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The bounds and presence of manifest right-handed currents in neutron beta decay are reviewed.

Assuming the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, the current experimental situation

imposes very stringent limits on the mixing angle,�0:000 77< � < 0:000 89, and on the mass eigenstate,

M2 ðGeVÞ 2 ð291:4; 439:9Þ, in contradiction with the established lower bound on M2.
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I. INTRODUCTION

The standard model (SM) has its predictive power in
neutron beta decay (n�d) afflicted by the fact that it has
two free parameters, namely, Vud and � ¼ g1=f1 (the ratio
of the two leading form factors at zero momentum trans-
fer). In order to make precise predictions, both parameters
should be determined experimentally with great precision.
The observables measured with the best precision in free
n�d are the transition rate R and the electron-neutron spin
asymmetry �e. In superallowed n�d Vud can be deter-
mined very precisely. At present, the problem is that mea-
surements of �e give two incompatible values. Despite this
difficulty it is still possible to obtain precise predictions for
the region of validity of the SM using the expressions of the
SM for R and �e (instead of their experimental values) and
the unitarity of the Cabibbo-Kobayashi-Maskawa matrix
along with the experimental values of Vus and Vud. This
analysis was carried out in Ref. [1], and the best prediction
of the SM for free n�d is given in Table II and depicted in
Fig. 2(a) of this reference.

In this paper we want to extend this approach to study
the bounds and the presence of right-handed currents [2]
(RHCs) in n�d. Two new free parameters are introduced,
the mixing angle � of WL and WR and the ratio of squares
of the masses of the corresponding mass eigenstates � ¼
ðM1=M2Þ2. In addition, we shall use the very precise cur-
rent measurement of Vud in nuclear physics, which as we
shall see plays a very important role.

We have assumed that the Cabibbo-Kobayashi-
Maskawa matrix is common toWL andWR. This is referred
to as manifest RHCs [2].

II. EXPRESSIONS AND EXPERIMENTAL
SITUATION

The SM predicts for the decay rate of n�d the expression

Rð10�3 s�1Þ ¼ jVudj2ð0:1897Þð1þ 3�2Þ
� ð1þ 0:0739� 0:0008Þ (1)

at the level of a precision of 10�4. The detailed derivation
of Eq. (1) is found in Ref. [3]. The current experimental
value of the neutron mean life [4] produces
Rexpð10�3 s�1Þ ¼ 1:129 05ð132Þ. The theoretical error in

R of 0.0008 is included (recently this theoretical bias has
been reduced [5,6]). In our analysis this theoretical error in
R is folded into its experimental error bar; �R ¼ 0:001 02
becomes �0

R ¼ 0:001 32 (in units of 10�3 s�1). However,
it must be stressed that our analysis is independent of Rexp

and its error bar �0
R and �e. This is true even though the

neutron mean life is not yet fully converged [7], and the
reason for this is that the analysis of Sec. III to obtain the
regions of validity of the SM and the SM with RHCs is
based on the expressions of R and �e instead of their
experimental values.
The advantage of the integrated observables �e, �e�,

and �� is that their definitions entail only kinematics and
do not assume any particular theoretical approach. The
electron-neutrino angular correlation coefficient is defined
as �e� ¼ 2½Nð�e� < 	=2Þ � Nð�e� > 	=2Þ�=½Nð�e� <
	=2Þ þ Nð�e� > 	=2Þ�, where Nð�e� < 	=2Þ [Nð�e� >
	=2Þ] is the number of all events with electron-neutrino
pairs emitted in directions that make an angle between
them smaller (greater) than 	=2. Similarly the electron-
neutron spin asymmetry coefficient is defined
as �e ¼ 2½Nð�e <	=2Þ�Nð�e >	=2Þ�=½Nð�e <	=2Þþ
Nð�e >	=2Þ�, where �e is the angle between the electron
direction and the polarization direction of the neutron. An
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analogous definition is used for the neutrino-neutron spin
asymmetry ��. Reference [8] provides the complete nu-
merically integrated formulas for the decay rate and angu-
lar coefficients.

