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The �cð2940Þþ baryon with possible quantum numbers JP ¼ 1
2
þ and 1

2
� is studied as a molecular state

composed of a nucleon and D� meson. We give predictions for the strong two-body decay channels

�cð2940Þþ ! pD0,�þþ
c �� and�0

c�
þ, where the sum of partial widths is consistent with current data for

the case of JP ¼ 1
2
þ. The case of JP ¼ 1

2
� is shown to be ruled out.
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I. INTRODUCTION

Recently a new baryon resonance �cð2940Þþ has been
discovered in the decay channel D0p by the BABAR
Collaboration [1] and confirmed as a resonant structure
in the final state �cð2455Þ0;þþ�� ! �þ

c �
þ�� by Belle

[2]. Both collaborations report on values for the mass and
width of the �cð2940Þþ state, which are consistent with
each other: m�c

¼ 2939:8� 1:3� 1:0 MeV and ��c
¼

17:5� 5:2� 5:9 MeV (BABAR [1]); m�c
¼ 2938:0�

1:3þ2:0
�4:0 MeV and ��c

¼ 13þ8þ27
�5�7 MeV (Belle [2]).

In Ref. [3] it was proposed that �cð2940Þþ could be a
D�0p molecular state with spin-parity JP ¼ 1

2
� or 3

2
�,

essentially because its mass is just a few MeV below the
D�0p threshold value. There it was also shown that the
meson-exchange mechanism, such as �, ! and � ex-
change, can lead to binding in such a D�0p configuration.
In contrast, according to the predictions of the relativized
quark model the baryon state in the 2940 MeV mass region
could have JP ¼ 3

2
þ or 5

2
� [4]. A study of the decays in the

3P0 model [5] excluded the possibility for�cð2940Þþ to be

the first radial excitation of the �cð2286Þþ because the
decay �cð2940Þþ ! D0p vanishes in this case. The pos-
sibility however that �cð2940Þþ is a D-wave charmed
baryon with JP ¼ 1

2
þ or 3

2
þ was shown to be favored. In a

relativistic heavy quark-light diquark model [6] it is sug-
gested that the �cð2940Þþ state could be the first radial 2S
excitation of the �cð2455Þþ with JP ¼ 3

2
þ. It was also

argued that the �cð2940Þþ can result from the first orbital
excitation of the light diquark in the�cð2286Þþ. An analy-
sis of the strong decays of the �cð2940Þþ in a chiral quark
model [7] predicts that the �cð2940Þþ is a D-wave state
with principal quantum number n ¼ 2. In Ref. [8] the
strong decays of charmed baryons have been studied in
the framework of heavy hadron chiral perturbation theory.
The conclusion of [8] on the nature of the �cð2940Þþ was
that an experimental determination of the decay ratio

��
c�=�c� will enable to discriminate the JP assignments.

In Ref. [9] the �cð2940Þþ state with JP ¼ 1
2
� has been

considered in the relativistic quark model. In Ref. [10]
possible assignments (JP ¼ 1

2
þ, 3

2
þ, and 5

2
�) for the

�cð2940Þþ states have been analyzed in the quark model.
The predicted masses for the �cð2940Þþ state are distrib-
uted in the range from 2.887 GeV to 2.983 GeV. The
coupled-channel approach [11] does not generate any reso-
nance in the energy region around 2940 MeV, which
couples predominantly to theND� pair having its threshold
only a few MeV above the �cð2940Þ mass. Therefore, the
conclusion of Ref. [11] is that the �cð2940Þ is not a
molecular ND� system. Presently various possible struc-
ture interpretations exist for the �cð2940Þþ baryon, also
depending on the particular model applied (see e.g.
Refs. [12–14]).
In this paper we consider the �cð2940Þþ as a molecular

state composed of a nucleon and a D� meson. We also test
the two currently possible assignments for the spin-parity
quantum numbers of JP ¼ 1

2
þ and 1

2
� in a molecular inter-

pretation. Proceeding with this interpretation the strong
two-body decay modes pD0, �þþ

c �� and �0
c�

þ of the
�cð2940Þþ are evaluated. As one result we deduce that the
assignment of JP ¼ 1

