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In the standard model the two-body charmless hadronic Bc meson decays can occur via annihilation

diagrams only. In this work, we studied the Bc ! PP, PV=VP, VV decays by employing the perturbative

QCD (pQCD) factorization approach. From our calculations, we find that (a) the pQCD predictions for the

branching ratios of the considered Bc decays are in the range of 10�6 to 10�8; (b) for Bc ! PV=VP, VV

decays, the branching ratios of �S ¼ 0 decays are much larger than those of �S ¼ 1 because the different

Cabibbo-Kobayashi-Maskawa (CKM) factors are involved; (c) analogous to B ! K�ð0Þ decays, we find

BrðBc ! Kþ�0Þ � 10� BrðBc ! Kþ�Þ, which can be understood by the destructive and constructive

interference between the �q and �s contribution to the Bc ! Kþ� and Bc ! Kþ�0 decay; (d) the

longitudinal polarization fractions of Bc ! VV decays are in the range of 86%–95% and play the

dominant role; and (e) there is no CP-violating asymmetries for the considered Bc decays because only

one type tree operator is involved.
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I. INTRODUCTION

In 1998, a new stage of Bc physics began because of the
first observation of the meson Bc at Tevatron [1]. For Bc

meson, one can study the two heavy flavors b and c in a
meson simultaneously. From an experimental point of
view, more detailed information about Bc meson can be
obtained at the Large Hadron Collider (LHC) experiment.
The LHC is now running, where the Bc meson could be
produced abundantly. The Bc meson decays may provide
windows for testing the predictions of the standard model
(SM) and can shed light on new physics (NP) scenarios
beyond the SM.

From a theoretical point of view [2], the nonleptonic
decays of Bc meson are the most complicated decays due
to its heavy-heavy nature and the participation of strong
interaction, which complicate the extraction of parameters
in SM, but they also provide great opportunities to study
the perturbative and nonperturbative QCD, final state in-
teractions, etc. The nonleptonic Bc weak decays have been
widely studied, for example, in Refs. [2–32] by employing
the naive factorization approach (NFA) [33], the QCD
factorization approach (QCDF) [34], the perturbative
QCD (pQCD) approach [35–37] and other approaches
and/or methods.

In this paper we focus on the two-body nonleptonic
charmless decays Bc ! PP, PV=VP, VV (here P and V
stand for the light pseudoscalar and vector mesons), which
can occur through the weak annihilation diagrams only.

The size of annihilation contributions is an important issue
in B physics. Indeed, the two-body charmless Bc decays
considered here are rather different from those Bc !
J=cPðVÞ decays where the initial c quark behaves as a
spectator.
Recently, the two-body nonleptonic charmless

Bc ! M2M3
1 decays have been studied by using the

SUð3Þ flavor symmetry or by employing the QCD factori-
zation approach [38]. The authors in Ref. [38] provided
two different estimates for nonleptonic charmless Bc de-
cays. But their predictions for the branching ratios of Bc !
�Kþ, �K�0Kþ decays in the QCDF are much smaller (a
factor of 10) than those obtained by using the SUð3Þ flavor
symmetry. So large discrepancies among the theoretical
predictions for the branching ratios indicate clearly that it
is very necessary to make more studies for these kinds of
Bc decays by employing different approaches, in order to
understand these decays better and provide the theoretical
support for the related experimental studies.
In this paper, we will calculate the branching ratios and

the polarization fractions of 30 Bc ! PP, PV=VP, VV
decays by employing the low energy effective
Hamiltonian [39] and the pQCD factorization approach.
By keeping the transverse momentum kT of the quarks, the
pQCD approach is free of end-point singularity and the
Sudakov formalism makes it more self-consistent. It is
worth mentioning that one can do the quantitative calcu-
lations of the annihilation type diagrams in the pQCD
approach. The importance of annihilation contributions
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1For the sake of simplicity, we will use M2 and M3 to denote
the two final state light mesons, respectively, unless otherwise
stated.
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has already been tested in the previous predictions of
branching ratios of pure annihilation B ! DsK decays
[40], direct CP asymmetries of B0 ! �þ��, Kþ�� de-
cays [35,36,41], and in the explanation of B ! �K� po-
larization problem [42,43], which indicate that the pQCD
approach is a reliable method to deal with annihilation
diagrams.

The paper is organized as follows. In Sec. II, we present
the formalism and wave functions of the considered Bc

meson decays. Then we perform the perturbative calcula-
tions for considered decay channels with pQCD approach
in Sec. III. The numerical results and phenomenological
analysis are given in Sec. IV. Finally, Sec. V contains the
main conclusions and a short summary.

II. FORMALISM AND WAVE FUNCTIONS

A. Formalism

Since the b quark is rather heavy, we work in the frame
with the Bc meson at rest, i.e., with the Bc meson momen-

tum P1 ¼ ðmBc
=

ffiffiffi
2

p Þð1; 1; 0TÞ in the light-cone coordinates.
For the nonleptonic charmless Bc ! M2M3 decays, as-
suming that the M2 (M3) meson moves in the plus (minus)
z direction carrying the momentum P2 (P3) and the polar-
ization vector �2 (�3) (ifM2ð3Þ are the vector mesons). Then

the two final state meson momenta can be written as

P2 ¼
mBcffiffiffi
2

p ð1� r23; r
2
2; 0TÞ; P3 ¼

mBcffiffiffi
2

p ðr23; 1� r22; 0TÞ;
(1)

respectively, where r2 ¼ mM2
=mB, and r3 ¼ mM3

=mB.

When M2, M3 are the vector mesons, the longitudinal
polarization vectors, �L2 and �L3 , can be given by

�L2 ¼ mBcffiffiffi
2

p
mM2

ð1� r23;�r22; 0TÞ;

�L3 ¼ mBcffiffiffi
2

p
mM3

ð�r23; 1� r22; 0TÞ:
(2)

The transverse ones are parametrized as �T2 ¼ ð0; 0; 1TÞ,
and �T3 ¼ ð0; 0; 1TÞ. Putting the (light-) quark momenta in

Bc, M2 and M3 mesons as k1, k2, and k3, respectively, we
can choose

k1 ¼ ðx1Pþ
1 ; 0;k1TÞ; k2 ¼ ðx2Pþ

2 ; 0;k2TÞ;
k3 ¼ ð0; x3P�

3 ;k3TÞ:
(3)

Then, for Bc ! M2M3 decays, the integration over k
�
1 , k

�
2 ,

and kþ3 will conceptually lead to the decay amplitudes in

the pQCD approach,

AðBc ! M2M3Þ �
Z

dx1dx2dx3b1db1b2db2b3db3

� Tr½CðtÞ�Bc
ðx1; b1Þ�M2

ðx2; b2Þ
��M3

ðx3; b3ÞHðxi; bi; tÞStðxiÞ
� e�SðtÞ�; (4)

where bi is the conjugate space coordinate of kiT , and t is
the largest energy scale in function Hðxi; bi; tÞ. The large
logarithms lnðmW=tÞ are included in the Wilson coeffi-
cients CðtÞ. The large double logarithms (ln2xi) are
summed by the threshold resummation [44], and they
lead to StðxiÞ which smears the end-point singularities on

xi. The last term, e�SðtÞ, is the Sudakov form factor which
suppresses the soft dynamics effectively [45]. Thus it
makes the perturbative calculation of the hard part H
applicable at intermediate scale, i.e., mBc

scale. We will

calculate analytically the function Hðxi; bi; tÞ for the con-
sidered decays at leading order (LO) in �s expansion and
give the convoluted amplitudes in next section.
For these considered decays, the related weak effective

Hamiltonian Heff [39] can be written as

Heff ¼ GFffiffiffi
2

p ½V�
cbVuDðC1ð�ÞO1ð�Þ þ C2ð�ÞO2ð�ÞÞ�; (5)

with the single tree operators

O1 ¼ �u��
�ð1� �5ÞD� �c��

�ð1� �5Þb�;
O2 ¼ �u��

�ð1� �5ÞD� �c��
�ð1� �5Þb�;

(6)

where Vcb, VuD are the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements, D denotes the light down quark
d or s and Cið�Þ are Wilson coefficients at the renormal-
ization scale �. For the Wilson coefficients C1;2ð�Þ, we
will also use the LO expressions, although the next-to-
leading order calculations already exist in the literature
[39]. This is the consistent way to cancel the explicit �
dependence in the theoretical formulas. For the renormal-
ization group evolution of the Wilson coefficients from
higher scale to lower scale, we use the formulas as given
in Ref. [36] directly.

