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The hadronic decays of �c1 ! VV and �c2 ! VP are supposed to be suppressed by the helicity

selection rule in the perturbative QCD framework. With an effective Lagrangian method, we show that the

intermediate charmed meson loops can provide a mechanism for the evasion of the helicity selection rule,

and result in sizeable decay branching ratios in some of those channels. The theoretical predictions can be

examined by the forthcoming BES-III data in the near future.

DOI: 10.1103/PhysRevD.81.014017 PACS numbers: 13.25.Gv, 11.30.Er, 11.30.Hv

I. INTRODUCTION

The exclusive decays of heavy quarkonium have been an
important platform for studying the nature of strong inter-
actions in the literature [1–6] since the discovery of quan-
tum chromodynamics (QCD). In this energy region a
relatively large energy scale (�mc, mb) is involved such
that some perturbative QCD (pQCD) asymptotic behaviors
can be expected, for instance, the so-called helicity selec-
tion rule [2]. By studying the manifestation of the helicity
selection rule in heavy quarkonium decays, we expect to
gain insights into the property of QCD in the interplay of
the perturbative and nonperturbative regime.

We briefly review this powerful method that is elabo-
rated on in Ref. [2]. For a charmonium meson Jc �c decaying
into two light mesons h1 and h2, the perturbative method
gives the asymptotic behavior of the branching ratio as
follows:

BR Jc �cð�Þ!h1ð�1Þh2ð�2Þ �
��2

QCD

m2
c

�j�1þ�2jþ2
; (1)

where �, �1, and �2 are the helicities of the corresponding
mesons. This is the result of the pQCD method to leading-
twist accuracy; i.e. only the valence Fock state (here it is
c �c) is considered. It is obvious that the leading contribution
comes from the condition when �1 þ �2 ¼ 0, while the
helicity configurations that do not satisfy this relation will
be suppressed.

An alternative description of this selection rule is to
depict it with the quantum number ‘‘naturalness,’’ which
is defined as� � Pð�1ÞJ, where P and J are the parity and
spin of the particle, respectively. The selection rule then
requires that

�initial ¼ �1�2: (2)

That is, the initial-state naturalness should be equal to the
product of those of the final states. We can comprehend this

in such a way that, if �initial � �1�2, to keep the parity
conservation and Lorentz invariance, the amplitude will
contain a Levi-Civita tensor �����, which will be con-

tracted with the polarization vectors and momenta of the
involved mesons. For instance, for the process �c1 ! VV
where VV represent a pair of vector mesons, in the rest
frame of �c1, the nonvanishing covariant amplitude will
require one vector meson be transversely polarized and the
other one be longitudinally polarized. This leads to �1 þ
�2 � 0, which will violate the helicity selection rule and is
supposed to be suppressed. Another well-known example
is the process J=c ! VP, where the nonvanishing cova-
riant amplitude also violates the selection rule.
The helicity selection rule has been used for studying

some exclusive decay processes of heavy quarkonia. In
Refs. [2,3,7], some allowed or suppressed processes are
explicitly listed. Interestingly, with the accumulation of the
experimental data, more and more observations suggest
significant discrepancies between the data and the
selection-rule expectations. For instance, the decays of
J=c ! VP and 	c ! VV would be suppressed by this
rule. In reality, they are rather important decay channels for
J=c and 	c, respectively [8]. One possible reason why the
perturbative method fails here could be that although the
mass of the charm quark is heavy, it is, however, not as
heavy as pQCD demands. Therefore, it is not safe to apply
the helicity selection rule to charmonium decays, while the
situation may be improved in bottomonium decays. Taking
into account these issues, it implies that there might be
some other mechanisms that can contribute to those
helicity-selection-rule-forbidden processes, such as higher
order contributions, final-state interactions, or some other
long-distance effects. Theoretical discussions on these
mechanisms in B-meson or heavy quarkonium decays
can be found in the literature [9–19].
In Refs. [15,16], the role played by the intermediate

charmed meson loops in the understanding of the so-called

-� puzzle and c ð3770Þ non-D �D decays into VP was
studied. It shows that the long-distance interactions via
the intermediate meson loops provide a possible mecha-
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nism for understanding the deviations from pQCD expec-
tations. In the present work, we will study the P-wave
charmonium decays, i.e. �c1 ! VV and �c2 ! VP, which
are suppressed by the helicity selection rule but may be
enhanced by the intermediate charmed meson loop tran-
sitions. The branching ratio of �c1 ! K�0 �K�0 at order of
10�3 has been measured by experiment [8]. According to
the SU(3) flavor symmetry, it is justified to predict some
other channels as 

