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I. INTRODUCTION

The chiral Lagrangian for low lying pseudoscalar me-
sons [1,2] as the most successful effective field theory is
now widely used in various strong, weak, and electromag-
netic processes. To match the increasing demand for higher
precision in a low energy description of QCD, the appli-
cations of the low energy expansion of the chiral
Lagrangian are extended from early time discussions on
the leading p2 and next to leading p4 orders to present p6

order. For the latest review, see Ref. [3]. In the chiral
Lagrangian, there are many unknown phenomenological
low energy constants (LECs) which appear in front of each
Goldstone field dependent operator and the number of the
LECs increases rapidly when we go to the higher orders of
the low energy expansion. For example for the three flavor
case, the p2 and p4 order chiral Lagrangians have two and
ten LECs respectively, while the normal part of the p6

order chiral Lagrangian has 90 LECs. Such a large number
of LECs is very difficult to fix from the experiment data.
This badly reduces the predictive power of the chiral
Lagrangian and blurs the check of its convergence. The
area of estimating p6 order LECs is where most improve-
ment is needed in the future of higher order chiral
Lagrangian calculations.

A way to increase the precision of the low energy
expansion and improve the present embarrassed situation
is studying the relation between the chiral Lagrangian and
the fundamental principles of QCD. We expect that this
relation will be helpful for understanding the origin of
these LECs and further offer us their values. In a previous
paper [4], based on an earlier study of deriving the chiral
Lagrangian from the first principles of QCD [5] in which
LECs are defined in terms of certain Green’s functions in
QCD, we have developed techniques and calculated the p2

and p4 order LECs. Our simple approach involves the

approximations of taking the large-Nc limit, the leading
order in dynamical perturbation theory, and the improved
ladder approximation, thereby the relevant Green’s func-
tions related to LECs are expressed in terms of the quark
self-energy �ðp2Þ. The resulting chiral Lagrangian in
terms of the quark self-energy is proved equivalent to a
gauge invariant, nonlocal, dynamical (GND) quark model
[6]. By solving the Schwinger-Dyson equation (SDE) for
�ðp2Þ, we obtain the approximate LECs which are con-
sistent with the experimental values. With these results,
generalization of the calculations to p6 order LECs be-
comes the next natural step. Considering that the algebraic
derivations for those formulas to express LECs in terms of
the quark self-energy at p4 order are lengthy (they need at
least several months of handwork), it is almost impossible
to achieve the similar works for the p6 order calculations
just by hand. Therefore, to realize the calculations for the
p6 order LECs, we need to computerize the original cal-
culations and this is a very hard task. The key difficulty
comes from the fact that the formulation developed in
Ref. [7] and exploited in Ref. [4] does not automatically
keep the local chiral covariance of the theory, and one has
to adjust the calculation procedure by hand to realize the
covariance of the results. To match with the computer
program, we need to change the original formulation to a
chiral covariant one. In Refs. [8–10], we have built and
developed such a formulation, followed by next several
year’s efforts, we now successfully encode the formulation
into computer programs. With the help of these computer
codes we can reproduce analytical results on the computer
originally derived by hand in Ref. [4] within 15 minutes
now. This not only confirms the reliability of the program
itself, but also checks the correctness of our original for-
mulas. Based on this progress, in this paper we generalize
our previous works on calculating the p4 order LECs to
computing the p6 order LECs of chiral Lagrangian both for
two and three flavor pseudoscalar mesons. This general-
ization not only produces new numerical predictions for
the p6 order LECs, but also forces us to reexamine our
original formulation from a new angle in dealing with p2