B. Wave functions

In order to calculate the decay amplitude, we should
choose the proper wave functions of the heavy Bc and light
mesons. In principle there are two Lorentz structures in the
Bu;d;s or Bc meson wave function. One should consider

both of them in calculations. However, since the contribu-
tion induced by one Lorentz structure is numerically small
[46,47] and can be neglected approximately, we only con-
sider the contribution from the first Lorentz structure

�Bc
ðxÞ ¼ iffiffiffiffiffiffiffiffiffi

2Nc

p ½ðP6 þMBc
Þ�5�Bc

ðxÞ���: (7)

Since Bc meson consists of two heavy quarks and mBc
’

mb þmc, the distribution amplitude �Bc
would be close to

	ðx�mc=mBc
Þ in the nonrelativistic limit. We therefore

adopt the nonrelativistic approximation form of �Bc
as

[19,28]

�Bc
ðxÞ ¼ fBc

2
ffiffiffiffiffiffiffiffiffi
2Nc

p 	ðx�mc=mBc
Þ; (8)
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where fBc
and Nc are the decay constant of Bc meson and

the color number, respectively.
For the pseudoscalar meson (P), the wave function can

generally be defined as

�PðxÞ ¼ iffiffiffiffiffiffiffiffiffi
2Nc

p �5fP6 �A
PðxÞ þmP

0�
P
PðxÞ

þmP
0 ðn6 v6 � 1Þ�T

PðxÞg��; (9)

where �A;P;T
P and mP

0 are the distribution amplitudes and

chiral scale parameter of the pseudoscalar mesons, respec-
tively, while x denotes the momentum fraction carried by
quark in the meson, and n ¼ ð1; 0; 0TÞ and v ¼ ð0; 1; 0TÞ
are dimensionless lightlike unit vectors.

For the wave functions of vector mesons, one longitudi-
nal (L) and two transverse (T) polarizations are involved,
and can be written as

�L
VðxÞ ¼

1ffiffiffiffiffiffiffiffiffi
2Nc

p fMV�6 �LV �VðxÞ þ �6 �LV P6 �t
VðxÞ

þMV�
s
VðxÞg��; (10)

�T
VðxÞ ¼

1ffiffiffiffiffiffiffiffiffi
2Nc

p fMV�6 �TV �v
VðxÞ þ �6 �TV P6 �T

VðxÞ

þMVi��
���5�
���
T n�v��a

VðxÞg��; (11)

where �LðTÞV denotes the longitudinal (transverse) polariza-
tion vector of vector mesons, satisfying P � � ¼ 0 in each
polarization. We here adopt the convention �0123 ¼ 1 for
the Levi-Civita tensor ��
��. For the distribution ampli-

tudes of pseudoscalar �A;P;T
P , and longitudinal and trans-

verse polarization,�;t;s
V and�v;T;a

V , which will be presented
in Appendix A.

III. PERTURBATIVE CALCULATIONS IN PQCD

From the effective Hamiltonian (5), there are four types
of diagrams contributing to the Bc ! M2M3 decays as
illustrated in Fig. 1, which result in the Feynman decay

amplitudes FM2M3

fa andMM2M3
na , where the subscripts fa and

na are the abbreviations of factorizable and nonfactoriz-
able annihilation contributions, respectively. Operators
O1;2 are ðV � AÞðV � AÞ currents, and we therefore can

combine all contributions from these diagrams and obtain
the total decay amplitude as

A ðBc ! M2M3Þ ¼ V�
cbVuDffBc

F
M2M3

fa a1 þM
M2M3
na C1g;

(12)

where a1 ¼ C1=3þ C2. In the next three subsections we

will give the explicit expressions of FM2M3

fa ,MM2M3
na , and the

decay amplitude AðBc ! M2M3Þ for Bc ! M2M3 de-
cays: including eight Bc ! PP, fifteen Bc ! PV or Bc !
VP, and seven Bc ! VV decay modes.

A. Bc ! PP decays

In this section, wewill present the factorization formulas
for eight nonleptonic charmless Bc ! PP decays. From
the first two diagrams of Fig. 1, i.e., (a) and (b), by
perturbative QCD calculations, we obtain the decay am-
plitude for factorizable annihilation contributions as fol-
lows:

FPP
fa ¼ �8�CFm

2
Bc

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3

� fhfað1� x3; x2; b3; b2ÞEfaðtaÞ½x2�A
2 ðx2Þ�A

3 ðx3Þ
þ 2r20r

3
0�

P
3 ðx3Þððx2 þ 1Þ�P

2 ðx2Þ þ ðx2 � 1Þ�T
2 ðx2ÞÞ�

þ hfaðx2; 1� x3; b2; b3ÞEfaðtbÞ
� ½ðx3 � 1Þ�A

2 ðx2Þ�A
3 ðx3Þ

þ 2r20r
3
0�

P
2 ðx2Þððx3 � 2Þ�P

3 ðx3Þ � x3�
T
3 ðx3ÞÞ�g;

(13)

where �2ð3Þ corresponds to the distribution amplitudes of

mesons M2ð3Þ, r
2ð3Þ
0 ¼ mM2ðM3Þ

0 =mBc
, and CF ¼ 4=3 is a

color factor. In Eq. (13), the terms proportional to ðr2ð3Þ0 Þ2
have been neglected because they are small indeed,

maxðr2ð3Þ0 Þ2 � 7%. The function hfa, the scales ti and

EfaðtÞ can be found in Appendix B.

For the nonfactorizable diagrams (c) and (d) in Fig. 1, all
three meson wave functions are involved. The integration
of b3 can be performed using 	 function 	ðb3 � b2Þ, leav-
ing only integration of b1 and b2. The corresponding decay
amplitude is

FIG. 1. Typical Feynman diagrams for two-body nonleptonic charmless Bc decays.
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MPP
na ¼ � 16

ffiffiffi
6

p
3

�CFm
2
Bc

Z 1

0
dx2dx3

Z 1

0
b1db1b2db2fhcnaðx2; x3; b1; b2ÞEnaðtcÞ½ðrc � x3 þ 1Þ�A

2 ðx2Þ�A
3 ðx3Þ

þ r20r
3
0ð�P

2 ðx2Þðð3rc þ x2 � x3 þ 1Þ�P
3 ðx3Þ � ðrc � x2 � x3 þ 1Þ�T

3 ðx3ÞÞ þ�T
2 ðx2Þððrc � x2 � x3 þ 1Þ�P

3 ðx3Þ
þ ðrc � x2 þ x3 � 1Þ�T

3 ðx3ÞÞÞ� � EnaðtdÞ½ðrb þ rc þ x2 � 1Þ�A
2 ðx2Þ�A

3 ðx3Þ
þ r20r

3
0ð�P

2 ðx2Þðð4rb þ rc þ x2 � x3 � 1Þ�P
3 ðx3Þ � ðrc þ x2 þ x3 � 1Þ�T

3 ðx3ÞÞ
þ�T

2 ðx2Þððrc þ x2 þ x3 � 1Þ�P
3 ðx3Þ � ðrc þ x2 � x3 � 1Þ�T

3 ðx3ÞÞÞ�hdnaðx2; x3; b1; b2Þg; (14)

where rbðcÞ ¼ mbðcÞ=mBc
.