At the 10�4 level the SM predicts for the electron
asymmetry the expression [9]

�e ¼ �0:000 21þ 0:2763�� 0:2772�2

0:1897þ 0:5692�2
: (2)

We have chosen a negative sign for � to conform with the
convention of [4]. The important remark here is that there
is no theoretical uncertainty in �e at this level of precision.
The reason for this is that the uncertainty introduced by the
model dependence of the contributions of Z0 to the radia-
tive corrections is common to the numerator and denomi-
nator of �e and cancels away at the 10�4 level.

The analysis that leads to Eq. (2) can be extended to the
neutrino and electron-neutrino asymmetry coefficients,

�� ¼ 0:0003� 0:3794�� 0:2772�2

0:1897þ 0:5692�2
; (3)

�e� ¼ 0:1382þ 0:000 54�� 0:1393�2

0:1897þ 0:5692�2
: (4)

It must be stressed that the angular coefficients are free
of a theoretical error at a level of precision of 10�4. This
accuracy is better than the current experimental precision
that modern experiments allow. The effects of strong in-
teractions, radiative corrections, and the recoil of the pro-
ton have been included [9].

It has remained customary to present experimental re-
sults for the old order zero angular coefficients after all the
corrections contained in �e, ��, and �e�, have been ap-
plied to the experimental analysis [4],

A0 ¼ � 2�ð�þ 1Þ
1þ 3�2

; (5)

B0 ¼ 2�ð�� 1Þ
1þ 3�2

; (6)

a0 ¼ 1� �2

1þ 3�2
: (7)

Also, besides presenting results for A0 it is customary
to report directly the value for � obtained from expression
(5). Thus, the experimental value of � is free of theoretical
uncertainties at the 10�4 level. We use this value of � in
Eq. (2) to estimate the corresponding value of �e and its
error bar. By following a similar procedure with Eqs. (6),
(3), (7), and (4), we obtain the numerical values of �� and
�e�.

From present experimental results [4] for the n�d order
zero angular coefficients, B0, a0, and A0, the corresponding
experimental values of the integrated angular coefficients
are �exp

� ¼ 0:9810ð30Þ, �exp
e� ¼ �0:0772ð29Þ, and the

two conflicting values for �e, �
exp
e ðAÞ ¼ �0:088 09ð52Þ

[10,11] and �
exp
e ðLYBÞ ¼ �0:084 89ð65Þ [12–14].

The expressions of the observables in free n�d of the
SM including the contributions of RHCs with a precision
of 10�4 can be expressed as

R ¼ ð1:0739ÞA�V
2
udð0:1897þ ð0:5692ÞB��

2Þ; (8)

�e ¼ D�ð�0:000 21� ð0:2763ÞF��� ð0:2772ÞE��
2Þ

A�ð0:1897þ ð0:5692ÞB��
2Þ ;

(9)

�� ¼ D�ð0:0003� ð0:3794ÞF��þ ð0:3795ÞE��
2Þ

A�ð0:1897þ ð0:5692ÞB��
2Þ ;

(10)

�e� ¼ 0:1382þ ð0:000 54ÞC��� ð0:1393ÞB��
2

0:1897þ ð0:5692ÞB��
2

: (11)

Here [2], A� . . .F� contain the corrections due to RHCs.
A� ¼ 2ð
2

AV þ 1Þ=ð
2
AA þ 2
2

AV þ 1Þ, B� ¼ ð
2
AA þ


2
AVÞ=ð
2

AV þ 1Þ, C� ¼ ð
AA þ 
2
AVÞ=ð
2

AV þ 1Þ, D� ¼
�4
AV=ð
2

AA þ 2
2
AV þ 1Þ, E� ¼ 
AA, F� ¼

ð
AA þ 1Þ=2, where 
AA ¼ ð�þ �2Þ=ð��2 þ 1Þ, 
AV ¼
�ð1� �Þ�=ð��2 þ 1Þ, with � ¼ ð1þ tan�Þ=ð1� tan�Þ.
The numerical coefficients remain the same as in
Eqs. (1)–(4).

