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1Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
(Received 14 July 2009; published 7 January 2010)

1=Nc baryon mass relations are compared with lattice simulations of baryon masses using different

values of the light-quark masses, and hence different values of SUð3Þ flavor-symmetry breaking. The

lattice data clearly display both the 1=Nc and SUð3Þ flavor-symmetry breaking hierarchies. The validity of

1=Nc baryon mass relations derived without assuming approximate SUð3Þ flavor symmetry also can be

tested by lattice data at very large values of the strange quark mass. The 1=Nc expansion constrains the

form of discretization effects; these are suppressed by powers of 1=Nc by taking suitable combinations of

masses. This 1=Nc scaling is explicitly demonstrated in the present work.
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I. INTRODUCTION

The 1=Nc expansion of QCD [1] is a valuable tool for
studying the nonperturbative dynamics of the strong inter-
actions [2,3]. In the limit Nc ! 1, the baryon sector of
QCD has an exact contracted SUð2NFÞ spin-flavor sym-
metry [4]. For finite Nc, the contracted spin-flavor symme-
try is broken by effects suppressed by powers of 1=Nc

[4,5]. The spin-flavor structure of the 1=Nc breaking terms
is predicted at each order in the 1=Nc expansion [4–6]. The
spin-flavor structure of many baryon properties have been
derived in a systematic expansion in 1=Nc [7–12], and the
results are in excellent agreement with experiment (for
reviews, see [13,14]).

One important application of the baryon 1=Nc expansion
is to baryon masses [6,15,16]. By choosing appropriate
linear combinations of the baryon masses, one can study
coefficients of the baryon mass 1=Nc operator expansion
with definite spin and flavor transformation properties. In
the case of perturbative SUð3Þ flavor-symmetry breaking,
the 1=Nc analysis gives a hierarchy of baryon mass rela-
tions in powers of 1=Nc and the dimensionless SUð3Þ
breaking parameter � / ms=�� [15]. The analysis in

Ref. [15] showed that the experimentally measured masses
of the ground state octet and decuplet baryons exhibit the
predicted hierarchy of the combined expansion in 1=Nc

and SUð3Þ flavor-symmetry breaking. The 1=Nc expansion
also has been used to obtain very accurate predictions for
the charm and bottom baryon masses [16] (to better than
10 MeV accuracy) which have been confirmed by recent
experiments. In addition, Ref. [6] derived baryon mass
relations which only depend on the 1=Nc expansion and
which are valid even if flavor SUð3Þ is not a good approxi-
mate symmetry, i.e. for large values of the strange quark
mass.

The predictions of the 1=Nc expansion for baryon
masses are in excellent agreement with the experimental
values. However, in comparing with the experimental data,
one is restricted to only one value of Nc and to the physical

quark mass values. Testing the predictions as a function of
light-quark masses and Nc is now possible with very
accurate simulations of baryons using lattice QCD.
Tremendous progress in lattice QCD has been achieved

recently in the simulation of baryon masses using different
values of the light-quark masses. Extrapolation of baryon
masses on the lattice to the physical point has reproduced
the experimental values at the 1–3% level [17]. The lattice
data, however, contain important additional information
about the dependence of the baryon masses on the quark
masses, which can be utilized. Simulations of baryon
masses have been performed as a function of SUð3Þ
flavor-symmetry breaking ranging from small perturbative
flavor-symmetry breaking to large nonperturbative flavor-
symmetry breaking. There are also lattice simulations at
different values of Nc (though not for baryons) which are
able to test Nc scaling rules [18,19].
In this paper, we show that existing lattice simulations

(at Nc ¼ 3) of the ground state baryon masses already are
sufficiently accurate to exhibit and test interesting features
of the 1=Nc and SUð3Þ flavor-symmetry breaking expan-
sions. Still more accurate simulations are needed to test the
most suppressed mass combinations of the 1=Nc expan-
sion, but continued improvements in lattice simulations of
baryon masses are expected in the short and long term, so it
should eventually be possible to test these relations as well.
We discuss in this paper how present and future lattice data
can be utilized to study the spin and flavor structure of
baryon masses. Although we do not focus on this point
here, it should eventually be possible to test the Nc scaling
rules in the baryon sector by lattice simulations which vary
the number of colors Nc.
An important observation is that the 1=Nc counting rules

hold at finite lattice spacing, and so are respected by the
lattice results including the finite lattice spacing correc-
tions dependent on the lattice spacing a. Thus, the discre-
tization corrections are constrained by the 1=Nc expansion.
Lattice computations of hadron masses are done at

varying values of the light-quark masses mu, md and ms,
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usually in the isospin limit mu ¼ md � mud. The lattice
results are then extrapolated to the physical values of mud.
It has not been possible to compute hadron masses for
physical values of mud yet due to the large computational
time needed, since �comp / 1=m3

ud.
1 However, recently,

with both algorithmic developments [20] and large parallel
computing machines, there are two groups simulating at or
near the physical light-quark mass point [17,21].

The light-quark mass dependence of the hadron masses
is determined by chiral perturbation theory. There are non-
analytic in mq contributions from loop corrections which

are calculable, as well as analytic terms which depend on
low-energy constants (LECs) of the chiral Lagrangian. In

the baryon sector, the leading nonanalytic terms are m3=2
q

and m2
q lnmq. The m

3=2
q term, which arises from Fig. 1 and

is proportional toM3
�;K;�=ð16�f2Þ times axial couplings, is

found to be rather large, naively of order a few hundred
MeV. This term is absent for the pseudo-Goldstone boson
masses, but is present for other mesons such as the vector
mesons [22].

A surprising feature of recent lattice results is that the
baryon masses as a function of M�;K;� do not show a large

M3 dependence. Fits to the baryon masses also give much
smaller values for the baryon axial couplings, and require

that theM3 �m3=2
q term is almost completely cancelled by

m2
q lnmq and m

2
q terms. This cancellation must be acciden-

tal at the currently accessible lattice quark masses, since
the terms have different mq dependence. An alternative

conclusion is that lattice quark masses are too large for
SUð3Þ chiral perturbation theory to be valid, and that
perturbative chiral behavior sets in only for much smaller
quark masses than the strange quark mass. This conclusion,
however, fails to explain why SUð3Þ flavor symmetry is so
evident in baryon phenomenology.