For the �� �0 system, there exist two popular mixing
bases: the octet-singlet basis and the quark-flavor basis
[48,49]. Here we use the quark-flavor basis [48] and define

�q ¼ ðu �uþ d �dÞ= ffiffiffi
2

p
; �s ¼ s�s: (15)

The physical states � and �0 are related to �q and �s

through a single mixing angle �,

�
�0

� �
¼ Uð�Þ �q

�s

� �
¼ cos� � sin�

sin� cos�

� �
�q

�s

� �
: (16)

We assume that the distribution amplitudes of �q and �s

are the same as the distribution amplitudes of �, except for
the different decay constants and the chiral scale parame-
ters. The three input parameters fq, fs, and� in the quark-

flavor basis have been extracted from various related ex-
periments [48,49]

fq ¼ ð1:07� 0:02Þf�; fs ¼ ð1:34� 0:06Þf�;
� ¼ 39:3	 � 1:0	:

(17)

The chiral enhancement factors are chosen as

m
�q

0 
 m2
qq

2mq

¼ 1

2mq

�
m2

�cos
2�þm2

�0sin2�

�
ffiffiffi
2

p
fs

fq
ðm2

�0 �m2
�Þ cos� sin�

�
; (18)

m�s

0 
 m2
ss

2ms

¼ 1

2ms

�
m2

�0cos2�þm2
�sin

2�

� fqffiffiffi
2

p
fs

ðm2
�0 �m2

�Þ cos� sin�

�
: (19)

In the numerical calculations, we will use these mixing
parameters as inputs. It is worth mentioning that the effects
of a possible gluonic component of the �0 meson will not
be considered here since it is small in size [50–52].

Based on Eqs. (12)–(14), we can write down the total
decay amplitudes for eight Bc ! PP decays easily,

AðBc ! �þ�0Þ ¼ V�
cbVudf½fBc

F
�þ�0

�uu

fa a1 þM
�þ�0

�uu
na C1�

� ½fBc
F
�0

�dd
�þ

fa a1 þM
�0

�dd
�þ

na C1�g ¼ 0;

(20)

AðBc ! �þ�Þ ¼ V�
cbVudf½fBc

F�þ� �uu

fa a1 þM�þ� �uu
na C1�

þ ½fBc
F
� �dd�

þ
fa a1 þM

� �dd�
þ

na C1�g cos�;

(21)

AðBc ! �þ�0Þ ¼ V�
cbVudf½fBc

F
�þ� �uu

fa a1 þM
�þ� �uu
na C1�

þ ½fBc
F
� �dd�

þ
fa a1 þM

� �dd�
þ

na C1�g sin�;

(22)

A ðBc ! �K0KþÞ ¼ V�
cbVudffBc

F
�K0Kþ
fa a1 þM

�K0Kþ
na C1g;

(23)

A ðBc ! Kþ�0Þ ¼ V�
cbVusffBc

FKþ�0

fa a1 þMKþ�0

na C1g;
(24)

A ðBc ! K0�þÞ ¼ ffiffiffi
2

p
AðBc ! Kþ�0Þ; (25)

AðBc!Kþ�Þ¼V�
cbVusffBc

½FKþ�q

fa cos��F�sK
þ

fa sin��a1
þ½MKþ�q

na cos��M
�sK

þ
na sin��C1g;

(26)

AðBc!Kþ�0Þ¼V�
cbVusffBc

½FKþ�q

fa sin�þF�sK
þ

fa cos��a1
þ½MKþ�q

na sin�þM
�sK

þ
na cos��C1g: (27)

B. Bc ! PV, VP decays

By following the same procedure as stated in the above
subsection, we can obtain the analytic decay amplitudes for
Bc ! PV, VP decays,

XIN LIU, ZHEN-JUN XIAO, AND CAI-DIAN LÜ PHYSICAL REVIEW D 81, 014022 (2010)
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FPV
fa ¼ 8�CFm

2
Bc

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3fhfað1� x3; x2; b3; b2ÞEfaðtaÞ½x2�A

2 ðx2Þ�3ðx3Þ
� 2r20r3�

s
3ðx3Þððx2 þ 1Þ�P

2 ðx2Þ þ ðx2 � 1Þ�T
2 ðx2ÞÞ� þ hfaðx2; 1� x3; b2; b3ÞEfaðtbÞ½ðx3 � 1Þ�A

2 ðx2Þ�3ðx3Þ
� 2r20r3�

P
2 ðx2Þððx3 � 2Þ�s

3ðx3Þ � x3�
t
3ðx3ÞÞ�g; (28)

MPV
na ¼ 16

ffiffiffi
6

p
3

�CFm
2
Bc

Z 1

0
dx2dx3

Z 1

0
b1db1b2db2fhcnaðx2; x3; b1; b2ÞEnaðtcÞ½ðrc � x3 þ 1Þ�A

2 ðx2Þ�3ðx3Þ
� r20r3ð�P

2 ðx2Þðð3rc þ x2 � x3 þ 1Þ�s
3ðx3Þ � ðrc � x2 � x3 þ 1Þ�t

3ðx3ÞÞ þ�T
2 ðx2Þððrc � x2 � x3 þ 1Þ�s

3ðx3Þ
þ ðrc � x2 þ x3 � 1Þ�t

3ðx3ÞÞÞ� � EnaðtdÞ½ðrb þ rc þ x2 � 1Þ�A
2 ðx2Þ�3ðx3Þ

� r20r3ð�P
2 ðx2Þðð4rb þ rc þ x2 � x3 � 1Þ�s

3ðx3Þ � ðrc þ x2 þ x3 � 1Þ�t
3ðx3ÞÞ

þ�T
2 ðx2Þððrc þ x2 þ x3 � 1Þ�s

3ðx3Þ � ðrc þ x2 � x3 � 1Þ�t
3ðx3ÞÞÞ�hdnaðx2; x3; b1; b2Þg; (29)

FVP
fa ¼ 8�CFm

2
Bc

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3fhfað1� x3; x2; b3; b2ÞEfaðtaÞ½x2�2ðx2Þ�A

3 ðx3Þ
þ 2r2r

3
0�

P
3 ðx3Þððx2 þ 1Þ�s

2ðx2Þ þ ðx2 � 1Þ�t
2ðx2ÞÞ� þ hfaðx2; 1� x3; b2; b3ÞEfaðtbÞ½ðx3 � 1Þ�2ðx2Þ�A

3 ðx3Þ
þ 2r2r

3
0�

s
2ðx2Þððx3 � 2Þ�P

3 ðx3Þ � x3�
T
3 ðx3ÞÞ�g; (30)

MVP
na ¼ 16

ffiffiffi
6

p
3

�CFm
2
Bc

Z 1

0
dx2dx3

Z 1

0
b1db1b2db2fhcnaðx2; x3; b1; b2ÞEnaðtcÞ½ðrc � x3 þ 1Þ�2ðx2Þ�A

3 ðx3Þ
þ r2r

3
0ð�s

2ðx2Þðð3rc þ x2 � x3 þ 1Þ�P
3 ðx3Þ � ðrc � x2 � x3 þ 1Þ�T

3 ðx3ÞÞ þ�t
2ðx2Þððrc � x2 � x3 þ 1Þ�P

3 ðx3Þ
þ ðrc � x2 þ x3 � 1Þ�T

3 ðx3ÞÞÞ� � EnaðtdÞ½ðrb þ rc þ x2 � 1Þ�2ðx2Þ�A
3 ðx3Þ

þ r2r
3
0ð�s

2ðx2Þðð4rb þ rc þ x2 � x3 � 1Þ�P
3 ðx3Þ � ðrc þ x2 þ x3 � 1Þ�T

3 ðx3ÞÞ
þ�t

2ðx2Þððrc þ x2 þ x3 � 1Þ�P
3 ðx3Þ � ðrc þ x2 � x3 � 1Þ�T

3 ðx3ÞÞÞ�hdnaðx2; x3; b1; b2Þg:
(31)

The total decay amplitudes of the 15 Bc ! PV, VP
decays can therefore be written as,

AðBc ! �þ�0Þ ¼ V�
cbVudf½fBc

F
�þ�0

�uu

fa a1 þM
�þ�0

�uu
na C1�

� ½fBc
F
�0

�dd
�þ

fa a1 þM
�0

�dd
�þ

na C1�g; (32)