,!!, and��, of which the branching
ratios may also be sizeable. Therefore, it is interesting to
investigate the intermediate meson loop transitions as a
mechanism for evading the helicity selection rule. We also
note that the process �c2 ! VP will be further suppressed
by the approximate G parity or isospin (U spin for strange
mesons) conservation, and the �c2 decays into neutral VP
with fixed C parities are forbidden by C-parity conserva-
tion. By comparing the results with the SU(3) flavor sym-
metry expectation, we anticipate that the nonperturbative
mechanism can be highlighted.

It is worth noting that for the P-wave charmonium
exclusive decays, the next higher Fock state c �cg, i.e. the
so-called color-octet state, will contribute at the same order
as the color-singlet state c �c in the framework of perturba-
tive method [7,20–23]. This scenario may share the same
intrinsic physics with the intermediate meson loop transi-
tions, but based on different view angles. Namely, one
description is at the quark-gluon level, while the other is
at the hadron level. Taking into account the relatively low
energy scale, it is not easy to handle these processes with
the factorization method for the quark-gluon interactions.
Some qualitative discussions can be found in [11,13,14]
and references therein.

This paper is arranged as follows: In Sec. II, the for-
mulas for the intermediate meson loops as a long-distance
effect in the charmonium decays will be given by an
effective Lagrangian method. The numerical results and
discussions will be given in Sec. III. The conclusion will be
drawn in Sec. IV.

II. LONG-DISTANCE CONTRIBUTION VIA
INTERMEDIATE MESON LOOPS

In Figs. 1–3, the intermediate meson loops are plotted
for �c1 ! VV, �c2 ! 
�, and �c2 ! K� �K, respectively.
The relevant effective Lagrangians that will be used are
based on the heavy quark symmetry and SU(3) symmetry
[13,14,24]. The spin multiplet for these four P-wave char-
monium states are expressed as

P�
c �c ¼

�
1þ v6
2

��
���
c2 � þ 1ffiffiffi

2
p �����v

����
c1

þ 1ffiffiffi
3

p ð� � v�Þ�c0 þ h�c 5

��
1� v6
2

�
: (3)

The charmed and anticharmed meson triplets read

H1i ¼
�
1þ v6
2

�
½D��

i � �Di5�; (4)

H2i ¼ ½ �D��
i � � �Di5�

�
1� v6
2

�
; (5)

where D and D� denote the pseudoscalar and vector

charmed meson fields, respectively, i.e. Dð�Þ ¼
ðD0ð�Þ; Dþð�Þ; Dþð�Þ

s Þ. Then the effective Lagrangian that
describes the interaction between the P-wave charmonium
and the charmed mesons reads

L 1 ¼ ig1 Tr½P�
c �c

�H2i�
�H1i� þ H:c: (6)

The effective Lagrangians that describe the couplings of
charmed mesons to light hadrons read

LDDV ¼ �igDDV
�Di@

$
�DjðV�Þij; (7)

LD�DV ¼ �2fD�DV�����ð@�V �Þijð �Di@
$�

D��
j

� �D��
i @

$�
DjÞ; (8)

LD�D�V ¼ igD�D�V
�D��
i @

$
�D�

j�ðV�Þij
þ 4ifD�D�V

�D��
i ð@�V � � @�V�ÞijD��

j ;

(9)

LD�DP ¼ �igD�DPð �Di@�P ijD
��
j � �D��

i @�P ijDjÞ;
(10)

LD�D�P ¼ 1
2gD�D�P�����

�D��
i @�P ij@

$�
D��

j ; (11)

where V and P are the pseudoscalar octet and vector
nonet, and we take the following conventions

FIG. 1. Triangle loop diagrams that describe the long-distance
contributions in �c1 ! V1V2, where V1V2 represent K� �K�, 