and p4 order LECs.
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This paper is organized as follows: In Sec. II, we review
our previous calculations on the p2 and p4 order LECs.
Then, in Sec. III, based on the technique developed in
Ref. [8], we reformulate the original low energy expansion
used in Ref. [4] into a chiral covariant one suitable for
computer derivation. In Sec. IV, from the present p6 order
viewpoint, we reexamine the formulation we had taken
before and show that if we sum all higher order anomaly
part contribution terms together, their total contributions to
the normal part of the chiral Lagrangian vanish. This leads
to a change in the role of finite p4 order anomaly part
contributions which originally are subtracted in the chiral
Lagrangian in Ref. [4] and now must be used to cancel
divergent higher order anomaly part contributions. We
reexhibit the numerical result of the p4 order LECs without
subtraction of p4 order anomaly part contributions. In
Sec. V, we present the general p6 order chiral Lagrangian
in terms of rotated sources and express the p6 order LECs
in terms of the quark self-energy. Section VI is where we
give numerical results for p6 order LECs in the normal part
of the chiral Lagrangian both for two and three flavor
pseudoscalar mesons. In Sec. VII, we apply and compare
with our results to those of some individuals and combi-
nations of LECs proposed and estimated in the literature,
checking the correctness of our numerical predictions.
Section VIII is a summary. In the Appendices, we list
some necessary relations among our symbols and those
used in the literature.

II. REVIEW OF THE CALCULATIONS ON THE p2

AND p4 ORDER LECS

Theoretically, the action of the chiral Lagrangian at the
large Nc limit derived from the first principle of QCD takes
the form [5]

Seff ¼ �iNc Tr ln½i6@þ J� ���c� þ iNc Tr ln½i6@þ J��
� iNc Tr ln½i6@þ J� þ Nc Tr½��c�

T
�c�

þ Nc

X1
n¼2

Z
d4x1 � � �d4x0n ð�iÞnðNcg

2
sÞn�1

n!

� �G�1����n
�1����n

ðx1; x01; � � � ; xn; x0nÞ
���1�1

�c ðx1; x01Þ � � ���n�n

�c ðxn; x0nÞ þO

�
1

Nc

�
(1)

in which J� is the external source J including currents and
densities after Goldstone field dependent chiral rotation�:

J� ¼ ½�PR þ�yPL�½J þ i6@�½�PR þ�yPL�
¼ v6 � þ a6 ��5 � s� þ ip��5

J ¼ v6 þ a6 �5 � sþ ip�5 U ¼ �2: (2)

��c and ��c are two point rotated quark Green’s func-
tions and the interaction part of two point rotated quark
vertices in the presence of external sources, respectively;

��c is defined by

�
��
�cðx; yÞ �

1

Nc

h �c �
�ðxÞc �

�ðyÞi
¼ �i½ði6@þ J� ���cÞ�1���ðy; xÞ

c�ðxÞ � ½�ðxÞPL þ�yðxÞPR�c ðxÞ (3)

with subscript c denoting the classical field and c ðxÞ being
light quark fields. �G�1����n

�1����n
ðx1; x01; � � � ; xn; x0nÞ is the effec-

tive gluon n-point Green’s function and gs is the coupling
constant of QCD. It can be shown that the term in the third
to fifth lines and the last term in the second line of the right-
hand side (rhs) of Eq. (1) are independent of pseudoscalar
meson field U or � and therefore are just irrelevant con-
stants in the effective action, while the second term in the
first line and the first term in the second line of the rhs of
Eq. (1) are anomaly part contributions, since they represent
the variations of the path integral measure for light quark
fields c . The remaining first term is called normal part
contribution which relies on ��c. The ��c and ��c are
related by the first equation of (3) and determined by

½��c þ ~���� þ X1
n¼1

Z
d4x1d

4x01 � � �d4xnd4x0n

� ð�iÞnþ1ðNcg
2
sÞn

n!
�G��1����n
��1����n

ðx; y; x1; x01; � � � ; xn; x0nÞ

��
�1�1

�c ðx1; x01Þ � � ���n�n

�c ðxn; x0nÞ ¼O

�
1

Nc

�
; (4)

where ~� is a Lagrangian multiplier which ensures the
constraint trl½�5�

T
�cðx; xÞ� ¼ 0. Equation (4) is the SDE

in the presence of the rotated external source. In Ref. [4],
we have assumed the solution of (4) approximately by

�
��
�cðx; yÞ ¼ ½�ð �r2

xÞ����4ðx� yÞ
�r�
x ¼ @

�
x � iv

�
�ðxÞ;

