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We report an analysis of the impressive new lattice simulation results for octet baryon masses in 2þ
1-flavor QCD. The analysis is based on a low-order expansion about the chiral SU(3) limit in which the

symmetry breaking arises from terms linear in the quark masses plus the variation of the Goldstone boson

masses in the leading chiral loops. The baryon masses evaluated at the physical light-quark masses are in

remarkable agreement with the experimental values, with a model dependence considerably smaller than

the rather small statistical uncertainty. From the mass formulas one can evaluate the sigma commutators

for all octet baryons. This yields an accurate value for the pion-nucleon sigma commutator. It also yields

the first determination of the strangeness sigma term based on 2þ 1-flavor lattice QCD and, in general,

the sigma commutators provide a resolution to the difficult issue of fine-tuning the strange-quark mass.
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In recent years lattice QCD has matured to a level where
it can be used as a precision tool to confront experimental
aspects of nonperturbative QCD. This advance has oc-
curred primarily in the heavy-meson sector [1], while for
light quarks, and especially for light-quark baryons,
progress has been more steady. However, new high-
precision studies of the baryon spectrum in 2þ 1-flavor
dynamical simulations have recently been reported by
LHPC [2], PACS-CS [3], HSC [4], and Dürr et al. [5]. In
this paper, we demonstrate that these results are suffi-
ciently close to the chiral regime that they permit a reliable
determination of the octet baryon masses at the physical
point, as well the associated sigma terms.

Our analysis focusses (chronologically) on the first two
of the above cited studies, those of LHPC and PACS-CS.
The smallest pion masses are of order 0.29 and 0.30 GeV,
respectively. The lattice spacing for the MILC configura-
tions, used by LHPC, has been carefully determined in
heavy-quark systems [6]. That same analysis also produced
a physical determination of the Sommer scale, r0 ¼
0:465� 0:012 fm, which we use to set the scale in the
PACS-CS simulations.

Our working hypothesis is that the (different) improved
actions employed by the two groups yield a very good
approximation to the continuum theory, so that discretiza-
tion artifacts are small. A unified treatment of the contin-
uum extrapolation is only possible once there are results
available at multiple lattice spacings, such as the study of
Ref. [5]. On the other hand, a comparison of the absolute
values of the baryon masses extracted from the analysis of
the separate LHPC and PACS-CS data sets provides a test,
a posteriori, of the validity of this hypothesis. We shall see
that it appears to be a very good approximation.

The first step in our analysis is to calculate the finite-
volume corrections within the low-energy effective field
theory (EFT), at each combination of quark masses. We
can then focus our attention on the extrapolation within an
infinite-volume, continuum effective field theory frame-
work. A detailed volume dependence analysis of the nu-
cleon mass in 2-flavor simulations has observed that the
finite-volume corrections are well described by the leading
one-loop results of chiral effective field theory [7]. We
extend this approach to the SU(3) case in order to estimate
the infinite-volume limit of the present lattice results.
While the leading infrared effects of the loop integral are
independent of the ultraviolet regularization, to be conser-
vative we include an uncertainty in this correction which
amounts to the difference between the finite-volume cor-
rection determined without a regulator [8] and that eval-
uated with a dipole of mass of 0.8 GeV [9]. The largest shift
we use in our analysis is for the nucleon at the lightest pion
mass (wherem�L ¼ 3:7), giving a correction of�0:019�
0:005 GeV. We choose to neglect the lightest simulation
ensemble of the PACS-CS calculation [3], where finite-
volume corrections may not be well estimated by these
leading one-loop graphs, given that m�L ¼ 2:3.
The chiral expansion of the octet baryons has been

presented on numerous occasions in the literature—e.g.,
Refs. [10–13]. It may be expressed as

MB ¼ Mð0Þ þ �Mð1Þ
B þ �Mð3=2Þ

B þ . . . ; (1)

where the superscript denotes the order of the expansion in
powers of the quark mass—the explicit chiral symmetry

breaking parameter of QCD. Here,Mð0Þ denotes the baryon
mass in the SU(3) chiral limit.
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The �Mð1Þ
B term is linear in the scale-dependent, running

quark masses, ml and ms; we refer to Ref. [13] for explicit
expressions. In this analysis, we replace the quark masses
by the corresponding meson masses squared, as also done
in Ref. [2]. To the order that we work in this manuscript,
the use of either quark masses or meson masses squared is
equivalent.

