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New FOCUS data on Dþ ! K��þ�þ are fitted to the �, together with earlier data from LASS, E791

and BES 2. There is a clear low mass K� peak due to the � pole. Inclusion of the I ¼ 3=2K� amplitude

gives only a marginal improvement to the fit and almost no change to the � peak. An improved formula for

the � gives a better fit than that used earlier. The � pole moves to 663� 8ðstatÞ � 34ðsystÞ � i½329�
5ðstatÞ � 22ðsystÞ� MeV. The K0ð1430Þ pole is at 1427� 4ðstatÞ � 13ðstatÞ � i½135� 5ðstatÞ �
20ðsystÞ� MeV.
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I. INTRODUCTION

There are two objectives in this paper. The first is to
present a fit to new FOCUS data [1] and compare them
with earlier E791 data [2]. There are some systematic
discrepancies between these two sets of data, although
their effects are minor. Like E791, the FOCUS group has
determined theK��þ S-wave amplitude in magnitude and
phase in 40 mass bins covering the whole mass range
available in Dþ ! K��þ�þ. These data are fitted here.

The second objective is to introduce a necessary modi-
fication to the formula used earlier to fit the �. Both � and
� resonances have widths which are strongly s-dependent,
giving them unusual features. This s-dependence origi-
nates directly from chiral symmetry breaking. Hopefully,
the formulas developed here will be useful to experimental
groups as direct replacements for the usual Breit-Wigner
amplitudes used to fit JP ¼ 0þ resonances such as � and
K0ð1430Þ in Dalitz plots. The parametrization for the K�
channel is highly convergent and well determined in terms
of just three parameters, one of them related closely to f2�.
Some allowance is also required for coupling to K� and
K�0, but in the absence of direct experimental information
on these channels, this requires just one coupling constant
for each channel. If data for these channels become avail-
able, the present treatment of K� could be substituted also
for K� and K�0.

II. FORMULAS

The key point about both� and � is the Adler zero in the
elastic amplitude at s ’ m2

K �m2
�=2 for the � and at s ’

m2
�=2 for the �. These zeros are crucial features of chiral

symmetry breaking. The mechanism of this symmetry
breaking is fully understood [3–5] and is confirmed in
outline by Lattice QCD calculations [6]. Refs. [3–5] give
illuminating discussions of the detailed mechanism.
Pioneering work on the � and � was done by Pelaez,
Oset, and Oller and collaborators [7–10].

The consequence of the Adler zero is that the K�
amplitude rises nearly linearly with s near threshold. In
Ref. [11], the � amplitude was parametrized as a Breit-

Wigner amplitude with s-dependent width:

fel ¼ NðsÞ
DðsÞ ¼

M�el

M2 � s� iM�total

(1)

M�el ¼ s� sA
M2 � sA

expð��k2Þg2ðK�Þ�K�ðsÞ; (2)

here sA ¼ 0:2367 GeV2 is the mean position of the Adler
zero for Kþ�� and K0�0, and �ðsÞ is Lorentz invariant
phase space 2k=

ffiffiffi
s

p
, where k is center of mass momentum.

Also g are coupling constants and � is a fitted constant.
The exponential form factor in (2) accommodates the
experimental fact that �el gradually flattens off at large s.
There are two weaknesses in these formulas. The im-

portant one is that they assume the � phase shift eventually
reaches 90�, although it was found in [11] that this was
only at �3:3 GeV, well above the mass range of available
data. The FOCUS data, combined with earlier data, now
reveal that the � phase shift appears to reach only�55� at
1.5 GeV and may never reach 90�. It is straightforward to
modify the formulas to cater for this possibility. The sec-
ond weakness is that the mass and width of the pole itself
are far removed from M and �total of Eqs. (1) and (2), for
reasons described in Sec. IV. Formulas can be rewritten to
be more closely related to the � pole itself.
A better form of the equations may be obtained by

dividing both numerator and denominator of Eq. (1) by
M2 and writing

fel ¼ b1ðs� sAÞF1ðsÞ�K�ðsÞ
1� s=M2 � i

P
j
bjðs� sAj

ÞFjðsÞ�jðsÞ
: (3)

