (not visible) shift due to
setting the light sea-quark mass equal to the isospin-
averaged quark mass. The extrapolated value of BK is
shown, including the statistical error (solid error bar with
X) and the systematic error due to the chiral extrapolation,
combined with the statistical error in quadrature (dashed
error bar). The dotted error bar (star, slightly offset) shows
the total error for BK including the matching error.

B. Scale and quark-mass uncertainties

In order to convert lattice quantities into physical units
we use the MILC Collaboration’s determination of the
scale, r1, where r1 is related to the force between static
quarks, r21Fðr1Þ ¼ 1:0 [33,34]. The ratio r1=a can be cal-
culated precisely on each ensemble from the static quark
potential. We use the mass-independent prescription for r1
described in Ref. [24] so that all of the mass dependence is
explicit in MA�PT and none is hidden in the scale-fixing
scheme. In order to fix the absolute lattice scale, one must
compute a physical quantity that can be compared directly
to experiment; we use the � 2S—1S splitting [35] and the
most recent MILC determination of f� [24]. The combi-
nation of the � mass-splitting and the continuum-
extrapolated r1 value at physical quark masses leads to

the determination r
phys
1 ¼ 0:318ð7Þ fm [36]. The use of f�

to set the scale yields r
phys
1 ¼ 0:3108ð15Þðþ26

�79Þ fm [24].

This difference between the two scale determinations leads
to a systematic error in our result for BK. Since BK is a
dimensionless quantity, the scale enters only through the
quark-mass determinations. We determine the light va-
lence quark masses using MA�PT fits to the pseudoscalar
masses and decay constants, as described in Ref. [23]. The
sea-quark masses are taken from the most recent update of
the MILC pseudoscalar analysis [24].
MILC finds for the bare staggered quark masses in r1

units [24,64]

r1m̂
stag � 103 ¼ 3:78ð16Þ; (63)

r1m
stag
s � 103 ¼ 102ð4Þ; (64)

where m̂ � ðmu þmdÞ=2. Although the masses are in
dimensionless r1 units, they are scale and scheme-
dependent quantities. The scheme, of course, is the im-
proved staggered lattice action used in the MILC simula-
tions. The scale is the fine lattice scale of a�1 � 2:3 GeV,
but with discretization effects removed by fits to multiple
lattice spacings using rooted staggered �PT. Both our fits
and the MILC fits use as inputs from experiment the
averaged meson masses with electromagnetic effects re-
moved as well as possible. We (and MILC) take for the
squared meson masses m2

�̂ and m2
K̂
,
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FIG. 14 (color online). Same fit as Fig. 13, but with a subset of
the data points for illustration. In this case, the valence masses
are nondegenerate, with the heavier mass fixed close to the
strange quark mass. The light-quark mass is the lightest simu-
lated on each ensemble. The fit curve is the full-QCD
continuum-extrapolated curve with the strange quark fixed to
its physical value. The extrapolated value of BK is shown,
including the statistical error (solid error bar with X) and the
systematic error due to the chiral extrapolation, combined with
the statistical error in quadrature (dashed error bar). The dotted
error bar (star, slightly offset) shows the total error for BK.
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m2
�̂ � m2

�0 ;

m2
K̂
� 1

2
ðm2

K0 þm2
Kþ � ð1þ �EÞðm2

�þ �m2
�0ÞÞ;

(65)

where �E � 1 parametrizes corrections to Dashen’s
theorem.

We find from our mixed-action chiral fits to the pseudo-
scalar sector the values for the bare domain-wall quark
masses (also evaluated at the fine lattice scale)

r1m̂� 103 ¼ 5:87ð8Þð41Þ; (66)

r1ms � 103 ¼ 168ð2Þð8Þ; (67)

where the first error is statistical and the second is system-
atic. FollowingMILC, we also obtain the masses of the two
lightest quarks. Given ms, we can obtain mu by extrapolat-

ing not to the mass of the K̂ but to the mass of theKþ (with
EM effects removed). We take

ðm2
KþÞQCD � m2

Kþ � ð1þ 
EÞðm2
�þ �m2

�0Þ; (68)

where 
E ¼ 1, which corresponds to vanishing EM cor-
rections to the K0 mass. We then obtain

r1mu � 103 ¼ 3:7ð22Þð7Þ; (69)

r1md � 103 ¼ 8:0ð27Þð7Þ; (70)

where again the first error is statistical and the second is
systematic.

It is useful to observe for our BK error analysis that the
systematic error for the domain-wall ms is dominated by
the scale error. However, the error in md (needed since a
kaon is an �sd state) is dominated by statistical uncertainty.
Thus we can treat the errors from the s and d quark masses
as uncorrelated. Note that all of the above masses are the
bare lattice masses, so no error has been included for the
renormalization needed to match to a continuum scheme

like MS. The bare quark masses are sufficient for the
purpose of calculating BK. The error in r1ms leads to an
0.8% uncertainty in BK, while the error in r1md leads to an
0.2% error in BK. The errors in the sea-quark masses
produce a negligible uncertainty in BK. Combining these
errors in quadrature we obtain an error due to scale and
quark-mass uncertainties for BK of 0.8%.