The next higher-order term, �Mð3=2Þ
B , involves the lead-

ing one-loop corrections arising from the baryons coupling
to the pseudo-Goldstone bosons, � � �, K, �. For the
baryons, we include both the octet and decuplet. Certainly,
in the limit m� � � (the octet-decuplet mass splitting in

the chiral limit), the decuplet contributions are formally of
higher order. However, with a physical kaon mass
�0:7 GeV, it is clear that �� 0:3 GeV cannot be treated
as a heavy energy scale. For this reason our formal assess-
ment of the order of a given diagram treats the octet and
decuplet baryons as degenerate. However, in order to more
accurately represent the branch structure in the transition
region m� � �, in the numerical evaluation of the loop

integrals we maintain the octet-decuplet mass splitting.
Further, the renormalization is performed such that the
decuplet is formally integrated out in the limit m� � �.

For the explicit forms of the loop integrals, we refer the
reader to Ref. [14]. The coefficients of these loop contri-
butions [13] are expressed in terms of the pseudoscalar
decay constant and the relevant baryon axial charges. The
nucleon axial charge, gA ¼ Dþ F ¼ 1:27 is fixed by ex-
periment, while all other couplings are determined by
SU(6) relations (F ¼ 2

3D and C ¼ �2D). We note that C
is also related to the decay width of the �, from which a
similar value can be inferred. We also adopt the chiral
perturbation theory estimate for the meson decay constant
in the SU(3) chiral limit, f ¼ 0:0871 GeV [15]. The octet-
decuplet splitting is chosen phenomenologically to be the
physical N-� splitting, � ¼ 0:292 GeV. In principle, all of
these input parameters could be constrained by actual
lattice simulation results, at least in the near future—we
refer to recent progress in the computation of the axial
charges [16]. For this study we take these parameters from
phenomenology, we incorporate generous uncertainties in
these inputs into our systematic error analysis, allowing f
to vary by�5%, and D, F, C, and � to vary by�15%. We
leave a global analysis that determines all of these inputs
simultaneously from the same lattice calculation to future
work.

In fitting the lattice results, we wish to minimize the
uncertainty from higher-order terms in the chiral expan-
sion. We therefore limit ourselves to the smallest domain of
the light quarks possible with these latest lattice results. For
both the LHPC and PACS-CS results, we include only the
results of the simulations for m2

� < 0:2 GeV2.
We first fit the baryon masses to leading order, keeping

only �Mð1Þ
B in the expansion (1). This gives a reasonable

description of the (finite-volume corrected) lattice results,

with a reduced �2 (�2
dof) of 0.9 and 0.3 for the LHPC and

PACS-CS results, respectively. We caution reading too
much into the absolute value of this naive �2, as there
are certainly strong correlations among the points on the
same gauge configurations, as mentioned in Ref. [2]. In
particular, the mass splittings among the baryons will
typically be known better than one would estimate from
naively adding the uncertainties in the absolute masses.
Without further information on these correlations, our �2

will typically underestimate the total �2 constructed from
the full information contained in the lattice simulation.
We now investigate the inclusion of the loop corrections.

We perform fits where the regularization scale dependence
has been removed to all orders and just the leading term of
the loop integration is retained. Using the phenomenologi-
cal coefficients, the best-fit produces a (naive) �2

dof of order

the order 40 (36) for the LHPC (PACS-CS) results.
Alternatively, a similar fit was also done by the LHPC
[2], where a suitable �2

dof was achieved by allowing the

chiral coefficients to be fit. While this produced a reason-
able description of the data, the determined coefficients
(such as g2A or C2) were found to be an order of magnitude

smaller than phenomenological estimates. The most natu-
ral conclusion of these observations (as also noted in [2]) is
that the meson masses lie beyond the model independent or
‘‘power counting’’ region (PCR) of the expansion at this
order. It is therefore a challenge to maintain the constraints
of both the EFT and the lattice results (without abandoning
one of them).
The breakdown of the expansion at this order should

come as no surprise, as it has long been known that the
SU(3) chiral expansion in the baryon sector is quite poor—
even at the physical quark masses (see, e.g., [10,11]).
Donoghue et al. formulated a solution to this problem
through long-distance regularization [11]. Concurrently,
the same techniques were being developed to alleviate
the problem of chiral extrapolation at moderate quark
masses in lattice QCDwith the development of finite-range
regularization (FRR) [17]. While this has largely been
developed for applications in SU(2) chiral extrapolations
[18], here we utilize the features of the long-distance
regularization/FRR formalism to perform extrapolations
in the framework of chiral SU(3).
For the relevant formulas describing the renormalization

of the loop integrals, we direct the interested reader to
Ref. [14]. Upon renormalization, and to the order we are
working, the FRR forms produce exactly the same expan-
sion as we have described above. The difference lies in a
resummation of higher-order terms, which are suppressed
by inverse powers of the regularization scale. At this order,
the lowest-order addition to the renormalized expansion
will explicitly appear in the form m4

�=�, with � the

regulator mass.
In working towards ab initio studies of QCD, where no

external, phenomenological input is used, we do not wish
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to impose any external constraints on the regularization
scale. Based on the success of FRR, we should like to
utilize the observation that the induced resummation of
higher-order terms provides an improved description of a
range of lattice observables. Here we use the lattice results
themselves to determine the regularization scale by mini-
mizing the �2.