(5)

where � is the quark self-energy which satisfies SDE (4)
with vanishing rotated external source. Under the ladder
approximation, this SDE in Euclidean space-time is re-
duced to the standard form of

�ðp2Þ � 3C2ðRÞ
Z d4q

4�3

�s½ðp� qÞ2�
ðp� qÞ2

�ðq2Þ
q2 þ�2ðq2Þ ¼ 0;

(6)

where C2ðRÞ is the second order Casimir operator of the
quark representation R, in our case, quark is belonging to
the SUðNcÞ fundamental representation, thereforeC2ðRÞ ¼
ðN2

c � 1Þ=2Nc and in the large Nc limit, we will neglect the
second term of it. �sðp2Þ is the running coupling constant
of QCD which depends on Nc and quark flavor. With these
strong and not everywhere justified approximations, the
resulting action (1) of the chiral Lagrangian becomes the
GND model introduced in Ref. [6],

SHAO-ZHOU et al. PHYSICAL REVIEW D 81, 014001 (2010)

014001-2



Seff � SGND þO

�
1

Nc

�

SGND � �iNc Tr ln½i6@þ J� ��ð �r2Þ�
þ iNc Tr ln½i6@þ J�� � iNc Tr ln½i6@þ J�: (7)

in which the third term on the rhs of (7) is independent of
pseudoscalar field U; therefore it only affects the contact
term of the chiral Lagrangian. In fact, for the contact term
part, we can take � ¼ 1 in (7), then

Seffjcontact � �iNc Tr lnfi6@þ J � �½ð@� ivÞ2Þ�g

þO

�
1

Nc

�
: (8)

For the noncontact terms concerned in this paper, we can

ignore the third term on the rhs of (7) and the next key

element is to compute term Tr ln½i6@þ J� ��ð �r2Þ�. The
remaining term Tr ln½i6@þ J�� in our previous work is
obtained by further taking the limit � ! 0 in

Tr ln½i6@þ J� ��ð �r2Þ�.1 Since anomaly terms are at least
the p4 order and at this order, anomaly is the well-known
Wess-Zumino terms which have no unknown LECs (In
Ref. [11], we have derived such terms from SGND). All
unknown LECs at p2 and p4 orders are in the normal part
of the chiral Lagrangian, so to calculate the p2 and p4 order
LECs, we only need to discuss the normal part of the chiral
Lagrangian which is in fact the real part of Tr lnð� � �Þ. With
the help of the Schwinger proper time method [7], this real
part in Euclidean space-time2 with metric tensor g�� ¼
diagð1; 1; 1; 1Þ can be written as

ReTr ln½6@� iv6 � � ia6 ��5 � s� þ ip��5 þ �ð� �r2Þ� ¼ 1

2
Tr ln½½6@� iv6 � � ia6 ��5 � s� þ ip��5 þ �ð� �r2Þ�y

� ½6@� iv6 � � ia6 ��5 � s� þ ip��5 þ �ð� �r2Þ��
¼ � 1

2
lim
�!1

Z 1

1=�2

d	

	

Z
d4x trhxj exp½�	½ �E� ð �r� ia�Þ2

þ�2ð� �r2Þ þ Î��ð� �r2Þ þ�ð� �r2Þ~I� � d6 �ð� �r2Þ��jxi

¼ � 1

2
lim
�!1

Z 1

1=�2

d	

	

Z
d4x

Z d4k

ð2�Þ4
� tr exp½�	½ �Eþ ðkþ i �rx þ a�Þ2 þ �2ððkþ i �rxÞ2Þ
þ Î��ððkþ i �rxÞ2Þ þ�ððkþ i �rxÞ2Þ~I� � d6 �ððkþ i �rxÞ2Þ��;

(9)

in which

�E ¼ i

4
½��; ���R�� þ ��d

�ðs� � ip��5Þ þ i��½a���5ðs� � ip��5Þ þ ðs� � ip��5Þa���5�
þ s2� þ p2

� � ½s�; p��i�5

d�O � @�O� i½v�
�;O� ðO ¼ any operatorÞ R�� ¼ V

��
� � i½a��; a��� þ ðd�a�� � d�a

�
�Þ�5

V�;�� ¼ i½ �r�;
�r�� �r�

x ¼ @� � iv�
�ðxÞ Î� ¼ �ia6 ��5 � s� � ip��5

~I� ¼ �ia6 ��5 � s� þ ip��5 d6 �ð� �r2Þ ¼ ��d
��ð� �r2Þ:

