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We analyze recent data from the BABAR and Belle Collaborations on the Xð3872Þ resonance in the

J=c�þ�� and D0 �D0�0 decay channels, taking careful account of the universal features of an S-wave

threshold resonance. Because the line shapes for such a resonance are not integrable functions of the

energy, the resonance parameters depend on the prescriptions used to define them. In recent experimental

analyses of the D0 �D0�0 channel, an event near the D�0 �D0 threshold was assumed to come from D�0 �D0 or

D0 �D�0 and was therefore assigned an energy above the threshold. Taking this effect into account, our

analysis of the D0 �D0�0 data gives a mass for the Xð3872Þ that is below theD�0 �D0 threshold. Our analyses

in both the J=c�þ�� and D0 �D0�0 channels are consistent with the identification of the Xð3872Þ as an
extremely weakly bound charm meson molecule.
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I. INTRODUCTION

In August 2003, the Belle Collaboration discovered a
new c �c meson that they named the Xð3872Þ [1]. This
marked the beginning of a new era in c �c meson spectros-
copy in which discoveries at the B factories have tripled the
number of known c �c mesons above the charm meson pair
threshold. Of these new c �c mesons, the Xð3872Þ remains
the one for which by far the most experimental information
is available. Still the nature of this state is not universally
recognized in the high energy physics community.

There are two crucial pieces of experimental informa-
tion that determine the nature of the Xð3872Þ unambigu-
ously. One is its mass as measured in the J=c�þ�� decay
mode. By combining the most recent measurements by the
Belle, BABAR, and CDF Collaborations [2–4], its mass is
determined to be MX ¼ 3871:55� 0:20 MeV. This mass
is extremely close to the D�0 �D0 threshold. The energy
relative to the threshold is�0:25� 0:40 MeV. The central
value corresponds to a bound state with binding energy
EX ¼ 0:25 MeV. The second crucial piece of information
is the JPC quantum numbers. Observations of decays into
J=c� and c ð2SÞ� by the Belle and BABAR Collaborations
[5–7] imply that X is even under charge conjugation. The
spin and parity quantum numbers have been constrained by
the Belle and CDF Collaborations [8,9] from studies of the
angular distributions in J=c�þ�� decays. The CDF
analysis is compatible only with JPC ¼ 1þþ and 2�þ [9].
The possibility 2�þ is disfavored by the observation of the
decay into c ð2SÞ� [7], because it would have to overcome
multipole suppression. The possibility 2�þ is also disfa-
vored by the observation of decays intoD�0 �D0 by the Belle
and BABAR Collaborations [10–12], because it would have
to overcome angular-momentum suppression associated
with the tiny energy relative to the D�0 �D0 threshold. We
will assume from now on that the quantum numbers of the
Xð3872Þ are 1þþ.

Given that its quantum numbers are 1þþ, the Xð3872Þ
has an S-wave coupling to the charm meson pairs D�0 �D0

and D0 �D�0. The closeness of the mass to the D�0 �D0

threshold implies that it is a resonant coupling. This state
is therefore governed by the universal properties of S-wave
threshold resonances that are predicted by nonrelativistic
quantum mechanics [13]. We can conclude that the
Xð3872Þ is a charm meson molecule whose constituents
are a superposition of D�0 �D0 and D0 �D�0. Among the
universal properties of this molecule is that the root-

mean-square separation of its constituents is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�EX=2

p
,

where � is the reduced mass of the D�0 �D0. The tiny
binding energy EX implies a large rms separation, with
the central value 0.25 MeV corresponding to an astonish-
ing rms separation of about 6 fm.
Some of the confusion regarding the nature of the

Xð3872Þ has been prompted by measurements of the
D0 �D0�0 and D0 �D0� decay modes [10–12]. In the most
recent analyses by the BABAR and Belle Collaborations,
these decay modes have been analyzed as if they were
decays into D�0 �D0 and D0 �D�0 [11,12]. The resulting en-
ergy distribution must by definition vanish below the
D�0 �D0 threshold and it has a peak just above the threshold.
Measurements of the position and width of this peak have
been interpreted incorrectly as measurements of the mass
and width of the Xð3872Þ. For example, in the 2008 edition
of the Review of Particle Physics [14], the Particle Data
Group determined their average for the mass of the
Xð3872Þ by combining four values below the threshold
from J=c�þ�� decays with two values above the thresh-
old from D0 �D0�0 and D0 �D0� decays. In the PDG average
mass, the 3.5 sigma discrepancy between these two sets of
measurements was taken into account by increasing the
error by a scale factor of 2.5. The Particle Data Group also
took as their average for the decay width of the Xð3872Þ the
width of the D�0 �D0 energy distribution measured by the
BABAR Collaboration.
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Several authors have misinterpreted the measurements
of the D0 �D0�0 decay modes as evidence that the Xð3872Þ
is not a bound state with mass below the D�0 �D0 threshold
but instead as a ‘‘virtual state’’ which is unbound [15–17].
The signature for a virtual state associated with an S-wave
threshold resonance is an enhancement in the production of
D�0 �D0 just above the threshold together with the absence
of a resonance inD0 �D0�0 below the threshold. This should
be contrasted with a bound state, whose signature is a
similar enhancement above the threshold together with a
resonance below the threshold. In misinterpreting the
D0 �D0�0 data as evidence for a virtual state, the authors
of Refs. [15–17] did not take into account that a bound
state ofD�0 �D0 can decay intoD0 �D0�0 andD0 �D0� through
decays of its constituent D�0 or �D�0. This conceptual error
was pointed out in Ref. [18], and an analysis that takes
proper account of the bound state was carried out.

In this paper, we carry out analyses of the recent data
from the BABAR and Belle Collaborations on the Xð3872Þ
resonance in the J=c�þ�� and D0 �D0�0 decay channels.
We begin in Sec. II by describing the line shape of an
S-wave threshold resonance in a short-distance decay
channel, such as the J=c�þ�� decay mode of Xð3872Þ.
In Sec. III, we use that line shape to analyze the most recent
data from the Belle and BABAR Collaborations on the
J=c�þ�� decay channel. We proceed in Sec. IV to
describe the line shape of Xð3872Þ in the D0 �D0�0 decay
channel, which involves the decay of a constituent. In
Sec. V, we use that line shape to analyze the most recent
data from the Belle and BABAR Collaborations on the
D0 �D0�0 decay channel. We take into account the experi-
mental procedure that identifies D0 �D0�0 events near the
D�0 �D0 threshold as D�0 �D0 or D0 �D�0 events above the
threshold. Our analysis of these energy distributions, which
are nonzero only above the D�0 �D0 threshold, gives a mass
for the Xð3872Þ that is below the threshold. In Sec. VI, we
present a critical discussion of previous theoretical analy-
ses of the line shapes of the Xð3872Þ. Our results are
summarized in Sec. VII.