2
þ is favored in the molecular inter-

pretation, while the case JP ¼ 1
2
� gives an overestimate for

the total decay width. The technique for describing and
treating composite hadron systems we developed already
in Refs. [15,16]. There we present the formalism for the
study of recently observed unusual meson states (like
D�

s0ð2317Þ, Ds1ð2460Þ, Xð3872Þ, Yð3940Þ, Yð4140; � � �Þ as
hadronic molecules. The composite structure of these pos-
sible molecular states is set up by the compositeness con-
dition Z ¼ 0 [17–19] (see also Refs. [15,16]). This
condition implies that the renormalization constant of the
hadron wave function is set equal to zero or that the hadron
exists as a bound state of its constituents. The composite-
ness condition was originally applied to the study of the
deuteron as a bound state of proton and neutron [17]. Then
it was extensively used in low-energy hadron phenomenol-
ogy as the master equation for the treatment of mesons and
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baryons as bound states of light and heavy constituent
quarks (see e.g. Refs. [18,19]). By constructing a phe-
nomenological Lagrangian including the couplings of the
bound state to its constituents and the constituents to other
final state particles we evaluated meson-loop diagrams
which describe the different decay modes of the molecular
states (see details in [15,16]).

In the present paper we proceed as follows: In Sec. II, we
first discuss the basic notions of our approach. We discuss
the effective Lagrangian for the treatment of the
�cð2940Þþ baryon as a superposition of the pD�0 and
nD�þ molecular components. Moreover, we consider the
two-body hadronic decays �cð2940Þþ ! pD0, �þþ

c ��,
�0

c�
þ in this section. In Sec. III, we present our numerical

results. Finally, in Sec. IV we present a short summary of
our results.

II. APPROACH

In this section we discuss the formalism for the study of
the �cð2940Þþ baryon. First we adopt the convention that
the spin and parity quantum numbers of the�cð2940Þþ are
JP ¼ 1

2
þ. But we also check the possibility of JP ¼ 1

2
� (it

will be shown that the last possibility leads to an over-
estimate of the strong two-body decay widths and therefore
must be excluded in our approach).

Following Ref. [3] we consider this state as a superpo-
sition of the molecular pD�0 and nD�þ components with
the adjustable mixing parameter or mixing angle �:

j�cð2940Þþi ¼ cos�jpD�0i þ sin�jnD�þi: (1)

The values sin� ¼ 1=
ffiffiffi
2

p
, sin� ¼ 0 or sin� ¼ 1 correspond

to the cases of ideal mixing, of a vanishing nD�þ or pD�0
component, respectively. Our approach is based on an
effective interaction Lagrangian describing the coupling
of the �cð2940Þþ to its constituents. We propose a setup
for the �cð2940Þþ in analogy to mesons consisting of a
heavy quark and light antiquark, i.e. the heavy D� meson
defines the center-of-mass of the �cð2940Þþ, while the
light nucleon surrounds the D�. The distribution of the
nucleon relative to the D� meson we describe by the
correlation function �ðy2Þ depending on the Jacobi coor-
dinate y. The simplest form of such a Lagrangian reads

L�c
ðxÞ ¼ g�c

��þ
c ðxÞ��

Z
d4y�ðy2Þðcos�D�0

� ðxÞpðxþ yÞ
þ sin�D�þ

� ðxÞnðxþ yÞÞ þ H:c:; (2)

where g�c
is the coupling constant of the�cð2940Þþ to the

constituents and �� is the corresponding Dirac matrix
related to the spin-parity of the �cð2940Þþ. In particular
we have �� ¼ �� for JP ¼ 1

2
þ and �� ¼ ���5 for JP ¼

1
2
�. A basic requirement for the choice of an explicit form

of the correlation function �ðy2Þ is that its Fourier trans-
form vanishes sufficiently fast in the ultraviolet region of
Euclidean space to render the Feynman diagrams ultravio-

let finite. We adopt a Gaussian form for the correlation
function. The Fourier transform of this vertex is given by

~�ðp2
E=�

2Þ ¼: expð�p2
E=�

2Þ; (3)

where pE is the Euclidean Jacobi momentum. Here, ��
mN � 1 GeV is a size parameter characterizing the distri-
bution of the nucleon in the�cð2940Þþ baryon, which is of
order of the nucleon mass or 1 GeV. The size parameter �
is a free parameter in our approach.
The coupling constant g�c

is determined by the compo-

siteness condition [15,17–19]. It implies that the renormal-
ization constant of the hadron wave function is set equal to
zero with

Z�c
¼ 1��0

�c
ðm�c

Þ ¼ 0: (4)

Here, �0
�c
ðm�c

Þ is the derivative of the �cð2940Þþ mass

operator shown in Fig. 1. In order to evaluate the coupling
g�c

we use the standard free propagators for the intermedi-

ate particles

iSNðx� yÞ ¼ h0jTNðxÞ �NðyÞj0i ¼
Z d4k

ð2�Þ4i e
�ikðx�yÞSNðkÞ;

SNðkÞ ¼ 1

mN � k6 � i�
(5)

for the nucleons and

FIG. 1 (color online). Diagram describing the�cð2940Þþ mass
operator.