For the �, the term s=M2 is small; bj are constants and the

summation in the denominator is over j ¼ 1–3 forK�,K�
and K�0 channels in principle, though the coupling to K�
turns out to be insignificant. Form factors Fj are discussed

in detail below.
Weinberg predicted the scattering lengths of pions from

any target [12]; this sets the scale of chiral symmetry
breaking, hence b1 in terms of f2�. Equation (3) can be
recast so as to expose the scattering length explicitly. This
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requires a transformation in s of the denominator of (3).
The algebraic manipulations are to write 1� s=M2 ¼ 1�
As ’ ½1� Aðs� sthrÞ�=ð1þ AsthrÞ for small A, next multi-
ply top and bottom of (3) by (1þ Asthr) then replace all bj
by Bj ¼ bjð1þ AsthrÞ; here sthr are evaluated at the thresh-
old of each channel j. The result is

fel ¼ NðsÞ
DðsÞ ¼

B1ðs� sAÞFel�K�ðsÞ
1� Aðs� sthrÞ � i

P
j
Bjðs� sAj

ÞFjðsÞ�jðsÞ :

(4)

If A is positive, ReD eventually goes to zero and the elastic
phase shift reaches 90�. The case where A is negative
accommodates the possibility that the phase shift does
not reach 90�. The denominator however still allows a �
pole. The scattering length a is

a ¼ 2B1ðsthr � sAÞ= ffiffiffiffiffiffiffi
sthr

p
: (5)

There is an alternative way of viewing this formula. The
factor 1� Aðs� sthrÞ in the denominator of Eq. (4) may be
regarded as an empirical form which exhibits the scattering
length explicitly and parametrizes successfully the real part
of the amplitude in a region close to threshold and the
Adler zero. For elastic scattering, a form factor allowing a
controlled departure of the numeratorNðsÞ from linearity is
F1 ¼ expð��1k

2
1Þ, where �1 is a fitted parameter. Note

that the exponential dependence of the form factor com-
bines both a conventional form factor for the radius of
interaction and an empirical departure of the numerator
from linearity; values of �1 and A are accurately deter-
mined by FOCUS and E791 data.

The K� channel turns out to be negligible; for K�0, the
Adler zero is at s ¼ m2

�0 �m2
K=2. The form factor for K�0

is not known, because of lack of data for this channel.
Above its threshold, the value �j ¼ 4:5 ðGeV=cÞ�2 is

adopted from a wide range of Crystal Barrel and BES II
data; this value corresponds to a reasonable radius of
interaction 0.72 fm. Above the K�0 threshold, small
changes in �j may be taken up by small alterations to

parameters fitted to K0ð1430Þ and K0ð1950Þ and the fit to
data changes by less than the errors.

Below the inelastic threshold, the Flatté prescription is
adopted, continuing � analytically: � ! ij�j [13].
However, j�j increases below threshold and requires a
cutoff; otherwise, a myriad of open channels at high
mass dominate K� elastic scattering at low mass. Such a
prescription would obviously be unphysical. With the ac-
curacy of present data, any reasonable cutoff will do, and
the simple one

Fj ¼ exp½��jjk2j j� (6)

fits data adequately. The best source of information on
subthreshold form factors comes from Kloe data on � !
��0�0, where a similar cutoff is required for the subthres-
hold � ! KK amplitude [14]. Rather a sharp cutoff is

required for those data and optimizes with �j ¼
8:4 ðGeV=cÞ�2, though a value as low as half this is accept-
able. For present data, a similar form factor is definitely
required. If a value �j < 2 ðGeV=cÞ�2 is used, the

K0ð1430Þ ! K�0 amplitude near the K� elastic threshold
becomes unreasonably large. There is a weak optimum at
�j ¼ 4:5 ðGeV=cÞ�2. With this value, the subthreshold

contribution rises rapidly from the K�0 threshold to a
K� mass of 1400 MeV and thereafter varies slowly and
smoothly down to the K� threshold. Any alteration to this
value of �j is absorbed by small changes to the fitted

parameters of K0ð1430Þ and small changes to fitted values
of�1 andBj. The extrapolation of the amplitude to the pole

is stable: the real and imaginary parts of the pole position
change by 20–30 MeV for variations of �j in the range