III. DETERMINATION OF THE REGIONS OF
VALIDITY

The region where the SM and the SM with RHCs
(SMR and RHCR, respectively) remain valid at a
90% CL are determined by forming a �2 function with
the sum of six terms, ððRexp � RÞ=�0

RÞ2, ðð�exp
e �

�eÞ=��eðLYBÞ Þ2, ðð�exp
� � ��Þ=���

Þ2, ðð�exp
e� � �e�Þ=��e�

Þ2,
ððVexp

us � VusA
1=2
� Þ=�Vus

Þ2, and ððVexp
ub � VubA

1=2
� Þ=�Vub

Þ2,
where Vub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
ud � V2

us

q

, and then minimizing the

�2 at a lattice of points ð�exp
e ; RexpÞ within a rectangle

that covers �3�0
R around Rexp and a range for �

exp
e cover-

ing �exp
e ðAÞ and �exp

e ðLYBÞ. The values of �0
R and ��eðLYBÞ

can also be reduced from their currents values of
0:001 32� 10�3 s�1 and 0.000 65 to one-tenth of these
values which run into the theoretical error bars of 10�4.
The free parameters varied at each ð�exp

e ; RexpÞ point are �,
Vud, and Vus for the SMR and �, Vud, Vus, � , and � for the
RHCR. In addition, we shall add a seventh constraint

ððVexp
ud ðNPÞ � VudA

1=2
� Þ=�Vud

Þ2 to �2 which incorporates

the experimental nuclear physics (NP) value of
Vexp
ud ðNPÞ ¼ 0:974 18ð27Þ.
The numerical results are displayed in Table I without

the VNP
ud constraint and in Table II with the VNP

ud constraint

included. The corresponding 90% CL SMR and RHCR are
depicted in Figs. 1 and 2.
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IV. DISCUSSION

In Table I the constraint of VNP
ud is not enforced, while in

Table II this constraint is operative. In both tables in each
entry the upper numbers obey the constraint of�exp

� and the
lower ones do not obey it. The last two columns give the
90% CL bounds on the two free parameters of manifest
RHCs.

The �2 of the SM predictions in both tables show a
discrepancy of 2.2 standard deviation. One can see that
such a discrepancy is saturated by �2ð��Þ. The presence or

absence of the VNP
ud constraint plays no role in this discrep-

ancy. When RHCs are allowed in, one can appreciate the
relevance of VNP

ud . The bounds on � are reduced and made

very uniform when VNP
ud constrains �2. The ranges for � in

Table I are negative at the top five entries and only in the
last two at the bottom � ¼ 0 is allowed. The length �� of
these ranges is around 0.006 60. In contrast, in Table II the
ranges for � are quite symmetric around � ¼ 0 and have
�� of 0.001 66, approximately one-fourth of the length
when VNP

ud is not operative. One can also see in the lower

numbers that whether �
exp
� is enforced or not makes no

TABLE I. The minimum of �2, its corresponding value of �e, the prediction for ��, and the partial contribution from �� to �2 for
seven values of Rexp (in units of 10�3 sec�1) without the VNP

ud constraint. The upper numbers obey the constraint of �
exp
� and the lower

ones do not obey it. The last two columns give the 90% CL bounds on the two free parameters of manifest RHCs, � and �, respectively.

SM RHCs

Value Prediction Value Prediction Parameters

R �e �2 �� �2ð��Þ �e �2 �� �2ð��Þ � � ¼ ðM1=M2Þ2
1.133 01 �0:087 72 5.32 0.987 59 4.82 �0:084 97 10�5 0.981 00 10�7 ð�0:009 24;�0:002 63Þ (0.0384, 0.0812)

�0:087 72 0.50 �0:084 97 10�6 ð�0:009 53; 0:008 84Þ ð�0:2560; 0:1662Þ
1.131 69 �0:087 52 5.33 0.987 65 4.92 �0:084 97 10�4 0.981 00 10�7 ð�0:008 56;�0:001 95Þ (0.0380, 0.0808)