C. Finite-volume error

The finite-volume error is estimated using one-loop
finite-volume MA�PT [9]. We have simulated at fairly
large volumes, such that m�L * 3:5, and we have cor-
rected our data using the appropriate one-loop MA�PT
expressions, which are never larger than 0.6%. There could
still be non-negligible residual finite-volume corrections,
however, as numerical studies by the MILC Collaboration

of f� and m2
� show that the one-loop �PT corrections can

be off by as much as 50% for similar simulation parameters
using staggered quarks [24]. Even so, given that the largest
finite-volume correction to any individual data point in our
analysis is 0.6%, we expect the residual corrections to be
only as much as 0.3%. However, in order to be conserva-
tive, we take the entire 0.6% as our total finite-volume
error.

D. Renormalization factor uncertainty

In this section we estimate the systematic uncertainty in
BK due to the nonperturbative determination of the renor-
malization factor ZBK

. We consider several sources, dis-

cussing each in turn.

1. Chiral extrapolation fit ansatz

In order to remove explicit chiral symmetry breaking
contributions to ZBK

from operators such as those in

Eq. (37), we first extrapolate ZRI=MOM
BK

to the chiral limit

at fixed values of ðapÞ2. Although we choose to use a fit
function that is linear in the light sea-quark mass and
quadratic in the valence quark mass, we can obtain an
equally good correlated confidence level using a fit func-
tion with even more terms. We must therefore consider the
systematic uncertainty introduced by the choice of chiral
extrapolation fit ansatz. We do so by adding a quadratic
term in the light sea-quark mass to the fit function and
redoing the chiral extrapolation at each value of ðapÞ2. We

then recompute ZMS
BK

ð2 GeVÞ and take the difference be-

tween this result and the central value to be the systematic

error. This leads to an uncertainty in ZMS;coarse
BK

ð2 GeVÞ of
0.0063, or �0:7%, on the coarse lattice and an uncertainty
of 0.0111, or�1:2%, on the fine lattice. The addition of yet
another term cubic in the valence quark mass produces a
negligible difference in ZBK

. We take the larger, 1.2%

difference, to be the uncertainty in ZBK
from the choice

of chiral extrapolation fit function.

2. Strange sea-quark mass dependence

When we extrapolate ZRI=MOM
BK

to the chiral limit at fixed

values of ðapÞ2, we do not, in fact, take the value of the
strange sea-quark mass to zero. This is because, within
statistical errors, ZBK

is independent of the strange sea-

quark mass. We can explicitly calculate the strange sea-
quark mass dependence, however, by taking the chiral limit

of ZRI=MOM
BK

at fixed ðapÞ2 using a function that is linear in

the sum of the sea-quark masses and quadratic in the
valence quark mass on the coarse lattices, so we make
the replacement 2ml ! ð2ml þmhÞ in Eq. (43). We find

that this leads to a difference in ZMS;coarse
BK

ð2 GeVÞ of

0.0027, or �0:3%, and take this to be the uncertainty in
ZBK

due to the nonzero strange sea-quark mass.
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3. �A ��V � 0

The use of exceptional kinematics in our nonperturba-
tive renormalization factor calculation leads to a difference
between �A and �V of �1% at nonzero quark masses and
p � 2 GeV. This is shown in Figs. 4 and 5. Because we do
not know a priori which of the two quantities has less
contamination from chiral symmetry breaking, we use the
average ð�A þ�VÞ=2 to determine the central value for
ZBK

. In order to estimate the systematic uncertainty that is

introduced by this choice, we also calculate ZBK
using �A

for the normalization. This leads to a difference in

ZMS;coarse
BK

ð2 GeVÞ of 0.0084, or �0:9%, on the coarse

lattice and a difference of 0.0112, or �1:2%, on the fine
lattice. We take the larger, 1:2% difference, to be the
uncertainty in ZBK

due to chiral symmetry breaking be-

tween �A and �V .

4. Mixing with wrong-chirality operators

The use of exceptional kinematics also leads to mixing
between the standard model operator OK, which has a
VV þ AA chiral structure, and other operators of different
chiralities that do not contribute to K0 � �K0 mixing in the
standard model. Although the size of the mixing coeffi-
cents, shown in Figs. 15–18, are small, the matrix elements
for the wrong-chirality operators diverge in the chiral limit
and are much larger than the desired matrix element [48].
Thus a small mixing coefficient can still potentially lead to
a non-negligible error in ZBK

. Fortunately, we can bypass

this concern by computing the mixing coefficients at non-
exceptional kinematics. Theoretically, we expect their size
to be of OððamresÞ2Þ � 10�6 [49,52]. Numerically, we find
that all of the mixing coefficients are consistent with zero
on both the coarse and fine lattices, as shown in Figs. 19–

26. Because the contribution to BK in theMS scheme from
each wrong-chirality lattice operator is independent of the
lattice scheme initially used to obtain the mixing coeffi-
cients, we conclude it is safe to neglect them in our
calculation of ZBK

, despite the fact that we are using

exceptional kinematics. We therefore do not add any sys-
tematic uncertainty to ZBK

due to operator-mixing.

5. Perturbative matching and running

Although we compute ZBK
in the RI/MOM scheme

nonperturbatively, we must still convert its value to the
SI scheme to remove lattice discretization effects and

ultimately to the MS scheme using one-loop continuum
perturbation theory. This introduces uncertainty into BK

due to the omission of higher-order terms. Because the true
truncation error cannot be known without the computation
of the next term in the perturbative series, we consider
several ways to estimate the uncertainty here.