II. LINE SHAPE IN THE J=c�þ�� DECAY
CHANNEL

If there is an S-wave resonance very close to the thresh-
old for a pair of particles with short-range interactions,
their scattering length a is large compared to the range of
their interaction. The line shapes associated with an
S-wave threshold resonance have some unusual features
that are not ordinarily encountered in high energy physics.
The line shapes for decay modes that involve the decay of a
constituent are different from those for all other decay
modes, because they can proceed even when the constitu-
ents have a large separation of order a. For all other decay
modes, the constituents must approach to within a much
smaller distance comparable to the range of the interaction.
We will refer to these two classes of decay modes as

constituent decay modes and short-distance decay modes,
respectively. In the case of the Xð3872Þ, the constituent
decay modes areD0 �D0�0 andD0 �D0� and an example of a
short-distance decay mode is J=c�þ��. In this section,
we summarize the essential aspects of the line shape for
short-distance decay modes.
The line shape for a resonance near a scattering thresh-

old is proportional to jfðEÞj2, where fðEÞ is the analytic
continuation of the scattering amplitude in the total energy
E of the particles in their center-of-mass frame. The uni-
versal scattering amplitude for an S-wave threshold reso-
nance has the form

fðEÞ ¼ 1

��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�ðEþ i�Þp ; (1)

where E is the energy relative to the threshold, � is the
reduced mass, and � ¼ 1=a is the inverse scattering length.
In the case of the Xð3872Þ resonance, the relevant scatter-
ing amplitude is forD�0 �D0 mesons in the 1þþ channel. For
quantitative applications, the scattering amplitude in
Eq. (1) must be modified to take into account the nonzero
width of the D�0 and the existence of inelastic scattering
channels for the charm mesons [18]. By analytically con-
tinuing the parameters in Eq. (1) to complex values, we
obtain

fðEÞ ¼ 1

�ð�re þ i�imÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�ðEþ i��0=2Þ

p ; (2)

where � ¼ 966:6 MeV is the reduced mass of the D�0 and
�D0, ��0 ¼ 65:5� 15:4 keV is the total width of the D�0,
and �re þ i�im is the complex inverse scattering length.
The effects of the decays of D�0 into D0�0 and D0� are
taken into account through ��0. The effects of the inelastic
scattering channels for D�0 �D0, such as J=c�þ��, are
taken into account through �im, which must be positive.
The scattering amplitude in Eq. (2) should be accurate as
long as the energy is within about an MeVof the threshold.
For a short-distance decay channel, the only dependence

of the line shape on the energy E is from the resonance
factor jfðEÞj2. If �re is positive, the line shape jfðEÞj2 has a
resonance peak below the D�0 �D0 threshold. Defining the
binding energy and decay width for this resonance is
problematic, because the line shape is not that of a con-
ventional Breit-Wigner resonance. Our prescriptions for
the binding energy EX and the width �X are that the pole
of the amplitude fðEÞ in the complex energy E is at�EX �
i�X=2:

EX � �2
re � �2

im

2�
; (3a)

�X � ��0 þ 2�re�im

�
: (3b)

In the case �X � 2EX, the shape of the resonance is
approximately that of a nonrelativistic Breit-Wigner reso-
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nance in the region jEþ EXj � EX. Its peak is at�EX and
its full width at half-maximum is �X, justifying the inter-
pretation of EX and �X as the binding energy and decay
width of the resonance. If �X=ð2EXÞ is not small, the
variables EX and �X defined by Eqs. (3) have no precise
physical interpretations.

If �re is negative, the line shape jfðEÞj2 has a peak very
near the D�0 �D0 threshold. In the limit ��0 ! 0, the peak is
a cusp with a discontinuity in the slope that arises from the
square root in Eq. (2). The effect of the D�0 width is to
smooth out the cusp. In this case, the variables EX and �X

defined by Eqs. (3) specify the location of a pole on the
second sheet of the complex energy E. Thus they have no
simple physical interpretations.

The binding energy EX and the width �X cannot be
measured directly, because they are defined in terms of
the analytic continuation of the scattering amplitude fðEÞ
to complex values of the energy E. An alternative pair of
variables that can in principle be measured directly are the
position Emax of the peak in the line shape and its full width
at half-maximum �fwhm. The position Emax of the peak
satisfies

2�Emax þ �reð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
max þ �2

�0=4
q

��EmaxÞ1=2

þ �imð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
max þ �2

�0=4
q

þ�EmaxÞ1=2 ¼ 0: (4)

The full width of the line shape at half-maximum is given
by �fwhm ¼ Eþ � E�, where E� are the two solutions of

jfðE�Þj2 ¼ 1

2
jfðEmaxÞj2: (5)

If �re > 0, the solutions for Emax, Eþ, and E� can be
expanded in powers of ��0. The expansions for Emax and
�fwhm are

Emax ¼ � 1

2�

�
�2
re þ �im

�re

ð���0Þ

þ �2
re � 3�2

im

4�4
re

ð���0Þ2 þ . . .

�
; (6a)

�fwhm ¼ 1

2�

�
4�re�im þ 2ð���0Þ

þ �3
imð3�2

re � �2
imÞ

�3
reð�2

re � �2
imÞ2

ð���0Þ2 þ . . .

�
: (6b)

The normalization of the line shape of X in a short-
distance decay mode F produced by the decay of Bþ into
Kþ þ X is proportional to the product of the branching
fractions for Bþ ! Kþ þ X and X ! F. It is convenient to
introduce a compact notation for the product of these two
branching fractions:

ðBBÞF � B½Bþ ! Kþ þ X�B½X ! F�: (7)

Defining these branching fractions is problematic, because

the line shape for an S-wave threshold resonance is not an
integrable function. Since jfðEÞj2 decreases as 1=jEj for
large jEj, the integral of jfðEÞj2 overE depends logarithmi-
cally on the endpoints. This implies that this product of
branching fractions cannot be defined uniquely in terms of
an integral over the line shape. The numerical value of
ðBBÞF will inevitably depend on the prescription used to
define it. Our prescription is that the normalized line shape
for B� ! K� þ F is

d�

dE
� �½Bþ�ðBBÞF d�̂SD

dE
; (8)

where the energy-dependent factor is

d�̂SD

dE
¼ �2�X

2�ð�2
re þ �2

imÞ
jfðEÞj2: (9)

In the case �X � 2EX, this line shape in the region jEþ
EXj � EX is well approximated by a Breit-Wigner reso-

nance. The integral of d�̂SD=dE over this region is ap-
proximately 1, justifying the interpretation of ðBBÞF as the
product of the branching fractions for Bþ ! Kþ þ X and
X ! F. If �X=ð2EXÞ is not small, the constant ðBBÞF
defined by Eq. (8) has no precise physical interpretation.
It is simply a convenient variable for specifying the nor-
malization of the line shape. An alternative prescription for
ðBBÞF could be obtained by integrating both sides of
Eq. (8) over a chosen interval of the energy E in the
threshold region, such as�2EX to 0. However the numeri-
cal value of ðBBÞF would depend on the choice of the
endpoints of the interval.
Although the product of branching fractions depends on

the prescription, the ratio of ðBBÞF for two short-distance
decay modes F is independent of the prescription.
Choosing one of the final states to be J=c�þ�� and using
Eq. (7), the ratio is

ðBBÞF
ðBBÞJ=c�þ��

¼ B½X ! F�
B½X ! J=c�þ��� : (10)

The ratio on the right-hand side of Eq. (10) is the conven-
tional branching ratio for decays of X into those states. This
ratio is well defined for any short-distance decay mode F,
despite the fact that a prescription is required to define the
products of branching fractions on the left-hand side of
Eq. (10).

III. ANALYSIS OF THE J=c�þ�� DECAY
CHANNEL

In this section, we analyze recent data from the Belle
and BABAR Collaborations on the line shape of the
Xð3872Þ in the J=c�þ�� decay mode [2,3]. We consider
the invariant mass distribution for J=c�þ�� in the inter-
val from 3820 MeV to 3920 MeV. For our two data
samples, the total number NB �B of BþB� and B0 �B0 events
accumulated and the number of candidate events for the
decay of B� into K� þ J=c�þ�� are as follows:
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(i) BABAR Collaboration [2]: NB �B ¼ 4:55� 108, 471
events in 20 bins of width 5 MeV,

(ii) Belle Collaboration [3]: NB �B ¼ 6:57� 108, 606
events in 40 bins of width 2.5 MeV.