,
!!, and ��, respectively.
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V ¼
1ffiffi
2

p ð
0 þ!Þ 
þ K�þ


� 1ffiffi
2

p ð�
0 þ!Þ K�0

K�� �K�0 �

0
B@

1
CA; (12)

P ¼
1ffiffi
2

p ð�0 þ 	Þ �þ Kþ

�� 1ffiffi
2

p ð��0 þ 	Þ K0

K� �K0 �
ffiffi
2
3

q
	

0
BBB@

1
CCCA: (13)

A. �c1 ! VV

Figure 1 illustrates the long-distance contributions for
�c1 ! VV. One notices that there is no such a vertex of
�c1D

� �D� in Fig. 1. It is because to conserve parity and
keep Lorentz invariance, the relative angular momentum
between D� �D� should be L ¼ 2, and the total spin S ¼ 2.
But such kind of coupling is not present in the expansion of
the effective Lagrangian L1. For Figs. 1(a) and 1(b), we

take the convention of the momenta as �c1ðpÞ !
Dðq1Þ �D�ðq2Þ½Dð�ÞðqÞ� ! V1ðp1ÞV2ðp2Þ, where the ex-
changed particle between D and �D� is indicated in the
square bracket. Figures 1(c) and 1(d) will give the same
contribution as Figs. 1(a) and 1(b). For simplicity, we just
write down the amplitudeM1a andM1b and take the final
states 
þ
� as an example:

M1a ¼ 2igDD��c1
gDDVfD�DV�

�c1

� ���1 ���2

�
Z d4q

ð2�Þ4 ðq1� þ q�Þ�����p
�
2 ðq� � q�2 Þ

� g�� � q�2q
�
2 =m

2
D�

DaD1D2

F ðq2Þ; (14)

M1b ¼ 2igDD��c1
gDDVfD�DV�

�c1

� ���1 ���2

�
Z d4q

ð2�Þ4 �����p
�
1 ðq�1 þ q�Þ½gD�D�Vðq2� � q�Þ

� g� þ 4fD�D�Vðp2�g� � p2g��Þ�
� ðg� � q�q=m2

D� Þðg�� � q�2q
�
2=m

2
D� Þ

� 1

DbD1D2

F ðq2Þ; (15)

where Da ¼ q2 �m2
D, Db ¼ q2 �m2

D� , D1 ¼ q21 �m2
D,

and D2 ¼ q22 �m2
D� . The results of other channels can be

obtained similarly.
Since the mass of �c1 is under the threshold of D �D�,

intermediate mesons D and �D� cannot be on-shell simul-
taneously. We phenomenally introduce a form factor
F ðq2Þ as has been done in Refs. [13,14],

F ðq2Þ ¼ Y
i

�
m2

i ��2
i

q2i ��2
i

�
; (16)

where qi ¼ q, q1, q2. The cutoff energy is chosen as �i ¼

mi þ ��QCD, and mi is the mass of the corresponding

exchanged particle. This is somehow different from the
form factor adopted in Refs. [13,14]. We should mention
that the form factor is necessary for killing the divergence
of the loop integrals, although it will also give rise to the
model-dependent aspects of the calculations. We will dis-
cuss this in detail later.

B. �c2 ! VP

As mentioned previously, the decay �c2 ! VP suffers
not only from the suppression of the helicity selection rule
but also from the approximate G-parity or isospin=U-spin
conservation. However, because of the relatively large
mass difference between the u=d quark and s quark, the
intermediate meson loops may still bring in sizeable
branching ratios for �c2 ! K �K� þ c:c: Next, we will con-
sider �c2 ! 
þ�� þ c:c: and �c2 ! K� �K þ c:c: The �c2

decays into neutral VP with fixed C parity, such as 
0�0

and!	, etc., forbidden byC-parity conservation. The loop
diagrams for these two processes are presented in Figs. 2
and 3, respectively. The convention of the momenta fol-
lows that of Fig. 1.

FIG. 3. Triangle loop diagrams that describe the long-distance
contributions in �c2 ! K�0 �K0. The diagrams for �c2 ! �K�0K0

are implicated.

FIG. 2. Triangle loop diagrams that describe the long-distance
contributions in �c2 ! 
þ��. The diagrams for �c2 ! 
��þ
are implicated.