The first is to multiply the largest individual one-loop

conversion that is used by an additional factor of �MS
s . We

determine ZBK
from data in the momentum window

2 GeV & p & 2:5 GeV; thus the largest value of �MS
s ðpÞ

used is that at 2 GeV. The largest correction comes from the
conversion between the RI/MOM scheme and the SI
scheme, and leads to the following estimate of the trunca-
tion error:

�MS
s ð2 GeVÞ � �MS

s ð2 GeVÞ
4�

Jð3ÞRI=MOM ¼ 0:0188; (71)

or �2%.
The second is to take the size of the entire one-loop

correction from the RI/MOM scheme to the SI scheme to

the MS scheme:

�MS
s ð2 GeVÞ

4�
ðJð3ÞRI=MOM � Jð3Þ

MS
Þ ¼ 0:0204; (72)

which also leads to an estimate of �2%. Because the
conversion factors, however, are only known to one-loop,
they are particularly sensitive to the scale at which they are
evaluated. We did not attempt to determine an optimal
scale for the process, for example, using the BLM pre-
scription [44], and must therefore estimate the error due to
scale ambiguity. The standard, although somewhat arbi-
trary, prescription used in the continuum literature is to
take the variation in the quantity when the scale� is varied
between 2� and �=2. For our case, this leads to the
estimates

�MS
s ð4 GeVÞ

4�
ðJð3ÞRI=MOM � Jð3Þ

MS
Þ ¼ 0:0152; (73)

�MS
s ð1 GeVÞ

4�
ðJð3ÞRI=MOM � Jð3Þ

MS
Þ ¼ 0:0327: (74)

Thus, the one-loop correction can be as large as �3%, if
we use a scale of 1 GeV.
The third is to take the difference between ZBK

deter-

mined using the nonperturbative Rome-Southampton ap-
proach and using lattice perturbation theory. Each method
for computing ZBK

relies on one-loop perturbation theory,

but involves a different series expansion, so one does not
know a priori which leads to a faster converging series and
smaller truncation error. Thus having two independent
calculations of ZBK

provides a valuable independent

cross-check. To estimate the error, we replace the values
of ZBK

determined using nonperturbative renormalization

with those from lattice perturbation theory and repeat the
extrapolation to the physical quark masses and the contin-

uum. We obtain BMS
K ð2 GeVÞ ¼ 0:541ð6Þ, where the error

is statistical only. We then take the difference between the
resulting BK and our preferred central value:

jBNPR
K � BLPT

K j=BNPR
K ¼ 0:027; (75)

which is �3%. This is comparable to, but slightly smaller
than, the estimate from the scale ambiguity. Nevertheless,
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we think that it is a more reasonable estimate of the
uncertainty, given that it comes from two independent
perturbative computations.

Finally, we consider the possibility that the scale depen-
dence observed in ZSI

BK
(see Figs. 9 and 10) is not due solely

to discretization errors. Although we made this assumption
when obtaining the central value for BK, some of the slope
in ZSI

BK
versus ðapÞ2 may in fact be due to the lack of higher-

order terms in the matching factor, which is currently
known to only one-loop in perturbation theory. Our fourth
method for estimating the truncation error is therefore to
take the difference between ZSI

BK
at 2 GeVand that obtained

in the limit p ! 0. To estimate the resulting error in BK,
we replace the values of ZBK

used in our preferred analysis

with those obtained without extrapolating ZSI
BK

to zero

momentum, and repeat the combined chiral and continuum

extrapolation. We obtain BMS
K ð2 GeVÞ ¼ 0:542ð7Þ (statis-

tical error only), which is remarkably close to the lattice
perturbation theory value. We then take the difference
between the resulting BK and our central value:

jBp!0
K � Bp¼2 GeV

K j=Bp!0
K ¼ 0:028; (76)

which is �3%, and similar to our previous estimate.
Although taking ZSI

BK
directly at 2 GeV provides a sensible

alternate method for obtaining the renormalization factor,
it still does not eliminate truncation errors from the lack of
higher-order perturbative matching. Nevertheless, because
the values of BK obtained using this alternate nonperturba-
tive determination and from lattice perturbation theory are
so similar, we estimate the residual truncation error to be
small:

jBp¼2 GeV
K � BLPT

K j=Bp¼2 GeV
K ¼ 0:002; (77)

which leads to a negligible increase in the systematic error
when added in quadrature. Since this method for estimat-
ing the perturbative truncation error leads to a slightly
more conservative estimate than the third approach, we
take 2.8% to be the uncertainty in ZBK

due to the use of

one-loop perturbation theory.

6. Total uncertainty in ZBK

We summarize the contributions to the ‘‘renormalization
factor’’ uncertainty in BK in Table VII and add them in
quadrature. The�2:8% error due to the use of perturbation
theory is the largest single contribution to the total error in
BK, and can only be reduced by a calculation of the
necessary matching factors at two-loops.