The data are shown in Figs. 1 and 2. The vertical error bar
in a bin with n events is

ffiffiffi
n

p
. The horizontal error bar

indicates the width of the bin.
We take the theoretical line shape for the energy E of

J=c�þ�� relative to the D�0 �D0 threshold to be given by
Eqs. (8) and (9). This line shape will be accurate within
about an MeVof the threshold. We assume that the domi-
nant contributions to the signal come from this threshold
region. If this is the case, then a line shape that remains
accurate over a larger energy interval would give a better
approximation only to contributions that are negligible. To
obtain a line shape that remains accurate within about
10MeVof the threshold, it is necessary to take into account
the effects of the charged charm meson pairs D�þD� and
DþD��, as discussed in Sec. VI.

To predict the number of events in a given bin of
invariant mass, we need to take into account the back-
ground and the energy resolution of the experiment. The
resolution must be taken into account because the line
shape varies dramatically over an energy scale smaller
than the energy resolution. The predicted number of
J=c�þ�� events in an energy bin of width � centered
at Ei can be expressed as

Ni ¼ 2NB �B

�
ðBBÞJ=c�þ��

Z Eiþ�=2

Ei��=2
dE0

�
Z 1

�1
dERðE0; EÞd�̂SD

dE
þ Cbg�

�
; (11)

where Cbg is the background under the line shape

d�̂SD=dE. Our invariant mass interval 3820–3920 MeV is
narrow enough that we take the background term Cbg to be

a constant independent of E. The experimental resolution
is taken into account through the convolution with the
Gaussian resolution function:

RðE0; EÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�

expð�ðE0 � EÞ2=ð2�2ÞÞ: (12)

We follow Ref. [17] in taking the width of the Gaussian to
be the same energy-independent constant for both experi-
ments: � ¼ 3 MeV.
We assume that the number of events in each bin of the

smeared J=c�þ�� energy E0 has a Poisson distribution
whose mean value is given by Ni in Eq. (11). We fix the
D�0 �D0 threshold at 3871.8 MeV and the D�0 width ��0 at
65.5 keV. The fitting parameters are �re, �im,
ðBBÞJ=c�þ�� , and Cbg. We determine the best fit to these

parameters by maximizing the likelihood for the observed
distribution. For both the Belle and BABAR data sets, we
carry out two fits, one with �im ¼ 0 and one with �im as a
fitting parameter. The results of our four analyses are
presented in Table I. The error bars on �re and �im are
determined by varying these parameters while keeping
ðBBÞJ=c�þ�� and Cbg fixed at their central values. For

�im ¼ 0, the error bars on �re give the interval within
which log(likelihood) differs from its maximum value by
less than 1=2. If �im is treated as a fitting parameter, the
error bars for �re and �im specify the smallest rectangle
that contains the error ellipse in which log(likelihood)
differs from its maximum value by less than 1=2. The error
bars on ðBBÞJ=c�þ�� are determined by varying this pa-
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FIG. 1 (color online). Invariant mass distribution for the
J=c�þ�� decay channel measured by the BABAR
Collaboration [2]. The data are the number of events per
5 MeV bin. The inverse scattering lengths �re þ i�im for the
two fits are 38.8 MeV (dashed line) and ð13:6þ 15:5iÞ MeV
(solid line). The vertical line is the assumed D�0 �D0 threshold at
3871.8 MeV.
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FIG. 2 (color online). Invariant mass distribution for the
J=c�þ�� decay channel measured by the Belle
Collaboration [3]. The data are the number of events per
2.5 MeV bin. The inverse scattering lengths �re þ i�im for the
two fits are 47.5 MeV (dashed line) and ð38:4þ 12:0iÞ MeV
(solid line). The vertical line is the assumed D�0 �D0 threshold at
3871.8 MeV.
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rameter and Cbg while keeping �re and �im fixed at their

central values.
In Table I, we also give the calculated values of the

position of the resonance and its width using two different
prescriptions for the parameters. The values of �EX and
�X were calculated using Eqs. (3). The values of Emax and
�fwhm were obtained by solving Eqs. (4) and (5). The
uncertainty of �0:36 MeV in the energy of the D�0 �D0

threshold is taken into account as an additional statistical
error in�EX and in Emax. The uncertainty of�15:4 keV in
��0 is taken into account as an additional statistical error in
�X and in �fwhm. In Table I, there are significant differences
between the values of �EX and Emax for the fits in which
�im is used as a fitting parameter. All four fits give values of
ðBBÞJ=c�þ�� that are consistent to within the errors and

approximately equal to 10�5.
The fits to the Belle data give parameters �re and �im

with smaller error bars than the fits to the BABAR data. In
Figs. 3 and 4, the unsmeared line shapes of Xð3872Þ in the
J=c�þ�� decay channel corresponding to the central
values of the two fits to the Belle data are shown as solid
lines. The line shape in Fig. 4 from using �im as a fitting
parameter is wider than that in Fig. 3 from setting �im ¼ 0.
Both line shapes are much narrower than the smeared line
shapes shown in Fig. 2. Thus most of the observed width
can be accounted for by the experimental resolution.

IV. ENERGY DISTRIBUTIONS FOR THE D0 �D0�0

DECAY CHANNEL

In this section, we summarize the essential aspects of the
line shape of the Xð3872Þ in the D0 �D0�0 channel. We also
determine the energy distribution that follows from the
identification of D0 �D0�0 events with energy near the
D�0 �D0 threshold with D�0 �D0 and D0 �D�0 events above
the threshold.
In the decay Bþ ! Kþ þD0 �D0�0, the momentum dis-

tributions for D0 �D0�0 near the Xð3872Þ resonance can be
calculated from the sum of the two diagrams in Fig. 5. The
open dot represents the Bþ ! Kþ transition which creates
a D�0 �D0 or D0 �D�0 at short distances. The double line
represents the exact propagator for the resonant superpo-
sition ofD�0 �D0 andD0 �D�0, whose dependence on the total
energy E of D0 �D0�0 is given by the scattering amplitude
fðEÞ in Eq. (2). In the propagators for the virtual D�0 and

TABLE I. Results of our analyses of the data for B� ! K� þ J=c�þ��. The four rows correspond to analyses using either the
BABAR data [2] or the Belle data [3] and either setting �im ¼ 0 or using �im as a fitting parameter. All entries are in units of MeV,
except for ðBBÞJ=c�þ�� , which is in units of 10�6.

Data set �re �im ðBBÞJ=c�þ�� �EX �X Emax �fwhm

BABAR 38:8þ15:0
�23:0 0 8:7þ1:3

�1:3 �0:78þ0:74
�0:80 0:066� 0:015 �0:78þ0:74

�0:80 0:066� 0:015
BABAR 13:6þ18:3

�16:9 15:5þ5:8
�11:2 12:3þ1:8

�1:7 þ0:03þ0:39
�0:57 0:50þ0:61

�0:63 �0:13þ0:38
�0:55 0:56þ0:58

�0:40

Belle 47:5þ7:9
�9:6 0 9:6þ1:1�1:0 �1:17þ0:56

�0:55 0:066� 0:015 �1:17þ0:56
�0:55 0:066� 0:015

Belle 38:4þ9:8
�10:9 12:0þ4:6

�4:8 11:1þ1:3
�1:2 �0:69þ0:52

�0:57 1:02þ0:44
�0:47 �0:77þ0:51

�0:57 1:02þ0:44
�0:47

-2 -1 0 1 2
Energy (MeV)

FIG. 3 (color online). Line shapes of Xð3872Þ for �re þ
i�im ¼ 47:5 MeV. The curves are the line shape in J=c�þ��
(solid line), the line shape in D0 �D0�0 (dashed line), and the
D�0 �D0 energy distribution (dash-dotted line). The two line
shapes have been normalized so the resonances below the
threshold have the same peak height.