FIG. 2 (color online). Diagrams contributing to the decays
�cð2940Þþ ! pD0, �þþ

c ��, �0
c�

þ.

DONG et al. PHYSICAL REVIEW D 81, 014006 (2010)

014006-2



iS��
D� ðx� yÞ ¼ h0jTD��ðxÞD��yðyÞj0i

¼
Z d4k

ð2�Þ4i e
�ikðx�yÞS��

D� ðkÞ;

S��
D� ðkÞ ¼ �g�� þ k�k�=m2

D�

m2
D� � k2 � i�

(6)

for the D� vector mesons.
In order to study the strong two-body decays

�cð2940Þþ ! pD0 and �cð2940Þþ ! �þþ;0
c ��;þ (see

Fig. 2) we need to know the coupling of the �cð2940Þþ

constituents to the final state particles. In particular, we
need the Lagrangian describing the coupling of ND� pairs
to pD0 and �c�. Such effective Lagrangians containing
the coupling of two baryon fields with JP ¼ 1

2
þ, one vector

and one pseudoscalar field have in general the form

L VPBB � �Bi���5BV�Pþ H:c:: (7)

The derivation of such a flavor SU(4) invariant Lagrangian
is discussed in the Appendix. Here, we just display the
terms relevant for our calculations:

LVPBBðxÞ ¼ � G

FD

�pðxÞi���5

�
2

5
pðxÞD�0

� ðxÞ þ 1

2
nðxÞD�þ

� ðxÞ
�
�D0ðxÞ

þ G

F�

��þþ
c ðxÞi���5

�
9

10
pðxÞD�0

� ðxÞ þ nðxÞD�þ
� ðxÞ

�
�þðxÞ

þ G

F�

��0
cðxÞi���5

�
pðxÞD�0

� ðxÞ þ 9

10
nðxÞD�þ

� ðxÞ
�
��ðxÞ þ H:c:; (8)

where G ¼ g���gA is the coupling constant; g��� ¼ 6 is
the ��� coupling, and gA ¼ 1:2695 is the nucleon axial
charge; F� ¼ f�=

ffiffiffi
2

p ¼ 92:4 MeV and FD ¼ fD=
ffiffiffi
2

p ¼
145:5 MeV are the leptonic decay constants of � and D
mesons, respectively.

The strong two-body decay widths of the �cð2940Þþ
baryon are calculated according to the expressions

�ð�c½1=2þ� ! BþMÞ ¼ g2�cBM

16�m3
�c

�1=2ðm2
�c
; m2

B;m
2
MÞ

� ððm�c
�mBÞ2 �m2

MÞ (9)

for the positive parity �cð2940Þþ state and accordingly

�ð�c½1=2�� ! BþMÞ ¼ f2�cBM

16�m3
�c

�1=2ðm2
�c
; m2

B;m
2
MÞ

� ððm�c
þmBÞ2 �m2

MÞ (10)

for the negative parity choice for �cð2940Þþ. The letters B
and M denote the final baryon and pseudoscalar meson;
�ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2yz� 2xz is the Källen
function; m�c

, mB and mM are the masses of the

�cð2940Þþ, the final baryon B, and the mesonM. In above
expressions g�cBM and f�cBM are the effective coupling

constants defining the interaction of the �cð2940Þþ having
quantum numbers JP ¼ 1

2
þ or 1

2
� with the (BM) pair

L1=2þ
�cBM

ðxÞ ¼ g�cBM
��cðxÞi�5BðxÞMðxÞ þ H:c:

L1=2�
�cBM

ðxÞ ¼ f�cBM
��cðxÞBðxÞMðxÞ þ H:c::

(11)

