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We present the results of our QCD analysis for nonsinglet unpolarized quark distributions and structure

function F2ðx;Q2Þ up to next-to-next-to-next-to leading order (N3LO). In this regards 4-loop anomalous

dimension can be obtained from the Padé approximations. The analysis is based on the Jacobi polynomials

expansion of the structure function. New parameterizations are derived for the nonsinglet quark

distributions for the kinematic wide range of x and Q2. Our calculations for nonsinglet unpolarized

quark distribution functions up to N3LO are in good agreement with available theoretical models. The

higher twist contributions of Fp;d
2 ðx;Q2Þ are extracted in the large x region in N3LO analysis. The values

of �QCD and �sðM2
z Þ are determined.
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I. INTRODUCTION

Structure functions in deep-inelastic scattering (DIS)
and their scale evolution are closely related to the origins
of quantum chromodynamics (QCD). DIS processes have
played and still play a very important role for our under-
standing of QCD and nucleon structure [1]. In fact, DIS
structure functions have been the subject of detailed theo-
retical and experimental investigations. Today, with high-
precision data from the electron proton collider, HERA,
and in view of the outstanding importance of hard scatter-
ing processes at proton-(anti)proton colliders like the
TEVATRON and the forthcoming Large Hadron Collider
(LHC) at CERN, a quantitative understanding of deep-
inelastic processes is indispensable.

To predict the rates of the various processes, a set of
universal parton distribution functions (PDFs) is required.
On the other hand, all calculations of high energy processes
with initial hadrons, whether within the standard model or
exploring new physics, require PDFs as an essential input.
The reliability of these calculations, which underpins both
future theoretical and experimental progress, depends on
understanding the uncertainties of the PDFs. These distri-
bution functions can be determined by QCD global fits to
all the available DIS and related hard-scattering data. The
QCD fits can be performed at leading order (LO), next-to-
leading order (NLO), next-to-next-to-leading order
(N2LO) in the strong coupling �s.

The assessment of PDFs, their uncertainties and extrapo-
lation to the kinematics relevant for future colliders such as
the LHC have been an important challenge to high energy
physics in recent years. Over the last couple of years there

has been a considerable improvement in the precision and
in the kinematic range of the experimental measurements
for many of these processes, as well as new types of data
becoming available. In addition, there have been valuable
theoretical developments, which increase the reliability of
the global analysis. It is therefore timely, particularly in
view of the forthcoming experiments at the LHC at CERN,
to perform new global analysis which incorporate all of
these improvements. A lot of efforts and challenges have
been done to obtain PDFs for the LHC [2] which take into
account the higher order corrections [3–5].
For quantitatively reliable predictions of DIS and hard

hadronic scattering processes, perturbative QCD correc-
tions at the N2LO and the next-to-next-to-next-to-leading
order (N3LO) need to be taken into account. Based on our
experience obtained in a series of LO, NLO, and N2LO
analysis [6] of the nonsinglet parton distribution functions,
here we extend our work to N3LO accuracy in perturbative
QCD.
In this work this important problem is studied with the

help of the method of the structure function reconstruction
over their Mellin moments, which is based on the expan-
sion of the structure function in terms of Jacobi polyno-
mials. This method was developed and applied for different
QCD analyses [7–24]. The same method has also been
applied in the polarized case in Refs. [25–30].
In the present paper we perform a QCD analysis of the

flavor nonsinglet unpolarized deep-inelastic charged
eð�Þp and eð�Þd world data [31–35] at N3LO and derived
parameterizations of valence quark distributions
xuvðx; Q2Þ and xdvðx;Q2Þ at a starting scale Q2

0 together

with the QCD scale �QCD by using the Jacobi polynomial

expansions. We have therefore used the 3-loop splitting
functions and Padé approximations [36–40] for the evolu-
tion of nonsinglet quark distributions of hadrons.
Previous 3-loop QCD analysis were mainly performed

as combined singlet and nonsinglet analysis [41,42], partly
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based on preliminary, approximative expression of the 3-
loop splitting functions. Other analyses were carried out
for fixed moments only in the singlet and nonsinglet case
analyzing neutrino data [43–45]. First results of the non-
singlet analysis were published in [46]. Very recently a 3-
loop nonsinglet analysis was also carried out in
Refs. [6,47,48]. The results of 4-loop QCD analysis are
also reported in [48,49]. The results of the present work are
based on the Jacobi polynomials expansion of the non-
singlet structure function.

The plan of the paper is to recall the theoretical formal-
ism of the QCD analysis for calculating nonsinglet sector
of proton structure function F2 in Mellin-N space in
Sec. II. Section III explains the Padé approximations and
4-loop anomalous dimensions. A description of the Jacobi
polynomials and procedure of the QCD fit of F2 data are
illustrated in Sec. IV. The numerical results are illustrated
in Sec. V before we summarize our findings in Sec. VI.

II. THEORETICAL FORMALISM OF THE QCD
ANALYSIS

In the commonMS factorization scheme the relevant F2

structure function as extracted from the DIS ep process can
be written as [50–53]

x�1F2ðx;Q2Þ ¼ x�1ðF2;NSðx;Q2Þ þ F2;Sðx;Q2Þ
þ F2;gðx;Q2ÞÞ

¼ C2;NSðx;Q2Þ � qNSðx;Q2Þ
þ he2iC2;Sðx;Q2Þ � qSðx; Q2Þ
þ he2iC2;gðx;Q2Þ � gðx;Q2Þ; (1)

here, qi and g represent the quarks and gluons distribu-
tions, respectively. qNS stands for the usual flavor non-
singlet combination and qS stand for the flavor-singlet

quark distribution, qS ¼
Pnf

i¼1ðqi þ �qiÞ. Also, nf denotes

the number of effectively massless flavors. he2i represents
the average squared charge, and � denotes the Mellin
convolution which turns into a simple multiplication in N
space.