EVASION OF HELICITY SELECTION RULE IN . . . PHYSICAL REVIEW D 81, 014017 (2010)

014017-3



The relative signs between the following amplitudes are
opposite, i.e. M2a and M2c, M2b and M2d, M3a and
M3c, and M3b and M3d. This leads to destructive inter-
ferences between these amplitudes, and is a reflection of
the approximate isospin or U-spin invariance. We explic-
itly list the amplitudes, M2a and M2b,

M2a ¼ 2igD�D��c2
fD�DVgD�DP�

�c2

�	 �
�

þ

�
Z d4q

ð2�Þ4 �����p
�
1 ðq�1 þ q�Þ

� p�
2 ðg�� � q�1q

�
1 =m

2
D� Þðg	� � q	2 q

�
2=m

2
D� Þ

� 1

DaD1D2

F ðq2Þ; (17)

M2b ¼ � 1

2
igD�D��c2

gD�D�P�
�c2

�	 �
�

þ

Z d4q

ð2�Þ4 �
���
� p�

2 ðq� � q�2 Þ½�gD�D�Vðq1� þ q�Þg�
� 4fD�D�Vðp

1g
�
� � p�

1g

� Þ�ðg� � q�1q


1=m

2
D� Þ

� ðg	� � q
	
2 q

�
2 =m

2
D� Þðg�
 � q�q
=m2

D� Þ
� 1

DbD1D2

F ðq2Þ; (18)

while the others can be obtained similarly. As for the
polarization sums of �

�c2

�	 , we follow the expressions in

Ref. [25].

III. NUMERICAL RESULTS

Before proceeding to the numerical results, we first
discuss the parameters, such as the coupling constants, in
the formulation. In the chiral and heavy quark limit, the
following relations can be obtained [13,24]:

gDDV ¼ gD�D�V ¼ �gVffiffiffi
2

p ; fD�DV ¼ fD�D�V

mD�
¼ �gVffiffiffi

2
p ;

gV ¼ m


f�
; gD�D�� ¼ gD�D�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mDmD�
p ¼ 2

f�
g;

gD�DsK ¼
ffiffiffiffiffiffiffiffiffi
mDs

mD

s
gD�D�; gD�

sDK ¼
ffiffiffiffiffiffiffiffiffi
mD�

s

mD�

s
; (19)

where � and � are commonly taken as � ¼ 0:9, � ¼
0:56 GeV�1 [13,17,26], while f� is the pion decay con-
stant. With the measured branching ratio of D� ! D� by
CLEO-c, the coupling g is determined as g ¼ 0:59 [27]. In
the heavy quark limit, the expansion of the effective
Lagrangian L1 leads to relations for the P-wave charmo-
nium couplings to the charmed mesons as follows:

gDD��c1
¼ 2

ffiffiffi
2

p
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDmD�m�c1

p
;

gD�D��c2
¼ 4g1mD�

ffiffiffiffiffiffiffiffiffiffi
m�c2

p
; g1 ¼ �

ffiffiffiffiffiffiffiffiffiffi
m�c0

3

r
1

f�c0

;
(20)

where g1 has been related to the �c0 decay constant f�c0
. It

can be approximately determined by the QCD sum rule
method, i.e. f�c0

’ 0:51 GeV [28].

The form factor parameter � generally cannot be deter-
mined from the first principle. It is usually taken to be order
of unity, and depends on the particular process. In this
work, since the branching ratio of �c1 ! K�0 �K�0 has
been measured in experiment [8], we will adopt the data
to constrain the form factor parameter.
The loop integrals are calculated with the software pack-

age LOOPTOOLS [29]. In Tables I and II, we display the
numerical results for the branching ratios of �c1 ! VV and
�c2 ! VP at � ¼ 0:3� 0:33, which correspond to the
lower and upper bounds of BRð�c1 ! K�0 �K�0Þ ¼ ð1:6�
0:4Þ � 10�3 [8].
For �c1 ! VV, the branching ratio of the 