Some significant features of using the �2 measure, with
the regularization scale treated as a free parameter, are

(i) no bias of a preferred scale is dictated by
phenomenology;

(ii) if one is working with results that genuinely lie
within the PCR, then the �2 function will be essen-
tially independent of �;

(iii) this method provides a quantitative assessment of the
potential size of the higher-order terms.
Furthermore, an uncertainty arising from the trunca-
tion of the expansion is automatically incorporated
into the uncertainties of the fit;

(iv) if lattice results are included from outside the PCR,
then through the �2, � is optimized so as to give a
best estimate of a resummation of a subset of higher-
order terms from beyond the working order of the
chiral expansion.

To begin, we introduce a single new parameter through
the regularization scale. The best fit to the LHPC (PACS-
CS) results, with 5 fit parameters, is shown in the upper
(lower) panel of Fig. 1, where the dipole form is shown as
an example. As explained above, the fits include only those
simulation points for m2

� < 0:2 GeV2 (the largest kaon
mass is m2

K ’ 0:40 GeV2). Nevertheless, we see that the

level of agreement with the lattice simulations at higherm2
�

is remarkably good. Further, the low-energy constants
obtained in the two data sets are in agreement to better
than half the statistical precision of their determination,

where, for example, the renormalized value, Mð0Þ, in the
SU(3) chiral limit is found to be 0:82� 0:06 and 0:83�
0:08 GeV for the LHPC and PACS-CS results,
respectively.

The fits are determined by evaluating the baryon mass
function at each of the lattice kaon and pion masses. The
curves in Fig. 1 are shown for illustrative purposes, where
the kaon mass at any point on the curve is determined by
fitting m2

K as a linear function in m2
� for the corresponding

lattice ensemble. The physical masses are determined by
evaluating the fit function at the physical pion and kaon
masses (which has no bearing on the linear form used for
the figure). To illustrate how this extrapolation in the
strange-quark mass works, the lower panel of Fig. 1 shows
a fit to just the two PACS-CS results at fixed �s. Using that
fit, the results of the simulation at the different �s are
shown as a prediction—by evaluating the fit function at
the lattice kaon mass of this ensemble. The agreement
between the results of the simulation and the predicted
values is illustrative of the reliability of the fit in estimating

the dependence of the octet masses on the strange-quark
mass. In our final results, the lattice points at this extra
strange-quark mass are also included.
For the LHPC (PACS-CS) results the optimal dipole

regularization scale is found to be � ¼ 1:1� 0:4 GeV
(0:91� 0:34 GeV). The minimum �2

dof is 0.25 (0.05),

where the improvement over the above linear forms is
evident. As discussed, the existence of a preferred regu-
larization scheme is a direct signature that the results lie
outside the PCR. Nevertheless, the extrapolated precision
obtained is rather encouraging, considering that the uncer-
tainties incorporate the effect of the relatively large range
permitted for the regularization scale, as much as
�0:7–1:5 GeV.
Given that our results do demonstrate that we are outside

the PCR, we also investigate the model dependence in the
choice of regulator. Smooth forms, such as a dipole, mono-
pole, and a Gaussian give indistinguishable results, with
the most significant difference to these seen in a sharp
cutoff, as was seen in Ref. [18]. Our estimate of the
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FIG. 1 (color). The upper and lower panels show, respectively,
the dipole fits (lines) to the LHPC and PACS-CS lattice simu-
lation results (circles) of the octet baryon masses (curves top to
bottom show �, �, �, and N). The squares at the physical pion
mass display the extrapolation to the physical quark masses. The
stars denote the physical baryon masses. The errors indicated by
the bands represent the total statistical errors, including the
variation of �. The third lightest pion mass of the PACS-CS
results, which involved a lower strange-quark mass, is not
included in the displayed fit. This allows a prediction (squares)
based on the other points (see text).
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model-dependent uncertainties incorporates the full varia-
tion over these different functional forms, in addition to all
the uncertainties in the phenomenological input parame-
ters, as described above.