AðBc ! �þ!Þ ¼ V�
cbVudf½fBc

F�þ! �uu

fa a1 þM�þ! �uu
na C1�

þ ½fBc
F
! �dd�

þ
fa a1 þM

! �dd�
þ

na C1�g; (33)

A ðBc ! �K0K�þÞ ¼ V�
cbVudffBc

F
�K0K�þ
fa a1 þM

�K0K�þ
na C1g;

(34)

A ðBc ! Kþ�0Þ ¼ V�
cbVusffBc

FKþ�0

fa a1 þMKþ�0

na C1g;
(35)

A ðBc ! K0�þÞ ¼ ffiffiffi
2

p
AðBc ! Kþ�0Þ; (36)

A ðBc ! Kþ!Þ ¼ V�
cbVusffBc

FKþ!
fa a1 þMKþ!

na C1g;
(37)

AðBc ! �þ�0Þ ¼ V�
cbVudf½fBc

F
�þ�0

�uu

fa a1 þM
�þ�0

�uu
na C1�

� ½fBc
F
�0

�dd
�þ

fa a1 þM
�0

�dd
�þ

na C1�g; (38)

AðBc ! �þ�Þ ¼ V�
cbVudf½fBc

F�þ� �uu

fa a1 þM�þ� �uu
na C1�

þ ½fBc
F
� �dd�

þ
fa a1 þM

� �dd�
þ

na C1�g cos�;

(39)

AðBc ! �þ�0Þ ¼ V�
cbVudf½fBc

F�þ� �uu

fa a1 þM�þ� �uu
na C1�

þ ½fBc
F
� �dd�

þ
fa a1 þM

� �dd�
þ

na C1�g sin�;

(40)

A ðBc ! �K�0KþÞ ¼ V�
cbVudffBc

F
�K�0Kþ
fa a1 þM

�K�0Kþ
na C1g;

(41)

A ðBc ! K�þ�0Þ ¼ V�
cbVusffBc

FK�þ�0

fa a1 þMK�þ�0

na C1g;
(42)
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A ðBc ! K�0�þÞ ¼ ffiffiffi
2

p
AðBc ! K�þ�0Þ; (43)

AðBc ! K�þ�Þ ¼ V�
cbVusffBc

½FK�þ�q

fa cos�

� F
�sK

�þ
fa sin��a1 þ ½MK�þ�q

na cos�

�M�sK
�þ

na sin��C1g; (44)

AðBc ! K�þ�0Þ ¼ V�
cbVusffBc

½FK�þ�q

fa sin�

þ F�sK
�þ

fa cos��a1 þ ½MK�þ�q
na sin�

þM
�sK

�þ
na cos��C1g; (45)

A ðBc ! �KþÞ ¼ V�
cbVusffBc

F�Kþ
fa a1 þM�Kþ

na C1g:
(46)

C. Bc ! VV decays

There are three kinds of polarizations of a vector meson,
namely, longitudinal (L), normal (N), and transverse (T).
The amplitudes for a Bc meson decay to two vector mesons
are also characterized by the polarization states of these

vector mesons. The decay amplitudes Mð�Þ in terms of
helicities, for Bc ! VðP2; �

�
2ÞVðP3; �

�
3Þ decays, can be gen-

erally described by

Mð�Þ ¼ ��2�ð�Þ��3
ð�Þ
�
ag�
 þ b

mM2
mM3

P�
1 P



1

þ i
c

mM2
mM3

��
��P2�P3�

�
;


 m2
Bc
ML þm2

Bc
MN�

�
2ð� ¼ TÞ � ��3ð� ¼ TÞ

þ iMT�
������2�ð�Þ��3�ð�ÞP2�P3�; (47)

where the superscript � denotes the helicity states of the
two vector mesons with LðTÞ standing for the longitudinal
(transverse) component. And the definitions of the ampli-
tudes Mi (i ¼ L, N, T) in terms of the Lorentz-invariant
amplitudes a, b, and c are

m2
Bc
ML ¼ a��2ðLÞ ���3ðLÞþ

b

mM2
mM3

��2ðLÞ �P3�
�
3ðLÞ �P2;

m2
Bc
MN ¼ a; m2

Bc
MT ¼ c

r2r3
: (48)

We therefore will evaluate the helicity amplitudes ML,
MN , MT based on the pQCD factorization approach,
respectively.
For every component of the polarization, the corre-

sponding Feynman amplitude can be written as the follow-
ing form:

FL
fa ¼ 8�CFm

2
Bc

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3f½x2�2ðx2Þ�3ðx3Þ � 2r2r3ððx2 þ 1Þ�s

2ðx2Þ
þ ðx2 � 1Þ�t

2ðx2ÞÞ�s
3ðx3Þ�EfaðtaÞhfað1� x3; x2; b3; b2Þ

þ EfaðtbÞhfaðx2; 1� x3; b2; b3Þ½ðx3 � 1Þ�2ðx2Þ�3ðx3Þ � 2r2r3�
s
2ðx2Þððx3 � 2Þ�s

3ðx3Þ � x3�
t
3ðx3ÞÞ�g; (49)

ML
na ¼ 16

ffiffiffi
6

p
3

�CFm
2
Bc

Z 1

0
dx2dx3

Z 1

0
b1db1b2db2fEnaðtcÞ½ðrc � x3 þ 1Þ�2ðx2Þ�3ðx3Þ

� r2r3ð�s
2ðx2Þðð3rc þ x2 � x3 þ 1Þ�s

3ðx3Þ � ðrc � x2 � x3 þ 1Þ�t
3ðx3ÞÞ þ�t

2ðx2Þððrc � x2 � x3 þ 1Þ�s
3ðx3Þ

þ ðrc � x2 þ x3 � 1Þ�t
3ðx3ÞÞÞ�hcnaðx2; x3; b1; b2Þ � hdnaðx2; x3; b1; b2ÞEnaðtdÞ½ðrb þ rc þ x2 � 1Þ�2ðx2Þ�3ðx3Þ

� r2r3ð�s
2ðx2Þðð4rb þ rc þ x2 � x3 � 1Þ�s

3ðx3Þ � ðrc þ x2 þ x3 � 1Þ�T
3 ðx3ÞÞ

þ�t
2ðx2Þððrc þ x2 þ x3 � 1Þ�s

3ðx3Þ � ðrc þ x2 � x3 � 1Þ�t
3ðx3ÞÞÞ�g; (50)

FN
fa ¼ 8�CFm

2
Bc

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3r2r3fhfað1� x3; x2; b3; b2ÞEfaðtaÞ½ðx2 þ 1Þð�a

2ðx2Þ�a
3ðx3Þ þ�v

2 ðx2Þ�v
3 ðx3ÞÞ

þ ðx2 � 1Þð�v
2 ðx2Þ�a

3ðx3Þ þ�a
2ðx2Þ�v

3 ðx3ÞÞ� þ EfaðtbÞhfaðx2; 1� x3; b2; b3Þ½ðx3 � 2Þð�a
2ðx2Þ�a

3ðx3Þ
þ�v

2 ðx2Þ�v
3 ðx3ÞÞ � x3ð�a

2ðx2Þ�v
3 ðx3Þ þ�v

2 ðx2Þ�a
3ðx3ÞÞ�g; (51)

MN
na ¼ 32

ffiffiffi
6

p
3

�CFm
2
Bc

Z 1

0
dx2dx3

Z 1

0
b1db1b2db2r2r3frc½�a

2ðx2Þ�a
3ðx3Þ þ�v

2 ðx2Þ�v
3 ðx3Þ�EnaðtcÞhcnaðx2; x3; b1; b2Þ

� rb½�a
2ðx2Þ�a

3ðx3Þ þ�v
2 ðx2Þ�v

3 ðx3Þ�EnaðtdÞhdnaðx2; x3; b1; b2Þg; (52)