III. NUMERICAL RESULTS

In Table I we present the numerical results for the partial
two-body decay widths of the�cð2940Þþ at� ¼ 1 GeV—
the dimensional parameter describing the distribution of
the nucleon around theD�, which is located in the center of
mass of the �cð2940Þþ. Note that the results are sensitive
to the choice of the cutoff parameter �. An increase of �
leads to large values for the �cð2940Þþ decay widths. We
also vary cos�—the mixing parameter of the pD�0 and
nD�þ components from 0 to 1. For the case JP ¼ 1

2
þ the

sum of the partial decay widths is of the order of 1 MeV, at
least consistent with current upper values set by the ob-
served total width. For the alternative case of JP ¼ 1

2
� the

dominant partial decay width is about 1 GeV in complete
contradiction with the experimental constraints. This dra-
matic increase in magnitude of the partial decay widths for
JP ¼ 1

2
� is mainly explained by the large phase space

integral [see Eqs. (9) and (10)]. We therefore conclude
that in the context of a molecular interpretation spin-parity
JP ¼ 1

2
þ of the �cð2940Þþ state is clearly favored. The

hadron molecule scenario with JP ¼ 1
2
þ results in partial

decay widths for the modes �þþ
c �� and �0

c�
þ, which are

dominant and about equal. The decay channel pD0 is
suppressed relative to �þþ

c �� by a factor of about 4,
details depending on the explicit value of the mixing angle.
Also for transparency we present results for the effective
couplings g�cBM and f�cBM of Eq. (11):

g�cpD
0 ¼ �0:43� 0:10; f�cpD

0 ¼ 1:26� 0:34;

g�c�
þþ
c �� ¼ 1:46� 0:30; f�c�

þþ
c �� ¼ �4:25� 0:97;

g�c�
0
c�

þ ¼ 1:46� 0:29; f�c�
0
c�

þ ¼ �4:42� 0:78:

(12)
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IV. CONCLUSIONS

We pursue a hadronic molecule interpretation of the
recently observed �cð2940Þþ baryon studying its conse-
quences for the strong two-body decay modes and the JP

quantum numbers. In the present scenario the �cð2940Þþ
baryon is supposed to be described by a superposition of
jpD�0i and jnD�þi components with the explicit admixture
expressed by the mixing angle �. The possible decay
channels pD0,�þþ

c �� and�0
c�

þ are fed by aND� meson
loop, which in turn arises from the hadronic constituents of
the �cð2940Þþ. The choice JP ¼ 1

2
� is completely ex-

cluded by the present calculation resulting in partial decay
widths of the order of 1 GeV. For JP ¼ 1

2
þ we obtain the

dominant decay channels�þþ
c �� and�0

c�
þ relative to the

pD0 mode. The absolute rates but less so the ratios of rates
depend on the explicit molecule configuration expressed
by �. The sum of partial decay widths is consistent with the
upper value set by the observed total width. An experi-
mental determination of the partial decay widths for the
modes pD and �c� could certainly help in clarifying the
structure issue involving the �cð2940Þþ baryon.

ACKNOWLEDGMENTS

This work was supported by the DFG under Contract
Nos. FA67/31-2 and GRK683. This work is supported by
the National Sciences Foundations under Contract
No. 10775148 and by CAS Grant No. KJCX3-SYW-N2
(YBD). This research is also part of the European
Community-Research Infrastructure Integrating Activity
‘‘Study of Strongly Interacting Matter’’ (acronym
HadronPhysics2, Grant Agreement No. 227431) and the
President Grant of Russia ‘‘Scientific Schools’’
No. 871.2008.2. The work is partially supported by
Russian Science and Innovations Federal Agency under
Contract No. 02.740.11.0238. V. E. L. would like to thank

the members of the Theory Group of the Institute of High
Energy Physics (Beijing) for their hospitality.