The perturbative expansion of the coefficient functions
can be written as

C2;iðx; �sðQ2ÞÞ ¼ X
n¼0

ð�sðQ2Þ
4�

ÞnCðnÞ
2;i ðxÞ: (2)

In LO, Cð0Þ
2;NSðxÞ ¼ �ðxÞ, Cð0Þ

2;PSðxÞ ¼ Cð0Þ
2;gðxÞ ¼ Cð1Þ

2;PSðxÞ ¼
0, and the singlet-quark coefficient function is decomposed

into the nonsinglet and pure singlet contribution, CðnÞ
2;q �

CðnÞ
2;S ¼ CðnÞ

2;NS þ CðnÞ
2;PS. The coefficient functions CðnÞ

2;i up to

N3LO have been given in [54].
The nonsinglet structure function F2;NSðx;Q2Þ up to

N3LO and for three active (light) flavors has the represen-
tation

x�1F2;NSðx;Q2Þ ¼ ½Cð0Þ
2;q þ asC

ð1Þ
2;NS þ a2sC

ð2Þþ
2;NS þ a3sC

ð3Þþ
2;NS�

�
�
1

18
qþ8 þ 1

6
qþ3

�
ðx;Q2Þ: (3)

The flavor-singlet and gluon contributions in Eq. (1) read

x�1F2;Sðx;Q2Þ ¼ 2

9
½Cð0Þ

2;q þ asC
ð1Þ
2;q þ a2sC

ð2Þ
2;q þ a3sC

ð3Þ
2;q�

� �ðx;Q2Þ; (4)

x�1F2;gðx;Q2Þ ¼ 2

9
½asCð1Þ

2;g þ a2sC
ð2Þ
2;g þ a3sC

ð3Þ
2;g�

� gðx;Q2Þ: (5)

The symbol � denotes the Mellin convolution

½A � B�ðxÞ ¼
Z 1

0
dx1

Z 1

0
dx2�ðx� x1x2ÞAðx1ÞBðx2Þ: (6)

In Eq. (3) qþ3 ¼ uþ �u� ðdþ �dÞ ¼ uv � dv and qþ8 ¼
uþ �uþ dþ �d� 2ðsþ �sÞ ¼ uv þ dv þ 2 �uþ 2 �d� 4�s,
where s ¼ �s. Also in Eq. (4), �ðx; Q2Þ � �q¼u;d;sðqþ
�qÞ ¼ uv þ dv þ 2 �uþ 2 �dþ 2�s. Notice that in the above
equations as ¼ asðQ2Þ � �sðQ2Þ=4� denotes the strong
coupling constant and Ci;j are the Wilson coefficients [54].

The combination of parton densities in the nonsinglet
regime and the valence region x � 0:3 for Fp

2 in LO is

1

x
Fp
2 ðx;Q2Þ ¼

�
1

18
qþNS;8 þ

1

6
qþNS;3

�
ðx;Q2Þ þ 2

9
�ðx;Q2Þ;

(7)

where qþNS;3 ¼ uv � dv, q
þ
NS;8 ¼ uv þ dv, and � ¼ uv þ

dv, since sea quarks can be neglected in the region x � 0:3.
So in the x space we have

Fp
2 ðx;Q2Þ ¼

�
5

18
xqþNS;8 þ

1

6
xqþNS;3

�
ðx;Q2Þ

¼ 4

9
xuvðx;Q2Þ þ 1

9
xdvðx;Q2Þ: (8)

In the above region the combinations of parton densities
for Fd

2 are also given by

Fd
2ðx;Q2Þ ¼

�
5

18
xqþNS;8

�
ðx;Q2Þ ¼ 5

18
xðuv þ dvÞðx;Q2Þ;

(9)

where qþNS;3 ¼ uv � dv and Fd
2 ¼ ðFp

2 þ Fn
2 Þ=2 if we

ignore the nuclear effects here. It is important to stress
that the shadowing effect as a nuclear effect may affect our
analysis. The shadowing effect [55,56] arising from the
gluon recombination and in the small-x region, the com-
petitive mechanism of nuclear shadowing takes place. It
also depends on the size of the nucleons. According to this
effect we have Fd

2 ¼ ðFp
2 þ Fn

2 Þ=2þ �Fd
2 . To obtain the

�Fd
2 we need to know the generalized vector meson domi-

nance (VMD) and parton mechanism at low and large
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values of Q2, respectively. We found that the value of �Fd
2

is important but in low values of x. For example, this
correction value at Q2 ¼ 10 GeV2 and for x > 0:1 is too
small (� 10�4). So in the valence region of this analysis,
this effect is negligible in large x and we can use the Fd

2 ¼
ðFp

2 þ Fn
2 Þ=2 approximately.

In the region x � 0:3 for the difference of the proton and
deuteron data we use

FNS
2 ðx;Q2Þ � 2ðFp

2 � Fd
2Þðx;Q2Þ ¼ 1

3
xqþNS;3ðx;Q2Þ

¼ 1

3
xðuv � dvÞðx;Q2Þ þ 2

3
xð �u� �dÞðx;Q2Þ;