XIN LIU, ZHEN-JUN XIAO, AND CAI-DIAN LÜ PHYSICAL REVIEW D 81, 014022 (2010)
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FT
fa ¼ 16�CFm

2
Bc

Z 1

0
dx2dx3

Z 1

0
b2db2b3db3r2r3fhfað1� x3; x2; b3; b2ÞEfaðtaÞ½ðx2 þ 1Þð�a

2ðx2Þ�v
3 ðx3Þ

þ�v
2 ðx2Þ�a

3ðx3ÞÞ þ ðx2 � 1Þð�a
2ðx2Þ�a

3ðx3Þ þ�v
2 ðx2Þ�v

3 ðx3ÞÞ� þ hfaðx2; 1� x3; b2; b3ÞEfaðtbÞ½ðx3 � 2Þ
� ð�a

2ðx2Þ�v
3 ðx3Þ þ�v

2 ðx2Þ�a
3ðx3ÞÞ � x3ð�a

2ðx2Þ�a
3ðx3Þ þ�v

2 ðx2Þ�v
3 ðx3ÞÞ�g; (53)

MT
na ¼ 64

ffiffiffi
6

p
3

�CFm
2
Bc

Z 1

0
dx2dx3

Z 1

0
b1db1b2db2r2r3frc½�a

2ðx2Þ�v
3 ðx3Þ þ�v

2 ðx2Þ�a
3ðx3Þ�EnaðtcÞhcnaðx2; x3; b1; b2Þ

� rb½�a
2ðx2Þ�v

3 ðx3Þ þ�v
2 ðx2Þ�a

3ðx3Þ�EnaðtdÞhdnaðx2; x3; b1; b2Þg: (54)

For seven Bc ! VV decays, considering all the polar-
ization (H ¼ L, N, T) contributions and the Feynman
decay amplitudes as shown in Eqs. (49)–(54), the total
decay amplitude of these channels can be obtained directly,

MHðBc ! �þ�0Þ ¼ V�
cbVudf½fBc

F
�þ�0

�uu

fa;H a1 þM
�þ�0

�uu
na;H C1�

� ½fBc
F
�0

�dd
�þ

fa;H a1 þM
�0

�dd
�þ

na;H C1�g ¼ 0;

(55)

MHðBc ! �þ!Þ ¼ V�
cbVudf½fBc

F�þ! �uu

fa;H a1 þM�þ! �uu

na;H �
þ ½fBc

F
! �dd�

þ
fa;H a1 þM

! �dd�
þ

na;H �C1g; (56)

MHðBc! �K�0K�þÞ¼V�
cbVudffBc

F
�K�0K�þ
fa;H a1þM

�K�0K�þ
na;H C1g;

(57)

M HðBc ! �K�þÞ ¼ V�
cbVusffBc

F�K�þ
fa;H a1 þM�K�þ

na;H C1g;
(58)

MHðBc ! K�þ�0Þ ¼ V�
cbVusffBc

F
K�þ�0

fa;H a1 þM
K�þ�0

na;H C1g;
(59)

M HðBc ! K�0�þÞ ¼ ffiffiffi
2

p
MHðBc ! K�þ�0Þ; (60)

M HðBc ! K�þ!Þ ¼ V�
cbVusffBc

FK�þ!
fa;H a1 þMK�þ!

na;H C1g:
(61)

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will calculate the branching ratios
(and polarization fractions, relative phases) for those con-
sidered 30 Bc ! M2M3 decay modes. The input parame-
ters and the wave functions to be used are given in
Appendix A. In numerical calculations, central values of
input parameters will be used implicitly unless otherwise
stated.
For Bc ! PP, PV, VP decays, the decay rate can be

written as

� ¼ G2
Fm

3
Bc

32�
jAðBc ! M2M3Þj2; (62)

where the corresponding decay amplitudes A have been
given explicitly in Eqs. (20)–(27) and (32)–(46). Using the
decay amplitudes obtained in last section, it is straightfor-
ward to calculate the branching ratios with uncertainties as
presented in Tables I, II, and III.
For Bc ! VV decays, the decay rate can be written

explicitly as

� ¼ G2
FjPcj

16�m2
Bc

X
�¼L;T

Mð�ÞyMð�Þ; (63)

where jPcj 
 jP2zj ¼ jP3zj is the momentum of either of
the outgoing vector mesons.

TABLE I. The pQCD predictions of branching ratios (BRs) for Bc ! PP modes. The
dominant errors are induced from charm quark mass mc ¼ 1:5� 0:15 GeV, combined
Gegenbauer moments ai of related meson distribution amplitudes (see Appendix A explicitly),
and the chiral enhancement factors m�

0 ¼ 1:4� 0:3 GeV and mK
0 ¼ 1:6� 0:1 GeV, respec-

tively.

Decay modes Decay modes

(�S ¼ 0) BRs (10�8) (�S ¼ 1) BRs (10�8)

Bc ! �þ�0 0 Bc ! �þK0 4:0þ1:0
�0:6ðmcÞþ2:3

�1:6ðaiÞþ0:5
�0:3ðm0Þ

Bc ! �þ� 22:8þ6:9
�4:6ðmcÞþ7:2

�4:5ðaiÞþ3:4
�4:2ðm0Þ Bc ! Kþ� 0:6þ0:0

�0:0ðmcÞþ0:6
�0:5ðaiÞþ0:2

�0:1ðm0Þ
Bc ! �þ�0 15:3þ4:6

�3:1ðmcÞþ4:8
�3:0ðaiÞþ2:2�2:8ðm0Þ Bc ! Kþ�0 5:7þ0:9

�0:9ðmcÞþ1:0
�1:6ðaiÞþ0:0

�0:3ðm0Þ
Bc ! Kþ �K0 24:0þ2:4�0:0ðmcÞþ7:3

�6:0ðaiÞþ6:8
�5:8ðm0Þ Bc ! Kþ�0 2:0þ0:5

�0:3ðmcÞþ1:2�0:8ðaiÞþ0:3
�0:1ðm0Þ
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Based on the helicity amplitudes (48), we can define the
transversity amplitudes,

A L ¼ �m2
Bc
ML; Ak ¼ 

ffiffiffi
2

p
m2

Bc
MN;

A? ¼ m2
Bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 � 1Þ

q
MT;

(64)

for the longitudinal, parallel, and perpendicular polariza-
tions, respectively, with the normalization factor  ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

FPc=ð16�m2
Bc
�Þ

q
and the ratio r ¼ P2 � P3=ðmM2

�
mM3

Þ. These amplitudes satisfy the relation

jALj2 þ jAkj2 þ jA?j2 ¼ 1 (65)

following the summation in Eq. (63).
Since the transverse-helicity contributions manifest

themselves in polarization observables, we therefore define
two kinds of polarization observables, i.e., polarization
fractions ðfL; fk; f?Þ and relative phases ð�k; �?Þ as [53]

fLðk;?Þ ¼
jALðk;?Þj2

jALj2 þ jAkj2 þ jA?j2
;

�kð?Þ 
 arg
Akð?Þ
AL

:

(66)

It should be noted that a phase of � should be added to the
relative phase �kð?Þ as defined in Eq. (66), in order to

cancel the additional minus sign in the definition of AL

in Eq. (64).
We also define another two quantities reflecting the

effects of CP-violating asymmetries indirectly [53,54],

��k ¼
��k ��k

2
; ��? ¼

��? ��? � �

2
; (67)

where ��k and ��? are the CP-conjugated relative phases

corresponding to �k and �?, respectively.
With the complete decay amplitudes, by employing

Eq. (63) and the input parameters and wave functions as
given in Appendix A, we will present the pQCD predic-
tions for CP-averaged branching ratios, longitudinal po-
larization fractions, and relative phases of the considered
decays with errors as shown in Tables IV and V.

TABLE III. Same as Table I but for Bc ! VP modes.