APPENDIX: DERIVATION OF THE
PHENOMENOLOGICAL VPBB INTERACTION

LAGRANGIAN

First we consider the derivation of the phenomenologi-
cal flavor SU(3) VPBB interaction Lagrangian describing
the coupling of vector (V) and pseudoscalar (P) mesons to
two baryons ( �BB). It can be generated by starting with the
OðpÞ term of chiral perturbation theory describing the
coupling of baryon fields ( �B, B) with the chiral vielbein
field u�:

L PBB ¼ D

2
trð �B���5fu�BgÞ þ F

2
trð �B���5½u�B�Þ:

(A1)

D and F are the baryon axial coupling constants (we
restrict to the SU(3) symmetric limit, where D ¼ 3F=2 ¼
3gA=5 with gA ¼ 1:2695 being the nucleon axial charge);
the symbols tr, f. . .g and ½. . .� denote the trace over flavor
matrices, anticommutator and commutator, respectively.
We use the standard notation for the basic blocks of the
chiral perturbation theory Lagrangian [20], where B is the

octet of baryon fields, U ¼ u2 ¼ expðiP ffiffiffi
2

p
=FPÞ is the

chiral field collecting pseudoscalar fields P in the expo-
nential parametrization with FP being the octet leptonic
decay constant, u� ¼ iuyr�Uuy, r� denotes the cova-

riant derivative acting on the chiral field including external
vector (v�) and axial (a�) sourcesr�U ¼ @�U� iðv� þ
a�ÞUþ iUðv� � a�Þ.
The vector sources can be identified with the vector

mesons V� if the latter are considered as gauge particles

and introduced via the minimal substitution (for more de-
tails see e.g. [21]). The SU(3) baryon (B), pseudoscalar

TABLE I. Partial decay widths of �cð2940Þþ in MeV.

1
2
þ modes 1

2
� modes

cos� �þ
c ! pD0 �þ

c ! �þþ
c �� �þ

c ! �0
c�

þ �þ
c ! pD0 �þ

c ! �þþ
c �� �þ

c ! �0
c�

þ
1 0.11 0.58 0.72 19.15 612.68 756.72

0.95 0.17 0.85 0.98 29.75 907.64 1040.36

0.9 0.20 0.96 1.08 34.40 1033.00 1153.95

0.8 0.23 1.11 1.20 41.09 1208.89 1305.10

0.7 0.25 1.20 1.27 46.17 1338.06 1407.80

0.6 0.27 1.27 1.30 50.24 1437.58 1478.96

0.5 0.28 1.31 1.32 53.47 1511.85 1522.78

0.4 0.29 1.32 1.30 55.83 1560.10 1538.24

0.3 0.29 1.32 1.30 55.83 1560.10 1538.24

0.2 0.29 1.30 1.26 57.15 1577.04 1519.78

0.1 0.26 1.14 1.03 54.20 1447.05 1309.75

0.05 0.24 1.04 0.91 50.68 1334.05 1174.51

0 0.18 0.74 0.60 38.15 964.41 781.52
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meson (P) and vector meson (V) matrices read as

B¼
�0=

ffiffiffi
2

p þ�=
ffiffiffi
6

p
�þ p

�� ��0=
ffiffiffi
2

p þ�=
ffiffiffi
6

p
n

�� �0 �2�=
ffiffiffi
6

p

0
B@

1
CA;

(A2)

P ¼
�0=

ffiffiffi
2

p þ 	=
ffiffiffi
6

p
�þ Kþ

�� ��0=
ffiffiffi
2

p þ 	=
ffiffiffi
6

p
K0

K� �K0 �2	=
ffiffiffi
6

p

0
B@

1
CA;

(A3)

V ¼
�0=

ffiffiffi
2

p þ!=
ffiffiffi
2

p
�þ K�þ

�� ��0=
ffiffiffi
2

p þ!=
ffiffiffi
2

p
K�0

K�� �K�0 �


0
B@

1
CA:

(A4)

The required SU(3) VPBB interaction Lagrangian reads

L VPBB ¼ gV
Dþ F

FP

trð �Bi���5½V�P�BÞ

þ gV
D� F

FP

trð �Bi���5B½V�P�Þ; (A5)

where gV ¼ g��� ¼ 6 is the strong ��� coupling con-

stant. The extended SU(4) VPBB interaction Lagrangian
has the more complicated form

L VPBB ¼ ig1 �B
kmn���5½V�; P�lkBlmn

þ ig2 �B
kmn���5½V�; P�lkBlnm

þ ig3 �B
kmn���5ððV�ÞlkPs

m � Pl
kðV�ÞsmÞBlns

� ig3 �B
knm���5ððV�ÞlkPs

m � Pl
kðV�ÞsmÞBlsn;

(A6)

where Blmn is a tensor with indices l, m, n running from 1
to 4 representing the 20-plet of baryons (see details in
Ref. [22]); ðV�Þlk and Pl

k are the matrices representing the

15-plets of vector and pseudoscalar fields. The baryon
tensor satisfies the conditions