(10)

where now qþNS;3 ¼ uv � dv þ 2ð �u� �dÞ since sea quarks

cannot be neglected for x smaller than about 0.3.
The first clear evidence for the flavor asymmetry combi-

nation of light parton distributions xð �d� �uÞ in nature came
from the analysis of NMC at CERN to study of the
Gottfried sum rule [57]. In our calculation we supposed
the �d� �u distribution [47,48,58,59]

xð �d� �uÞðx;Q2
0Þ ¼ 1:195x1:24ð1� xÞ9:10ð1þ 14:05x

� 45:52x2Þ; (11)

at Q2
0 ¼ 4 GeV2 which gives a good description of the

Drell-Yan dimuon production data [60]. In this analysis,
like other analyses [6,17,47,48,58,59], we used the above
distribution for considering the symmetry breaking of sea
quarks. Although, in fact, this parametrization plays a
marginal role in our analysis, in order to find the impact
effect of this distribution, which is essentially used in the
paper, it is desirable to study the QCD fits by varying this
distribution with another asymmetry sea quark distribution
which is derived in other analyses. In Sec. VI we will
discuss our outputs when we change the above sea
distribution.
Now these results in the physical region 0< x � 1 can

transform to Mellin-N space by using the Mellin transform
to obtain the moments of the structure function as 1

x F
k
2,

Fk
2ðN;Q2Þ � M½Fk

2; N� ¼
Z 1

0
dxxN�1 1

x
Fk
2ðx;Q2Þ; (12)

here k denotes the three above cases, i.e. k ¼ p, d, NS. One
of the advantages of Mellin-space calculations is the fact
that the Mellin transform of a convolution of functions in
Eqs. (3)–(5) reduces to a simple product

M ½A � B;N� ¼ M½A;N�M½B;N� ¼ AðNÞBðNÞ: (13)

By using the solution of the nonsinglet evolution equa-
tion for the parton densities to 4-loop order, the nonsinglet
structure functions are given by [48]

Fk
2ðN;Q2Þ ¼ ð1þasC

ð1Þ
2;NSðNÞþa2sC

ð2Þ
2;NSðNÞþa3sC

ð3Þ
2;NSðNÞÞFk

2ðN;Q2
0Þ
�
as
a0

��P̂0ðNÞ=�0
�
1� 1

�0

ðas�a0Þ
�
P̂þ
1 ðNÞ��1

�0

P̂0ðNÞ
�

� 1

2�0

ða2s �a20Þ
�
P̂þ
2 ðNÞ��1

�0

P̂þ
1 ðNÞþ

�
�2

1

�2
0

��2

�0

�
P̂0ðNÞ

�
þ 1

2�2
0

ðas�a0Þ2
�
P̂þ
1 ðNÞ��1

�0

P̂0ðNÞ
�
2

� 1

3�0

ða3s �a30Þ
�
P̂þ
3 ðNÞ��1

�0

P̂þ
2 ðNÞþ

�
�2

1

�2
0

��2

�0

�
P̂þ
1 ðNÞþ

�
�3

1

�3
0

� 2
�1�2

�2
0

þ�3

�0

�
P̂0ðNÞ

�

þ 1

2�2
0

ðas�a0Þða20�a2sÞ
�
P̂þ
1 ðNÞ��1

�0

P̂0ðNÞ
��

P̂2ðNÞ��1

�0

P̂1ðNÞ�
�
�2

1

�2
0

��2

�0

�
P̂0ðNÞ

�

� 1

6�3
0

ðas�a0Þ3
�
P̂þ
1 ðNÞ��1

�0

P̂0ðNÞ
�
3
�
: (14)

Here asð¼ �s=4�Þ and a0 denotes the strong coupling
constant in the scale of Q2 and Q2

0, respectively. k ¼ p,
d and NS also denotes the three above cases, i.e. proton,
deuteron, and nonsinglet structure function. CðmÞ

2;NSðNÞ are
the nonsinglet Wilson coefficients in Oðams Þ which can be
found in [54,61,62] and P̂m denote also the Mellin trans-
forms of the (mþ 1)-loop splitting functions.

III. PADÉ APPROXIMATIONS AND 4-LOOP
ANOMALOUS DIMENSIONS

In spite of the unknown 4-loop anomalous dimensions,
one can obtain the nonsinglet parton distributions and
�QCD by estimating uncalculated fourth-order corrections

to the nonsinglet anomalous dimension. On the other hand,
the 3-loopWilson coefficients are known [54] and now it is
possible to know which effect has the 4-loop anomalous
dimension if compared to the Wilson coefficient. In this
case the 4-loop anomalous dimension may be obtained
from Padé approximations.
Padé approximations have proved to be useful in many

physical applications. Padé approximations may be used
either to predict the next term in some perturbative series,
called a Padé approximation prediction, or to estimate the
sum of the entire series, called Padé summation.
For this purpose we use the Padé approximations of the

perturbative series, discussed in detail for QCD, e.g., in
Refs. [36–38]. Padé approximations [39,40] are rational
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functions chosen to equal the perturbative series to the
order calculated:

½N =M� ¼ a0 þ a1xþ . . .þ aN xN

1þ b1xþ . . .þ bMxM
; (15)

to the series

S ¼ S0 þ S1xþ . . .þ SNþMxNþM; (16)

where we set

½N =M� ¼ SþOðxNþMþ1Þ;
and write an equation for the coefficients of each power of
x. To continue, let’s go to Mellin-N space.

A generic QCD anomalous dimension expansion in term
of as then may be written in the form

�ðNÞ ¼ X1
l¼0

alþ1
s �ðlÞðNÞ: (17)

In Mellin-N space and by using this approach we can
replace �ðNÞ by a rational function in as [54],

~� ½N =M�ðNÞ � ½N =M�ðNÞ

¼ p0 þ asp1ðNÞ þ . . .þ aNs pN ðNÞ
1þ asq1ðNÞ þ . . .þ aMs qMðNÞ : (18)

Here M � 1 and N þM ¼ n, where n stands for the
maximal order in as at which the expansion coefficients

�ðnÞðNÞ have been determined from an exact calculation.
The functions piðNÞ and qjðNÞ are determined from these

known coefficients by expanding Eq. (18) in powers of as.
This expansion then also provides the [N =M] Padé ap-

proximate for the (nþ 1)-th order quantities �ðnþ1Þ.
In this way it is easy to obtain the following results for

M ¼ N ¼ 1 and for M ¼ 0, N ¼ 2

~� ½1=1�ðNÞ � ½1=1�ðNÞ ¼ �ð2Þ2ðNÞ
�ð1ÞðNÞ ;