-2 -1 0 1 2
Energy (MeV)

FIG. 4 (color online). Line shapes of Xð3872Þ for �re þ
i�im ¼ ð38:4þ 12:0iÞ MeV. The curves are the line shape in
J=c�þ�� (solid line), the line shape in D0 �D0�0 (dashed line),
and the D�0 �D0 energy distribution (dash-dotted line). The two
line shapes have been normalized so the resonances below the
threshold have the same peak height.
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�D�0, the width ��0 must be taken into account. The cou-
pling of the �0 to the charm mesons is linear in the pion
momentum. The differential distribution in the total energy
E and in the momenta pD, p �D, and p� of the D0, �D0, and
�0 has the form

d� / jfðEÞj2p2
�

��������
1

p2
D � 2�E� i���0

þ 1

p2
�D
� 2�E� i���0

��������
2

d�D �D�dE: (13)

The differential 3-body phase space d�D �D� includes a
delta function that relates the energy E and the three
momenta:

E ¼ ��D�D� þ p2
D

2MD0

þ p2
�D

2MD0

þ p2
�

2m�0

; (14)

where �D�D� is the energy released in the decay of D�0 to
D0�0:

�D�D� � MD�0 �MD0 �m�0 ¼ 7:14� 0:07 MeV: (15)

The 3-body phase space can be reduced to a two-
dimensional integral over pD and p �D:

d�D �D� ¼ 2m�0

ð2�Þ3 pDdpDp �Ddp �D: (16)

The integration region is

p2
D þ p2

�D

2�D�

� pDp �D

m�0

< �D�D� þ E<
p2
D þ p2

�D

2�D�

þ pDp �D

m�0

;

(17)

where �D� ¼ MD0m�0=ðMD0 þm�0Þ is the reduced mass
of D0 and �0.

Voloshin has used the diagrams in Fig. 5 to predict the
momentum distributions for D0 �D0�0 in decays of the
Xð3872Þ resonance [19]. His result is proportional to the
right-hand side of Eq. (13) with the resonance factor
jfðEÞj2 omitted, ��0 set to 0, and the energy E in the
propagators replaced by �EX, where EX is the binding

energy of the Xð3872Þ. This is the appropriate momentum
distribution only if the energy E is fixed at a value close to
the peak of the resonance. In the case of a low-energy
antiproton beam incident on a nucleon target, it may be
possible to tune the center-of-mass energy to the peak of
the resonance. However in the case of Bmeson decays, the
Xð3872Þ resonance is produced with a variable energy E.
Since the experimental resolution in E is larger than the
width of the resonance, it is necessary to take the resonance
factor jfðEÞj2 into account.
If jEj is small compared to 2ðm�0=MD0Þ�D�D� ¼

1:04 MeV, the phase space integral in Eq. (13) can be
evaluated analytically.1 In this case, the interference term
between the two propagators in Eq. (13) can be neglected.
The 3-body phase space integral in Eq. (13) reduces to

2
Z p2

�

jp2
D � 2�E� i���0j2

d�D �D�

� 1

�2��0

�
2�5

D��
3
D�D�

�

�
1=2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ �2�0=4

q
þ EÞ1=2:

(18)

The resulting line shape has the form

d�

dE
/ jfðEÞj2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ �2�0=4

q
þ EÞ1=2: (19)

This simple expression for the line shape was first derived
by Braaten and Lu [18]. If �re is positive, the line shape
consists of a resonance associated with the bound state
below the D�0 �D0 threshold and a threshold enhancement
above the threshold. If �re is negative, there is a threshold
enhancement above the D�0 �D0 threshold but no resonance

below the threshold. The position ED0 �D0�0

max of the maximum
in the line shape satisfies

FIG. 5. Diagrams for the production of D0 �D0�0. The open dot represents the B ! K transition that creates D�0 �D0 or D0 �D�0 at a
short-distance scale. The double line represents the propagation of the resonant linear combination of the pair of charm mesons. The
two diagrams involve either a virtual D�0 (left diagram) or a virtual �D�0 (right diagram).

1It is also necessary for ��0=2 to be small compared to
ðm�0=MD0 Þ�D�D�, but this is satisfied if ��0 � 65:5 keV.
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2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
max þ �2�0=4

q
� 4�Emax þ �2

re þ �2
im

� 4�reð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
max þ �2�0=4

q
��EmaxÞ1=2 ¼ 0: (20)

The solution up to corrections that are second order in ��0
is

ED0 �D0�0

max � � 1

2�

�2�re þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
re � 3�2

im

q
3

�
2
: (21)

The normalization factor for the line shape in Eq. (19)
involves the product ðBBÞD0 �D0�0 of the branching fractions
for Bþ ! KþX and X ! D0 �D0�0 defined by Eq. (7).
Defining these branching fractions is problematic, because
the line shape in Eq. (19) is not integrable. Since jfðEÞj2
decreases as 1=jEj for large jEj, the integral of the line
shape in Eq. (19) increases as the square root of the upper
endpoint. This implies that the product of branching frac-
tions cannot be defined uniquely in terms of an integral
over the line shape. The numerical value of ðBBÞD0 �D0�0

depends inevitably on the prescription used to define it.
Our prescription is that the normalized line shape for
B� ! K� þD0 �D0�0 is

d�

dE
� �½Bþ�ðBBÞD0 �D0�0

d�̂SD

dE

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ �2�0=4

q
þ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
X þ �2�0=4

q
� EX

�
1=2

;

(22)

where d�̂SD=dE is the short-distance line shape in Eq. (9)
and EX is the binding energy given by Eq. (3a). The last
factor in Eq. (22) reduces to 1 at E ¼ �EX. In the case
�X � 2EX, the line shape in the region jEþ EXj � EX is
approximately a Breit-Wigner resonance. The integral of
the right-hand side of Eq. (22) over this region is approxi-
mately �½Bþ�ðBBÞD0 �D0�0 , justifying the interpretation of
ðBBÞF as the product of the branching fractions for Bþ !
Kþ þ X and X ! D0 �D0�0. If �X=ð2EXÞ is not small, the
constant ðBBÞD0 �D0�0 defined by Eq. (22) has no precise
physical interpretation. It is simply a convenient variable
for specifying the normalization of the line shape.