The 1=Nc expansion constrains the structure of baryon
chiral perturbation theory [4,6,9,23]. Chiral corrections
have to respect the spin-flavor structure of the 1=Nc ex-
pansion, and this leads to some important restrictions on
the form of the chiral loop corrections. For example, the
baryon mass, which is of order Nc [2,3], gets nonanalytic

corrections proportional to m3=2
s , which are large. This

large nonanalytic contribution might lead one to expect
that there should be large deviations from the Gell-Mann–
Okubo mass relations, which were derived assuming that

the mass operator was linear in ms. One can show, how-

ever, that the Ncm
3=2
s terms are a spin-flavor singlet, and

give the same contribution to octet and decuplet baryons,

whereas the m3=2
s terms are a spin-singlet flavor-octet, and

the m3=2
s =Nc terms are spin-singlet flavor-27. Only the

latter terms contribute to the Gell-Mann–Okubo mass
combinations, so that deviations from these relations are
a factor of 1=N2

c smaller than naive expectation and con-
sistent with experiment. The small size of the Gell-Mann–
Okubo relation was recently confirmed for a range of light-
quark masses [24]. For QCD, the cancellation to order
1=N2

c arises as a numerical cancellation between octet
and decuplet intermediate states [25]; to see the parametric
form of the cancellation in 1=Nc requires computing the
chiral corrections using the SUð3Þ flavor representations of
baryons containing Nc quarks.
The mass relations of Ref. [15] project the baryon

masses onto different spin-flavor channels. By studying
these mass relations as a function of mq, one can inves-

tigate whether unexpected chiral behavior arises in a par-
ticular channel.
The organization of this paper is as follows: In Sec. II,

the baryon mass relations of the 1=Nc expansion are sum-
marized briefly, and in Sec. III, the lattice simulation data
are described. Section IV presents the results of a compu-
tation of 1=Nc mass combinations on the lattice for varying
values of SUð3Þ flavor-symmetry breaking. Section V dis-
cusses the lattice analysis using heavy baryon chiral per-
turbation theory [25]. Our conclusions are presented in
Sec. VI.

II. 1=Nc BARYON MASS RELATIONS

The 1=Nc expansion of the baryon mass operator for
perturbative SUð3Þ flavor-symmetry breaking is2

M ¼ M1;0 þM8;0 þM27;0 þM64;0;

M1;0 ¼ c1;0ð0ÞNc1þ c1;0ð2Þ
1

Nc

J2;

M8;0 ¼ c8;0ð1ÞT
8 þ c8;0ð2Þ

1

Nc

fJi; Gi8g þ c8;0ð3Þ
1

N2
c

fJ2; T8g;

M27;0 ¼ c27;0ð2Þ
1

Nc

fT8; T8g þ c27;0ð3Þ
1

N2
c

fT8; fJi; Gi8gg;

M64;0 ¼ c64;0ð3Þ
1

N2
c

fT8; fT8; T8gg;

(1)

FIG. 1. One-loop correction to the baryon mass due to �, K
radiative corrections.

1One inverse power of the quark mass is from the conjugate-
gradient inversion of the fermion Dirac operator, which scales
with the condition number. The additional inverse powers of the
light-quark mass arise from estimations of (i) the increased
autocorrelation time of the hybrid Monte Carlo evolution as
well as (ii) the molecular dynamics step-size used to adjust the
acceptance rate. There are additional costs not counted here. For
example, to keep the volume corrections exponentially small,
one must work with m�L * 4, where L is the spatial size of the
lattice. 2We use the notation and conventions of Ref. [15].
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where the superscript denotes the flavor SUð3Þ representa-
tion and the spin SUð2Þ representation of each term. The
1=Nc expansion of the baryon mass operator contains eight
independent operators, corresponding to the eight isospin
multiplets of the ground state baryons. The arbitrary co-
efficients cðnÞ multiplying the 1=Nc operators are functions

of 1=Nc and SUð3Þ flavor-symmetry breaking. Each coef-
ficient is order 1 at leading order in the 1=Nc expansion.
The nontrivial content of the 1=Nc expansion is the 1=Nc

suppression factors for the different terms in Eq. (1).
Following Ref. [15], we define the parameter � /
ms=��, which is a dimensionless measure of

flavor-SUð3Þ symmetry breaking. SUð3Þ flavor-symmetry
breaking transforms as a flavor-octet, so the 1, 8, 27, and 64
operator expansions are zeroth, first, second, and third
order in SUð3Þ flavor-symmetry breaking, respectively.
Thus, the coefficients c8;0, c27;0, and c64;0 are naively of
order �, �2, and �3, respectively, in the SUð3Þ flavor-
symmetry breaking expansion.

The 1=Nc expansion for the baryon mass operator for
SUð2Þ �Uð1Þ flavor symmetry [6] is given by

M ¼ Nc1þ K þ 1

Nc

I2 þ 1

Nc

J2 þ 1

Nc

K2 þ 1

N2
c

I2K

þ 1

N2
c

J2K þ 1

N2
c

K3; (2)

where each operator is accompanied by an unknown coef-
ficient which has been suppressed for simplicity. Each
coefficient is order unity at leading order in the 1=Nc

expansion. The operator K � Ns=2, where Ns is the
s-quark number operator. Again, there are eight indepen-
dent operators in the 1=Nc expansion corresponding to the
masses of the eight isomultiplets of the ground state
baryons.

The 1=Nc expansion continues to hold at finite lattice
spacing, so that expansions of the form Eqs. (1) and (2) are
valid with coefficients that depend on the lattice spacing
a.3 Thus, the order Nc discretization correction is univer-
sal, and has the same value for all the octet and decuplet
baryons. This term can be eliminated by studying baryon
mass ratios or differences. The largest term that produces
different discretization effects for the octet baryons is the
T8 term in M8;0, or equivalently the K term in Eq. (2),
which results in an Oð1Þ mass splitting that is suppressed
by one factor of 1=Nc relative to the leading mass term
Nc1.

The 12 1=Nc mass relations that we study are tabulated
in Table I. The eight mass relations M1–M8 correspond to
the first eight mass combinations in Table II of Ref. [15].
These mass relations are the mass combinations which

occur at definite orders in 1=Nc and perturbative SUð3Þ
flavor-symmetry breaking; each relation picks out a par-
ticular coefficient in Eq. (1). The mass combinations in
Table I correspond to the coefficients listed in the table.
There are two mass combinations, M1 and M2, which are
SUð3Þ singlets and which occur at orders Nc and 1=Nc,
respectively. There are three flavor-octet mass combina-
tions,M3,M4 andM5, which are proportional to one factor
of SUð3Þ symmetry breaking � and which occur at orders 1,
1=Nc, and 1=N2

c , respectively. There are two flavor-27
mass combinations, M6 and M7, which occur at second
order in SUð3Þ breaking �2 and at orders 1=Nc and 1=N