 channel is

significant, while the !! and �� channels are relatively
small. We also include the predictions from the SU(3)
flavor symmetry as a comparison. The parametrization is
given in the Appendix. It is interesting to see that the
results from the SU(3) flavor symmetry are basically com-
patible with those given by the intermediate meson loops
except that the branching ratio for �� is larger. It should
be an indication for the SU(3) flavor symmetry breaking.
With the SU(3) symmetry breaking parameter R ’
f�=fK ¼ 0:838 [8], the branching ratios agree with the
intermediate meson loop results pretty well.
Some insights into the transition mechanisms can be

gained here:
(i) The SU(3) flavor symmetry breaking R ¼ 0:838 is

consistent with the loop transition behavior. Note
that the intermediate Ds and D�

s pair has higher
mass threshold, and the production of the �� will
be relatively suppressed in comparison with the non-
strange 
� and !! apart from the final-state phase
space differences. This corresponds to the flavor
symmetry breaking at leading order.

(ii) The consistencies support the idea that the inter-
mediate meson loops provide a natural mechanism
for the evasion of the helicity selection rule as a long-
distance transition. Since the �c0;1;2 are P-wave
states, the short-distance transition probes the first

TABLE I. Branching ratios for �c1 ! VV predicted by the
intermediate meson loop transitions in the range � ¼
0:3� 0:33 corresponding to the measured lower and upper
bound of BRð�c2 ! K�0 �K�0Þ [8]. Two results from the SU(3)
flavor symmetry relation are presented with R ¼ 1 and R ¼
0:838. The dots mean that experimental data are unavailable.

BR (� 10�4) K�0 �K�0 

 !! ��

Experimental data 16� 4 � � � � � � � � �
Meson loop 12� 20 26� 54 8:7� 18 2:7� 4:6
SU(3) (R ¼ 1) 16.0 26.8 8.8 6.8

SU(3) (R ¼ 0:838) 16.0 32.0 10.6 4.0
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derivative of the c �c wave function at the origin,
which, however, would be suppressed in �c1 ! VV
and �c2 ! VP due to the helicity selection rule. By
annihilating the c �c at long distance via the inter-
mediate meson loops, the helicity selection rule is
then evaded.

(iii) This phenomenon is slightly different from the
S-wave charmonium decays, such as J=c ! 
�,
etc., where it is not easy to separate out the long-
distance transitions from the short-distance ones
arising from a possible anomalous component of
wave function [15,30,31].

For �c2 ! VP, since there are no data available at this
moment, our predictions are based on the same form factor
parameter for �c1 ! VV. As listed in Table II, the acces-
sible channels are only K� �K þ c:c: and 
þ�� þ c:c:
Interestingly, the branching ratio for K� �K þ c:c: turns out
to be sizeable, and the charged 
� is found to be much
smaller than the K� �K þ c:c: channel. Qualitatively, this is
because that the cancellations between (a) and (c) [and
similarly between (b) and (d)] in Figs. 2 and 3 are rather
different. Namely, the K� �K þ c:c: channel experiences
large U-spin symmetry breakings due to the significant
mass difference between the d and s quark. In contrast,
the 
� channel is originated from the u-dmass difference.
This unique result can be examined by BES-III as a test of
our model.

The sensitivities of the calculation results to the form
factor parameter � are presented in Figs. 4 and 5. One
notices that the values for � in this work are relatively
smaller than those adopted in some other works [13,17,18].
This is acceptable since in this work the form factor takes
care of off-shell effects arising from those three intermedi-
ate mesons, instead of only the exchanged one in the
rescattering [13,17,18]. Given the inevitable model depen-
dence introduced by the form factor, what turns out to be
relatively stable and less model-dependent is the relative
branching ratio fractions among those decay channels
within the adopted range of �. As a consequence, the
theoretical predictions for other decay channels can be
better controlled by the data for �c1 ! K�0 �K�0.