In (9), a cutoff � is introduced into the theory to regularize the possible ultraviolet divergences. In practical calculations,
we treat it as the physical cutoff of the theory. Taking the low energy expansion for (9), we can finally express Tr ln½i6@þ
J� ��ð �r2Þ� in terms of power expansion of external sources with coefficients being � dependent functions. Further
vanishing �, we obtain Tr ln½i6@þ J��. Then the rhs of (7) is expressed in terms of power expansion of rotated external
sources; compare the result with the parametrization of the effective action without applying the equations of motion for
pseudoscalar mesons,

2Our extension from Minkovski space to Euclidean space takes x0jM ! �ix4jE, xijM ! xijM, �0jM ! �4jE, �ijM ! i�ijE, with
i ¼ 1; 2; 3 being space indices and there �

�
E are Hermitian. v

�
�, a

�
� transform as x�. �5jM ! �5jE, sjM ! �sjE, pjM ! �pjE.

1This will cause some confusion and we are going to discuss them in Sec. IV.
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Seff ¼
Z

d4x trf½F2
0a

2
� þ F2

0B0s� �Kðnorm;��c�0Þ
1 ½d�a���2 �Kðnorm;��c�0Þ

2 ðd�a�� � d�a
�
�Þðd�a�;� � d�a�;�Þ

þKðnorm;��c�0Þ
3 ½a2��2 þKðnorm;��c�0Þ

4 a��a
�
�a�;�a�;� þKðnorm;��c�0Þ

5 a2� trf½a2��
þKðnorm;��c�0Þ

6 a��a
�
� trf½a�;�a�;�� þKðnorm;��c�0Þ

7 s2� þKðnorm;��c�0Þ
8 s� trf½s�� þKðnorm;��c�0Þ

9 p2
�

þKðnorm;��c�0Þ
10 p� trf½p�� þKðnorm;��c�0Þ

11 s�a
2
� þKðnorm;��c�0Þ

12 s� trf½a2�� �Kðnorm;��c�0Þ
13 V��

� V�;��

þ iKðnorm;��c�0Þ
14 V

��
� a�;�a�;� þKðnorm;��c�0Þ

15 p�d�a
�
�� þOðp6Þ þU-independent source terms: (10)

We can read out F2
0, B0, and Kðnorm;��c�0Þ

i for i ¼
1; . . . ; 15 as functions of �. Kðnorm;��c�0Þ

i relate to the
conventional p4 order LECs through (25) of Ref. [4]. A
superscript ðnorm;��c�0Þ on each ofKi denotes the property
that when ��c ¼ � ¼ 0, all Ki vanish, i.e.

Kðnorm;��c�0Þ
i ¼ KðnormÞ

i �Kðnorm;��c¼0Þ
i

KðnormÞ
i ¼�¼0

Kðnorm;��c¼0Þ
i i ¼ 1; . . . ; 15; (11)

whereKðnormÞ
i and�Kðnorm;��c¼0Þ

i are the contributions to
the effective action from the first and second terms and the
third terms in the rhs of (7), respectively. Replacing super-
script ðnorm;��c�0Þ with ðnormÞ in the rhs of (10), we obtain
term �iNc Tr ln½i6@þ J� � �ð �r2Þ�. Replacing superscript
ðnorm;���0Þ with ðnorm;��¼0Þ and vanishing F2

0 in the rhs
of (10), we obtain term �iNc Tr ln½i6@þ J�� þ
iNc Tr ln½i6@þ J�. The resulting formulas for F2