3:5–6:5 ðGeV=cÞ�2. This will be taken as a systematic
error on the pole position. (If data one day become avail-
able on the form factor for K�0 above threshold, it will be
possible to calculate the subthreshold continuation from a
dispersion relation like Eq. (8) discussed below, but pres-
ently this is academic.)
For production processes such as D ! ðK�Þ�, the de-

nominator DðsÞ of the amplitude must be identical to that
of elastic scattering by Watson’s theorem [15]. However,
the numerator can be (and is) very different. Data on
J=� ! !�þ�� [16] and Kþ��K��þ [17,18] and
present data on D ! ðK�Þ� may be fitted accurately tak-
ing NðsÞ as a constant. The result is that � and � poles
appear clearly in production data, but are obscured in
elastic scattering by the nearby Adler zero in NelðsÞ.
Precise theoretical work on elastic scattering using the
Roy equations does however reveal � and � poles clearly
[19,20].
The Adler zero is a property of the full K� elastic

amplitude and therefore needs to be included into the
widths of K0ð1430Þ and K0ð1950Þ. This is done using
Eqs. (1) and (2) for each of K0ð1430Þ and K0ð1950Þ; the
exponential form factor is taken to be the same as for the �.
Although K0ð1430Þ may be fitted with a Breit-Wigner
amplitude of constant width, the resulting contribution to
the scattering length is far too large to agree with
Weinberg’s prediction.
In order to satisfy unitarity for LASS data, the full

S-matrices of �, K0ð1430Þ, K0ð1950Þ and (where used)
theK�I ¼ 3=2 amplitude are multiplied. This prescription
is not unique, but gives a good fit to the interference
between � and K0ð1430Þ.
The FOCUS, E791 and BES 2 groups have all deter-

mined the magnitude and phase of the K� S-wave with
respect to other strong components in the data. To fit
production data, the isobar model is used, with a complex
coupling constant in the numerator of each amplitude in-
stead of M�el, specifically �expði�Þ=ðM2�s� iM�totÞ.
The first two sets of data require a phase difference be-
tween � andK0ð1430Þ � 75� different to elastic scattering.
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One alternative procedure for fitting the data has been
explored, but in practice turns out to give no better result
than the Flatté prescription, though it does provide a cross-
check. In principle, more complete formulas for a Breit-
Wigner resonance are [21]

fel ¼ M�el

M2 � s�mðsÞ � iM�totalðsÞ
; (7)

mðsÞ ¼ M2 � s

�

Z ds0�totalðs0Þ
ðs0 � sÞðM2 � s0Þ : (8)

The scattering amplitude is an analytic function of s. Any
s-dependence in M�total gives rise to a corresponding con-
tribution to the real part of the denominator via mðsÞ. The
rapid opening of the K�0 threshold generates a sharp spike
in mðsÞ precisely at the K�0 threshold. A subtraction in (8)
at mass M improves the convergence of the integral.

The problem which arises is that this spike depends on
the mass resolution of the experiments. Without an accu-
rate knowledge of mass resolution and possible variations
over the Dalitz plot, inclusion ofmðsÞ is impractical forK�
and K�0 channels, though satisfactory for the K� channel.
The Flatté formula only partially reproduces the effect of
mðsÞ. However, in practice, it allows small adjustments of
M and g2K�0=g2K� which fudge the effect of mðsÞ by opti-

mizing the fit to data. Readers interested in the effect of
mðsÞ are referred to Ref. [22], where it has been included
into fits to a0ð980Þ in Crystal Barrel data. In that case, the
mass resolution is known accurately and included. It
smears out the spike at the KK threshold seriously, as
shown in Fig. 6(b) of that paper. Even then, the dispersion
integral for mðsÞ is sensitive to the form factor, and the
height of the spike needs to be fitted empirically. Here, the
dispersive correction will be used for the K� channel so as
to assess possible systematic errors in parametrising that
channel.