To compare with the energy distribution for D�0 �D0

measured in the B factory experiments, we must take
into account how these energy distributions are measured.
Three particles identified as D0, �D0, and �0 can be con-
sidered as candidates for either a D�0 �D0 event or a D0 �D�0
event. If the measured invariant mass of D0�0 is close
enough to the mass of D�0 (within 10 MeV for BABAR
[11], within 6 MeV for Belle [12]), it is identified as aD�0.
The constraint that the invariant mass of D0�0 is equal to
MD�0 is then used to sharpen the resolution of the measured
momenta. If the D0 and �0 are produced by the decay of a
constituent D�0 from the bound state Xð3872Þ, their invari-
ant mass will be smaller than MD�0 by approximately the
binding energy EX. This information about the binding
energy is discarded when the D0�0 is constrained to

come from the decay of a D�0. If the momenta of the D0,
�D0, and �0 in the D0 �D0�0 rest frame are pD, p �D, and p�,
their total energy E relative to theD�0 �D0 threshold is given
in Eq. (14). If the D0�0 is identified as a D�0 in the
experimental analysis, the inferred energy Eexp of the

D0 �D0�0 relative to the D�0 �D0 threshold is

ðpD þ p�Þ2
2MD�0

þ p2
�D

2MD0

¼ p2
�D

2�
: (23)

Similarly, if the �D0�0 is identified as a �D�0 in the experi-
mental analysis, the inferred energy Eexp of the D0 �D0�0

relative to the D�0 �D0 threshold is p2
D=ð2�Þ. If the D0�0

and �D0�0 both have invariant mass close enough to MD�0

to be identified as D�0 and �D�0, the one whose invariant
mass is closest is constrained to be a D�0 or �D�0. Thus the
inferred energy Eexp of aD

0 �D0�0 event that is identified as

either D�0 �D0 or D0 �D�0 is

Eexp ¼
minðp2

D; p
2
�D
Þ

2�
E<

p2
D þ p2

�D

4�
; (24a)

¼ maxðp2
D; p

2
�D
Þ

2�
E>

p2
D þ p2

�D

4�
: (24b)

We will refer to Eexp as the D
�0 �D0 energy. It is the distri-

bution in this variable that should be compared with the
experimental energy distribution.
If jEj is small compared to 2ðm�0=MD0Þ�D�D� ¼

1:04 MeV, the line shape in the D0 �D0�0 channel is given
by the analytic expression in Eq. (22). In this case it is also
possible to obtain an analytic expression for the distribu-
tion in the variable Eexp. For jEj � 2ðm�0=MD0Þ�D�D�, the

larger of the momenta pD and p �D is approximately

ð2�D��D�D�Þ1=2, so Eexp is given by Eq. (24a). The distri-

bution in Eexp can then be expressed as

d�

dEexp

� �½Bþ�ðBBÞD0 �D0�0��0ffiffiffi
2

p
�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X þ �2�0=4

q
� EXÞ1=2

E1=2
exp

�
Z 1

�1
dE

d�̂SD

dE

1

jEexp � E� i��0=2j2
; (25)

where �̂SD=dE is given in Eq. (9) and EX is given in
Eq. (3a). The normalization is consistent with that in
Eq. (22), as can be verified by integrating over Eexp using

the integration formula

Z 1

0
dEexp

E1=2
exp

jEexp � E� i��0=2j2

¼
ffiffiffi
2

p
�

��0
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ �2�0=4

q
þ EÞ1=2: (26)

The integral over E in Eq. (25) can be evaluated analyti-
cally by deforming the integration contour into the upper
half-plane and picking up the contributions from the two
poles and the branch cut. The resulting expression for the

ANALYSIS OF J=c�þ�� AND . . . PHYSICAL REVIEW D 81, 014019 (2010)

014019-7



integral over E in Eq. (25) reduces to

Z 1

�1
dE

d�̂SD

dE

1

jEexp � E� i��0=2j2
¼ �2�X

2���0j�j2
�

2i�2
0Fð�i�2Þ

ð�2 � �2� þ 2i�2
0Þð�2 þ 2�EexpÞð�2 þ 2�Eexp þ 2i�2

0Þ

� 2i�2
0½Fð�i�2� � 2�2

0Þ � 2�ð�� þ i
ffiffiffiffiffiffiffiffiffiffi��2�

p Þð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� � 2i�2

0

q
Þ�

ð�2 � �2� þ 2i�2
0Þð�2� þ 2�EexpÞð�2� þ 2�Eexp � 2i�2

0Þ

�
Fð2i�Eexp � 2�2

0Þ � 2�ð�� þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Eexp

p Þð�� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Eexp þ 2i�2

0

q
Þ

ð�2� þ 2�EexpÞð�2 þ 2�Eexp þ 2i�2
0Þ

þ Fð2i�EexpÞ
ð�2 þ 2�EexpÞð�2� þ 2�Eexp � 2i�2

0Þ
�
; (27)

where �0 ¼ ð���0Þ1=2, � ¼ �re þ i�im, �� ¼ �re � i�im,
and the function FðzÞ is

FðzÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iðzþ 2�2

0Þ
q �

2��

� 4
ffiffiffiffiffiffiffiffiffi�iz

p
log

ð1þ iÞð ffiffiffiffiffiffiffiffiffi�iz
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iðzþ 2�2

0Þ
q

Þ
2�0

�
:

(28)

This function has a square-root branch point at z ¼ �2�2
0,

but despite the factors of
ffiffiffi
z

p
it has no branch point at z ¼ 0.

Although it is not manifest, the expression on the right-
hand side of Eq. (27) is real-valued.

In Figs. 3 and 4, the solid lines are the line shapes in the
J=c�þ�� decay channel for �re þ i�im ¼ 47:5 MeV and
ð38:4þ 12:0iÞ MeV, respectively. For comparison, the line
shapes in theD0 �D0�0 decay channel and theD�0 �D0 energy
distributions are also shown as dashed and dash-dotted
lines, respectively. In each figure, the curves are normal-
ized so that the resonances below the threshold have the
same maximum values. In both figures, the D0 �D0�0 line
shape has a peak below theD�0 �D0 threshold corresponding
to the Xð3872Þ resonance and a second peak above the
threshold corresponding to a threshold enhancement in the
production ofD�0 �D0 andD0 �D�0. The position and width of
the resonance peak is close to that for the J=c�þ�� line
shape. The D�0 �D0 energy distribution, which vanishes
below the threshold, has a peak above the threshold whose
width is considerably larger than the width of the reso-
nance. Thus a measurement of the position and width of the
peak in theD�0 �D0 invariant mass distribution should not be
interpreted as a measurement of the mass and width of the
Xð3872Þ.

V. ANALYSIS OF THE D0 �D0�0 DECAY CHANNEL

In this section, we analyze recent data from the Belle
and BABAR Collaborations on the line shape of the
Xð3872Þ in the D0 �D0�0 decay mode [11,12]. We consider
the energy distribution forD�0 �D0 andD0 �D�0 in the interval
from 0 to 100 MeV. For our two data samples, the total

number NB �B of BþB� and B0 �B0 events accumulated and
the number of candidate events for the decay of B� into
K� þD�0 �D0ðD0 �D�0Þ are as follows:
(i) BABAR Collaboration [11]: NB �B ¼ 3:83� 108, 172

events in 50 bins of width 2 MeV,
(ii) Belle Collaboration [12]: NB �B ¼ 6:57� 108, 171

events in 50 bins of width 2 MeV.
The data are shown in Figs. 6 and 7. The vertical error bar
in a bin with n events is

ffiffiffi
n

p
. The horizontal error bar

indicates the width of the bin.
We take the distribution in the D�0 �D0 energy Eexp to be

given by Eqs. (25), (27), and (28). This energy distribution
should be accurate within about an MeV of the threshold.
We assume that the dominant contributions to the signal
come from this threshold region. To predict the number of
events in a given bin of invariant mass, we need to take into
account the background and the energy resolution of the
experiment. The predicted number of D�0 �D0 events in an
energy bin of width � centered at Ei can be expressed as
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FIG. 6 (color online). Energy distribution for D�0 �D0 and
D0 �D�0 measured by the BABAR Collaboration [11]. The data
are the number of events per 2 MeV bin. The inverse scattering
length �re þ i�im for the fit is 67.7 MeV.
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Ni ¼ 2NB �B