Decay modes Decay modes

(�S ¼ 0) BRs (10�7) (�S ¼ 1) BRs (10�8)

Bc ! �þ�0 0:5þ0:1
�0:1ðmcÞþ0:3

�0:2ðaiÞþ0:2
�0:3ðm0Þ Bc ! K�0�þ 3:3þ0:7

�0:2ðmcÞþ0:4
�0:4ðaiÞþ0:2

�0:1ðm0Þ
Bc ! �þ� 5:4þ2:1�1:2ðmcÞþ0:9

�1:4ðaiÞ � 0:0ðm0Þ Bc ! K�þ�0 1:6þ0:4
�0:1ðmcÞþ0:3

�0:1ðaiÞþ0:1
�0:0ðm0Þ

Bc ! �þ�0 3:6þ1:4�0:8ðmcÞþ0:6
�0:9ðaiÞ � 0:0ðm0Þ Bc ! K�þ� 0:9þ0:1

�0:0ðmcÞþ0:6
�0:2ðaiÞ � 0:0ðm0Þ

Bc ! �K�0Kþ 10:0þ0:5
�0:6ðmcÞþ1:7�3:3ðaiÞþ0:0

�0:2ðm0Þ Bc ! K�þ�0 3:8� 1:1ðmcÞþ1:0
�0:6ðaiÞ � 0:0ðm0Þ

Bc ! �Kþ 5:6þ1:1�0:0ðmcÞþ1:2�0:9ðaiÞþ0:3
�0:0ðm0Þ

TABLE II. Same as Table I but for Bc ! PV modes.

Decay modes Decay modes

(�S ¼ 0) BRs (10�7) (�S ¼ 1) BRs (10�8)

Bc ! �þ�0 1:7þ0:1
�0:0ðmcÞþ0:1

�0:2ðaiÞþ0:6
�0:3ðm0Þ Bc ! Kþ�0 3:1þ0:6

�0:8ðmcÞþ1:2
�1:5ðaiÞþ0:1

�0:2ðm0Þ
Bc ! �K0K�þ 1:8þ0:7

�0:1ðmcÞþ4:1
�2:1ðaiÞþ0:1

�0:0ðm0Þ Bc ! K0�þ 6:1þ1:3
�1:5ðmcÞþ2:5

�2:9ðaiÞþ0:2
�0:3ðm0Þ

Bc ! �þ! 5:8þ1:4�2:2ðmcÞþ1:1�1:3ðaiÞþ0:4
�1:2ðm0Þ Bc ! Kþ! 2:3þ1:1�0:3ðmcÞþ1:8

�1:2ðaiÞ � 0:1ðm0Þ

TABLE IV. The pQCD predictions of branching ratios (BRs) and longitudinal polarization
fractions (LPFs) for Bc ! VV modes.

Decay modes BRs (10�7) LPFs (%)

Bc ! �þ�0 0 -

Bc ! �þ! 10:6þ3:2
�0:2ðmcÞþ2:1�0:2ðaiÞ 92:9þ1:6

�0:1ðmcÞþ1:2�0:1ðaiÞ
Bc ! �K�0K�þ 10:0þ0:6

�0:4ðmcÞþ8:1
�4:8ðaiÞ 92:0þ0:5

�0:4ðmcÞþ3:6
�7:1ðaiÞ

Bc ! K�0�þ 0:6þ0:0
�0:0ðmcÞþ0:2

�0:1ðaiÞ 94:9þ0:2
�0:2ðmcÞþ2:0

�1:4ðaiÞ
Bc ! K�þ�0 0:3þ0:0

�0:0ðmcÞþ0:1
�0:1ðaiÞ 94:9þ0:2

�0:2ðmcÞþ1:3
�1:4ðaiÞ

Bc ! K�þ! 0:3þ0:0
�0:0ðmcÞþ0:0

�0:2ðaiÞ 94:8þ0:3
�0:2ðmcÞþ1:1�1:2ðaiÞ

Bc ! �K�þ 0:5þ0:0
�0:1ðmcÞþ0:1

�0:3ðaiÞ 86:4þ0:0
�1:4ðmcÞþ4:9

�9:0ðaiÞ
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Based on the pQCD predictions as given in Tables I, II,
III, IV, and V, we have the following remarks:

(i) Among considered pure annihilation Bc ! PV=VP,
VV decays, the pQCD predictions for the
CP-averaged branching ratios for those �S ¼ 0 pro-
cesses are much larger than those of �S ¼ 1 chan-

nels (one of the two final state mesons is the Kð�Þ
meson), which are mainly due to the large CKM
factor jVud=Vusj2 � 19. For Bc ! �þ�0, �þ�0 de-
cays, the contributions from �uu and �dd components
cancel each other exactly and result in the zero
branching ratios. In fact, these two channels are
forbidden, even with final state interactions.
Simply, two pions cannot form an s wave isospin 1
state, because of Bose-Einstein statics. Any other
nonzero data for these two channels may indicate
the effects of exotic new physics.

(ii) There is no CP violation for all these decays within
the standard model, since there is only one kind of
tree operator involved in the decay amplitude of all
considered Bc decays, which can be seen from
Eq. (12).

(iii) The pQCD predictions for the branching ratios of
considered Bc decays vary in the range of 10�6 (for
Bc ! �K�0Kþ, �K�0K�þ, and �þ! decays) to 10�8

(for most �S ¼ 1 Bc decays). The Bc decays with
the branching ratio of 10�6 can be measured at the
LHC experiment [38].

(iv) As mentioned in the introduction, the authors of
Ref. [38] studied many pure annihilation Bc decays
by employing the SUð3Þ flavor symmetry and the
one-gluon exchange (OGE) model, respectively, and

presented their numerical estimates for the branch-
ing ratios of Bc ! �Kþ, �K0Kþ, �K�0Kþ, and
�K�0K�þ decays. As a comparison, we show in
Table VI the pQCD predictions and the results as
given in Ref. [38] for relevant channels. From
Table VI, one can see easily that the pQCD predic-
tions basically agree with the results obtained based
on the SUð3Þ flavor symmetry.

(v) For Bc ! ð�þ; �þÞð�;�0Þ decays, the relevant final
state mesons contain the same component �uuþ �dd,
they therefore have the similar branching ratios. The
small differences among their branching ratios
mainly come from the different mixing coefficients,
i.e., cos� and sin�.

(vi) For Bc ! Kþ�ð0Þ decays, however, one finds that
BrðBc ! Kþ�0Þ � 10� BrðBc ! Kþ�Þ, which is
rather different from the pattern of BrðBc !
�þ�Þ � BrðBc ! �þ�0Þ and BrðBc ! �þ�Þ �
BrðBc ! �þ�0Þ. This large difference can be under-
stood as follows: For the �S ¼ 1 processes, both �q

and �s will contribute to Bc ! Kþ� and Kþ�0
decays but with an opposite sign for �q and �s

term, as well as different coefficients. This results
in a destructive interference between �q and �s

component for Bc ! Kþ�, but a constructive inter-
ference for Bc ! Kþ�0. This situation is very simi-
lar to that for the B ! K� and K�0 decays [55–57].

(vii) Unlike Bc ! Kþ�ð0Þ decays, BrðBc ! K�þ�0Þ �
4BrðBc ! K�þ�Þ � 3:8� 10�8. The reason is that
both of them are mainly determined by the factoriz-
able contributions of �s term.

TABLE V. The pQCD predictions of relative phases for Bc ! VV modes.