VI. RESULTAND CONCLUSIONS

We obtain the following result for BK in theMS scheme
at 2 GeV:

BMS
K ð2 GeVÞ ¼ 0:527ð6Þð10Þð4Þð3Þð18Þ; (78)

where the errors are from statistics, the chiral-continuum
extrapolation, scale and quark-mass uncertainties, finite-
volume errors, and the renormalization factor uncertainty,
respectively. The total error is�4%, and the error budget is
presented in Table VIII. It is often more convenient to use

the scale-invariant parameter B̂K in new physics analyses,
for which we find the value

B̂ K ¼ 0:724ð8Þð29Þ: (79)

Our 2þ 1 flavor lattice QCD calculation of BK is the
first to have all lattice sources of systematic uncertainty
under control. The largest errors in our result for BK come
from the chiral-continuum extrapolation (1.9%) and from
the determination of the renormalization factor (3.4%).
The former uncertainty can be improved by the addition
of statistics and the use of more lattice spacings. The MILC
Collaboration has generated ensembles with a lattice spac-
ing of a � 0:06 fm which we plan to analyze in the near
future. The latter uncertainty can be improved in several
ways. The use of Landau gauge-fixed momentum-source
propagators will reduce the size of the statistical errors in
ZBK

[65,66], and may consequently better constrain the

extrapolation to the chiral limit. The use of nonexceptional
kinematics will reduce the contamination from chiral sym-
metry breaking [53] and also provide an alternative non-
perturbative renormalization scheme with independent
truncation errors from the standard RI/MOM scheme
[67]. A calculation of the two-loop continuum perturbation

TABLE VII. Error contributions to BK from the nonperturba-
tive renormalization procedure. Each source of uncertainty is
discussed in Sec. VD, and is given as a percentage of BK.

Uncertainty ZBK

Statistics 0.7%

Chiral extrapolation fit function 1.2%

Strange quark-mass dependence 0.3%

Chiral-symmetry breaking 1.2%

Perturbation theory 2.8%

Total 3.4%

TABLE VIII. Total error budget for BK. Each source of un-
certainty is discussed in Sec. V, and is given as a percentage of
BK.

Uncertainty BK

Statistics 1.2%

Chiral & continuum extrapolation 1.9%

Scale and quark-mass uncertainties 0.8%

Finite-volume errors 0.6%

Renormalization factor 3.4%

Total 4.2%
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theory formulas needed to match ZBK
in the RI/MOM

scheme to ZBK
in the MS scheme would allow for a better

estimate of the perturbative truncation error of ZBK
in the

RI/MOM scheme. Nevertheless, our calculation of the
matching factor ZBK

in mean-field improved lattice pertur-

bation theory provides a robust alternative to our nonper-
turbative determination in the RI/MOM scheme since the
systematic uncertainties are uncorrelated between the two
methods. In particular, the difference between the two
results allows for a more reliable estimate of the matching
error than from the RI/MOM scheme alone. This is im-
portant because some errors, such as perturbative trunca-
tion errors, are difficult to estimate within a single scheme.
The error inBK from all sources except the renormalization
error is only 2.5% because the use of domain-wall valence
quarks and staggered sea quarks allows us to control the
remaining sources of uncertainty quite well. Thus, if the
use of nonexceptional kinematics or two-loop continuum
perturbation theory does reduce the matching error, we can
obtain an even more precise determination of BK without
making any further improvements to the lattice calculation.

Our result is consistent with the determination by the
RBC and UKQCD Collaborations using 2þ 1 flavors of

domain-wall fermions, B̂K ¼ 0:720ð13Þð37Þ [3], but our
result has a smaller total error. The largest error in the
RBC/UKQCD calculation is the 4% scaling uncertainty
due to the use of only a single lattice spacing, which we
reduce by using two lattice spacings. Our result also has
smaller statistical errors because of the large number of
available staggered gauge configurations. Our result has
comparable matching errors to RBC/UKQCD because the
dominant error in both calculations of ZBK

is from the use

of precisely the same one-loop continuum perturbation
theory results when converting from the RI-MOM scheme

to the MS scheme. Our error estimate is slightly more
conservative, however, because we take the difference
between the renormalization factors determined using
NPR and using lattice perturbation theory to be the error
due to the omission of higher-order terms.

Our result is 1.9-� lower than the value currently pre-

ferred by the global unitarity triangle analysis, B̂K ¼
0:92	 0:10 [68], which comes from an update of the
work of Lunghi and Soni in Ref. [69] using the latest
determinations of all of the input parameters. The tension
with the standard model is enhanced by the inclusion of the
correction factor �� derived by Buras and Guadagnoli
[70,71], which raises the location of the �K band. The

uncertainty in the standard model constraint on B̂K is
�11%. This is largely due to the error in the CKM matrix
element jVcbj, which is known to�2% accuracy, but enters
the constraint from BK on the unitarity triangle as the
fourth power. Thus the error in jVcbj must be reduced in
order to maximize the constraint on new physics from
neutral kaon mixing. Fortunately work on improving the
exclusive determination of jVcbj is ongoing by the

Fermilab Lattice and MILC Collaborations [72], and
work on improving the inclusive determination of jVcbj is
in progress by Becher and Lunghi [73].
Lattice QCD calculations of the hadronic weak matrix

element BK that incorporate the effects of the dynamical
up, down, and strange quarks can now reliably control all
sources of uncertainty. Because our result for BK is con-
sistent with the determination of the RBC and UKQCD
Collaborations, one can safely average the two values
(taking correlations between systematic errors into ac-
count) for use in future unitarity triangle analyses. There
is already a hint of the presence of new physics in the
quark-flavor sector as indicated by the tension between the
unitarity triangle constraints from �K and sinð2�Þ [69]. We
expect the errors in both lattice QCD calculations of BK to
be reduced in the future, such that indirect CP-violation in
the kaon system will play a valuable role in the search for
new physics.