Z Eiþ�=2

Ei��=2
dE0 Z 1

0
dEexpRðE0; EexpÞE1=2

exp

�
� ðBBÞD0 �D0�0��0ffiffiffi

2
p

�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X þ �2�0=4

q
� EXÞ1=2

Z 1

�1
dE

d�̂SD

dE

� 1

jEexp � E� i��0=2j2
þ Cbg

�
; (29)

where Cbg takes into account the background. Our energy

interval 0–100 MeV is narrow enough that the background
contribution to the distribution in Eexp can be taken as a

constant Cbg multiplied by E1=2
exp , which is the energy de-

pendence of the D�0 �D0 phase space. The experimental
resolution is taken into account through a convolution
with a Gaussian resolution function with an energy-
dependent width �ðEexpÞ:

RðE0; EexpÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
�ðEexpÞ

� expð�ðE0 � EexpÞ2=ð2�ðEexpÞ2ÞÞ: (30)

We follow Ref. [17] in taking the width for both experi-
ments to be the same energy-dependent function:

�ðEexpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:031 MeVÞEexp

q
: (31)

This may be too crude a model for the effects of the
experimental resolution in this channel, but we will use it
for illustrative purposes anyway.
We assume that the number of events in each bin of the

smeared energy E0 has a Poisson distribution whose mean
value is given byNi in Eq. (29). We fix theD�0 width ��0 at
65.5 keV. The adjustable parameters are �re, �im,
ðBBÞD0 �D0�0 , and Cbg. We determine the best fit to these

parameters by maximizing the likelihood for the observed
distribution. For both the Belle and BABAR data sets, we
carry out two fits: one with �im ¼ 0 and one with �im as a
fitting parameter. The results of our four analyses are
presented in Table II. The error bars are determined in
the same way as those in Table I, except that the uncer-
tainty of �0:36 MeV in the D�0 �D0 threshold energy does
not enter because the experimental energies were measured
relative to this threshold.
In the fits to the BABAR and Belle data with �im treated

as a fitting parameter, the maximum likelihood is obtained
for �im ¼ 0, which is the smallest possible physical value.
This suggests that our model for the experimental resolu-
tion in Eq. (31) may provide too much smearing of the
energy distribution. The best fit to the BABAR data gives a
line shape whose peak is below the D�0 �D0 threshold by
about 2.4 MeV, which is incompatible with the assumption
jEj � 1 MeV that we used to derive analytic expressions
for the line shape and the energy distribution. The best fit to
the Belle data gives a line shape whose peak is below the
D�0 �D0 threshold by only about 0.05 MeV, which is com-
parable to the width �X � 0:07 MeV. The value of
ðBBÞD0 �D0�0 from the fit to the Belle data is about an order
of magnitude smaller than that from the fit to the BABAR
data. Since the Belle fit does not satisfy �X � 2EX, the
value of ðBBÞD0 �D0�0 should not be interpreted literally as
the product of branching fractions. It is simply a parameter
used to specify the normalization of the line shape in
Eq. (22). The BABAR fit does satisfy �X � 2EX, so the
value of ðBBÞD0 �D0�0 can be interpreted as the product of
branching fractions. Dividing by the value 8:7� 10�6 for
ðBBÞJ=c�þ�� from Table I, we obtain a branching ratio for

D0 �D0�0 to J=c�þ�� of approximately 0.004. This im-
plies that short-distance decay modes account for most of

TABLE II. Results of our analyses of the data for B� ! K� þD0 �D0�0. The four rows correspond to analyses using either the Belle
data [12] or the BABAR data [11] and either setting �im ¼ 0 or using �im as a fitting parameter. All entries are in units of MeV, except
for ðBBÞD0 �D0�0 , which is in units of 10�6.

Data set �re �im ðBBÞD0 �D0�0 �EX �X Emax �fwhm

BABAR 67:7þ10:9
�9:3 0 0:034þ0:008

�0:007 �2:37þ0:61
�0:82 0:066� 0:015 �2:37þ0:61

�0:82 0:066� 0:015
BABAR 67:7þ12:3

�9:3 0þ0:14
�0 0:034þ0:008

�0:007 �2:37þ0:61
�0:94 0:066þ0:025

�0:015 �2:37þ0:61
�0:94 0:066þ0:025

�0:015

Belle 9:99þ1:99
�1:42 0 0:0029þ0:0007

�0:0006 �0:052þ0:014
�0:023 0:066� 0:015 �0:056þ0:013

�0:022 0:066� 0:015
Belle 9:99þ3:16

�1:42 0þ0:98
�0 0:0029þ0:0007

�0:0006 �0:052þ0:014
�0:038 0:066þ0:025

�0:015 �0:056þ0:013
�0:037 0:066þ0:026

�0:015
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FIG. 7 (color online). Energy distribution for D�0 �D0 and
D0 �D�0 measured by the Belle Collaboration [12]. The data are
the number of events per 2 MeV bin. The inverse scattering
length �re þ i�im for the fit is 9.99 MeV.
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the width �X of the Xð3872Þ resonance. However the value
�im ¼ 0 for the best fit implies that the contribution to the
width �X from short-distance decay modes is negligible. A
possible explanation for this inconsistency is that the sim-
ple model for the D�0 �D0 energy resolution given in
Eqs. (30) and (31) is inadequate.

In Fig. 8, we show the line shapes corresponding to the
best fit to the Belle data for D0 �D0�0. The line shape in the
J=c�þ�� decay channel, the line shape in the D0 �D0�0

decay channel, and the D�0 �D0 energy distribution are
shown as solid, dashed, and dash-dotted lines, respectively.
The curves are normalized so that the resonances below the
threshold have the same peak height. The D0 �D0�0 line
shape has a single peak below the D�0 �D0 threshold whose
position and width are close to those for the peak in the
J=c�þ�� line shape. It is this peak that should be iden-
tified with the Xð3872Þ resonance. The D�0 �D0 energy
distribution, which vanishes below the D�0 �D0 threshold,
has a peak above the threshold whose width is considerably
larger than that of the Xð3872Þ resonance. It is also much
narrower than the smeared energy distribution shown in
Fig. 7.

VI. CRITIQUE OF PREVIOUS ANALYSES

In this section, we discuss how the analysis presented in
this paper could be improved. We also point out errors and
misconceptions in previous theoretical analyses of the line
shapes of the Xð3872Þ.

The most limiting aspect of our analysis was the use of
the analytic expression in Eq. (22) for the line shape in the
D0 �D0�0 decay channel. The derivation of this expression
involved the assumption jEj � 2ðm�0=MD0Þ�D�D� ¼

1:04 MeV. It requires most of the D0 �D0�0 events to be
produced with energy within an MeVof the D�0 �D0 thresh-
old. In particular, it requires the width of the Xð3872Þ
resonance to be much less than an MeV. This limitation
can be relaxed by replacing the invariant mass distribution
in Eq. (22) by the differential decay distribution in
Eq. (13). Given our prescription for ðBBÞD0 �D0�0 in
Eq. (22), the normalization of the differential decay rate
is determined:

d�

dE
¼ �½Bþ�ðBBÞD0 �D0�0�2��0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
X þ �2