Decay modes �k (rad) �? (rad) ��k ��?
Bc ! �þ�0

Bc ! �þ! 3:86þ0:31
�0:26ðmcÞþ0:25

�0:19ðaiÞ 4:43þ0:16
�0:17ðmcÞþ0:25

�0:19ðaiÞ 0 ��=2
Bc ! �K�0K�þ 3:68þ0:18

�0:13ðmcÞþ0:48
�0:21ðaiÞ 3:76þ0:16

�0:00ðmcÞþ0:48
�0:20ðaiÞ 0 ��=2

Bc ! K�0�þ 4:11þ0:17
�0:20ðmcÞþ0:30

�0:20ðaiÞ 4:20þ0:14
�0:05ðmcÞþ0:30

�0:21ðaiÞ 0 ��=2
Bc ! K�þ�0 4:11þ0:17

�0:20ðmcÞþ0:30
�0:20ðaiÞ 4:20þ0:14

�0:05ðmcÞþ0:30
�0:21ðaiÞ 0 ��=2

Bc ! K�þ! 4:15þ0:13
�0:25ðmcÞþ0:25

�0:25ðaiÞ 4:23þ0:11
�0:09ðmcÞþ0:26

�0:24ðaiÞ 0 ��=2
Bc ! �K�þ 3:80þ0:25

�0:34ðmcÞþ0:44
�0:20ðaiÞ 3:89þ0:22

�0:19ðmcÞþ0:43
�0:21ðaiÞ 0 ��=2

TABLE VI. The pQCD predictions of branching ratios for Bc ! �Kþ and Bc ! �Kð�Þ0Kð�Þþ
modes. As a comparison, the numerical results as given in Ref. [38] are also listed in the last two
columns.

Channels pQCD predictions SUð3Þ symmetry OGE model

BrðBc ! �KþÞ 5:6þ1:1�0:0ðmcÞþ1:2�0:9ðaiÞ � 10�8 Oð10�7 � 10�8Þ 5� 10�9

BrðBc ! �K0KþÞ 2:4þ0:2
�0:0ðmcÞþ0:7

�0:6ðaiÞ � 10�7 Oð10�6Þ 6:3� 10�8

BrðBc ! �K0K�þÞ 1:8þ0:7
�0:1ðmcÞþ4:1�2:1ðaiÞ � 10�7

BrðBc ! �K�0KþÞ 1:0� 0:1ðmcÞþ0:2
�0:3ðaiÞ � 10�6 Oð10�6Þ 9:0� 10�8

BrðBc ! �K�0K�þÞ 1:0þ0:1
�0:0ðmcÞþ0:8

�0:5ðaiÞ � 10�6 Oð10�6Þ 9:1� 10�8
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(viii) For Bc ! VV decays, we can find that (a) the
branching ratios are in order of Oð10�8 � 10�7Þ
except for BrðBc ! �K�0K�þÞ and BrðBc ! �þ!Þ �
10�6; and (b) the longitudinal polarization fractions
are around 95% within the theoretical errors except
for Bc ! �K�þ (� 86%) and play the dominant
role.

(ix) According to the discussions in Ref. [38], there are
some simple relations among some decay channels
in the limit of exact SUð3Þ flavor symmetry. For
Bc ! PP decays, such relations are

AðBc ! K0�þÞ ¼ ffiffiffi
2

p
AðBc ! Kþ�0Þ

¼ �AðBc ! Kþ �K0Þ; (68)

where � ¼ Vus=Vud � 0:2. For Bc ! VP=PV and
Bc ! VV decays, the relations read

AðBc ! K�0�þÞ ¼ ffiffiffi
2

p
AðBc ! K�þ�0Þ

¼ �AðBc ! �K�0KþÞ; (69)

AðBc ! �þK0Þ ¼ ffiffiffi
2

p
AðBc ! �0KþÞ

¼ �AðBc ! K�þ �K0Þ; (70)

ð�1Þ‘AðBþ
c ! �þK�0Þ ¼ ð�1Þ‘ ffiffiffi

2
p

AðBþ
c ! �0K�þÞ

¼ �AðBc ! K�þ �K0Þ; (71)

where ‘ ¼ 0; 1; 2.2 From our pQCD calculations, we
notice that the first equality of each of the above
relations (68)–(71) is valid in isospin symmetry.
They hold exactly in our numerical calculations.
The second equality of each relation is only valid
at exact SUð3Þ symmetry thus they are violated at the
order of SUð3Þ breaking effect in our calculations.

(x) Since the LHC experiment can measure the Bc de-
cays with a branching ratio at 10�6 level, our pQCD
predictions for the branching ratios of Bc ! �K�0Kþ,
�K�0K�þ, and �þ! decays could be tested in the
forthcoming LHC experiments.

(xi) For most considered pure annihilation Bc decays, it
is hard to observe them even in LHC due to their tiny
decay rate. Their observation at LHC, however,
would mean a large nonperturbative contribution or
a signal for new physics beyond the SM.

(xii) It is worth stressing that the theoretical predictions in
the pQCD approach still have large theoretical errors
induced by the still large uncertainties of many input
parameters. Any progress in reducing the error of
input parameters, such as the Gegenbauer moments

ai and the charm quark mass mc, will help us to
improve the precision of the pQCD predictions.

V. SUMMARY

In short, we studied the two-body charmless hadronic
Bc ! PP, PV=VP, VV decays by employing the pQCD
factorization approach based on the kT factorization theo-
rem. These considered decay channels can occur only via
the annihilation diagram and they will provide an impor-
tant testing ground for the magnitude of the annihilation
contribution.
The pQCD predictions for CP-averaged branching ra-

tios, longitudinal polarization fractions, and relative phases
are displayed in Tables I, II, III, IV, and V. From our
numerical evaluations and phenomenological analysis,
we found the following results:
(i) The pQCD predictions for the branching ratios vary

in the range of 10�6 to 10�8 and basically agree with
the predictions obtained by using the exact SUð3Þ
flavor symmetry. The Bc ! �K�0Kþ and other decays
with a decay rate at 10�6 or larger could be measured
at the LHC experiment.

(ii) For Bc ! PV=VP, VV decays, the branching ratios
of �S ¼ 0 processes are basically larger than those
of �S ¼ 1 ones. Such differences are mainly in-
duced by the CKM factors involved: Vud � 1 for
the former decays while Vus � 0:22 for the latter
ones.

(iii) Analogous to B ! K�ð0Þ decays, we find BrðBc !
Kþ�0Þ � 10� BrðBc ! Kþ�Þ. This large differ-
ence can be understood by the destructive and con-
structive interference between the �q and �s

contribution to the Bc ! Kþ� and Bc ! Kþ�0
decay.

(iv) For Bc ! VV decays, the longitudinal polarization
fractions are around 95% except for Bc ! �K�þ
(fL � 86%) and play the dominant role.

(v) Because only tree operators are involved, the
CP-violating asymmetries for these considered Bc

decays are absent naturally.
(vi) The pQCD predictions still have large theoretical

uncertainties, induced by the uncertainties of input
parameters.

(vii) We here calculated the branching ratios and other
physical observables of the pure annihilation Bc

decays by employing the pQCD approach. We do
not consider the possible long-distance contribu-
tions, such as the rescattering effects, although they
may be large and affect the theoretical predictions. It
is beyond the scope of this work.
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APPENDIX A: INPUT PARAMETERS AND
DISTRIBUTION AMPLITUDES

The masses (GeV), decay constants (GeV), QCD scale
(GeV) and B meson lifetime are

�ðf¼4Þ
MS

¼ 0:250; mW ¼ 80:41; mBc
¼ 6:286;

fBc
¼ 0:489; m� ¼ 1:02; f� ¼ 0:231;

fT� ¼ 0:200; mK� ¼ 0:892; fK� ¼ 0:217;

fTK� ¼ 0:185; m� ¼ 0:770; f� ¼ 0:209;

fT� ¼ 0:165; m! ¼ 0:782; f! ¼ 0:195;

fT! ¼ 0:145; m�
0 ¼ 1:4; mK

0 ¼ 1:6;

m
�q

0 ¼ 1:08; m�s

0 ¼ 1:92; mb ¼ 4:8;

f� ¼ 0:131; fK ¼ 0:16; �Bþ
c
¼ 0:46 ps: (A1)

For the CKM matrix elements, here we adopt the
Wolfenstein parametrization for the CKM matrix, and
take A ¼ 0:814 and � ¼ 0:2257, �� ¼ 0:135 and �� ¼
0:349 [55].