III. THE FIT TO DATA

An important feature of present work is that data from
LASS for elastic scattering [23], FOCUS [1] and E791 [2]
and BES 2 [18] are fitted simultaneously with consistent
parameters. This reveals the strengths and weaknesses of
each individual set of data. In BES 2 data, there is a strong
K0ð1430Þ peak, together with a known smaller contribution
from the narrower K2ð1430Þ. This peak is included in the
present fit since it gives the best determination of parame-
ters for K0ð1430Þ.

The E791 data were published including a form factor in
NðsÞ for production, but it was subsequently shown [24]
that the fit optimizes with this form factor set to 1. That
correction has been applied to data fitted here. FOCUS also
take the form factor for production to be 1. Figures 1(a)–
1(d) show the fit to FOCUS and E791 data. One sees some
modest systematic discrepancies between them. The fit to

either may be improved by omitting the other, but both are
included in the final fit. Values of 	2 will be given for a
variety of combinations in Table II; 	2 is calculated di-
rectly from FOCUS and E791 tabulations, combining their
statistical and systematic errors in quadrature.
Figures 2(a) and 2(b) show the fit to LASS magnitudes

and phases. It is well known that these data stray slightly
outside the unitarity circle above 1.5 GeV, so errors in this
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FIG. 1. The result of the combined fit for (a) magnitudes and
(b) phases of FOCUS amplitudes; (c) and (d) the corresponding
fit to E791 data.
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FIG. 2. The result of the combined fit for (a) magnitudes and
(b) phases of LASS amplitudes; (c) and (d) fits to BES 2 data.
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region have been increased until an average 	2 of 1 is
achieved; this refinement has no significant effect on the fit.
Figures 2(c) and 2(d) show the fit to BES 2 data. The
phases of two high mass points now look high; however,
since they are direct measurements of phase in the data,
they are retained in the fit. The fit to the 1430 MeV peak in
BES 2 data is shown in Fig. 3(a).

The fit to all data requires small contributions from
K0ð1950Þ. Its parameters have been allowed to vary by
1� from averages quoted by the Particle Data Group
[25]. They finish at M ¼ 1967:4 MeV, �EL ¼ 115 MeV,
�total ¼ 376 MeV, but these changes have insignificant
effect on parameters fitted to � and K0ð1450Þ.

There is one quite large change in the fit to K0ð1430Þ
compared to that reported in Ref. [24]. The ratio g2K�0=g2K�

reported there was 1.15. This now falls to 0:62� 0:06. This
change may be traced directly to the improvement in
Eqs. (3)–(5) over Eqs. (1) and (2), used earlier. The latter
accommodated a K� phase of �72� in BES 2 data, but
forced a large value of g2K�0 for K0ð1430Þ via the subthres-
hold contribution of the K�0 channel. However, the earlier
fit was visibly not perfect from 1.15 to 1.35 GeV because
this contribution was too large. That problem now disap-
pears. With the new formulas, the phase shift of the � peaks
at 55� at 1530 MeV, though any fall between there and the
end of the mass range is within statistics. The magnitude
and phase of the � contribution are displayed in Figs. 3(b)
and 3(c). The vertical scale for Fig. 3(b) is arbitrary.

Inclusion of the coupling of � to K� improves 	2 by
only 4.6, i.e. 2�. It also tends to destabilize the fit because
of interferences between the subthreshold K� component
and K�. It is therefore omitted from the final fit. There is
now evidence for a component due to � ! K�0. It opti-
mizes at g2ð�0KÞ=g2ðK�Þ ¼ 0:085� 0:020 and improves
the fit by 14.6, i.e. 3:8�. It is not strongly correlated with
the contribution from � ! K�0. The small structure in the
� phase near 1.5 GeV is due to coupling toK�0. Direct data
on K�0 would be valuable to improve the determination of
the coupling of � and K0ð1430Þ to this channel.