2
c in

the 1=Nc expansion. Finally, there is one mass combination
M8 which is suppressed by three powers of SUð3Þ breaking
�3 and by 1=N2

c in the 1=Nc expansion. The additional four
mass combinations MA–MD correspond to the first four
mass relations of Ref. [6]. These baryon mass combina-
tions are each order 1=N2

c in the 1=Nc expansion. Only
three of the four combinations MA–MD are linearly inde-
pendent, corresponding to the fact that there are three
independent operators at order 1=N2

c in Eq. (2). These
mass relations were derived assuming only isospin flavor
symmetry, and so do not assume approximate SUð3Þ flavor
symmetry and are valid even for very large SUð3Þ flavor-
symmetry breaking. Note that the 1=N2

c mass relations
MA–MD are related to the 1=N2

c relationsM5,M7 andM8 by

M A ¼ 1

10
M5 þ 1

70
M7 � 2

7
M8;

MB ¼ � 1

15
M5 þ 4

105
M7 � 2

21
M8;

MC ¼ � 1

28
ðM7 þM8Þ; MD ¼ � 1

2
M8:

(3)

Each mass relation defines a mass combination of the
octet and decuplet masses Mi of the form

M ¼ X
i

ciMi: (4)

In this work, isospin breaking is neglected, so each Mi

denotes the average mass of a baryon isomultiplet. The
normalization of each mass relation is arbitrary, and de-
pends on a particular choice of normalization for coeffi-
cients in the Hamiltonian, i.e. ci ! �ci defines another
mass relation with the same spin and flavor quantum
numbers. To remove the rescaling ambiguity, Ref. [15]
used the accuracy defined by

A �
P
i
ciMi

1
2

P
i
jcijMi

(5)

to quantify the fractional error of a given mass relation.
Here, we use a related quantity, the scale invariant mass
combination

3Rotational symmetry is broken down to a discrete cubic
symmetry, so that irreducible representations of the spin SUð2Þ
group are replaced by irreducible representations of the cubic
group.
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R �
P
i
ciMi

P
i
jcij : (6)

Dividing by
P

ijcij instead of by 1
2

P
ijcijMi avoids mixing

different flavor representations via the denominator factor.
The rescaled relations R1–R8 and RA–RD have dimensions
of mass.

In our numerical analysis, we shall use the dimension-
less variable

� ¼ M2
K �M2

�

�2
�

(7)

as a measure of SUð3Þ breaking, where �� � 4�f ¼
1 GeV [26] is the scale of chiral symmetry breaking.

III. LATTICE SIMULATION

In this work, we use the results of the recent LHPC
spectrum calculation [27] to explore the mass combina-
tions of the 1=Nc expansion. The LHP Collaboration uti-

lized a mixed-action lattice calculation with domain-wall
[28–30] valence propagators computed with the Asqtad
improved [31,32] dynamical MILC gauge ensembles
[33,34].4 The calculation was performed at one lattice
spacing with a� 0:125 fm, and a fixed spatial volume L�
2:5 fm. The pion and kaon masses used in Ref. [27] are
fM�;MKg ¼ f293; 586g, f356; 604g, f496; 647g, f597; 686g,
f689; 729g, and f758; 758g MeV, respectively, on the
m007, m010, m020, m030, m040, and m050 ensembles,
where the labels denote the light-quark masses in lattice
units.5 In the dynamical ensembles and the computation of
the valence propagators, the strange quark was held fixed
near its physical value. (In fact the strange quark was
�25% too large [36].) For further details of the calculation,
we refer the reader to Ref. [27].

TABLE I. Mass combinations M1–M8 from Ref. [15] and MA–MD from Ref. [6]. The coefficients and orders in 1=Nc and
perturbative SUð3Þ flavor-symmetry breaking � are given for mass combinations M1–M8. Combinations MA–MD are obtained at
order 1=N2

c assuming only isospin flavor symmetry.

Label Operator Coefficient Mass Combination 1=Nc SUð3Þ
M1 1 160Ncc

1;0
ð0Þ 25ð2N þ�þ 2�þ 2�Þ � 4ð4�þ 3�� þ 2�� þ�Þ Nc 1

M2 J2 �120 1
Nc
c1;0ð2Þ 5ð2N þ�þ 3�þ 2�Þ � 4ð4�þ 3�� þ 2�� þ�Þ 1=Nc 1

M3 T8 20
ffiffiffi
3

p
�c8;0ð1Þ 5ð6N þ�þ 3�þ 4�Þ � 2ð2���� þ�Þ 1 �

M4 fJi; Gi8g �5
ffiffiffi
3

p
1
Nc
�c8;0ð2Þ N þ�� 3�þ� 1=Nc �

M5 fJ2; T8g 30
ffiffiffi
3

p
1
N2

c
�c8;0ð3Þ ð�2N þ 3�� 9�þ 8�Þ þ 2ð2���� ��Þ 1=N2

c �
M6 fT8; T8g 126 1

Nc
�2c27;0ð2Þ 35ð2N þ 3�þ�þ 2�Þ � 4ð4�� 5�� � 2�� þ 3�Þ 1=Nc �2

M7 fT8; JiGi8g �63 1
N2

c
�2c27;0ð3Þ 7ð2N � 3���þ 2�Þ � 2ð4�� 5�� � 2�� þ 3�Þ 1=N2

c �2

M8 fT8; fT8; T8gg 9
ffiffiffi
3

p
1
N2

c
�3c64;0ð3Þ �� 3�� þ 3�� �� 1=N2

c �3

MA ð�� ��Þ � ð�� ��Þ 1=N2
c -

MB
1
3 ð�þ 2��Þ ��� 2

3 ð�� NÞ 1=N2
c -

MC � 1
4 ð2N � 3���þ 2�Þ þ 1

4 ð���� ��� þ�Þ 1=N2
c -

MD � 1
2 ð�� 3�� þ 3�� ��Þ 1=N2

c -

TABLE II. Values of mass combinations Mi in GeV using the scale setting a�1 ¼ 1:588 GeV.