�0=4
q

þ EXÞ1=2
�

�

2�5
D��

3
D�D�

�
1=2 d�̂SD

dE
p2
�

�
��������

1

p2
D � 2�E� i���0

þ 1

p2
�D
� 2�E� i���0

��������
2

� d�D �D�; (32)

where d�D �D� is given in Eq. (16). The integral over the
momenta pD and p �D must be evaluated numerically.
Another limiting aspect of our analysis was ignoring the

effects of the charged charm meson pairs D�þD� and
DþD��. They can produce significant interference effects
for jEj as small as 1=4 of the 8.1 MeV splitting between the
D�þD� and D�0 �D0 thresholds [20]. The effects of charged
charm meson pairs were first considered by Voloshin [16],
but there were conceptual errors in his analysis. A correct
analysis was presented by Braaten and Lu [20]. It involves
the 2� 2 matrix of S-wave C ¼ þ scattering amplitudes
fijðEÞ between the neutral channel D�0 �D0=D0 �D�0 labeled
by subscript 0 and the charged channel D�þD�=DþD��
labeled by subscript 1. The parameters in these scattering
amplitudes are the inverse scattering lengths �0 and �1 for
charm mesons in the channels with isospin 0 and 1 in the
isospin symmetry limit. The coupled-channel expressions
for the D� �D scattering amplitudes are

f00ðEÞ ¼ �ð�0 þ �1Þ þ 2�1ðEÞ
DðEÞ ; (33a)

f01ðEÞ ¼ f10ðEÞ ¼ �1 � �0

DðEÞ ; (33b)

f11ðEÞ ¼ �ð�0 þ �1Þ þ 2�ðEÞ
DðEÞ ; (33c)

where the denominator is

DðEÞ ¼ 2�0�1 � ð�0 þ �1Þ½�ðEÞ þ �1ðEÞ�
þ 2�1ðEÞ�ðEÞ: (34)

The functions �ðEÞ and �1ðEÞ are

�ðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�½Eþ i��0=2�

q
; (35a)

�1ðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1½E� �þ i��1=2�

q
; (35b)

where �1 ¼ 968:7 MeV is the reduced mass of D�þ and
D� and � ¼ 8:1 MeV is the splitting between the D�þD�

-0.2 -0.1 0 0.1 0.2
Energy (MeV)

FIG. 8 (color online). Line shapes of Xð3872Þ for �re þ
i�im ¼ 9:99 MeV. The curves are the line shape in J=c�þ��
(solid line), the line shape in D0 �D0�0 (dashed line), and the
D�0 �D0 energy distribution (dash-dotted line). The two line
shapes have been normalized so the resonances below the
threshold have the same peak height.
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and D�0 �D0 thresholds. In Eq. (35a), ��0 is the energy-
dependent width of the D�0, which has its physical value
65.5 keV at E ¼ 0. In Eq. (35b), ��1 is the energy-
dependent width of the D�þ, which has its physical value
96 keV at E ¼ 8:1 MeV and decreases to 1.5 keV at E ¼
2:1 MeV, which is the DþD��0 threshold. Near the
D�0 �D0 threshold, the scattering amplitude in Eq. (33a)
reduces to the universal expression in Eq. (2) with

�re þ i�im ¼ 2�0�1 � ð�0 þ �1Þ�1ð0Þ
ð�0 þ �1Þ � 2�10Þ : (36)

Voloshin’s first conceptual error in Ref. [16] was assum-
ing that a B ! K transition that produces the Xð3872Þ
resonance must create the charm mesons in the neutral
channel and not in the charged channel. This implies that
the amplitudes for the resonant production of an isospin-0
final state such as J=c�þ���0 and an isospin-1 final state
such as J=c�þ�� are proportional to f00ðEÞ � f01ðEÞ
and f00ðEÞ þ f01ðEÞ, respectively. However, since there
is resonant scattering between the neutral and charged
channels, the Xð3872Þ resonance can also be produced by
a B ! K transition that creates the charm mesons in the
charged channel. Thus the amplitudes for isospin-0 and
isospin-1 final states can also have terms proportional to
f10ðEÞ � f11ðEÞ and f10ðEÞ þ f11ðEÞ, respectively.
Voloshin’s second conceptual error was ignoring the con-
straints of isospin symmetry on the amplitudes for the
creation of charm meson pairs by the Bþ ! Kþ and B0 !
K0 transitions. He concluded incorrectly that the rates are
proportional to jf00ðEÞ � f01ðEÞj2 with the same multi-
plicative constant for Bþ and B0 decays. The isospin
symmetry constraints derived in Ref. [20] imply that the

line shapes are different for Bþ and B0 decays and they are
determined by three independent multiplicative constants.
Another limiting aspect of our analysis was ignoring the

effects of the P-wave charmonium state 	c1ð2PÞ. This state
has the same quantum numbers 1þþ as the Xð3872Þ, so it
also has an S-wave coupling to charm meson pairs D� �D
and D �D�. Its spin symmetry partner 	c2ð2PÞ, which was
discovered in 2006 by the Belle Collaboration [21], has a
mass of about 3930 MeV. Potential models predict the
mass of the 	c1ð2PÞ to be lower by 20 to 50 MeV
[22,23]. Thus its mass could be close enough to the D� �D
thresholds for the resonant coupling of the 	c1ð2PÞ to the
charm mesons to affect the line shape in this region. Its
effects on the line shapes within about an MeV of the
threshold would however be negligible. To be more pre-
cise, these effects are accurately taken into account through
the value of the inverse scattering length �re þ i�im. This
follows from the universal behavior of an S-wave threshold
resonance which makes it insensitive to the mechanism for
the resonance. If the mass of the 	c1ð2PÞ is extremely close
to the threshold, it is transformed by its resonant couplings
to the charm mesons into a charm meson molecule whose
constituents have a large mean separation. Thus far there
has been no quantitative analysis of the effects of the
	c1ð2PÞ on the line shape of the Xð3872Þ.
In Ref. [15], Hanhart, Kalashnikova, Kudryavtsev, and

Nefediev analyzed the line shapes for the Xð3872Þ using a
generalization of a parametrization of the line shape for a
near-threshold resonance proposed by Flatté [24]. Their
expression for the line shape can be written as jfHKKNðEÞj2,
where fHKKNðEÞ is the scattering amplitude

fHKKNðEÞ ¼ 1

ð2=g1ÞEf � i�ðEÞ=g1 þ �ðEÞ þ ðg2=g1Þ�1ðEÞ � ð2=g1ÞE ; (37)

�ðEÞ is given by Eq. (35a) with ��0 ¼ 0, �1ðEÞ is given by
Eq. (35b) with ��1 ¼ 0, and �ðEÞ is the energy-dependent
partial width for short-distance decays of the Xð3872Þ. This
line shape was also used in a recent analysis by Zhang,
Meng, and Zheng [17]. Near the D�0 �D0 threshold, the
scattering amplitude in Eq. (33a) reduces to the universal
expression in Eq. (2) with �re ¼ �½2Ef þ g2�ð0Þ�=g1 and
�im ¼ �ð0Þ=g1. The coefficient �2=g1 of the term
�ð2=g1ÞE in the denominator of Eq. (37) can be identified
as rs=2, where rs is the effective range. In Ref. [15],
Hanhart et al. found that the best fits to the Belle and
BABAR data are in a scaling region of the parameter space
in which the ð2=g1ÞE term in the denominator is negligible.
Thus the only relevant parameters are Ef=g1, g2=g1, and
�ð0Þ=g1. The scattering amplitude in Eq. (37) with the
ð2=g1ÞE term omitted can be obtained from the coupled-
channel scattering amplitude f00ðEÞ in Eq. (33a) by replac-
ing �1ðEÞ in both the numerator and the last term in the

denominator by �1ð0Þ. Thus the line shape jfHKKNðEÞj2
takes into account some of the effects of the coupling
between the neutral and charged channels.
One apparent advantage of the line shape jfHKKNðEÞj2

that is actually illusory is that it is an integrable function of
the energy E. The product of branching fractions ðBBÞF
for a short-distance channel F of Xð3872Þ in the decay
Bþ ! Kþ þ X can therefore be defined in the conven-
tional way by specifying the energy distribution for the
final state F to be

d�

dE
¼ �½Bþ�ðBBÞFjfHKKNðEÞj2=

Z 1

�1
dE0jfHKKNðE0Þj2:

(38)

This definition of ðBBÞF appears to be more natural than
the prescription for an threshold S-wave resonance that we
introduced in Eq. (8). However the term in Eq. (37) that
makes the line shape jfHKKNðEÞj2 integrable is the last term
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�ð2=g1ÞE. Because the best fit is in a scaling region of the
parameter space, varying the parameter g1 while holding
the combinations Ef=g1, g2=g1, and �ð0Þ=g1 fixed has

essentially no effect on the line shape very near the reso-
nance but it does change the interval of the energy E that
gives significant contributions to the integral of the line
shape. The numerical value of ðBBÞF is therefore deter-
mined by the value of g1. Thus the definition for ðBBÞF in
Eq. (37) is in fact an arbitrary prescription specified by the
parameter g1.