~�½0=2�ðNÞ � ½0=2�ðNÞ ¼ 2�ð1ÞðNÞ�ð2ÞðNÞ
�ð0ÞðNÞ � �ð1Þ3ðNÞ

�ð0Þ2ðNÞ :
(19)

The strong coupling constant as plays a more central
role in the present paper to the evolution of parton den-
sities. At NmLO the scale dependence of as is given by

das
d lnQ2 ¼ �NmLOðasÞ ¼ �Xm

k¼0

akþ2
s �k: (20)

The expansion coefficients �k of the � function of QCD
are known up to k ¼ 3, i.e., N3LO [63,64]

�0 ¼ 11� 2=3nf; �1 ¼ 102� 38=3nf;

�2 ¼ 2857=2� 5033=18nf þ 325=54n2f;

�3 ¼ 29243:0� 6946:30nf þ 405:089n2f þ 1093=729n3f;

(21)

here nf stands for the number of effectively massless quark

flavors and �k denote the coefficients of the usual four-

dimensionalMS beta function of QCD. In complete 4-loop
approximation and using the �-parametrization, the run-
ning coupling is given by [65,66]

asðQ2Þ ¼ 1

�0L�

� 1

ð�0L�Þ2
b1 lnL� þ 1

ð�0L�Þ3
½b21ðln2L�

� lnL� � 1Þ þ b2� þ 1

ð�0L�Þ4
�
b31

�
�ln3L�

þ 5

2
ln2L� þ 2 lnL� � 1

2

�
� 3b1b2 lnL� þ b3

2

�
;

(22)

where L� � lnðQ2=�2Þ, bk � �k=�0, and � is the QCD
scale parameter. The first line of Eq. (22) includes the
1- and the 2-loop coefficients, the second line is the 3-
loop, and the third line denotes the 4-loop correction.
Equation (22) solves the evolution equation (20) only up
to higher orders in 1=L�. The functional form of�sðQ2Þ, in
4-loop approximation and for 6 different values of �, is

10 100 1000 10000

Q
2
(GeV

2
)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

α s(Q
2 )

100 MeV
150 MeV
200 MeV
250 MeV
300 MeV
350 MeV

Λ=

FIG. 1 (color online). The strong running of �sðQ2Þ, according
to Eq. (22), in 4-loop approximation and for different values of
�.
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displayed in Fig. 1. The slope and dependence on the actual
value of � is especially pronounced at small Q2, while at
large Q2 both the energy dependence and the dependence
on � becomes increasingly feeble. To be able to compare
with other measurements of � we adopt the matching of
flavor thresholds at Q2 ¼ m2

c and Q2 ¼ m2
b with mc ¼

1:5 GeV and mb ¼ 4:5 GeV as described in [67,68].

IV. JACOBI POLYNOMIALS AND THE
PROCEDURE OF QCD FITS

One of the simplest and fastest possibilities in the struc-
ture function reconstruction from the QCD predictions for
its Mellin moments is Jacobi polynomials expansion. The
Jacobi polynomials are especially suitable for this purpose
since they allow one to factor out an essential part of the x
dependence of structure function into the weight function
[8].

According to this method, one can relate the F2 structure
function with its Mellin moments

Fk;Nmax

2 ðx;Q2Þ ¼ x�ð1� xÞ� XNmax

n¼0

��;�
n ðxÞ

� Xn
j¼0

cðnÞj ð�;�ÞFk
2ðjþ 2; Q2Þ; (23)

where Nmax is the number of polynomials, k denotes the
three cases, i.e. k ¼ p, d, NS. Jacobi polynomials of order

n [69], ��;�
n ðxÞ, satisfy the orthogonality condition with

the weight function w�� ¼ x�ð1� xÞ�
Z 1

0
dxw����;�

k ðxÞ��;�
l ðxÞ ¼ �k;l: (24)

In the above, cðnÞj ð�;�Þ are the coefficients expressed

through � functions and satisfying the orthogonality rela-
tion in Eq. (24), and F2ðjþ 2; Q2Þ are the moments deter-
mined in the previous section. Nmax, � and � have to be
chosen so as to achieve the fastest convergence of the series
on the right-hand side of Eq. (23) and to reconstruct F2

with the required accuracy. In our analysis we use Nmax ¼
9, � ¼ 3:0, and � ¼ 0:5. The same method has been
applied to calculate the nonsinglet structure function xF3

from their moments [13–16] and for polarized structure
function xg1 [25–27]. Obviously the Q

2 dependence of the
polarized structure function is defined by the Q2 depen-
dence of the moments.

The evolution equations allow one to calculate the Q2

dependence of the parton distributions provided at a certain
reference pointQ2

0. These distributions are usually parame-

terized on the basis of plausible theoretical assumptions
concerning their behavior near the end points x ¼ 0, 1.

In the present analysis we choose the following parame-
trization for the valence quark densities in the input scale of
Q2

0 ¼ 4 GeV2:

xqvðx;Q2
0Þ ¼ N qx

aqð1� xÞbqð1þ cq
ffiffiffi
x

p þ dqxÞ; (25)

where q ¼ u, d and the normalization factorsN u andN d

are fixed by
R
1
0 uvdx ¼ 2 and

R
1
0 dvdx ¼ 1, respectively.