In Table I we report best estimates of the physical
masses by combining the different lattice simulations as-
suming they are each good approximations of the contin-
uum limit. We treat the difference between the simulations
as an estimate of the discretization uncertainty. The size of
these discretization uncertainties are perhaps surprisingly
small, appearing at the �1% level. Indeed before this
work, one may have anticipated the discretization errors
to be of the order of 10%. To investigate this surprise
agreement, we have tested how well one simulation can
predict the other. In Fig. 2 we show the predictions of the
PACS-CS results based on the fits to just the lightest two
ensembles of the LHPC. The fits to the two light-quark
mass points, and fixed strange-quark mass, reproduce the
PACS-CS results well within the anticipated 10% bounds.
Further, the dependence on both the light- and strange-
quark mass dependence is well described. For statistical
comparison, the LHPC fit recovers the complete set of
PACS-CS points at a �2=dof � 2:2. Including a uniform
offset parameter of just 10 MeV reduces the �2 to order
unity.

We also report the dimensionless baryon sigma terms,
��Bq � ðmq=MBÞ@MB=@mq. We note that the model depen-

dence, is relatively small compared with the present sta-
tistical precision. This model dependence will not decrease
with increased statistics and therefore the present analysis,
at this order and at these quark masses, is precision limited.
Improvements beyond this will certainly require increased
efforts in the EFT and numerical computations deeper in
the chiral regime.

Our results show agreement between the absolute values
of the baryon masses and the corresponding experimental
values. This is an important independent confirmation of
the absolute scale determination reported by Aubin et al.
[6]. Further, the sigma terms extracted by differentiating
the fitting formulas, have some quite interesting features.
The pion-nucleon sigma commutator is, within uncertain-
ties, compatible with phenomenological estimates [19].
The strangeness sigma commutator is consistent with

best EFT estimates [10], yet an order of magnitude more
precise. This small value is observed to be consistent with
‘‘unquenching’’ estimates [20], as well as a recent 2-flavor
lattice QCD estimate [21].
In line with quark-model expectations, we note that the

� is most sensitive to the strange-quark mass. The linear
projections of kaon masses of the LHPC and PACS-CS
results, used in Fig. 1, give strange-quark masses (orm2

K �
m2

�=2) that are �30% too high. With the definition of the

sigma term giving �MB

MB
¼ ��Bq

�mq

mq
, and ���s � 0:24 from

Table I, this indicates that the�mass on each curve should
lie high by roughly 0:24� 0:30� 7%.
In summary, we have demonstrated an excellent descrip-

tion of current 2þ 1-flavor lattice QCD results based on a
low-order SU(3) chiral expansion. While the expansion to
this order is not sufficiently convergent to ensure that the
fits are model independent, we find that the model depen-
dence is actually small compared with the current statisti-
cal precision. In the future, as more simulations and
statistics accumulate, the significance of the model-
dependent component of the error will increase and will
necessitate an increased effort in the EFT. We also antici-
pate that future studies will strengthen the numerical con-
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FIG. 2 (color online). Comparison of the PACS-CS results
with the predicted values from the fit to the LHPC results. The
light- and strange-quark masses are shown in units of their
physical values (as inferred from the Gell-Mann–Oakes–
Renner relation). Each grouping of four is ordered, from left
to right, by N, �, �, and �.

TABLE I. Extracted masses and sigma terms for the physical baryons. The first error is
statistical; the second estimates the discretization artifacts by the difference between the results
for the LHPC and PACS-CS results; the third error represents a model-dependence estimate as
described in the text. A further �2% uncertainty in the absolute scale [6] is understood. The
experimental masses are shown for comparison.

B Mass (GeV) Experimental ��Bl ��Bs

N 0.945(24)(4)(3) 0.939 0.050(9)(1)(3) 0.033(16)(4)(2)

� 1.103(13)(9)(3) 1.116 0.028(4)(1)(2) 0.144(15)(10)(2)

� 1.182(11)(2)(6) 1.193 0.0212(27)(1)(17) 0.187(15)(3)(4)

� 1.301(12)(9)(1) 1.318 0.0100(10)(0)(4) 0.244(15)(12)(2)
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straints on both the continuum and infinite-volume extrap-
olations, such as the work of Ref. [5].

Within the caveats of the present study, we have dem-
onstrated a robust and precise determination of the abso-
lute values of the octet bayon masses. The controlled
extrapolations have also permitted a reliable determination
of the baryon sigma terms, where we have been able to
extract an accurate determination of the � commutator as
well as showing that the strange-quark sigma term of the
nucleon is considerably smaller than phenomenological
estimates. As just one example of the importance of these

results, we note the significance for dark matter searches
explained in Ref. [22].
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