ACKNOWLEDGMENTS

We thank Sam Li for allowing the use of his nonpertur-
bative renormalization code, Enrico Lunghi for providing
us with updated results from his unitarity triangle analysis,
and Christian Sturm for helpful discussions on perturbation
theory. We thank Claude Bernard, Urs Heller, and Yigal
Shamir for valuable comments on the manuscript. We
thank Robert Edwards, Bálint Joó, and Kostas Orginos
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APPENDIX A: FEYNMAN RULES FOR LATTICE
PERTURBATION THEORY

In this appendix we present the Feynman rules and the
integrals needed to calculate ZBK

to one-loop in lattice
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perturbation theory with a Symanzik-improved gauge ac-
tion and HYP-smeared domain-wall quarks.

1. Gluon propagator

The gluon propagator for the Symanzik-improved gauge
action used by the MILC Collaboration is

D��ðkÞ ¼ ðk̂2Þ�2

�
ð1� A��Þk̂�k̂� þ 
��

X
�

k̂2�A��

�

� ð1� �Þ k̂�k̂�ðk̂2Þ2 ; (A1)

where

A��ðkÞ ¼ A��ðkÞ
¼ ð1� 
��Þ�ðkÞ�1

�
�
ðk̂2Þ2 � c1k̂

2
�
2
X
�

k̂4� þ k̂2
X

���;�

k̂2�

�

þ c21

��X
�

k̂4�

�
2 þ k̂2

X
�

k̂4�
X

���;�

k̂2�

þ ðk̂2Þ2 Y
���;�

k̂2�

��
; (A2)

�ðkÞ ¼
�
k̂2 � c1

X
�

k̂4�

��
k̂2 � c1

�
ðk̂2Þ2 þX

�

k̂4�

�

þ 1

2
c21

�
ðk̂2Þ3 þ 2

X
�

k̂6� � k̂2
X
�

k̂4�

��

� 4c31
X
�

k̂4�
Y
���

k̂2�; (A3)

with c1 ¼ � 1
12u20

, (u0 is the fourth root of the plaquette)

and

k̂ � ¼ 2 sin
k�

2
; k̂2 ¼ X

�

k̂2�: (A4)

Without loss of generality, we adopt the Feynman gauge
� ¼ 1. The above propagator is that of the tree-level (tad-
pole) improved gauge action [74,75]. The gluon propagator
in the improved case is significantly more complicated
then that from the Wilson plaquette gauge action, where

Aplaquette
�� ¼ 1� 
��. The action used in the generation of

the MILC ensembles is further improved through one-loop,
but this additional improvement introduces corrections of
higher-order than one-loop in ZBK

, and is not needed here.

2. Domain-wall propagator

For the domain-wall propagator, we make use of the
results of Ref. [43]. There are three types of domain-wall
quark propagators. The first connects general flavor indi-
ces:

SðpÞst ¼
XN
u¼1

ð�i�� sinp� þW� þmM�ÞsuGRðu; tÞPR

þ XN
u¼1

ð�i�� sinp� þWþ þmMþÞsuGLðu; tÞPL;

(A5)

where PR;L ¼ ð1	 �5Þ=2 are projection matrices, s, t, and
u are flavor indices, the mass matrices are

Wþ ¼
�W 1

�W . . .
. . . 1

�W

0
BBB@

1
CCCA;

W� ¼
�W
1 �W

. . . . . .
1 �W

0
BBB@

1
CCCA;

(A6)

Mþ ¼
1

� �
;M� ¼ 1

� �
; (A7)

and GR;L are

GRðs; tÞ ¼ A

F
½�ð1�m2Þð1�We��Þe�ð�2NþsþtÞ

� ð1�m2Þð1�We�Þe��ðsþtÞ

� 2W sinhð�Þðe�ð�Nþs�tÞ þ e�ð�N�sþtÞÞ�
þ Ae��js�tj; (A8)

GLðs; tÞ ¼ A

F
½�ð1�m2Þð1�We�Þe�ð�2Nþsþt�2Þ

� ð1�m2Þð1�We��Þe�ð�s�tþ2Þ

� 2W sinhð�Þðe�ð�Nþs�tÞ þ e�ð�N�sþtÞÞ�
þ Ae��js�tj; (A9)

coshð�Þ ¼
1þW2 þP

�
sin2p�

2W
; (A10)

A ¼ 1

2W sinhð�Þ ; (A11)

F ¼ 1� e�W �m2ð1�We��Þ; (A12)

W ¼ 1�M5 þ
X
�

ð1� cosp�Þ: (A13)

In these formulasm is the domain-wall quark mass, andM5

is the domain-wall height. N is the number of sites in the
fifth dimension, i.e. the number of generalized flavors.
The second propagator connects the physical quark field

q with the fermion field of general flavor index,
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hqðpÞ �c ð�p; sÞi ¼ 1