�0:087 49 0.41 �0:084 97 10�5 ð�0:008 90; 0:009 53Þ ð�0:2624; 0:1645Þ
1.130 37 �0:087 26 5.35 0.987 72 5.02 �0:084 92 10�5 0.981 00 10�7 ð�0:008 01;�0:001 40Þ (0.0378, 0.0804)

�0:087 23 0.33 �0:084 92 10�7 ð�0:008 39; 0:010 22Þ ð�0:2701; 0:1636Þ
1.129 05 �0:087 00 5.38 0.987 79 5.12 �0:084 87 10�5 0.981 00 10�7 ð�0:007 46;�0:000 84Þ (0.0377, 0.0802)

�0:087 00 0.25 �0:084 87 10�6 ð�0:007 88; 0:010 95Þ ð�0:2782; 0:1626Þ
1.127 73 �0:086 79 5.42 0.987 86 5.23 �0:084 83 10�5 0.981 00 10�8 ð�0:006 91;�0:000 29Þ (0.0375, 0.0799)

�0:086 76 0.19 �0:084 83 10�6 ð�0:007 38; 0:011 68Þ ð�0:2867; 0:1617Þ
1.126 41 �0:086 53 5.47 0.987 93 5.33 �0:084 79 10�5 0.981 00 10�7 ð�0:006 33; 0:000 29Þ (0.0372, 0.0796)

�0:086 50 0.14 �0:084 79 10�5 ð�0:006 86; 0:012 51Þ ð�0:2956; 0:1607Þ
1.125 09 �0:086 27 5.53 0.987 99 5.44 �0:084 73 10�6 0.981 00 10�9 ð�0:005 81; 0:000 82Þ (0.0371, 0.0794)

�0:086 27 0.09 �0:084 73 10�6 ð�0:006 38; 0:013 29Þ ð�0:3055; 0:1599Þ

TABLE II. The minimum of �2, its corresponding value of �e, the prediction for ��, and the partial contribution from �� to �2 for
seven values of Rexp (in units of 10�3 sec�1) with the VNP

ud constraint. The upper numbers obey the constraint of �
exp
� and the lower

ones do not obey it. The last two columns give the 90% CL bounds on the two free parameters of manifest RHCs, � and �, respectively.

SM RHCs

Value Prediction Value Prediction Parameters

R �e �2 �� �2ð��Þ �e �2 �� �2ð��Þ � � ¼ ðM1=M2Þ2
1.133 01 �0:087 78 5.34 0.987 58 4.81 �0:087 17 0.51 0.981 00 10�8 ð�0:000 785; 0:000 890Þ (0.0318, 0.0754)

�0:087 75 0.52 �0:087 17 0.51 ð�0:000 769; 0:000 892Þ ð�0:1011; 0:0997Þ
1.131 69 �0:087 52 5.35 0.987 65 4.91 �0:086 94 0.42 0.981 04 10�4 ð�0:000 784; 0:000 891Þ (0.0320, 0.0755)

�0:087 52 0.43 �0:086 94 0.42 ð�0:000 768; 0:000 892Þ ð�0:1007; 0:0992Þ
1.130 37 �0:087 26 5.36 0.987 72 5.01 �0:086 68 0.34 0.981 02 10�5 ð�0:000 784; 0:000 891Þ (0.0327, 0.0758)

�0:087 26 0.35 �0:086 68 0.34 ð�0:000 784; 0:000 893Þ ð�0:1014; 0:1000Þ
1.129 05 �0:087 05 5.40 0.987 78 5.11 �0:086 42 0.26 0.981 00 10�7 ð�0:000 768; 0:000 891Þ (0.0334, 0.0761)

�0:087 02 0.27 �0:086 42 0.26 ð�0:000 768; 0:000 894Þ ð�0:1020; 0:1005Þ
1.127 73 �0:086 79 5.44 0.987 85 5.22 �0:086 19 0.20 0.981 02 10�5 ð�0:000 767; 0:000 892Þ (0.0337, 0.0762)

�0:086 79 0.21 �0:086 19 0.20 ð�0:000 767; 0:000 894Þ ð�0:1019; 0:1004Þ
1.126 41 �0:086 53 5.49 0.987 92 5.32 �0:085 96 0.15 0.981 04 10�4 ð�0:000 766; 0:000 893Þ (0.0341, 0.0764)