A. Possible effects of the K�I ¼ 3=2 amplitude

This amplitude has been parametrized by Pennington.
His formula for the K-matrix, quoted in Ref. [26], will be

repeated here for completeness:

K3=2 ¼ ðs� 0:27Þ
snorm

ð�0:22147þ 0:026637�s

� 0:00092057�s2Þ; (9)

where �s ¼ s=snorm � 1, snorm ¼ ðm2
K þm2

�Þ and s is in
GeV2. Inclusion of this amplitude improves 	2 only by
7.7. This is an indication that the data agree well with both
the magnitude and the phase of the broad � amplitude. The
improvement is not concentrated in any particular mass
region or data set, but is fragmented into small improve-
ments distributed almost randomly. What happens in the fit
is that destructive interference develops between � and the
I ¼ 3=2 amplitude. These are familiar symptoms that two
broad amplitudes are combining to fit minor defects in the
data.
There is a physics reason why the contribution from

repulsive amplitudes should be small. For attractive inter-
actions (particularly resonances), the wave function is
sucked into small radii, r; for repulsive interactions, it is
repelled to large r by the potential barrier and therefore
reduced in magnitude. There is evidence that J=� and D
decays involve short-range interactions. This comes from
the absence of form factors in their decay processes. From
the earlier analysis of E791 data, the interaction was found
to have an RMS radius <0:38 fm with 95% confidence.
In an earlier FOCUS publication on Dþ ! K��þ�þ,

the repulsive I ¼ 3=2K� amplitude was included, but led
to massive destructive interference with the �. In the earlier
FOCUS analysis, the Adler zero was not included into the
� amplitude, which was parametrized by a broad Breit-
Wigner resonance and a constant interfering background.
With three broad amplitudes, destructive interferences are
able to patch up minor defects all over the Dalitz plot. Data
on other charge combinations could identify production of
I ¼ 3=2K� and I ¼ 2�� amplitudes.
The Cleo C collaboration has also presented an analysis

of Dþ ! K��þ�þ where they include the I ¼ 2�� am-
plitude [27]. They present three solutions, all of which
contain huge I ¼ 2 amplitudes with an intensity a factor
�30 larger than K�ð980Þ�. This is clearly symptomatic of
large destructive interferences with the � amplitude, since
the K�ð890Þ is clearly visible by eye in the Dalitz plot and
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FIG. 3. The fit to (a) the intensity of the 1430 MeV peak in BES 2 data; (b) intensity and (c) phase of the fitted � amplitude. In (c), the
dashed curve shows the shape of the LASS effective range formula.
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K�mass projection. Their second solution is made with an
amplitude derived directly from a complex pole at M ¼
706:0� 1:8ðstatÞ � 22:8ðsystÞ � ið319:4� 2:2ðstatÞ �
20:2ðsystÞ MeV. In view of the huge interference with the
I ¼ 2 amplitude, it is difficult to know how reliable this
result is.

B. Pole positions

Table I gives fitted parameters for � and K0ð1430Þ in
units of GeV. Pole positions are remarkably stable if indi-
vidual sets of data are dropped from the fit, or even pairs of
sets. As an illustration, Table II shows values when each of
the sets of data listed in column 1 are dropped. There are 14
fitted parameters: the 7 listed in Table I, 6 for three com-
plex coupling constants fitted to �, K0ð1430Þ and K0ð1950Þ
inD ! K��, and one scale factor for the magnitude fitted
to K0ð1430Þ in BES 2 data. The total 	2 is 349.4 for
272 degrees of freedom. Errors quoted in Table I for each
parameter correspond to changes in 	2 of 1.28, the mean
value per degree of freedom. However, there are some
correlations between parameters, with the result that the
quoted errors overestimate somewhat the changes expected
in Table II. The final two columns in Table II show changes
in 	2 when each set of data is dropped and also the number
of points dropped.