M2
K �M2

� [GeV2] 0.2579 0.2380 0.1718 0.1141 0.0574 0

M1 [GeV] 192(1) 197(1) 211(1) 221(2) 237(2) 242(1)

M2 [GeV] �12:2ð5Þ �13:3ð6Þ �10:9ð4Þ �10:6ð6Þ �7:8ð6Þ �8:2ð4Þ
M3 [GeV] �8:07ð20Þ �7:15ð15Þ �4:40ð08Þ �2:81ð09Þ �1:28ð04Þ 0

M4 [GeV] �0:214ð10Þ �0:181ð7Þ �0:099ð5Þ �0:056ð6Þ �0:022ð3Þ 0

M5 [GeV] 0.29(7) 0.35(8) 0.13(3) 0.14(5) 0.04(2) 0

M6 [GeV] �1:05ð36Þ �0:25ð26Þ �0:003ð71Þ 0.15(14) �0:02ð1Þ 0

M7 [GeV] �0:30ð12Þ �0:05ð11Þ 0.005(24) 0.08(7) �0:003ð4Þ 0

M8 [GeV] 0.02(1) 0.012(09) �0:001ð1Þ 0.015(12) 0.000 04(6) 0

MA [GeV] 0.0004(58) 0.018(7) 0.001(3) 0.004(4) �0:0003ð19Þ 0

MB [GeV] �0:022ð10Þ �0:018ð10Þ �0:0004ð30Þ �0:003ð3Þ 0.0000(13) 0

MC [GeV] 0.010(4) 0.002(4) �0:0002ð8Þ �0:003ð3Þ 0.0001(1) 0

MD [GeV] �0:012ð5Þ �0:0061ð45Þ 0.0004(6) �0:0076ð58Þ �0:000 02ð3Þ 0

4The strange quark and many of the light-quark propagators
were computed by the NPLQCD Collaboration [35].

5The mass M� is defined at this order by the Gell-Mann–
Okubo formula M2

� ¼ 4
3M

2
K � 1

3M
2
�.
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Using the bootstrap resampled lattice data, we deter-
mine the 12 mass combinations of Table I on each en-
semble. The results are collected in Table II. These results
were determined with the absolute scale of a�1 ¼
1588 MeV on all coarse ensembles, where the scale used
in Ref. [27] was determined from heavy-quark spectros-
copy. We have additionally determined the mass combina-
tions using the smoothed values of r1=a, where r1
is determined on each different ensemble from the
heavy-quark potential with r21Fðr1Þ ¼ 1 [37]. The values
of a�1 determined in this way range from
f1597; 1590; 1614; 1621; 1628; 1634g MeV from the light-
est to heaviest quark mass. These two scale-setting meth-
ods are in good agreement, as shown in the next section.

IV. COMPARISON WITH LATTICE DATA

A plot of the lattice baryon masses as a function ofM� is
given in Fig. 2. The triangles are the lattice data, and the
blue squares are the Particle Data Group (PDG) values.6

The usual way of studying the data is to fit to the individual
baryon masses. The 1=Nc analysis shows that it is useful to
study the mass combinations in Table I instead, as these
combinations have definite orders in 1=Nc and SUð3Þ
symmetry breaking.

In this section, we present a series of plots of the 12 scale
invariant baryon mass combinations R1–R8 and RA–RD as
a function of SUð3Þ flavor-symmetry breaking. In each
plot, the red triangles and green circles are the lattice
data, and the errors on the mass combinations have been
computed using the bootstrap data sets of the octet and
decuplet masses, taking advantage of the full correlations
in the lattice data. The red triangles and green circles are
the lattice results using the two different scale-setting
methods. The red points are determined with the absolute
scale setting a�1 ¼ 1588 MeV, and the green points are
determined with the smoothed r1=a values [37]. The blue
square is obtained using the physical baryon and meson
masses from the PDG [38], with the error bar computed
using experimental uncertainties on the isospin averaged
masses. For most of the plots, the error on the blue point is
smaller than size of the point, and is not visible.

The horizontal axis is M2
K �M2

� in units of ðGeVÞ2,
which is a measure of SUð3Þ flavor-symmetry breaking,
and the vertical axis is the mass combination in MeV. For
mass combinations proportional to powers of SUð3Þ break-
ing, we plot both the mass combination and the mass
combination divided by the appropriate power of �, using
the definition Eq. (7) for �, so that the units remain MeV.

The average OðNcÞ mass of the octet and decuplet
baryons is �1000 MeV. Naive power counting with Nc ¼
3 implies orderNc masses are�1000 MeV, order 1 masses
are �300 MeV, order 1=Nc masses are �100 MeV, and

order 1=N2
c masses are �30 MeV. This 1=Nc hierarchy is

evident in the PDG and lattice data for the baryon mass
combinations R1–R8 and RA–RD below.
Figure 3 plots the first relation R1, which is the scale

invariant mass corresponding to the Nc1 operator in the
1=Nc expansion. This mass relation is order 1000 MeV
over the range of SUð3Þ flavor-symmetry breaking simu-
lated by the LHP Collaboration and is seen to be fairly

FIG. 2 (color online). Octet and decuplet baryon lattice masses
as a function of M�. The blue squares are the PDG values and
the triangles are LHP Collaboration lattice data simulated with
fixed ms and varying mud. The two right-most points simulate
the flavor-singlet baryon masses in the exact SUð3Þ flavor-
symmetry limit M� ¼ MK . Note that the value of M� at the
SUð3Þ flavor-symmetry point is quite large, M� ¼ 758 MeV.
The (PDG) baryons from bottom to top are N, �, �, �, �, ��,
�� and �.

FIG. 3 (color online). R1 as a function of (M2
K �M2

�). The red
triangles and green circles are lattice results with two different
scale-setting methods (see text), and the blue square is using the
PDG values for the hadron masses. R1 is the averageOðNcÞmass
of the ground state baryons.

6Note thatMK varies slightly for the differentM� values and is
not exactly equal to the physical MK .
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independent of SUð3Þ breaking as expected. The deviation
of the physical PDG point from the lattice data is presum-
ably due to the larger than physical strange quark mass of
the simulation. In principle, this relation also is susceptible
to finite discretization errors, beginning atOða2Þ, although
these are expected to be small for this data set [27].
Figure 4 plots the second relation R2, which corresponds

to the J2=Nc operator in the 1=Nc expansion. The mass
combination R2 is clearly suppressed relative to the aver-
age ground state baryon mass R1. This hyperfine splitting is
predicted to be order 1=Nc, and so of order 100 MeV in
magnitude. The lattice data allow us to study this mass
relation as a function of SUð3Þ breaking. Notice that the
relation works independently of SUð3Þ breaking as pre-
dicted theoretically, and that R2 does not vanish at the
SUð3Þ symmetry point M2

K ¼ M2
�. The numerical results

clearly show that the suppression of R2 is a consequence of
1=Nc, and not due to a hidden flavor breaking suppression
factor.
Figure 5 plots the third relation R3, which is of order �.

The relation vanishes as M2
K �M2

� ! 0, as can be seen in
the upper panel. The lower panel divides the mass relation
by �, and shows that R3=� is an Oð1Þ mass in the 1=Nc

expansion, or �300 MeV in magnitude. Notice that R3=�
does not vanish in the SUð3Þ symmetry limit. The SUð3Þ

FIG. 5 (color online). R3 and R3=� as a function of (M2
K �

M2
�). R3 is Oð�Þ at leading order in the 1=Nc and SUð3Þ flavor-

symmetry breaking expansions, and R3=� is Oð1Þ.