By QCD fits of the world data for Fp;d
2 , we can extract

valence quark densities using the Jacobi polynomials
method. For the nonsinglet QCD analysis presented in
this paper we use the structure function data measured in
charged lepton-proton and deuteron deep-inelastic scatter-
ing. The experiments contributing to the statistics are
BCDMS [31], SLAC [32], NMC [33], H1 [34], and
ZEUS [35]. In our QCD analysis we use three data samples
: Fp

2 ðx;Q2Þ, Fd
2 ðx;Q2Þ in the nonsinglet regime and the

valence quark region x � 0:3, and FNS
2 ¼ 2ðFp

2 � Fd
2Þ in

the region x < 0:3.
The valence quark region may be parameterized by the

nonsinglet combinations of parton distributions, which are
expressed through the parton distributions of valence
quarks. Only data with Q2 > 4 GeV2 were included in
the analysis and a cut in the hadronic mass of W2 � ð1x �
1ÞQ2 þm2

N > 12:5 GeV2 was applied in order to widely
eliminate higher twist (HT) effects from the data samples.
After these cuts we are left with 762 data points, 322 for
Fp
2 , 232 for Fd

2 , and 208 for FNS
2 . By considering the

additional cuts on the BCDMS (y > 0:35) and on the
NMC data (Q2 > 8 GeV2) the total number of data points
available for the analysis reduce from 762 to 551, because
we have 227 data points for Fp

2 , 159 for Fd
2 , and 165 for

FNS
2 .
For data used in the global analysis, most experiments

combine various systematic errors into one effective error
for each data point, along with the statistical error. In
addition, the fully correlated normalization error of the
experiment is usually specified separately. For this reason,
it is natural to adopt the following definition for the effec-
tive �2 [6,70]

�2
global ¼

X
n

wn�
2
n; ðn labels the different experimentsÞ

�2
n ¼

�
1�N n

�N n

�
2 þX

i

�N nF
data
2;i �Ftheor

2;i

N n�F
data
2;i

�
2
: (26)

For the nth experiment, Fdata
2;i , �Fdata

2;i , and Ftheor
2;i denote

the data value, measurement uncertainty (statistical and
systematic combined), and theoretical value for the ith
data point. �N n is the experimental normalization uncer-
tainty and N n is an overall normalization factor for the
data of experiment n. The factor wn is a possible weighting
factor (with default value 1). However, we allowed for a
relative normalization shiftN n between the different data
sets within the normalization uncertainties �N n quoted
by the experiments. For example the normalization uncer-
tainty of the NMC (combined) data is estimated to be 2.5%.
The normalization shifts N n were fitted once and then
kept fixed.
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Now the sums in �2
global run over all data sets and in each

data set over all data points. The minimization of the above
�2 value to determine the best parametrization of the
unpolarized parton distributions is done using the program
MINUIT [71].

The one � error for the parton density xqv as given by
Gaussian error propagation is [48]

�ðxqvðxÞÞ2 ¼
Xnp
i¼1

Xnp
j¼1

�
@xqv
@pi

��
@xqv
@pj

�
covðpi; pjÞ; (27)

where the sum runs over all fitted parameters. The func-
tions @xqv=@pi are the derivatives of xqv with respect to
the fit parameter pi, and covðpi; pjÞ are the elements of the

covariance matrix. The derivatives @xqv=@pi can be calcu-
lated analytically at the input scale Q2

0. Their values at Q
2

are given by evolution which is performed in Mellin-N
space.

Now we need to discuss the derivatives in Mellin-N
space a bit further. The Mellin-N moment for complex
values of N calculated at the input scale Q2

0 for the parton

density parameterized as in Eq. (25) is given by

qvðN; aq; bq; cq; dqÞ ¼ N qMðn; aq; bq; cq; dqÞ; (28)

with the normalization constant

N q ¼
Cqv

Mð1; aq; bq; cq; dqÞ : (29)

Here Cqv is the respective number of valence quarks, i.e.

Cuv ¼ 2 and Cdv ¼ 1. In the above Mðn; aq; bq; cq; dqÞ is
given by

Mðn; aq; bq; cq; dqÞ ¼ B½aq þ n� 1; bq þ 1�
þ cqB½aþ nþ 1=2; bþ 1�
þ duB½aq þ n; bq þ 1�; (30)

where B½a; b� denotes the Euler beta function for complex
arguments. The general form of the derivative of the Mellin
moment qv with respect to the parameter p is given by

@qvðN; pÞ
@p

¼ Mðn; pÞ @N q

@p
þN q

@Mðn; pÞ
@p

: (31)

In this analysis only the parameters aq and bq have been

fitted for both the xuv and xdv parametrization while the
other parameters involved are kept fixed after a first mini-
mization in the MINUIT program, since their errors turned
out to be rather large compared to the central values. Here
we want to show the derivatives uv and dv parton densities
with respect to parameter aq and bq. For example,

fðn;aqÞ�
@Mðn;aqÞ

@aq

¼B½aqþn�1;bqþ1�ðc ½aqþn�1�
�c ½aqþbqþn�ÞþcqB½aqþn�1=2;bqþ1�
�ðc ½aqþn�1=2��c ½aþbþnþ1=2�Þ
þdqB½aqþn;bqþ1�ðc ½aqþn�
�c ½aqþbqþnþ1�Þ; (32)

fðn;bqÞ�
@Mðn;bqÞ

@bq

¼B½aqþn�1;bqþ1�ðc ½bqþ1�
�c ½aqþbqþn�ÞþcqB½aqþn�1=2;bqþ1�
�ðc ½1þbq��c ½aqþbqþnþ1=2�Þ
þdqB½aqþn;bqþ1�ðc ½bqþ1�
�c ½aqþbqþnþ1�Þ; (33)

and now we can reach the below derivatives for uvðNÞ and
dvðNÞ with respect to parameters aq and bq

@qvðN; pÞ
@p

¼ N qðfðn; pÞ � fð1; pÞMðn; pÞ=Mð1; pÞÞ;
(34)

also c ½n� ¼ d ln�ðnÞ=dn is Euler’s c function.
To obtain the error calculation of the structure functions

Fp
2 , F

d
2 , and FNS

2 the relevant gradients of the PDFs in
Mellin space have to be multiplied with the corresponding
Wilson coefficients. This yields the errors as far as the
QCD parameter � is fixed and regarded uncorrelated. The
error calculation for a variable � is done numerically due
to the nonlinear relation and required iterative treatment in
the calculation of �sðQ2;�Þ [6,48].