Using all sets of data, the K0ð1430Þ pole position is

M ¼ 1427� 4ðstatÞ � 13ðsystÞ � i½135� 5ðstatÞ
� 20ðsystÞ� MeV: (10)

The systematic error is compounded from the worst case
and from uncertainties in relative contributions of
K2ð1430Þ and K0ð1430Þ (and their relative phase) to BES
2 data on the 1430 MeV peak. For the �, the pole position
is

M ¼ 663� 8ðstatÞ � 34ðsystÞ � i½329� 5ðstatÞ
� 22ðsystÞ� MeV: (11)

Values for both � and K0ð1430Þ supersede earlier determi-
nations in Ref. [24] because of the improvement in the
formulas for the �. For the latter, further systematic errors
are included to cover uncertainties in the extrapolation to
the pole, estimated by changing form factors and a possible
small contribution from the K� channel. The � pole has
moved from 750þ30

�55 � i342� 60 MeV [24] by more than

the quoted systematic error on mass because of the im-
provement in the fitting formulas. A systematic discrep-
ancy with LASS data has been cured. There is no apparent
need to increase the flexibility in the fitting formulas, but it
is difficult to estimate systematic effects this might have on
the � pole.
The scattering length a for the � component is given by

Eq. (5) except for a small correction from the subthreshold
contribution of K�0 via the denominator of Eq. (4). For the
optimum fit, the � contributes 0:1860=m� to the scattering
length, K0ð1430Þ contributes 0:0086=m� and K0ð1950Þ
contributes 0:0002=m�, i.e. a total of ð0:1950�
0:0060Þ=m�. Weinberg [12] predicts 0:172=m� and cor-
rections from Chiral Perturbation Theory to order p4 in-
crease this to ð0:19� 0:02Þ=m� [28]. Experiment and
prediction are now in good agreement and experiment is
now better than theory.

TABLE I. Parameters fitted to � and K0ð1430Þ in units of GeV.
Parameter Value

� A �0:080� 0:062
B1 2:528� 0:089
�1 0:566� 0:056

g2K�0=g2K� 0:085� 0:020
K0ð1430Þ M 1:479� 0:004

g2K� 0:284� 0:012
g2K�0=g2K� 0:62� 0:06

TABLE II. Pole positions in MeV when individual sets of data are dropped; the last two
columns show the change in 	2 of the fit and the number of points dropped.

Dropped � K0ð1430Þ �	2 points

LASS phases 661� i325 1432� i127 34.9 41

LASS magnitudes 663� i334 1435� i140 44.9 41

FOCUS magnitudes 663� i329 1427� i137 41.7 40

FOCUS phases 660� i327 1427� i129 98.2 40

E791 magnitudes 661� i328 1426� i135 73.2 38

E791 phases 663� i329 1424� i139 48.2 38

BES K0ð1430Þ 675� i341 1431� i144 54.0 29

BES magnitudes 640� i321 1425� i132 21.3 9

BES phases 657� i323 1426� i133 27.4 10

FOCUS all 660� i328 1425� i132 158.4 80

E791 all 662� i327 1424� i140 126.4 76
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The � pole position also now agrees well with the
prediction of Descotes-Genon and Moussallam [20] from
the Roy equations, 658� 13� ið278� 12Þ MeV. They
considered only the mass range up to 1 GeV and omitted
the K�0 amplitude and its subthreshold contribution.

For completeness, Table III shows additional parameters
used in fitting the production data of FOCUS and E791.
The experimental groups use K�ð980Þ as a reference am-
plitude. Table III therefore refers to parameters fitting their
tabulated amplitudes for the K� S-wave. Table III also
includes the normalization factor �norm which scales the
BES 2 data for K0ð1430Þ.

C. A check using the dispersive correction mðsÞ
The s-dependence of mðsÞ derived purely from the K�

component of �total is shown in Fig. 4, after a subtraction at
the K� threshold. The fit to data including mðsÞ is almost
indistinguishable from that of Figs. 1 and 2. To check the
scattering length, it is necessary to fitmðsÞ to terms in k and
k3. The derived scattering length is ð0:201� 0:007Þ=m�,
agreeing with the result quoted above within the error. One
should note that the dispersion integral formðsÞ involves an
integral from threshold to infinity and is therefore sensitive
to assumptions about the behavior of the � amplitude
above the available mass range. There could be contribu-
tions from further inelastic channels such as ��. The K�
amplitude itself ‘‘knows’’ about such contributions, so the
determination of the scattering length direct from fitted
amplitudes at low mass is likely to be the more reliable.