F
ði�� sinp� �mð1�We��ÞÞ

� ðe��ðN�sÞPR þ e��ðs�1ÞPLÞ
þ 1

F
½mði�� sinp� �mð1�We��ÞÞ

� F�e��ðe��ðs�1ÞPR þ e��ðN�sÞPLÞ;
(A14)

hc ðp; sÞ �qð�pÞi ¼ 1

F
ðe��ðN�sÞPL þ e��ðs�1ÞPRÞ

� ði�� sinp� �mð1�We��ÞÞ
þ 1

F
ðe��ðs�1ÞPL þ e��ðN�sÞPRÞ

� e��½mði�� sinp� �mð1�We��ÞÞ
� F�: (A15)

The third propagator is that of the physical quark field

SqðpÞ � hqðpÞ �qð�pÞi ¼ �i�� sinp� þ ð1�We��Þm
�ð1� e�WÞ þm2ð1�We��Þ ;

(A16)

which reduces in the continuum limit to

SqðpÞ ¼ ð1� w2
0Þ

ip6 þ ð1� w2
0Þm

; (A17)

where w0 ¼ 1�M5.
The following form of the propagators, where we per-

form the sum over generalized flavor indices, is useful for
evaluating the vertex diagrams needed to renormalize BK

[43],

SLqðpÞ �
XN
s¼1

LðsÞhc ðp; sÞ �qð�pÞi

¼
�

e��

Fð1� w0e
��Þ

�
ðim�� sinp� � ð1�We�ÞÞ;

(A18)

SqRðpÞ �
X1
s¼1

hqðpÞ �c ð�p; sÞiRðsÞ ¼ SLqðpÞ; (A19)

SqLðpÞ �
XN
s¼1

hqðpÞ �c ð�p; sÞiLðsÞ

¼ 1

1� w0e
��

1

F
ði�� sinp� �mð1�We��ÞÞ;

(A20)

SRqðpÞ �
X1
s¼1

RðsÞhc ðp; sÞ �qð�pÞi ¼ SqLðpÞ; (A21)

with

LðsÞ ¼ ðwðN�sÞ
0 PR þ wðs�1Þ

0 PLÞ; (A22)

RðsÞ ¼ ðwðs�1Þ
0 PR þ wðN�sÞ

0 PLÞ; (A23)

where in the right-most expressions we take the limit that
the number of lattice sites in the fifth dimension N is
infinite. In principle, this limit should be taken after the
momentum integral, but there is no difficulty with taking
the limit first. We use the mean-field improved value
MMF

5 ¼ M5 � 4ð1� u0Þ throughout the perturbative cal-

culation, as discussed in Sec. III A.

3. Quark gluon vertices

The quark gluon interaction vertices are [43]

Va
1�ðk; pÞst ¼ Va

1�ðk; pÞ
st

¼ �igTað��
�V1�ðk; pÞ þ ~V1�ðk; pÞÞ
st;

(A24)

Vab
2��ðk; pÞst ¼ Vab

2��ðk; pÞ
st

¼ 1

2
g2

1

2
fTa; Tbgð��

~V1�ðk; pÞ
þ �V1�ðk; pÞÞ
��
st; (A25)

where g is the coupling constant, Ta are the SUð3Þ gen-
erators, and

�V 1�ðk; pÞ ¼ cos
1

2
ð�k� þ p�Þ; (A26)

~V 1�ðk; pÞ ¼ i sin
1

2
ð�k� þ p�Þ: (A27)

To account for the HYP-smearing of the valence quarks
to the order we are working, the vertices must be modified
by a form factor h��. Since all gluons begin and end on

fermion lines, the gluon propagator gets replaced by a more
complicated propagator D�� ! h�	D	�h��. The form

factor is [76]

h�	 ¼ 
�	D	 þ ð1� 
�	ÞG�	; (A28)

where

D	 ¼ 1� d1
X
��	

�s2� þ d2
X
�<�
�;��	

�s2� �s
2
� � d3 �s

2
� �s

2
� �s

2
�; (A29)

G�	 ¼ �s� �s	 ~G�	ðkÞ; (A30)

~G�	ðkÞ ¼ d1 � d2
�s2� þ �s2�

2
þ d3

�s2� �s
2
�

3
; (A31)

and �s� ¼ sin
k�
2 . In Eqs. (A29)–(A31), the indices �, 	, �

and � are all different. The coefficients di are defined by

C. AUBIN, JACK LAIHO, AND RUTH S. VAN DE WATER PHYSICAL REVIEW D 81, 014507 (2010)

014507-26



d1 ¼ 2

3
�1ð1þ �2ð1þ �3ÞÞ; d2 ¼ 4

3
�1�2ð1þ 2�3Þ;

d3 ¼ 8�1�2�3; (A32)

where we take in our simulations the standard Hasenfratz
et al. values �1 ¼ 0:75, �2 ¼ 0:6, �3 ¼ 0:3 [31].