V. RESULTS

In the QCD analysis of the present paper we used three
data sets: the structure functions Fp

2 ðx;Q2Þ and Fd
2 ðx;Q2Þ

in the region of x � 0:3, and the combination of these
structure functions FNS

2 ðx;Q2Þ in the region of x < 0:3.
Notice that we take into account the cuts Q2 > 4 GeV2,
W2 > 12:5 GeV2 for our QCD fits to determine some
unknown parameters. In Fig. 2 the proton, deuteron, and
nonsinglet data for Fp

2 ðx;Q2Þ, Fd
2 ðx;Q2Þ, and FNS

2 ðx;Q2Þ
are shown in the nonsinglet regime and the valence quark
region x � 0:3 indicating the above cuts by a vertical
dashed line. The solid lines correspond to the N3LO
QCD fit. Now, it is possible to take into account the target
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mass effects in our calculations. The perturbative form of
the moments is derived under the assumption that the mass
of the target hadron is zero (in the limit Q2 ! 1). At
intermediate and low Q2 this assumption will begin to
break down and the moments will be subject to potentially
significant power corrections, of order Oðm2

N=Q
2Þ, where

mN is the mass of the nucleon. These are known as target
mass corrections (TMCs) and when included, the moments
of flavor nonsinglet structure function have the form
[47,72]

Fk
2;TMCðn;Q2Þ �

Z 1

0
xn�1 1

x
Fk
2;TMCðx;Q2Þdx

¼ Fk
2ðn;Q2Þ þ nðn� 1Þ

nþ 2

�
m2

N

Q2

�
Fk
2ðnþ 2;Q2Þ

þ ðnþ 2Þðnþ 1Þnðn� 1Þ
2ðnþ 4Þðnþ 3Þ

�
m2

N

Q2

�
2

�Fk
2ðnþ 4;Q2Þ þO

�
m2

N

Q2

�
3
; (35)
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FIG. 2 (color online). The structure functions Fp
2 , F

d
2 , and FNS

2 as a function of Q2 in intervals of x. Shown are the Padé [1=1] QCD
fits in N3LO (solid line) and the contributions from target mass corrections (dashed line) and higher twist (dash-dotted line). The
vertical dashed line indicates the regions with W2 > 12:5 GeV2.
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where higher powers than ðm2
N=Q

2Þ2 are negligible for the
relevant x < 0:8 region. By inserting Eq. (35) in Eq. (23)
we have

Fk;Nmax

2 ðx;Q2Þ ¼ x�ð1� xÞ� XNmax

n¼0

��;�
n ðxÞ � Xn

j¼0

cðnÞj

� ð�;�ÞFk
2;TMCðjþ 2; Q2Þ; (36)

where Fk
2;TMCðjþ 2; Q2Þ are the moments determined by

Eq. (35). In Fig. 2 the dashed lines correspond to the N3LO
QCD fit adding target mass corrections.

Despite the kinematic cuts (Q2 � 4 GeV2, W2 � ð1x �
1ÞQ2 þm2

N � 12:5 GeV2) used for our analysis, we also
take into account higher twist corrections to Fp

2 ðx;Q2Þ and
Fd
2 ðx;Q2Þ in the kinematic region Q2 � 4 GeV2, 4<

W2 < 12:5 GeV2 in order to learn whether nonperturbative
effects may still contaminate our perturbative analysis. For
this purpose we extrapolate the QCD fit results obtained for
W2 � 12:5 GeV2 to the region Q2 � 4 GeV2, 4<W2 <
12:5 GeV2 and from the difference between data and the-
ory, applying target mass corrections in addition. Now by
considering higher twist correction

Fexp
2 ðx;Q2Þ¼OTMC½FHT

2 ðx;Q2Þ� 	
�
1þ hðx;Q2Þ

Q2 ½GeV2�
�
; (37)

the higher twist coefficient can be extract. Here the opera-
tion OTMC½. . .� denotes taking the target mass corrections
of the twist-2 contributions to the respective structure
function. The coefficients hðx;Q2Þ are determined in bins
of x andQ2 and are then averaged overQ2. We extrapolate
our QCD fits to the region 12:5 GeV2 � W2 � 4 GeV2 in
Fig. 2. The dash-dotted lines in this figure correspond to the
N3LO QCD fit adding target mass and higher twist correc-
tions. There, at higher values of x a clear gap between the
data and the QCD fit is seen.
In Table I we summarize the NLO, N2LO, and N3LO

with using Padé [1=1] and [0=2] fit results for the parame-
ters of the parton densities xuvðx;Q2

0Þ, xdvðx;Q2
0Þ, and

�
Nf¼4

QCD . The values without error have been fixed after a

first minimization since the data do not constrain these
parameters well enough. In this table we also compare
the N3LO results with the NLO and N2LO results from
Ref. [6]. The results show a good compatibility between
Padé [1=1] and [0=2] approximations in 4-loop order. The
resulted value of �2=ndf is 0.9578 at NLO, 0.9267 at
N2LO, and 0.8994 and 0.8995 for Padé [1=1] and [0=2],
respectively, at N3LO. Our results for the covariance ma-
trix of the N3LO nonsinglet QCD fit for Padé [1=1] and
[0=2] are presented in Table II.

TABLE I. Parameter values of the NLO, N2LO from Ref. [6] and N3LO nonsinglet QCD fit atQ2
0 ¼ 4 GeV2 for Padé [1=1] and Padé

[0=2].