�0:086 53 0.15 �0:085 96 0.14 ð�0:000 766; 0:000 895Þ ð�0:1018; 0:1003Þ
1.125 09 �0:086 32 5.55 0.987 99 5.43 �0:085 70 0.10 0.981 02 10�5 ð�0:000 766; 0:000 894Þ (0.0347, 0.0767)

�0:086 29 0.11 �0:085 70 0.10 ð�0:000 766; 0:000 895Þ ð�0:1024; 0:1009Þ
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difference. One can, then, conclude that the bounds of � ,
typically of

� 2 ð�0:000 77; 0:000 89Þ (12)

are imposed solely by VNP
ud , Vus, and the unitarity of the

Cabibbo-Kobayashi-Maskawa matrix. These bounds may
be compared with previous ones. In Ref. [15] one had � 2

ð�0:000 60; 0:002 80Þ with a�� ¼ 0:0340. The range (12)
is more symmetric and has half the length.
The bounds on � are practically independent of VNP

ud , but

they are very dependent on �
exp
� as can be seen by compar-

ing the upper and the lower numbers. Actually, the upper
bound on �, at around 0.076, is also almost independent of
�exp
� . It is the lower bound on � that is very sensitive on

�exp
� . In Table II it varies from about � � 0:033> 0 to

about � � �0:1020< 0, according to whether �
exp
� is

operative or not. Of course, a negative � is meaningless
and the actual lower bound should be � ¼ 0, which makes
the range for � an upper bound only. One can conclude that
�exp
� imposes the 90% CL range of

� 2 ð0:0334; 0:0761Þ (13)

upon �.
At this point one should translate (13) into a range for

M2. One has

M2 ðGeVÞ 2 ð291:4; 439:9Þ: (14)

Range (14) shows vividly how effective �� is for setting an
upper bound on M2. It also means that manifest RHCs are
detected in n�d. However, one already knows that lower
bounds on M2 have been established. At present one may
accept as a conservative lower bound M2 > 715 GeV [4].
This is in clear contradiction with range (14).
In order to better understand this situation we have

prepared another table, Table III. We are interested in
appreciating what refined measurements of �

exp
� may pro-

duce in, hopefully, the near future. We assume that the
error bar ���

is reduced to one-tenth of its current value.

That is, we assume���
¼ 0:000 30 and we vary the central

value �exp
� from 0.98 100 to 0.987 60. We keep Rexp,

V
exp
ud ðNPÞ, and Vexp

us at their current central values and error

A LYB

0.090 0.088 0.086 0.084 0.082 0.080
1.12509
1.12641
1.12773
1.12905
1.13037
1.13169
1.13301

1.12509
1.12641
1.12773
1.12905
1.13037
1.13169
1.13301

e

R
10

3
se

c
1

FIG. 1 (color online). The 90% CL SMR (solid lines) and
RHCR (dashed lines) without the VNP

ud constraint included. The

90% CL region around the current central values of �
exp
e and

Rexp are also displayed.

A LYB

0.090 0.088 0.086 0.084 0.082 0.080
1.12509
1.12641
1.12773
1.12905
1.13037
1.13169
1.13301

1.12509
1.12641
1.12773
1.12905
1.13037
1.13169
1.13301

R
10

3
se

c
1

FIG. 2 (color online). The 90% CL SMR (solid lines) and
RHCR (dashed lines) with the VNP

ud constraint included. The

90% CL region around the current central values of �
exp
e and

Rexp are also displayed.

TABLE III. The minimum of �2, its corresponding value of �e, the prediction for ��, and the partial contribution from �� to �
2 for

several values of �
exp
� with the error bar ���

reduced to one-tenth of its current value. Rexp, V
exp
ud ðNPÞ, and Vexp

us are kept at their current

central values and error bars. The last three columns give the 90% CL bounds on the two free parameters of manifest RHCs, � and �,
and the corresponding bounds on M2, respectively.