D. How the � amplitude varies off the real s-axis

The K� and �� amplitudes are analytic functions of s.
From the Cauchy-Riemann relations,

@ðRefÞ=@ðResÞ ¼ @ðImfÞ=@ðImsÞ (12)

@ðImfÞ=@ðResÞ ¼ �@ðRefÞ=dðImsÞ; (13)

there is a rapid variation of both real and imaginary parts of
f with Ims. This leads to a rotation of the phase of the
amplitude with Ims. On the real s-axis, unitarity requires
that the phase is zero at threshold, but it moves negative
with increasing negative values of Ims.

This is illustrated in Fig. 5 for four values of Ims. Note
the the phase below the pole moves from a small value for
the full curve at Imm ¼ �0:2 GeV to a large negative
value for Imm ¼ �0:32 GeV, very close to the pole.
This explains the curious result that there can be a pole
with a real part close to zero at threshold. Oller [29] has
drawn attention to this point in a somewhat different way.
On the real s-axis, what one sees is similar to the upper part
of the pole, but rotated in phase. This explains why the
phase for real s does not reach 90�. It reinforces the fact
that M and � of Eqs. (1) and (2) are remote from those of
the pole.

IV. DISCUSSION OF RESULTS

The key features emerging from current data are (i) the �
peak near threshold, Fig. 3(b), and (ii) the precise form of
the phase shift near threshold, Fig. 3(c). The FOCUS
collaboration [1] illustrate in their Fig. 8 the fact that their
measured phases near threshold lie distinctly below those
obtained from a conventional effective range form. This is
of course due to the nearby Adler zero, which is absent
from the usual effective range form. The dashed curve in
Fig. 3(c) illustrates the LASS effective range formula,
which is more curved near threshold.
Insight into the nature of � and � is provided by the

model of confinement constructed by van Beveren and

TABLE III. Additional parameters fitted to production data.

Parameter Value

�� 2:98� 0:09
�1430 �0:72� 0:04
�1950 �3:16� 0:07
�� 130:9� 2:3
�1430 53:9� 2:6
�1950 26:6� 4:1
�norm 0:925� 0:028
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FIG. 4. mðsÞ evaluated from Eq. (8) with a subtraction at the
K� threshold.
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FIG. 5. The phase variation near the pole v. mass, for Imm ¼
�0:2 GeV (full curve), �0:25 GeV (dashed), �0:30 GeV (dot-
ted) and �0:32 (chain curve).
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Rupp [30]. In this simple model, confinement is approxi-
mated by a harmonic oscillator potential (which can be
solved algebraically), matched to plane wave states at a
boundary. The way the model is constructed, it approxi-
mately reproduces the effect of the Adler zero. With the
boundary at 0.7 fm, the model reproduces quite well the
parameters of all of�, �, a0ð980Þ and f0ð980Þwith a single
universal coupling constant. A reasonable phase angle is
needed between u �u and s�s to reproduce f0ð980Þ and �
amplitudes near 1 GeV. The f0ð980Þ and a0ð980Þ are
locked to the KK threshold by the sharp cusp in mðsÞ due
to the opening of this threshold. The a0ð980Þ does not
appear at the �� threshold because of the Adler zero close
to this threshold. It is noteworthy that this model was the
first (in 1986) to reproduce the lowest scalar nonet [31],
with the title: ‘A low-lying scalar meson nonet in a uni-
tarized meson model’.

In this model, �, �, a0ð980Þ and f0ð980Þ are a nonet of
continuum states coupled to the confining potential at its

boundary. They are meson-meson states at large r, coupled
to q �q components within the confining potential. Doubtless
the model could be improved by adding meson exchanges
at large r. In more detail, it is also possible that diquark
interactions play a role via colored configurations, as pro-
posed by Jaffe [32].
There is a clear analogy between � and � and the weak

interaction because the amplitude rises linearly with s near
threshold. The scale of the electroweak interaction is set by
the masses of W and Z. If the Higgs boson appears as a
broad pole like � and �, dispersive effects due to opening
of WW, WZ, ZZ and t �b thresholds will play an important
role [33].
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