NLO N2LO N3LO Padé [1=1] N3LO Padé [0=2]

uv au 0:7434
 0:009 0:7772
 0:009 0:791 67
 0:0106 0:791 76
 0:0099
bu 3:8907
 0:040 4:0034
 0:033 4:026 37
 0:0402 4:026 85
 0:0327
cu 0.1620 0.1000 0.0940 0.0940

du 1.2100 1.1400 1.1100 1.1100

dv ad 0:7369
 0:040 0:7858
 0:043 0:809 27
 0:0621 0:809 27
 0:0407
bd 3:5051
 0:225 3:6336
 0:244 3:768 47
 0:3499 3:768 58
 0:2278
cd 0.3899 0.1838 0.1399 0.1399

dd �1:3700 �1:2152 �1:1200 �1:1200

�
Nf¼4

QCD , MeV 263:8
 30 239:9
 27 241:44
 29 241:45
 27

�2=ndf 523=546 ¼ 0:9578 506=546 ¼ 0:9267 491:07=546 ¼ 0:8994 491:12=546 ¼ 0:8995

TABLE II. Our results for the covariance matrix of the N3LO nonsinglet QCD fit for Padé [1=1] and [0=2] at Q2
0 ¼ 4 GeV2 by using

MINUIT [71].

N3LO Padé [1=1] au bu ad bd �
Nf¼4

QCD

au 1:13� 10�4

bu 2:35� 10�4 1:62� 10�3

ad 1:09� 10�4 �1:59� 10�3 3:86� 10�3

bd 1:67� 10�4 �8:84� 10�3 2:11� 10�2 1:23� 10�1

�ð4Þ
QCD 1:71� 10�4 �3:49� 10�4 5:04� 10�4 2:61� 10�3 8:65� 10�4

N3LO Padé [0=2] au bu ad bd �
Nf¼4

QCD

au 0:98� 10�4

bu 1:83� 10�4 1:07� 10�3

ad �5:07� 10�5 �6:01� 10�4 1:66� 10�3

bd �1:11� 10�4 �3:30� 10�3 8:58� 10�3 5:19� 10�2

�ð4Þ
QCD 1:59� 10�4 �1:99� 10�4 1:94� 10�4 8:07� 10�4 7:53� 10�4
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Figure 3 illustrates our fit results for xuvðx;Q2
0Þ,

xdvðx;Q2
0Þ at Q2

0 ¼ 4 GeV2 up to N3LO and for Padé

[1=1] with correlated errors. In this figure our results for
N3LO compared with results obtained from [6] at LO,

NLO, andN2LOQCD analysis. The shaded areas represent
the fully correlated one � statistical error bands.
In Fig. 4 we show the evolution of the valence quark

distributions xuvðx;Q2Þ and xdvðx;Q2Þ fromQ2 ¼ 1 GeV2
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FIG. 3 (color online). The parton densities xuv and xdv up to 4-loop (Padé [1=1]) at the input scale Q2
0 ¼ 4:0 GeV2 (solid line)

compared with results obtained from N2LO analysis (dashed-line), NLO analysis (dash-dotted line), and LO anlysis (dash-dot-dotted
line) [6]. The shaded areas represent the fully correlated one � statistical error bands.
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NONSINGLET PARTON DISTRIBUTION FUNCTIONS FROM . . . PHYSICAL REVIEW D 81, 014013 (2010)

014013-9



to Q2 ¼ 104 GeV2 in the region x 2 ½10�4; 1� at N3LO. In
this figure we also compared our results with the nonsinglet
QCD analysis from [48]. With rising values of Q2 the
distributions flatten at large values of x and rise at low
values.

Another way to test the N3LO fit results is comparison
of low order moments of the distributions uvðx;Q2Þ;
dvðx;Q2Þ; and uvðx;Q2Þ�dvðx;Q2Þ. In Table III we
present the lowest nontrivial moments of these distribu-
tions at Q2 ¼ Q2

0 in N3LO and compare to the respective

moments obtained for the parameterizations [48].
We should note that the unknown parameters are corre-

lated and almost depend on the method of the QCD fits. We
believe that the source of the small difference between the
results of our analysis and reported results in [48] is the
kind of the different method of the QCD analysis. We used
the Jacobi polynomial method as an expansion method to
do QCD fits but they used the exact inverse Mellin tech-
nique to obtain some unknown parameters. We also found
that the results of Padé [1=1] and [0=2] in 4-loop level are
almost the same.

To perform higher twist QCD analysis of the nonsinglet
world data in N3LO, we consider the Q2 � 4 GeV2, 4<
W2 < 12:5 GeV2 cuts. The number of data points in the
above range for proton and deuteron is 279 and 278,
respectively. The extracted distributions for hðxÞ in N3LO
are depicted in Fig. 5 for the nonsinglet case considering
scattering off the proton and deuteron target. According to
our results the coefficient hðxÞ grows towards large x. To
compare, we also present the reported results of the early
N2LO analysis [6] in Fig. 5. Also in this figure HT con-
tributions have the tendency to decrease form N2LO to
N3LO. This effect was observed for the first time in the
case of fits of F3 DIS 	N data in [13] and then studied in
more detail in [15,16].

This similar effect was also observed in the fits of F2

charge lepton-nucleon DIS data [47,48,73,74]. In Ref. [47],
the functional form for hðxÞ is chosen by

hðxÞ ¼ a

�
xb

1� x
� c

�
; (38)

and it is possible to compare hðxÞ results in N2LO and
N3LO. In Table IV we present our results for a, b, c in the
above equation.
As seen from Fig. 5 hðxÞ is widely independent of the

target comparing the results for deeply inelastic scattering
off protons and deuterons.

VI. DISCUSSION

A study [6] of the available world data on deep-inelastic
lepton-proton and lepton-deuteron scattering provided a
determination of the valence quark parton densities and
�s in wide ranges of the Bjorken scaling variable x and Q

2

up to 3-loop. In the nonsinglet case, where heavy flavor
effects are negligibly small, the analysis can be extended to
4-loop level, i.e. to QCD in N3LO perturbative expansion.
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FIG. 5 (color online). The higher twist coefficient hðxÞ for the
proton and deuteron data as a function of x in N3LO (solid line)
compared with results obtained by N2LO (dashed line) [6].