IV. CONCLUSION

In this work, we have discussed how the long-distance
transitions via the intermediate meson loops would con-
tribute to the processes �c1 ! VV and �c2 ! VP, which
are supposed to be suppressed according to the helicity
selection rule in QCD. With an effective Lagrangian
method with heavy quark and chiral symmetry, this
helicity-selection-rule evading mechanism is quantified.
Although there are still relatively large uncertainties aris-
ing from the form factor parameter, we argue that the fewer
sensitivities of the branching ratio fractions among the
accessible channels would provide a better control of the
theory predictions. Reasonable ranges of the predictions
are obtained.
We also compare the results from the intermediate me-

son loops with the expectations of the SU(3) flavor sym-
metry, and find that they are in a good agreement with each
other. In particular, the SU(3) flavor symmetry breaking
would lead to a suppression of �c1 ! �� in comparison
with the!!. It can be well understood by the heavier mass
of the intermediate Ds (D

�
s) than the D (D�) state. Namely,

the mass threshold of the Ds
�D�
s þ c:c: is higher than

1 x 10
-3

1 x 10
-4

1 x 10
-5

1 x 10
-6

1 x 10
-7

1 x 10
-8

FIG. 5 (color online). � dependence of the calculated branch-
ing ratios for �c2 ! VP.

1 x 10
-5

1 x 10
-4

1 x 10
-3

FIG. 4 (color online). � dependence of the calculated branch-
ing ratios for �c1 ! VV.

TABLE II. Branching ratios for �c2 ! VP predicted by the
intermediate meson loop transitions in the same range of � ¼
0:3� 0:33. The dots mean that experimental data are unavail-
able.

BR (� 10�5) K�0 �K0 þ c:c: K�þK� þ c:c: 
þ�� þ c:c:

Meson loop 4:0� 6:7 4:0� 6:7 ð1:2� 2:0Þ � 10�2

Experimental data � � � � � � � � �
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D �D� þ c:c: In �c2 ! VP, the predicted branching ratio for
the K� �K þ c:c: channel is at the order of 10�5, while the
charged 
� channel is small. The suppression on the
charged 
� (in comparison with the K� �K þ c:c:) can be
comprehended as a consequence of the larger effects due to
the U-spin symmetry breaking rather than the isospin
symmetry breaking, i.e. ms �md 	 md �mu.

In brief, we emphasize that the P-wave charmonium
decay should be ideal for examining the evading mecha-
nisms of the helicity selection rule. Our predictions can be
examined by the high-statistics �cJ production in the BES-
III experiment [6,32].
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APPENDIX

We adopt a simple parametrization [33–35] to study
�c1 ! VV based on the SU(3) flavor symmetry. By assum-

ing that Ĥ represents the potential for the c �c annihilating
into gluons and then hadronizing into ðq �qÞV1

ðq �qÞV2
, we

define the transition amplitude strength as

g0 � hðq �qÞV1
ðq �qÞV2

jĤj�c1i; (A1)

where q ( �q) is a nonstrange quark (antiquark). Considering
the SU(3) flavor symmetry breaking, we introduce parame-
ter R which describes

R � hðq�sÞV1
ðs �qÞV2

jĤj�c1i=hðq �qÞV1
ðq �qÞV2

jĤj�c1i; (A2)

and

R2 � hðs�sÞV1
ðs�sÞV2

jĤj�c1i=hðq �qÞV1
ðq �qÞV2

jĤj�c1i; (A3)

where the exchange of V1 and V2 is implicated, and the
SU(3) flavor symmetry is recognized by R ¼ 1. This pa-
rameter can be related to the ratio of the � and K meson
decay constant, i.e.

R ’ f�=fK; (A4)

which gives R ’ 0:838 [8].
A commonly adopted vertex form factor is also applied,

F 2ðp1Þ � jp1j2L expð�p2
1=8�

2Þ; (A5)

where p1 is the three-vector momentum of the final-state
meson V1 in the rest frame of �c1, and L is the relative
orbital angular momentum between V1 and V2. As dis-
cussed earlier, L ¼ 2 is required by parity conservation
and Lorentz invariance. We adopt � ¼ 0:5 GeV, which is
the same as in Refs. [15,33–36]. The partial decay widths
are given as follows:

�
þ�� ¼ �
��þ ¼ jp1j
24�M2

�c1

g20F
2ðp1Þ;

�K�0 �K�0 ¼ � �K�0K�0 ¼ �K�þK�� ¼ �K��K�þ

¼ jp1j
24�M2

�c1

g20R
2F 2ðp1Þ;

�!! ¼ jp1j
24�M2

�c1

g20F
2ðp1Þ;

��� ¼ jp1j
24�M2

�c1

g20R
4F 2ðp1Þ:

(A6)
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