FIG. 4 (color online). R2 as a function of (M2
K �M2

�). The red
triangles and green circles are lattice results with two different
scale-setting methods (see text), and the blue square is using the
PDG values for the hadron masses. R2 is minus the Oð1=NcÞ
hyperfine mass splitting between the spin-3=2 decuplet and the
spin-1=2 octet baryons.

FIG. 6 (color online). R4 and R4=� as a function of (M2
K �

M2
�). R4 is Oð�=NcÞ at leading order, and R4=� is Oð1=NcÞ.
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symmetry point of the lattice data is omitted in the R3=�
plot, as it involves dividing by zero.

Figure 6 plots R4 and R4=�, which are of order �=Nc and
1=Nc, respectively. The mass combinations R3 and R4 are
both order �, but R4 is suppressed relative to R3 by an
additional factor of 1=Nc. This suppression is clearly vis-
ible in the numerical values which are �100 MeV in
magnitude. R4 is seen to vanish in the SUð3Þ symmetry
limit, whereas R4=� does not vanish at the SUð3Þ symmet-
ric point. BothR3=� andR4=� display some dependence on
SUð3Þ symmetry breaking, which implies that there is �

dependence in the coefficients c8;0ð1Þ and c8;0ð2Þ , respectively.
Figure 7 plots R5 and R5=�, which are of order �=N

2
c and

1=N2
c , respectively. The mass relation R5=� is consistent

with being a 1=N2
c mass of magnitude �30 MeV. The

lattice data points now have relatively large errors,
however.

R6, R7 and R8 are plotted in Figs. 8–10, respectively, for
completeness. In each case, the physical point (blue
square) has the expected size, and the lattice results are
compatible with 1=Nc and � power counting expectations,
but the error bars are now rather large. It would be very
interesting to have more precise lattice data for the R6 and
R7 mass relations because the leading SUð3Þ flavor-

symmetry breaking contribution to the flavor-27 mass

splittings in chiral perturbation theory is Oð�3=2Þ rather
than the naive Oð�2Þ of second order perturbative flavor-
symmetry breaking. With very precise data, as in Ref. [39],
it would be possible to test this prediction of chiral pertur-
bation theory.
The last four plots, Figs. 11–14, are the relations RA–RD,

which are of order 1=N2
c and assume only SUð2Þ �Uð1Þ

flavor symmetry. From the plots, it is evident that RA–RD

are satisfied irrespective of the value of SUð3Þ breaking.
RA–RD are all predicted to beOð1=N2

cÞmasses, or approxi-
mately 30 MeV. The figures show that RA–RD are signifi-
cantly smaller than 30 MeV. This suppression can be
understood from the perturbative SUð3Þ flavor-symmetry
breaking analysis, since the lattice data varies � only over
the range [0, 0.2579] and does not contain large nonper-
turbative values of �. From Eq. (3), one sees that for small
values of �, MA and MB are Oð�=N2

cÞ since they are linear
combinations containing M5; MC is Oð�2=N2

cÞ since it is a
linear combination containing M7; and MD is Oð�3=N2

cÞ
since it is proportional toM8. It would be interesting to see
how well relations RA–RD work at even larger values of
SUð3Þ breaking extending to very large values for which
the SUð3Þ flavor symmetry is completely broken. In the

FIG. 7 (color online). R5 and R5=� as a function of (M2
K �

M2
�). R5 is Oð�=N2

c Þ at leading order, and R5=� is Oð1=N2
c Þ.

FIG. 8 (color online). R6 and R6=�
2 as a function of (M2

K �
M2

�). R6 is Oð�2=NcÞ, and R6=�
2 is Oð1=NcÞ.
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FIG. 9 (color online). R7 and R7=�
2 as a function of (M2

K �
M2

�). R7 is Oð�2=N2
c Þ, and R7=�

2 is Oð1=N2
c Þ.

FIG. 12 (color online). RB as a function of (M2
K �M2

�). RB is
Oð1=N2

c Þ.

FIG. 10 (color online). R8 and R8=�
3 as a function of (M2

K �
M2

�). R8 is Oð�3=N2
c Þ, and R8=�

3 is Oð1=N2
c Þ.

FIG. 11 (color online). RA as a function of (M2
K �M2

�). RA is
Oð1=N2

c Þ.

FIG. 13 (color online). RC as a function of (M2
K �M2

�). RC is
Oð1=N2

c Þ.
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limit ms ! 1, relation RA goes over to the mass relation
for heavy-quark baryons, ��

Q ��Q ¼ ��
Q ��0

Q, so it

would be interesting to look at the crossover from light-
quark mass behavior proportional to ms to heavy-quark
behavior in which the hyperfine splitting is proportional to
1=mQ. Similarly, in the limit ms ! 1, relation RB goes

over to the heavy-quark baryon mass relation ½13 �
ð�Q þ 2��

QÞ ��Q� � 2
3 ð�� NÞ, which is independent

of the heavy-quark mass. The crossover from �ms behav-
ior to mass-independence in the ms ! 1 limit also would
be interesting to observe. In addition, it would be interest-
ing to determine the value of � at which the perturbative
SUð3Þ flavor-symmetry breaking analysis fails. Finally, an
extended range for � / M2

K �M2
� would allow one to see

whether relations RA–RD remain independent of � even for
large values of �.

V. HEAVY BARYON �PT ANALYSIS

As mentioned in the introduction, a recent surprise from
current lattice light-quark spectrum calculations is that the
baryon masses do not show a large M3

�;K;� behavior. In

fact, the baryon masses display an unexpected (nearly)
linear in M� scaling for a large range of pion masses
[27]. In the case of the nucleon, this finding was verified
in all current 2þ 1 flavor lattice calculations of the nu-
cleon mass [40]. These findings pose an interesting theo-
retical puzzle and indicate the presence of large
cancellations to the baryon spectrum from the different
orders in the chiral expansion. Further, recent SUð3Þ chiral
extrapolations of the baryon masses [40,41], carried out
using the next-to-leading order (NLO) extrapolation for-
mulae, have found that the axial couplings,D, F,C, andH,
when left as free parameters, are returned from the analysis
with values significantly different from those expected
based upon phenomenology [42] or the recent lattice de-

termination [43]. It is not clear at this point whether these
findings are due to a breakdown of SUð3Þ heavy baryon
�PT in this mass range, or, for example, the necessity of
including the next-to-next-to-leading order (NNLO) terms
in the analysis.
In this section, we perform an SUð3Þ heavy baryon �PT

extrapolation analysis of the various mass relations Mi

presented in Table II. This allows us both to extrapolate
our results to the physical fM�;MKg limit and to begin
exploring the combined 1=Nc and SUð3Þ expansion utiliz-
ing precision lattice data. An important question to explore
is whether this combined expansion displays significantly
improved convergence properties to the SUð3Þ extrapola-
tions performed previously. Additionally, because the dif-
ferent mass relations are sensitive to the different
coefficients of the baryon mass expansion in Eq. (1), we
can directly extrapolate different orders in the SUð3Þ chiral
expansion. For example, as mentioned above, the leading

contribution to M6 and M7 scales as Oð�3=2Þ in heavy
baryon �PT. Finding a definitive signal of this scaling
would be a significant confirmation of the nonanalytic
light-quark mass behavior predicted by chiral perturbation
theory.
The light and strange quark mass dependence is de-

scribed by SUð3Þ heavy baryon chiral perturbation theory
(HB�PT) [25]. The baryon chiral Lagrangian is given by