TABLE III. Comparison of low order moments from our nonsinglet N3LO QCD analysis at
Q2

0 ¼ 4 GeV2 with the N3LO analysis from Ref. [48].

f N BBG [48] N3LO Padé [1=1] N3LO Padé [0=2]

uv 2 0:3006
 0:0031 0:307 57
 0:0026 0:308 06
 0:0028
3 0:0877
 0:0012 0:087 71
 0:0011 0:087 81
 0:0012
4 0:0335
 0:0006 0:033 20
 0:0006 0:033 23
 0:0006

dv 2 0:1252
 0:0027 0:124 50
 0:0024 0:124 95
 0:0025
3 0:0318
 0:0009 0:030 40
 0:0008 0:030 12
 0:0008
4 0:0106
 0:0004 0:009 92
 0:0004 0:009 93
 0:0005

uv � dv 2 0:1754
 0:0041 0:183 05
 0:0036 0:183 10
 0:0038
3 0:0559
 0:0015 0:057 67
 0:0013 0:057 69
 0:0014
4 0:0229
 0:0007 0:023 29
 0:0007 0:023 29
 0:0007

TABLE IV. Our results for hðxÞ function according to Eq. (38)
and for N3LO.

a b c

Proton 1.015 3.928 �0:193
Deuteron 4.481 7.759 �0:064
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The analysis was performed using the Jacobi polyno-
mials method to determine the parameters of the problem
in a fit to the data. A new aspect in comparison with
previous analysis is that we determine the parton densities
and the QCD scale up to N3LO by using the Jacobi poly-
nomial expansion method and using Padé approximations.
The benefit of this approach is the possibility to determine
nonsinglet parton distributions analytically and not nu-
merically. In Ref. [75] we arrange the MATHEMATICA pro-
gram to extract xuvðx;Q2Þ and xdvðx; Q2Þ up to the 4-
loops.

In this analysis we adopt the �d� �u distribution at Q2
0 ¼

4 GeV2 from Refs. [47,48,58,59], which gives a good
description of the Drell-Yan dimuon production data
[60]. The nonsinglet regime is manifesting itself at x �
0:1 as the rule. In this regime, when we changed the sea
distribution from the other groups, the value of �2, valence
distributions, �, and �s varied, but only slightly. For
example, we used the �d� �u distribution from [3,76–78]
and we found that the value of �2 varies by about 3% and�
by about 1%–2%.

In the QCD analysis we parameterized the strong cou-
pling constant �s in terms of four massless flavors deter-

mining �QCD. Up to N3LO results fitting the data, are

�ð4Þ
QCD ¼ 213:2
 28 MeV; LO;

�ð4Þ
QCD ¼ 263:8
 30 MeV; NLO;

�ð4Þ
QCD ¼ 239:9
 27 MeV; N2LO;

�ð4Þ
QCD ¼ 241:4
 29 MeV; N3LO:

(39)

These results can be expressed in terms of �sðM2
ZÞ:

�sðM2
ZÞ ¼ 0:1281
 0:0028; LO;

�sðM2
ZÞ ¼ 0:1149
 0:0021; NLO;

�sðM2
ZÞ ¼ 0:1131
 0:0019; N2LO;

�sðM2
ZÞ ¼ 0:1139
 0:0020; N3LO:

(40)

Note that in above results we use the matching between nf
and nfþ1 flavor couplings calculated in Ref. [66]. We adopt

this prescription to be able to compare our results with
other measurements of �QCD.

The �sðM2
ZÞ values can be compared with results from

other QCD analysis of inclusive deep-inelastic scattering
data in N2LO (see Refs. [6,15,16,41–43,47,48,79,80]).

A02: �sðM2
ZÞ ¼ 0:1143
 0:0014; GRS: �sðM2

ZÞ ¼ 0:111; MRST03: �sðM2
ZÞ ¼ 0:1153
 0:0020;

SY01ðepÞ: �sðM2
ZÞ ¼ 0:1166
 0:0013; SY01ð	NÞ: �sðM2

ZÞ ¼ 0:1153
 0:0063;

A06: �sðM2
ZÞ ¼ 0:1128
 0:0015; BBG: �sðM2

ZÞ ¼ 0:1134þ0:0019
�0:0021; BM07: �sðM2

ZÞ ¼ 0:118
 0:0019;

KPS00ð	NÞ: �sðM2
ZÞ ¼ 0:118
 0:002 ðstatÞ 
 0:005 ðsystÞ 
 0:003 ðtheoryÞ;

KPS03ð	NÞ: �sðM2
ZÞ ¼ 0:119
 0:002 ðstatÞ 
 0:005 ðsystÞ 
 0:002 ðthresholdÞþ0:004

�0:002 ðscaleÞ;
KT08: �sðM2

ZÞ ¼ 0:1131
 0:0019:

The N3LO values of �sðM2
ZÞ can also be compared with

results from other QCD analysis [48],

BBG : �sðM2
ZÞ ¼ 0:1134þ0:0019

�0:0021;

and with the value of the world average, 0:1189
 0:0010
[81], and the current world average,

�sðM2
ZÞ ¼ 0:1184
 0:0007; (41)

which has been extracted in [82] very recently. It seems
that our results confirm that the value of �sðM2

ZÞ from DIS
turns out to be sizably below the world average. In this
case, it would be useful to find out which set of data is
mainly responsible for the low value of �sðM2

ZÞ. We will
try to see which subset makes �sðM2

ZÞ particularly small in
a future work.

We hope our results of QCD analysis of structure func-
tions in terms of Jacobi polynomials could be able to

describe more complicated hadron structure functions.
We also hope to be able to consider massive quark con-
tributions by using the structure function expansion in
terms of the Jacobi polynomials.
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