SM RHCs

Value Prediction Value Prediction Parameters Bounds

�� �e �2 �� �2ð��Þ �e �2 �� �2ð��Þ � � ¼ ðM1=M2Þ2 M2 ðGeVÞ
0.9810 �0:088 40 482.99 0.987 40 454.85 �0:086 42 0.26 0.9810 10�9 ð�0:000 768; 0:000 891Þ (0.0564, 0.0609) (325.8, 338.5)

0.9816 �0:088 27 401.45 0.987 43 378.08 �0:086 48 0.26 0.9816 10�8 ð�0:000 767; 0:000 891Þ (0.0536, 0.0583) (332.9, 347.2)

0.9822 �0:088 17 327.38 0.987 47 308.23 �0:086 53 0.26 0.9822 10�8 ð�0:000 767; 0:000 890Þ (0.0507, 0.0556) (340.9, 357.0)

0.9828 �0:088 04 260.98 0.987 50 245.69 �0:086 58 0.26 0.9828 10�7 ð�0:000 766; 0:000 889Þ (0.0476, 0.0528) (349.8, 368.5)

0.9834 �0:087 91 202.05 0.987 54 190.19 �0:086 63 0.26 0.9834 10�7 ð�0:000 766; 0:000 889Þ (0.0443, 0.0498) (360.2, 381.9)

0.9840 �0:087 80 150.65 0.987 57 141.71 �0:086 68 0.26 0.9840 10�7 ð�0:000 765; 0:000 888Þ (0.0407, 0.0467) (372.0, 398.5)

0.9846 �0:087 67 106.80 0.987 61 100.40 �0:086 74 0.26 0.9846 10�7 ð�0:000 765; 0:000 887Þ (0.0368, 0.0433) (386.3, 419.1)

0.9852 �0:087 54 70.49 0.987 64 66.20 �0:086 79 0.26 0.9852 10�7 ð�0:000 764; 0:000 887Þ (0.0324, 0.0396) (404.0, 446.6)

0.9858 �0:087 41 41.72 0.987 68 39.09 �0:086 84 0.26 0.9858 10�7 ð�0:000 764; 0:000 886Þ (0.0273, 0.0355) (426.7, 486.5)

0.9864 �0:087 31 20.49 0.987 71 19.05 �0:086 89 0.26 0.9864 10�7 ð�0:000 763; 0:000 885Þ (0.0211, 0.0310) (456.6, 553.4)

0.9870 �0:087 18 6.80 0.987 74 6.15 �0:086 94 0.26 0.9870 10�7 ð�0:000 762; 0:000 868Þ (0.0119, 0.0256) (502.4, 736.9)

0.9876 �0:087 05 0.65 0.987 78 0.35 �0:087 02 0.26 0.9876 10�7 ð�0:000 758; 0:000 884Þ ð�0:0187; 0:0187Þ >587:9
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bars. The results are displayed in Table III, in steps of
0.000 60.

As can be seen in the last column of Table III, at the
90% CL only when the experimental value of �� is greater
than 0.9870 the upper bound obtained for M2 is not ruled
out by its present established lower bound. For �exp

� �
0:9876 the central value for � is compatible with zero.
One can conclude that a clean signal of manifest RHCs can
be obtained only if future measurements of �

exp
� find it in

the range

�exp
� 2 ð0:9870; 0:9876Þ: (15)

V. CONCLUSIONS

The current experimental situation in n�d and in the
lower bounds on M2 leads one to conclude that manifest
RHCs run into a contradiction, which leads one to con-
clude that manifest RHCs are strongly eliminated as a

possibility of physics beyond the SM. The experimental
quantity which leads to this conclusion is the current value
of ��.
However, future refined experiments may correct the

current situation provided two conditions are met: (1) ��

is found within range (15) and (2) �e is found in the future
in the range �exp

e 2 ð�0:085 70;�0:087 17Þ of Table II. If
either of these conditions fail, then manifest RHCs will be
strongly eliminated. Of course, other forms of new physics
could be detected by ��, as can be appreciated by the
values of �2 in the SM case in Table III.
As a final remark, it is not idle to emphasize the im-

portance of refined very precise measurements of the ob-
servables in n�d.
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