0B0, F
2
0,

and KðnormÞ
i expressed in terms of � are explicitly given

in (34), (35), and (36) in Ref. [4].
With the analytical formulas for LECs of F2

0, B0, and

Kðnorm;��c�0Þ
i for i ¼ 1; . . . ; 15 as functions of �, we can

suitably choose running coupling constant �sðp2Þ, solve
SDE (6) numerically obtaining quark self-energy �, then
calculate the numerical values of all p2 and p4 order LECs.
To obtain the final numerical result in Ref. [4], we have
assumed F0 ¼ f� ¼ 93 MeV as input3 to fix the dimen-
sional parameter �QCD appearing in running coupling

constant �sðp2Þ and taken cutoff parameter � appearing in
(9) equal to infinity and 1 GeV, respectively. The final
obtained values are consistent with those fixed
phenomenologically.

III. CHIRAL COVARIANT LOW ENERGY
EXPANSION

Equation (9) is the starting point of our reformulation in
this section. In Ref. [4], we expand (9) up to the p4 order
and obtain the analytical result. This expansion is not

explicitly chiral covariant, since the operator �r�
x which

appears in the formula is not always covariant under the
local chiral symmetry transformations. For example, when
�r�
x acts on a constant number 1, it gives �r�

x 1 ¼ �iv
�
�ðxÞ

which is not covariant since v
�
�ðxÞ itself behaves as the

gauge field in the local chiral symmetry transformations.
Only when they combined into commutators, such as

½ �r�
x ; �r�

x � or ½ �r�
x ; a��ðxÞ�, the covariance recovers back.

Therefore in the detailed calculation, we need to confirm

that all �r�
x appearing in the result can be arranged into

some commutators. This is a conjecture. In the original
work of Ref. [4], we have found that this conjecture is valid
up to some terms with coefficients being expressed as
integration over some total derivatives, i.e. form ofR
d4k @

@k� gðkÞ. If we ignore these total derivative terms,

up to order of p4, we can explicitly prove the conjecture. At
the stage of our earlier works, we did not question the
reason why we can drop out those total derivative terms [In
fact, in Eq. (74) of Ref. [5], we have shown that in order to
obtain the well-known Pagels-Stokar formula, a total de-
rivative term must be dropped out.] This leads to further
discussions on the role of total derivative terms in the
quantum field theory [10]. Later in this section, we will
give the correct reason for dropping out those total deriva-

tive terms. Arranging various �r�
x into commutators is a

very tricky and complex task which is very hard to be
achieved by computer. In order to computerize the calcu-
lation, we need to find a way which can automatically

arrange all �r�
x into some commutators. This leads the

developments given in Refs. [8–10], where we have intro-
duced

k� þ i �r�
x ¼ ei

�rx�@=@k
�
k� þ ~F�

�
�r;

@

@k

��
e�i �rx�@=@k; (12)

in which

3Later we will use a changed value F0 ¼ 87 for the two-flavor
case. For detail, see the discussion of Eq. (58).
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~F�

�
�r;

@

@k

�
� �eAdð�i �rx�@=@kÞ

�
F

�
Ad

�
i �rx � @

@k

��
ði �r�

x Þ
�

¼ 1

2
ð��Þ @

@k�
� i

3
ð
��Þ @2

@k
@k�
� 1

8
ð�
��Þ @3

@k�@k
@k�
þ i

30
ð��
��Þ @4

@k�@k�@k
@k�

þ 1

144
ð���
��Þ @5

@k�@k�@k�@k
@k�
þOðp7Þ;

FðzÞ ¼ X1
n¼2

zn�1

n!
½AdðBÞ�nðCÞ � ½B; ½B; � � � ; ½B|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n times

; C� � � ���;

ð�n�n�1 � � ��2�1Þ � ½ �r�n
x ; ½ �r�n�1

x ; � � � ; ½ �r�2
x ; �r�1

x � � � ���; (13)

where the default set of Lorentz indices for
ð�n�n�1 � � ��2�1Þ is the superscripts. In some cases,
we need subscripts. We will use � to denote the corre-
sponding subscript for �. Note that in the present notation
for ð�n�n�1 � � ��2�1Þ, we do not explicitly write �rx, but
only their Greek superscripts for short. If we use other
symbols, such as s� which appeared in (�s�) and a�� in
(�a��), then we take the definition that ð�s�Þ � ½ �r�

x ; s��
and ð�a��Þ � ½ �r�

x ; a���.
Substitute (12) into (9); we change (9) to

ReTrln½6@� iv6 �� ia6 ��5�s�þ ip��5þ�ð� �r2Þ�

¼�1

2
lim
�!1

Z 1

1=�2

d	

	