In their analysis of the line shape of Xð3872Þ in the
D0 �D0�0 decay mode in Ref. [15], Hanhart et al. made a
serious conceptual error. They assumed that the line shape
has the form

d�

dE
/ jfHKKNðEÞj2E1=2
ðEÞ: (39)

The factor 
ðEÞ emphasizes that the line shape was as-
sumed to be zero below the D�0 �D0 threshold. This reflects
the incorrect assumption that D0 �D0�0 events can come
only from the production of D�0 �D0 or D0 �D�0 above the
threshold followed by the decay ofD�0 or �D�0 and not from
the decay of a bound state below the threshold. However
the mass of the Xð3872Þ is about 7 MeVabove theD0 �D0�0

threshold, so there is plenty of phase space for the decay of
this bound state into D0 �D0�0. Moreover the Xð3872Þ
spends most of its time in a configuration in which the
charm mesons have large separation, so the D�0 or �D�0 in
the bound state can decay almost as if they were free
particles. The conceptual error in Ref. [15] was pointed
out in Ref. [18], and an analysis that takes into account the
decay of the bound state was carried out.

Zhang, Meng, and Zheng have recently carried out an
updated analysis [17] of the recent data from BABAR and
Belle using essentially the same line shapes as Hanhart
et al. They repeated the conceptual error of Ref. [15] by
taking the line shape in D�0 �D0 to be given by Eq. (39),
which does not take into accountD0 �D0�0 events produced
by decays of the bound state. They determined the location
of the poles in the energy E for the scattering amplitude
fHKKNðEÞ in Eq. (37). All of their fits had one pole for
which the real and imaginary parts of E were less than
1 MeV. This is the pole associated with the S-wave thresh-
old resonance. Their fits also had a second pole on a
different Riemann sheet of the complex energy E whose
absolute value was significantly larger than 1 MeV. This
pole is an artifact of the scattering amplitude in Eq. (37)
and has no physical significance.

VII. SUMMARY

We have carried out an analysis of the line shapes of the
Xð3872Þ in the J=c�þ�� and D0 �D0�0 decay channels
using the most recent data from the BABAR and Belle
Collaborations. For the signal, we used the line shapes of
an S-wave threshold resonance, which differ in several

crucial respects from the conventional Breit-Wigner reso-
nance. We took into account the experimental resolution in
the energy distributions using Gaussian smearing func-
tions. In the case of the D0 �D0�0 channel, we also took
into account the assumption in the experimental analyses
that D0 �D0�0 events near the D�0 �D0 threshold come from
D�0 �D0 and D0 �D�0.
The parameters for the S-wave threshold resonance are

the real and imaginary parts of the inverse scattering length
�re þ i�im and a normalization factor ðBBÞF that depends
on the decay channel F. A characteristic feature of an
S-wave threshold resonance is that its line shapes are not
integrable functions of the energy. One consequence is that
the product ðBBÞF of the branching fractions for the
production of the resonance and its decay into the final
state F depends on the prescription used to define it. Our
prescription for ðBBÞJ=c�þ�� is specified by the analytic

expression for the line shape in Eq. (8). Our prescription
for ðBBÞD0 �D0�0 is specified by the analytic expression for
the line shape in Eq. (32). The parameters for our fits to the
BABAR and Belle data in the J=c�þ�� and D0 �D0�0

decay channels are given in Tables I and II.
Because the line shape of an S-wave threshold resonance

is not an integrable function of the energy, a prescription is
required to define the binding energy and the width of the
Xð3872Þ. Our prescriptions for the binding energy EX and
the width �X are that the pole in the amplitude as a function
of the complex energy E are at �EX � i�X=2. Given the
values of �re and �im, EX and �X can be calculated using
Eqs. (3). An alternative pair of variables that can in prin-
ciple be measured directly are the position Emax of the peak
in the line shape and its full width at half-maximum �fwhm.
Given the values of �re and �im, Emax and �fwhm can be
calculated by solving Eqs. (4) and (5). The values of�EX,
�X, Emax, and �fwhm for our fits to the BABAR and Belle
data in the J=c�þ�� and D0 �D0�0 decay channels are
listed in Tables I and II.
We carried out two fits to each of the data sets from the

Belle and BABAR Collaborations, one with �im ¼ 0 and
one with �im as a fitting parameter. The best fits to the
smeared line shapes in the J=c�þ�� decay channel are
shown in Figs. 1 and 2. The best fits to the smeared D�0 �D0

energy distributions are shown in Figs. 6 and 7. The line
shapes in the J=c�þ�� and D0 �D0�0 decay channels and
the D�0 �D0 energy distributions for three of the best fits are
shown in Figs. 3, 4, and 8. The D0 �D0�0 line shape has a
peak below the D�0 �D0 threshold whose position and width
are close to those for the J=c�þ�� line shape. It is this
peak that should be identified as the Xð3872Þ resonance.
The D�0 �D0 energy distribution, which vanishes below the
threshold, has a peak above the threshold whose width is
considerably larger than the width of the Xð3872Þ reso-
nance. Thus measurements of the position and width of the
peak in theD�0 �D0 invariant mass distribution should not be
interpreted as measurements of the mass and width of the
Xð3872Þ.
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In our analyses of the D�0 �D0 energy distributions mea-
sured by the BABAR and Belle Collaborations, we took into
account the assumption that D0 �D0�0 events near the
D�0 �D0 threshold come from D�0 �D0 and D0 �D�0. Even
though the D�0 �D0 energy distributions vanish below the
D�0 �D0 threshold, our analyses of these distributions gave
values for the position of the Xð3872Þ resonance that were
below the threshold. In our analyses with �im as a fitting
parameter, the best fits were for �im ¼ 0, which is the
minimum physical value. In contrast, the best fits to the
BABAR and Belle data on J=c�þ�� gave �im ¼
15:5 MeV and 12.0 MeV, respectively. The preference
for the value �im ¼ 0 in the fit to the D0 �D0�0 data could
be an artifact of the simple model for the D�0 �D0 energy
resolution given in Eqs. (30) and (31). Because this model
is questionable, we regard our analyses of theD0 �D0�0 data
as only illustrative. They are no substitute for analyses by
the experimental collaborations that take all the correlated

errors properly into account. In a careful analysis, it would
be better to use the differential decay distribution in
Eq. (32) instead of our analytic expression for the line
shape in Eq. (22). Finally an analysis of theD0 �D0�0 decay
channel similar to the original Belle analysis in Ref. [10]
would be preferable to one in which D0 �D0�0 events near
the D�0 �D0 threshold are interpreted as D�0 �D0 or D0 �D�0. If
such an analysis gave resonance parameters for the
Xð3872Þ that are close to those from analyses of the
J=c�þ�� channel, it would go a long way towards solid-
ifying a consensus in the high energy physics community
on the nature of the Xð3872Þ.
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