Blmn þ Bmnl þ Bnlm ¼ 0; Blmn ¼ Bmln: (A7)

The full list of physical states in terms of SU(4) tensors is
given in Ref. [22]. Here, we only display a few of them:

p ¼ B112 ¼ �2B121 ¼ �2B211;

n ¼ �B221 ¼ 2B212 ¼ 2B122;

�þþ
c ¼ B114 ¼ �2B141 ¼ �2B411;

�0
c ¼ �B224 ¼ 2B242 ¼ 2B422; �þ ¼ P2

1;

�� ¼ P1
2; D0 ¼ P1

4; D�þ ¼ V2
4 ; D�0 ¼ V1

4 :

(A8)

The matching of the SU(3) and SU(4) VPBB Lagrangians
at tree level gives the following relations between the
effective couplings

g���
D

FP

¼ 3

4
g1 � 3

2
g2; g���

F

FP

¼ 5

4
g1 � g2:

(A9)

Note that the coupling constant g3 is left to be unmatched.
Below we display the terms of the SU(4) VPBB
Lagrangian relevant for our calculations:

LVPBB ¼
�
g2 � 5

4
g1

�
�pi���5pD�0

�
�D0 �

�
g1 � 5

4
g2

�
�pi���5nD�þ

�
�D0 þ

�
g1 þ g2

4
� 3

2
g3

�
ð ��þþ

c i���5pD�0�þ

þ ��0
ci�

��5nD�þ��Þ � 3

2
g3ð ��þþ

c i���5nD�þ�þ þ ��0
ci�

��5pD�0��Þ þ H:c: (A10)

We can estimate the coupling g3 using the following
procedure: the corresponding vertices are generated by
static one-nucleon exchange between the pairs of (nucleon,
�) and (D�, �c) [see Fig. 3]. We therefore can express the
couplings of ��þþ

c nD�þ�þ and ��0
cpD

�0�� (which are
proportional to the coupling g3) in terms of the �NN and
D�N�c couplings as

� 3

2
g3 ¼

gD�N�c
g�NN

mN

ffiffiffi
2

p
: (A11)

Here, the coupling gD�N�c
can be fixed by the matching

of SU(3) and SU(4) VBB Lagrangians. In particular, the FIG. 3. Estimate for the coupling g3.
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SU(4) VBB Lagrangian has the form (here and in the
following we neglect the tensorial part of the VBB inter-
action containing a derivative acting on the vector field)

L VBB ¼ f1 �B
kmn��ðV�ÞlkBlmn þ f2 �B

kmn��ðV�ÞlkBlnm;

(A12)

where the f1 and f2 are the coupling constants. We do not
include the term f3 �B

kmn��BkmntrðV�Þ because we suppose
that the 
NN coupling vanishes due to the Okuba-Zweig-
Iizuka rule. In Ref. [23] it was shown that an estimate of the

NN coupling from a dispersive analysis results in the
value g
NN ¼ �0:24. Using the definitions of the �NN
and !NN couplings with

L �NN ¼ g�NN

2
�N�� ~�� ~�N L!NN ¼ g!NN

2
�N��!�N;

(A13)

we can express the SU(4) couplings in terms of the g�NN

and g!NN coupling constants as

f1 ¼ 2

3
ffiffiffi
2

p
�
5

3
g!NN � g�NN

�
;

f2 ¼ 4

3
ffiffiffi
2

p
�
2

3
g!NN � g�NN

�
:

(A14)

Taking the SU(3) predictions for the g�NN and g!NN

couplings of

g�NN ¼ 6; g!NN ¼ 3g�NN; (A15)

we get

f1 ¼ 8

3
ffiffiffi
2

p g�NN ’ 11:32; f2 ¼ 4

3
ffiffiffi
2

p g�NN ’ 5:66;

gD�N�c
¼ 1

4
ðf1 þ f2Þ ¼ 1ffiffiffi

2
p g�NN ’ 4:24: (A16)

Finally, we get for the SU(4) coupling g3 the expression

g3 ¼ � 2

3FP

g���gA; (A17)

where we use the universality of the �meson with g��� ¼
g�NN . In the evaluation we use different values for the
leptonic decay constants F�, FD, etc. associated with �,
D, etc. in order to take into account flavor symmetry
breaking corrections.
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