Z
d4x

Z d4k

ð2�Þ4 tre
i �r�

x �@=@k

�expf�	½ ~Eþðkþ ~FÞ2þ ~a��5ðk�þ ~F�Þ
þðk�þ ~F�Þ~a��5þ ~a2þ�2ððkþ ~FÞ2Þþ ~J�ððkþ ~FÞ2Þ
þ�ððkþ ~FÞ2Þ ~K���½~�r�

x ;�ððkþ ~FÞ2Þ��g �1 (14)

with tilde operation defined as

~O � O� ið�OÞ @

@k�
� 1

2
ð
�OÞ @2

@k
@k�
þ i

6
ð�
�OÞ

� @3

@k�@k
@k�
þ 1

24
ð��
�OÞ @4

@k�@k�@k
@k�

� i

120
ð���
�OÞ @5

@k�@k�@k�@k
@k�
þOðp7Þ;

(15)

where ~O � ð ~E; ~J; ~K; ~a�; ~a2; ~�r�
x ÞT and O �

ðE; Î; ~I; a��; a2�; �r�
x ÞT . Note that for finite cutoff �, the

value of parameter 	 must be real and larger than zero;

the term e�	k2 in (14) then provides a natural suppression
factor for the momentum integration and this leads the
convergence of the integration. For a converged integra-

tion, we can replace the term ei
�r�
x �@=@k in front of the

integration kernel in (14) by 1, since the difference

ðei �r�
x �@=@k � 1Þ � � � is some momentum total derivative

terms which vanish as long as we have nontrivial suppres-

sion factor e�	k2 . With these considerations, (14) becomes

ReTr ln½6@� iv6 � � ia6 ��5 � s� þ ip��5 þ �ð� �r2Þ�

¼ � 1

2
lim
�!1

Z 1

1=�2

d	

	

Z
d4x

Z d4k

ð2�Þ4 treB � 1; (16)

B��	½ ~Eþðkþ ~FÞ2þ ~a��5ðk�þ ~F�Þþðk�þ ~F�Þ~a��5

þ ~a2þ�2ððkþ ~FÞ2Þþ ~J�ððkþ ~FÞ2Þ
þ�ððkþ ~FÞ2Þ ~K���½~�r�

x ;�ððkþ ~FÞ2Þ��: (17)

From (17), we see that all �r� in (16) appear as commuta-
tors, therefore (16) and (17) offer a covariant formulation
which matches the general result that the real part of
Tr ln� � � should be invariant under local chiral transforma-
tions. The price is that we need to handle many momentum
derivatives on the exponential and the resulting computa-
tions become extremely lengthy. But as long as our refor-
mulation is suitable to computerize, it is worth paying such
a price. To deal with the next problem of derivatives on the
exponential, we first take the low energy expansion on B,

B ¼ B0 þ B1 þ 1

2
B2 þ 1

3!
B3 þ 1

4!
B4 þ 1

5!
B5 þ 1

6!
B6

þ � � � ; (18)

where 1
n!Bn is the p

n order part of B. We further introduce a

parameter t dependent BðtÞ as

BðtÞ ¼ B0 þ tB1 þ t2

2
B2 þ t3

3!
B3 þ t4

4!
B4 þ t5

5!
B5

þ t6

6!
B6 þ � � �

B ¼ BðtÞjt¼1: (19)

Then take Taylor expansion of eBðtÞ at point t ¼ 0,

eB ¼ eBðtÞjt¼1

¼ eB0 þ
�
d

dt
eBðtÞ

�
t¼0

þ 1

2!

�
d2

dt2
eBðtÞ

�
t¼0

þ 1

3!

�
d3

dt3
eBðtÞ

�
t¼0

þ 1

4!