L ¼ Trð �Biv �DBÞ � �T�½iv �D� �0�T�

þ bD Trð �BfMþ; BgÞ þ bF Trð �B½Mþ; B�Þ
þ b0 Trð �BBÞTrðMþÞ þ �M

�T�MþT�

� �	 �T�T� TrðMþÞ þ 2DTrð �BS�fA�; BgÞ
þ 2F Trð �BS�½A�; B�Þ þ 2H �T�S
A
T�

þ Cð �T�A�Bþ �BA�T
�Þ; (8)

where B and T� are the octet and decuplet fields, respec-

tively; v� is the four-velocity of the baryon and S� is the

spin-vector. The decuplet–octet mass splitting in the chiral
limit is �0, and Mþ is the mass spurion defined by

Mþ ¼ �ymQ�
y þ �my

Q� (9)

in terms of the light-quark mass matrix

mQ ¼
mu

md

ms

0
@

1
A; (10)

and � ¼ ei�=f� . The covariant derivative is

D �B ¼ @�Bþ ½V�; B�; (11)

and the vector and axial fields are

V � ¼ 1

2
ð�@��y þ �y@��Þ; (12)

FIG. 14 (color online). RD as a function of (M2
K �M2

�). RD is
Oð1=N2

c Þ.
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A � ¼ i

2
ð�@��y � �y@��Þ: (13)

The masses of the octet and decuplet baryons were first
determined in Ref. [44] to NLO, OðM3

K;�Þ. The octet

baryon masses were later determined to NNLO, OðM4
K;�Þ

in Refs. [45–47], and the decuplet baryons to NNLO in
Refs. [48,49].

The lattice calculation of baryon masses used for this
work was a mixed-action calculation [27]. Therefore, the
calculation and the corresponding low-energy effective
field theory for the baryons are inherently partially
quenched. The partially quenched Lagrangian for heavy
baryons was determined by Chen and Savage [50] through
NLO. The extension of the partially quenched Lagrangian
to the mixed-action Lagrangian, which includes correc-
tions from the lattice spacing, also is known [51,52],
through NNLO [47,49,52]. At NLO, the corrections from
the mixed action are straightforward, amounting to correc-
tions to the mixed valence-sea meson masses [53] appear-
ing in the one-loop self-energy corrections, Fig. 1, as well
as the partially quenched hairpin corrections [50]. A rig-
orous extrapolation to the continuum limit requires mul-
tiple lattice spacings, but the lattice data used in this work
was performed at a single lattice spacing (albeit with the
size of the discretization corrections expected to be small,
see Ref. [27] for details). However, one can make a quali-
tative estimate of the size of the discretization errors by
comparing the extrapolations performed with the contin-
uum extrapolation formulae and the mixed-action formu-
lae. We now perform these chiral extrapolations.

A. Variable projected �2 minimization

To construct the �2 for the light-quark mass extrapola-
tion, we use the bootstrap resampled lattice data to form
the covariance matrix,

Cq;q0 ¼ 1

Nbs

XNbs

bs

ðMq½bs� � �MqÞðMq0½bs� � �Mq0 Þ; (14)

where q is a supermass index which runs over both the
mass relations M1–M7 as well as the different lattice en-
sembles m007–m050.7 We then construct the �2,

�2 ¼ X
q;q0

ð �Mq � fðMq; �ÞÞC�1
q;q0 ð �Mq0 � fðMq0 ; �ÞÞ; (15)

where fðMq; �Þ is the HB�PT extrapolation formula for

the mass relation Mq and depends upon the low-energy

constants ~� � fM0;�0; bD; bF; b0; �	; �M;D; F; C;H ; . . .g.
At NLO, the baryon mass extrapolation formulae are lin-
early dependent upon all the �i, except forD, F, C, andH ,
but they are linearly dependent upon C2 and H 2.
Therefore, to perform the numerical minimization, we first
perform a linear least squares fit on all the linear LECs,
~�lin � fM0;�0; bD; bF; b0; �	;�M; C2;H 2g, solving for the
low-energy constants as functions of D and F, and then
perform the numerical minimization. This procedure is
known as the variable projection (VarPro) method [54].
We first perform the �2 minimization using relations

M1–M7 and the NLO extrapolation formulae. In Tables III
and IV, we collect the results of both the continuum ex-
trapolation and the mixed-action extrapolation. In these
tables, the partially quenched/mixed-action low-energy
constants �M, 
M, 	M, �M and �	M are related to the
LECs of SUð3Þ HB�PT of Eq. (8) by

bD ¼ 1

4
ð�M � 2
MÞ; �M ¼ �ðPQÞ

M ; (16)

bF ¼ 1

2
ð5�M þ 2
MÞ; �	M ¼ �	ðPQÞ

M ; (17)

b0 ¼ 	M þ 1

6
�M þ 2

3

M: (18)

Then, for example, ~�M ¼ �M=B0, where at leading order
M2

K ¼ B0ðms þmudÞ. In both cases, we perform the fit for
four different ranges of the quark masses. The first fit
includes only the lightest two mass points, while each
successive fit includes an additional mass point. The results
of the mixed action and continuum fits are fairly consistent,
as can be seen in Tables III and IV.
Consistent with Refs. [27,41], we find the values of D

and F are significantly smaller than those determined
either phenomenologically [42] or with the recent lattice
determination [43] (these determinations provideD ’ 0:72
and F ’ 0:45). With the use of the VarPro method, we have
reduced the numerical minimization to a two-dimensional
problem, thus allowing us to plot the resulting �2 as a
function of D and F. In Fig. 15, we provide a contour plot
of the resulting �2 for the continuum fit using the lightest
two ensembles. In Fig. 16, we plot the resulting �2 for the

TABLE III. Fit to Mass Relations R1–R7 using NLO continuum HB�PT with a variation projection (VarPro) method.