The twist-2 pseudoscalar meson distribution amplitude
�A

P (P ¼ �, K), and the twist-3 ones�P
P and�T

P have been
parametrized as [58–60]

�A
PðxÞ ¼

fP
2

ffiffiffiffiffiffiffiffiffi
2Nc

p 6xð1� xÞ½1þ aP1C
3=2
1 ð2x� 1Þ

þ aP2C
3=2
2 ð2x� 1Þ þ aP4C

3=2
4 ð2x� 1Þ�; (A2)

�P
PðxÞ ¼

fP
2

ffiffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

�
30�3 � 5

2
�2
P

�
C1=2
2 ð2x� 1Þ

� 3

�
�3!3 þ 9

20
�2
Pð1þ 6aP2 Þ

�
C1=2
4 ð2x� 1Þ

�
;

(A3)

�T
PðxÞ ¼

fP
2

ffiffiffiffiffiffiffiffiffi
2Nc

p ð1� 2xÞ
�
1þ 6

�
5�3 � 1

2
�3!3 � 7

20
�2
P

� 3

5
�2
Pa

P
2

�
ð1� 10xþ 10x2Þ

�
; (A4)

with the Gegenbauer moments a�1 ¼ 0, aK1 ¼ 0:17� 0:17,
aP2 ¼ 0:115� 0:115, aP4 ¼ �0:015, the mass ratio

��ðKÞ ¼ m�ðKÞ=m
�ðKÞ
0 and ��qðsÞ ¼ 2mqðsÞ=mqqðssÞ, and the

Gegenbauer polynomials C

nðtÞ,

C1=2
2 ðtÞ ¼ 1

2
ð3t2 � 1Þ; C1=2

4 ðtÞ ¼ 1

8
ð3� 30t2 þ 35t4Þ;

C3=2
1 ðtÞ ¼ 3t; C3=2

2 ðtÞ ¼ 3

2
ð5t2 � 1Þ;

C3=2
4 ðtÞ ¼ 15

8
ð1� 14t2 þ 21t4Þ: (A5)

In the above distribution amplitudes for kaon, the momen-
tum fraction x is carried by the s quark. For both the pion
and kaon, we choose �3 ¼ 0:015 and !3 ¼ �3 [58,59].
The twist-2 distribution amplitudes for the longitudi-

nally and tranversely polarized vector meson can be pa-
rametrized as

�VðxÞ ¼ 3fVffiffiffi
6

p xð1� xÞ½1þ ak1VC
3=2
1 ð2x� 1Þ

þ ak2VC
3=2
2 ð2x� 1Þ�; (A6)

�T
VðxÞ ¼

3fTVffiffiffi
6

p xð1� xÞ½1þ a?1VC
3=2
1 ð2x� 1Þ

þ a?2VC
3=2
2 ð2x� 1Þ�: (A7)

Here fV and fTV are the decay constants of the vector meson
with longitudinal and transverse polarization, respectively.
The Gegenbauer moments have been studied extensively in
the literature [61,62]; here we adopt the following values
from the recent updates [63–65]:

ak1K� ¼ 0:03� 0:02; ak2� ¼ ak2! ¼ 0:15� 0:07;

ak2K� ¼ 0:11� 0:09; ak2� ¼ 0:18� 0:08 (A8)

a?1K� ¼ 0:04� 0:03; a?2� ¼ a?2! ¼ 0:14� 0:06;

a?2K� ¼ 0:10� 0:08; a?2� ¼ 0:14� 0:07: (A9)

The asymptotic forms of the twist-3 distribution ampli-
tudes �t;s

V and �v;a
V are [42]

�t
VðxÞ ¼

3fTV
2

ffiffiffi
6

p ð2x� 1Þ2; �s
VðxÞ ¼ � 3fTV

2
ffiffiffi
6

p ð2x� 1Þ;
(A10)

�v
VðxÞ ¼

3fV

8
ffiffiffi
6

p ð1þ ð2x� 1Þ2Þ;

�a
VðxÞ ¼ � 3fV

4
ffiffiffi
6

p ð2x� 1Þ:
(A11)

APPENDIX B: RELATED HARD FUNCTIONS

In this appendix, we group the functions which appear in
the factorization formulas.
The functions h in the decay amplitudes consist of two

parts: one is the jet function StðxiÞ derived by the threshold
resummation [44], the other is the propagator of virtual
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quark and gluon. They are defined by

hfaðx3; x2; b3; b2Þ ¼
�
i�

2

�
2
Stðx2Þ½�ðb3 � b2ÞHð1Þ

0 ð ffiffiffiffiffi
x2

p
MBc

b3ÞJ0ð ffiffiffiffiffi
x2

p
MBc

b2Þ

þ �ðb2 � b3ÞHð1Þ
0 ð ffiffiffiffiffi

x2
p

MBc
b2ÞJ0ð ffiffiffiffiffi

x2
p

MBc
b3Þ�Hð1Þ

0 ð ffiffiffiffiffiffiffiffiffi
x2x3

p
MBc

b3Þ; (B1)

hcðdÞna ðx2; x3; b1; b2Þ ¼ i�

2
½�ðb1 � b2ÞHð1Þ

0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1� x3Þ

q
MBc

b1ÞJ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1� x3Þ

q
MBc

b2Þ

þ �ðb2 � b1ÞHð1Þ
0 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1� x3Þ

q
MBc

b2ÞJ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1� x3Þ

q
MBc

b1Þ�
8><
>:

i�
2 H

ð1Þ
0 ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jF2

cðdÞj
q

MBc
b1Þ; FcðdÞ < 0

K0ð
ffiffiffiffiffiffiffiffiffiffi
FcðdÞ

p
MBc

b1Þ; FcðdÞ > 0
;

(B2)

where

Fc ¼ ðrc � x2Þð1� x3Þ þ r2c; Fd ¼ r2b � ð1� rc � x2Þx3; (B3)

and Hð1Þ
0 ðzÞ ¼ J0ðzÞ þ iY0ðzÞ.

The hard scales are chosen as

ta ¼ maxf ffiffiffiffiffi
x2

p
MBc

; 1=b2; 1=b3g; (B4)

tb ¼ maxf ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x3

p
MBc

; 1=b2; 1=b3g; (B5)

tc ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1� x3Þ

q
MBc

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðrc � x2Þð1� x3Þ þ r2cj

q
MBc

; 1=b1; 1=b2g; (B6)

td ¼ maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ð1� x3Þ

q
MBc

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2b � ð1� rc � x2Þx3j

q
MBc

; 1=b1; 1=b2g: (B7)

They are given as the maximum energy scale appearing in
each diagram to kill the large logarithmic radiative
corrections.

The St resums the threshold logarithms ln2x appearing in
the hard kernels to all orders and it has been parametrized
as

StðxÞ ¼ 21þ2c�ð3=2þ cÞffiffiffiffi
�

p
�ð1þ cÞ ½xð1� xÞ�c; (B8)

with c ¼ 0:4� 0:1. In the nonfactorizable contributions,
StðxÞ gives a very small numerical effect to the amplitude
[66]. Therefore, we drop StðxÞ in hna.

The evolution factors Efa and Ena entering in the ex-

pressions for the matrix elements (see Sec. III) are given by

EfaðtÞ ¼ �sðtÞ exp½�S2ðtÞ � S3ðtÞ�; (B9)

EnaðtÞ ¼ �sðtÞ exp½�SBðtÞ � S2ðtÞ � S3ðtÞ�jb2¼b3 ; (B10)

in which the Sudakov exponents are defined as

SBðtÞ ¼ s

�
rc
MBcffiffiffi
2

p ; b1

�
þ 5

3

Z t

1=b1

d ��

��
�qð�sð ��ÞÞ; (B11)

S2ðtÞ ¼ s

�
x2

MBcffiffiffi
2

p ; b2

�
þ s

�
ð1� x2Þ

MBcffiffiffi
2

p ; b2

�

þ 2
Z t

1=b2

d ��

��
�qð�sð ��ÞÞ; (B12)

with the quark anomalous dimension �q ¼ ��s=�.

Replacing the kinematic variables of M2 to M3 in S2, we
can get the expression for S3. The explicit forms for the
function sðQ; bÞ are defined in Appendix A in Ref. [36].
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