4. Renormalization factor ZBK

The 4-quark operator renormalization needed for BK

through one-loop can be written in terms of integrals that
appear in the renormalization of bilinear operators. We
thus calculate the renormalization factors for the quark
bilinear operators O ¼ �q�q. The bilinear operator gets

renormalized in the MS scheme according to

OMS
� ð�Þ ¼ ð1� w2

0Þ�1Z�1
w u0Z�ð�aÞOlat

� ð1=aÞ; (A33)

where Zw renormalizes the domain-wall height. It is con-
venient to define the quark wave function renormalization
factor Z2 implicitly via the relation

qMS ¼ ð1� w0Þ�1=2Z�1=2
w ðu0Z2Þ1=2qlat: (A34)

Using the Feynman rules presented in the previous sub-
sections, we then have for the vertex correction to the

bilinear operator in the MS, NDR scheme [43]

Z�

Z2

¼ 1þ g2CF

16�2
½A� lnð�aÞ2 þ A�ð1� ln�2Þ

þ B� � 16�2I��; (A35)

with

A� ¼ h2ð�Þ
4

; B� ¼ �h2ð�Þ
4

þ VMS
� ; (A36)

where h2ð�Þ ¼ 4ðV; AÞ, 16ðP; SÞ, 0ðTÞ; VMS
� ¼

�1=2ðV; AÞ, 2ðP; SÞ, 0ðTÞ; and I� is a finite lattice integral,

I� ¼ 1

4g2CF

Z
k

�X
s;t

Tr½LðsÞV1�ð0; kÞhc ðk; sÞ �qð�kÞi

� �hqðkÞ �c ð�k; tÞiV1�ð�k; 0ÞRðtÞ�y�

� h�	ðkÞD	�ðkÞh��ðkÞ � 4g2CFA�


ð�2 � k2Þ
ðk2Þ2

�
;

(A37)

with the trace over Dirac spin and

Z
k
�

Z d4k

ð2�Þ4 : (A38)

The last term in Eq. (A37) subtracts an IR (infrared)

divergence from the integral. By chiral symmetry, the
renormalization factors for the vector and axial-vector
currents are equal; the renormalization factors for scalar
and pseudoscalar currents are also equal by chiral symme-
try [41]. The Feynman diagram for the vertex correction is
given in Fig. 3.
The renormalization factor matching the lattice calcu-

lation of BK to the MS scheme can be written [43]

ZBK
ð�aÞ ¼ ð1� w2

0Þ�2Z�2
w Zþð�aÞ

ð1� w2
0Þ�2Z�2

w ZAð�aÞ2 ¼
Zþð�aÞ
ZAð�aÞ2 ; (A39)

where Zþ is the renormalization factor for the operator
O�S¼2

K , and ZA renormalizes the axial current. It is useful to
define BK in this way, since the tadpole and self-energy
corrections cancel. The renormalization factor contains the
running of the operator from the lattice scale a�1 to the

continuum scale �. In the MS scheme with naive dimen-
sional regularization (NDR), we obtain [43]

ZMS;NDR
BK

ð�aÞ ¼ 1þ �s

4�
½�4 lnð�aÞ þ zMS;NDR

BK
�; (A40)

where

zMS;NDR
BK

¼ � 11

3
þ 2 ln�2 þ 2

3
ð16�2ÞðIS � IVÞ; (A41)

with IS;V defined in Eq. (A37).

APPENDIX B: MATCHING SCHEME AND
PERTURBATIVE RUNNING FOR ZBK

Although the functions used to convert the renormaliza-

tion factor ZBK
from the RI/MOM scheme to the MS

scheme are the same as those shown in the appendices of
Ref. [49], we display them here for completeness.

1. The QCD �-function in the MS scheme

In this work we calculate the value of the coupling

constant �MS
s ð�Þ at any scale using the four-loop

(NNNLO) running formula of Ref. [77]:

@

@ ln�2

�
�s

�

�
¼ �ð�sÞ

¼ ��0

�
�s

�

�
2 � �1

�
�s

�

�
3 � �2

�
�s

�

�
4

� �3

�
�s

�

�
5 þOð�6

sÞ; (B1)

where
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�
;

�1 ¼ 1

16

�
102� 38

3
nf

�
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�
2857

2
� 5033

18
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n2f

�
;

�3 ¼ 1

256

�
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þ 3564�3 �

�
1078361
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þ 6508

27
�3

�
nf

þ
�
50065
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�3

�
n2f þ

1093

729
n3f

�
: (B2)

We implement this numerically by starting with the world
average of the strong coupling constant at the Z-boson
mass [78],

�ð5Þ
s ðmZÞ ¼ 0:1176	 0:0020; (B3)

where the superscript indicates that this is determined in
the region with five active quark flavors. We then run �s

below the bottom and charm quark thresholds imposing the
matching conditions

�ð5Þ
s ðmbÞ ¼ �ð4Þ

s ðmbÞ and �ð4Þ
s ðmcÞ ¼ �ð3Þ

s ðmcÞ (B4)

in order to determine �ð3Þ
s ð�Þ at any scale in the 3-flavor

theory.