Fit Range D F M0 [GeV] �0 [GeV] ~�M ½GeV��1 ~
M ½GeV��1 ~�M ½GeV��1 ~	 ½GeV��1 ~�	 ½GeV��1 C2 H2

m007–m010 0.04(28) 0.14(6) 0.999(49) 0.21(16) �0:58ð7Þ �0:42ð16Þ 0.68(37) �0:10ð6Þ �0:36ð31Þ 0.01(12) 0.32(55)

m007–m020 0.17(8) 0.07(5) 0.972(18) 0.48(5) �0:67ð2Þ �0:81ð5Þ 0.39(12) �0:11ð2Þ 0.09(9) 0.21(3) 0.09(19)

m007–m030 0.21(5) 0.08(3) 0.972(13) 0.44(5) �0:67ð2Þ �0:76ð3Þ 0.49(12) �0:12ð1Þ �0:00ð8Þ 0.15(2) 0.18(18)

m007–m040 0.20(5) 0.09(2) 0.960(11) 0.43(04) �0:67ð1Þ �0:73ð3Þ 0.62(8) �0:13ð1Þ �0:05ð6Þ 0.14(2) 0.35(13)

7To the order we work in SUð3Þ heavy baryon �PT, the
relation M8 is exactly zero. In the partially quenched theory,
this mass relation exactly vanishes at NLO, and at NNLO, there
are residual partially quenched effects which do not exactly
cancel [49].
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continuum extrapolation using the lightest five ensembles.
Figures 17 and 18 display the same plots constructed with
the mixed-action extrapolation formulae. In all these plots,
the dark (blue) central area satisfies �2 & �2

min þ 2:30, the
�	 confidence region for two parameters. Each successive
nth contour represents the �n	 confidence region.

One observes that the mixed-action analysis returns
values of D and F which are slightly larger than the
continuum SUð3Þ analysis, but the values are still smaller
than expected. In Table V, we use the values of the LECs
from the continuum analysis to compare with the experi-
mental values of the individual baryon masses and the
1=Nc mass combinations in Table I (within a few sigma,
the mixed-action extrapolations are consistent). Despite
the apparent discrepancy in the values of D and F, one
observes the extrapolated values of both the baryon masses
and the mass combinations, measured as a percent devia-
tion, are in reasonable agreement with experiment.

We caution that one cannot draw strong conclusions
about SUð3Þ HB�PT from this analysis, in particular, the
small values of D and F. First, the values of MK;� used in

this work are still larger than desirable for performing
chiral extrapolations (in fact the strange quark mass is
known to be �25% too heavy [36]). Second, at NLO, the

baryon masses are predicted to have large M3
K;� correc-

tions; however, this large nonanalytic contribution is not
observed in the numerical results for the baryon masses
themselves, see Fig. 2. Consequently, there must be strong
cancellations between the different orders in the chiral
expansion to produce the observed results. In order for
the chiral extrapolation analysis to be consistent with
both the baryon masses and the expected values of D and
F, one may need to use lighter quark masses and to include
OðM4

K;�Þ contributions to the masses. Further, it is likely

that a combined analysis of both the masses and the axial
couplings will be required.
Performing the complete NNLO analysis of the octet

and decuplet baryon masses introduces 19 new unknown
LECs (for 30 total). Twelve of these LECs correspond to
Oðm2

qÞ operators of the form Trð �BMþMþBÞ and give rise
to M4

�;K;�=�
3
� corrections to the baryon masses. The other

seven LECs correspond to interactions of the baryons with
the axial current, of the form Trð �BA �ABÞ, and give rise
to baryon mass corrections of the form
M4

�;K;� lnðM2
�;K;�Þ=�3

�. The lattice data used in this work,

Ref. [27], are not sufficient to precisely determine all these
LECs. Further, the number of LECs for which the mass
relations are nonlinearly dependent increases to four. In

FIG. 15 (color online). Contour plot of �2ðD;FÞ constructed
using a continuum SUð3Þ HB�PT �2 fit to the m007–m010 data
sets. The dark (blue) inner region represents �2 & �2

min þ 2:30,
the�1	 confidence region for two fit parameters,D and F. Each
successive nth contour represents the �n	 confidence region.

FIG. 16 (color online). Contour plot of �2ðD;FÞ constructed
using a continuum SUð3Þ HB�PT �2 fit to the m007–m040 data
sets. The dark (blue) inner region represents �2 & �2

min þ 2:30,
the�1	 confidence region for two fit parameters,D and F. Each
successive nth contour represents the �n	 confidence region.

TABLE IV. Fit to Mass Relations R1–R7 using NLO mixed action HB�PT with a variation projection (VarPro) method.

Fit Range D F M0 [GeV]�0 [GeV] ~�M ½GeV��1 ~
M ½GeV��1 ~�M ½GeV��1 ~	 ½GeV��1 ~�	 ½GeV��1 C2 H2

m007–m010 0.31(9) 0.26(5) 0.941(42) 0.242(73) �1:29ð1Þ �0:46ð1Þ 3.8(9) �0:35ð5Þ �1:8ð4Þ �0:043ð9Þ 4.3(1.1)
m007–m020 0.36(3) 0.19(2) 0.989(15) 0.365(30) �1:03ð1Þ �0:70ð1Þ 0.66(22) �0:24ð2Þ �0:22ð11Þ �0:009ð4Þ 0.21(26)
m007–m030 0.35(2) 0.16(2) 1.001(11) 0.368(28) �0:92ð1Þ �0:71ð1Þ 0.58(21) �0:20ð1Þ �0:15ð10Þ �0:007ð4Þ 0.11(25)
m007–m040 0.34(2) 0.15(1) 0.995(8) 0.376(26) �0:87ð1Þ �0:70ð1Þ 0.69(18) �0:20ð1Þ �0:16ð8Þ �0:001ð2Þ 0.21(21)
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performing the full analysis, we use the VarPro method to
reduce the number of LECs minimized numerically to 9.
To perform the partial NNLO analysis, we add only the
Oðm2

qÞ operators and are able to reduce the LECs which

require numerical minimization to D and F, as in the NLO
analysis.

In Figs. 19 and 20, we display �2 contours as a function
of D and F analyzed for the continuum SUð3Þ and the

mixed-action extrapolation formulae, respectively. In both
cases, the five lightest ensembles, m007–m040, are used.
As can be seen, although the values of D and F are still
consistent with zero, they are now also consistent with the
phenomenological and lattice values, albeit with large un-
certainties. This large allowed variation of D and F trans-
lates into about an order of magnitude increase in the
uncertainties of the predicted baryon mass relations as

FIG. 18 (color online). Contour plot of �2ðD;FÞ constructed
using a mixed-action SUð6j3Þ HB�PT �2 fit to the m007–m040
data sets. The dark (blue) inner region represents �2 & �2

min þ
2:30, the�1	 confidence region for two fit parameters,D and F.
Each successive nth contour represents the �n	 confidence
region.

FIG. 19 (color online). Contour plot of �2ðD;FÞ constructed
using a continuum SUð3Þ HB�PT �2 fit including partial NNLO
counterterms, as discussed in the text, to the m007–m040 data
sets. The dark (blue) inner region represents �2 & �2

min þ 2:30,
the�1	 confidence region for two fit parameters,D and F. Each
successive nth contour represents the �n	 confidence region.

FIG. 17 (color online). Contour plot of �2ðD;FÞ constructed
using a mixed-action SUð6j3Þ HB�PT �2 fit to the m007–m010
data sets. The dark (blue) inner region represents �2 & �2

min þ
2:30, the�1	 confidence region for two fit parameters,D and F.
Each successive nth contour represents the �n	 confidence
region.

FIG. 20 (color online). Contour plot of �2ðD;FÞ constructed
using a mixed-action SUð6j3Þ HB�PT �2 fit including partial
NNLO counterterms, as discussed in the text, to the
m007–m040 data sets. The dark (blue) inner region represents
�2 & �2

min þ 2:30, the �1	 confidence region for two fit pa-

rameters, D and F. Each successive nth contour represents the
�n	 confidence region.
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compared to those in Table V. The full NNLO analysis
yields results in qualitative agreement with the partial
NNLO minimization; however, there are more than two
LECs upon which the �2 depends nonlinearly, and thus we
cannot display the corresponding contour plots.

This analysis makes it seem plausible that a combined
NNLO analysis of the baryon masses and the axial cou-
plings could provide much more stringent constraints on
the values of D and F, as well as the other LECs. Such an
analysis would allow for the first rigorous exploration of
octet and decuplet properties using SUð3Þ heavy baryon
chiral perturbation theory.

VI. CONCLUSIONS

In this work, we have explored 1=Nc baryon mass
relations using lattice QCD. Some of these relations were
derived assuming approximate SUð3Þ flavor symmetry,
M1–M8, while other relations were derived assuming
only SUð2Þ flavor symmetry, MA–MD. In all cases, we
have found that the baryon mass relations are of the size
expected by both the 1=Nc power counting as well as the
power counting in the SUð3Þ breaking parameter, � ¼
ðM2

K �M2
�Þ=�2

�. For the mass relations MA–MD, it would

be interesting to consider strange quark values even heav-
ier than those used in this work. Two of these relations
become equivalent heavy-quark baryon mass relations as
ms ! 1, and this exploration would probe the transition
region between ms=�QCD < 1 ! ms=�QCD > 1. In the

charm and bottom baryon spectra, these 1=Nc relations
have led to stringent predictions for various mass combi-

nations. It also would be interesting to studyM1–M8, which
were derived assuming approximate SUð3Þ flavor symme-
try, as the strange quark mass is increased, to determine the
value of ms at which the perturbative SUð3Þ expansion
breaks down.
Because of the definite spin and flavor transformation

properties of the baryon mass relations, the discretization
corrections to the mass relations also obey the 1=Nc and �
power counting, and are suppressed. In fact, only M1 is
subject to the leading Oða2Þ mass corrections. The sup-
pression of these discretization errors leads to more strin-
gent constraints on the SUð3Þ heavy baryon chiral
extrapolation of the mass relations to the physical point,
and a better method for chiral extrapolation. It allows one
to rigorously test the predictions and convergence of SUð3Þ
HB�PT.
In this work, we also have performed both SUð3Þ and

mixed-action chiral extrapolations of 1=Nc mass relations
using a variable projected �2 minimization. Consistent
with other works, including Ref. [27] (from which our
numerical data are derived), we find that a NLO analysis,
which includes the leading nonanalytic mass corrections,
returns values of the axial couplings which are significantly
smaller than expected from either phenomenology or lat-
tice QCD. However, the predicted values of the mass
relations, as well as the octet and decuplet masses them-
selves, are in good agreement with experiment. Further, we
have shown that the partial inclusion of NNLO mass
corrections returns values of the axial couplings D and F
which are consistent with expectations, albeit with large
error bars.
Unfortunately, the data set we have used in this work is

insufficient to precisely constrain all the LECs in the full
NNLO analysis. However, we have demonstrated that a
simultaneous extrapolation of both the hyperon axial cou-
plings as well as the 1=Nc mass relations would allow for a
rigorous exploration of the predictions and convergence of
SUð3Þ heavy baryon �PT. It is possible, perhaps even
likely, that the strange quark is too heavy for the SUð3Þ
theory to be convergent. This outcome, however, fails to
explain the successes of flavor SUð3Þ symmetry observed
in nature in the baryon sector. Thus, a detailed study of this
phenomena is warranted.
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TABLE V. Predicted baryon masses and mass relations from
fit in Table III. The predicted values are listed according to the
heaviest light-quark mass used. The m030 fit is consistent with
that of m020 and m040.

Mi Exp. [GeV] m010 [GeV] m020 [GeV] m040 [GeV]

MN 0.939 1.039(31) 1.023(12) 1.020(8)

M� 1.116 1.159(22) 1.145(9) 1.142(6)

M� 1.193 1.219(22) 1.231(9) 1.221(7)

M� 1.318 1.306(16) 1.309(7) 1.303(5)

M� 1.232 1.376(30) 1.454(12) 1.427(9)

M�� 1.385 1.461(28) 1.531(10) 1.516(8)

M�� 1.533 1.543(27) 1.600(10) 1.598(7)

M� 1.672 1.622(27) 1.663(9) 1.672(6)

M1 175 179(4) 176(2) 176(1)

M2 �9:2 �11ð1Þ �13:6ð4Þ �13:2ð3Þ
M3 �9:03 �6:6ð6Þ �7:5ð2Þ �7:2ð1Þ
M4 �0:21 �0:15ð1Þ �0:22ð1Þ �0:20ð1Þ
M5 �0:21 0.05(12) 0.07(5) �0:00ð4Þ
M6 �0:73 �0:12ð14Þ 0.17(7) 0.22(4)

M7 �0:092 0.01(3) 0.09(1) 0.109(9)

MA �0:024 0.00(1) 0.009(5) 0.001(4)

MB 0.0097 �0:003ð8Þ �0:001ð4Þ 0.004(3)

MC 0.0031 �0:000ð1Þ �0:0033ð5Þ �0:0039ð3Þ
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