2. Perturbative running and scheme matching for ZBK

We convert the renormalization factor ZBK
between the

scale-invariant, MS, and RI/MOM schemes using the one-
loop renormalization group running formulas with nf ¼ 3

[79]:

ZSI
BK
ðnfÞ ¼ w�1

schemeð�; nfÞZscheme
BK

ð�; nfÞ; (B5)

where

w�1
schemeð�; nfÞ ¼ �MS

s ð�Þ��0=2�0

�
1þ �MS

s ð�Þ
4�

J
ðnfÞ
scheme

�

(B6)

and

J
ðnfÞ
RI=MOM ¼ � 17397� 2070nf þ 104n2f

6ð33� 2nfÞ2
þ 8 ln2; (B7)

J
ðnfÞ
MS

¼ 13095� 1626nf þ 8n2f

6ð33� 2nfÞ2
: (B8)

APPENDIX C: NONPERTURBATIVE MIXING
COEFFICIENTS

In this appendix we present results for the mixing co-
efficients between the operatorOK and other lattice opera-
tors of different chiralities. We compute them

nonperturbatively using the method of Rome-
Southampton as discussed in Sec. III B 1.
The renormalized operator that contributes to BK in the

continuum, which has a VV þ AA chiral structure, receives
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FIG. 16 (color online). Mixing coefficient ZVVþAA;SS�PP ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble.
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FIG. 15 (color online). Mixing coefficient ZVVþAA;VV�AA ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble. The stars indicate the value of the
mixing coefficient in the limit that the valence quark mass and
the light sea-quark mass go to zero.
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contributions from several lattice operators:

O ren
K ¼ X

i

ZVVþAA;iO0
i ; (C1)

where i2 fVVþAA;VV�AA;SS�PP;SSþPP;TTg.
Because the operator mixings require two flips of chirality,

the off-diagonal coefficients are suppressed byOððamresÞ2Þ
[52], which is�10�6 on the coarse lattice and even smaller
on the fine lattice. We therefore expect the contributions
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FIG. 17 (color online). Mixing coefficient ZVVþAA;SSþPP ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble.
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FIG. 18 (color online). Mixing coefficient ZVVþAA;TT versus
ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble.
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FIG. 19 (color online). Mixing coefficient ZVVþAA;VV�AA ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble, using nonexceptional kinematics.
The stars indicate the value of the mixing coefficient in the limit
that the valence quark mass and the light sea-quark mass go to
zero.
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FIG. 20 (color online). Mixing coefficient ZVVþAA;SS�PP ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble, using nonexceptional kinematics.
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to BK from wrong-chirality lattice operators to be
negligible.

In practice, however, we find that the mixing coefficients
are not ofOððamresÞ2Þwhen we compute them using excep-
tional kinematics. This is because the choice of external

momenta in the renormalization factor calculation leads to
additional chiral symmetry breaking, as discussed in
Sec. III B 2. Figures 15–18 show the mixing coefficients
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FIG. 21 (color online). Mixing coefficient ZVVþAA;SSþPP ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble, using nonexceptional kinematics.
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FIG. 22 (color online). Mixing coefficient for ZVVþAA;TT ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:007=0:05 coarse ensemble, using nonexceptional kinematics.
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FIG. 23 (color online). Mixing coefficient ZVVþAA;VV�AA ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:0062=0:031 fine ensemble, using nonexceptional kinematics.
The stars indicate the value of the mixing coefficient in the limit
that the valence quark mass and the light sea-quark mass go to
zero.
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FIG. 24 (color online). Mixing coefficient ZVVþAA;SS�PP ver-
sus ðapÞ2 at several valence quark masses on the aml=amh ¼
0:0062=0:031 fine ensemble, using nonexceptional kinematics.
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as a function of ðapÞ2 for five valence quark masses on the
aml=amh ¼ 0:007=0:05 coarse ensemble and in the chiral
limit. At p � 2 GeV, the mixing coefficients are still all
quite small compared to ZBK

. The largest is the mixing of

OK with the VV � AA operator, which is �0:01. We
observe coefficients of approximately the same size on
the fine lattice, since this effect is not due to the lattice
spacing or residual quark mass.

Although the size of the mixing coefficients as com-
puted with exceptional kinematics is not negligible, the
results are contaminated by chiral symmetry breaking
effects and are potentially unreliable. We therefore repeat
the mixing coefficient calculation using nonexceptional
kinematics. The results are shown for the coarse lattice in
Figs. 19–22 and for the fine lattice in Figs. 23–26.
Although the mixing coefficients determined with nonex-
ceptional kinematics have larger statistical errors, their
values are smaller than when determined with exceptional
kinematics. Furthermore, the new mixing coefficients are
consistent with zero in the chiral limit. This confirms the
hypothesis that the source of the large mixing coefficients

is simply the choice of nonexceptional kinematics, and that
the sizes of the true mixing coefficients are consistent with
theoretical estimates.
Although we find that the mixing coefficients are con-

sistent with zero in the RI/MOM scheme using nonexcep-
tional kinematics, we can still use this information to aid in
our determination of ZBK

using exceptional kinematics.

This is because, ultimately, irrespective of the lattice
scheme used to obtain the mixing coefficients, one must
obtain the same mixing coefficients once the results are

converted to the MS scheme. A vanishing contribution to
BK from a particular operator in the RI/MOM scheme with
nonexceptional kinematics implies a vanishing contribu-

tion in the MS scheme, since they are related multiplica-
tively. Generically, once an operator’s contribution is zero
in any scheme, its contribution is zero in all schemes that
are multiplicatively related. Note, however, that once an
operator’s contribution is nonzero, its particular value is
scheme-dependent.
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