�
d4

dt4
eBðtÞ

�
t¼0

þ � � � : (20)

With the help of identities
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�
d

d	
eB
�
e�B ¼ fðAdðBÞÞ

�
dB

d	

�

fðzÞ ¼ ez � 1

z
¼ 1þ z

2!
þ z2

3!
þ � � � : (21)

One can explicitly work out 1
n! ½d

n

dtn e
BðtÞ�t¼0, for several

lowest orders

d

dt
eBðtÞjt¼0 ¼ eB0f½Adð�B0Þ�ðB1Þ; (22)

d2

dt2
eBðtÞjt¼0 ¼ d

dt
eBðtÞjt¼0f½Adð�B0Þ�ðB1Þ

þ eB0
df

dt
½Adð�BðtÞÞ�jt¼0ðB1Þ

þ eB0f½Adð�B0Þ�ðB2Þ; (23)

where

dmf

dtm
½Adð�BðtÞÞ� ¼ X1

n¼0

1

ðnþ 1Þ!
dm

dtm
½Adð�BðtÞÞ�n:

(24)

For the more higher orders needed in our computations, to
save space we do not write them down in the present paper;

the results of d3

dt3
eBðtÞjt¼0,

d4

dt4
eBðtÞjt¼0,

d5

dt5
eBðtÞjt¼0, and

d6

dt6
eBðtÞjt¼0 can be found in Appendix A of Ref. [12].

With the help of (22), (23), and (A1)–(A4) of Ref. [12],
as long as the B0, B1, B2, B3, B4, B5, B6 are known, (20) is
known and we can substitute it back into (16) to calculate

the real part of �iNc Tr ln½i6@þ J� ��ð �r2Þ� order by
orders up to the p6 order in the low energy expansion. To
obtain Bi, (17) tells us that the difficulty is the low energy
expansion for �ððkþ ~FÞ2Þ. To achieve it, we expand the
argument of �ððkþ ~FÞ2Þ as

ðkþ ~FÞ2 ¼ k2 þ 1

2
A2 þ 1

6
A3 þ 1

24
A4 þ 1

120
A5 þ 1

720
A6

þOðp5;6Þjtraceless þOðp7Þ; (25)

in which

A2 ¼ �2ð��Þk� @

@k�
; (26)

A3 ¼ 4ið��
Þk� @2

@k�@k

þ 2ið���Þ @

@k�
; (27)

A4 ¼ 6ð��
�Þk
 @3

@k�@k�@k�
þ 6ð��Þð�
Þ @2

@k�@k


þ 3ð���
Þ @2

@k�@k

þ 3ð���
Þ @2

@k�@k

; (28)

A5 ¼ 0; (29)

A6 ¼ �90ð��
�Þð
�Þ @4

@k�@k�@k�@k�

� 80ð��
Þð���Þ @4

@k�@k
@k�@k�
: (30)

Since we are only interested in the terms not higher than
p6, we find that those traceless terms of p5 and p6 orders
will not make contributions to the final result. So to save
space and simplify the computations, we do not explicitly
write down the detailed structure of them, just represent
these terms with symbol Oðp5;6Þjtraceless and remove the
traceless term in A5 and A6. We further introduce AðtÞ as

AðtÞ � k2 þ t2

2
A2 þ t3

6
A3 þ t4

24
A4 þ t5

120
A5 þ t6

720
A6

þOðp5;6Þjtraceless þOðp7Þ

AðtÞ ¼
�
k2 t ¼ 0

ðkþ ~FÞ2 t ¼ 1:
(31)

Then

�ððkþ ~FÞ2Þ ¼�ðk2Þþ
�
d

dt
�½AðtÞ�

�
t¼0

þ 1

2!

�
d2

dt2
�½AðtÞ�

�
t¼0

þ 1

3!

�
d3

dt3
�½AðtÞ�

�
t¼0

þ 1

4!

�
d4

dt4
�½AðtÞ�

�
t¼0

þ��� : (32)

Now, we need to know ½ dmdtm �½AðtÞ��t¼0, using the following

formula:

�½AðtÞ� ¼ �½sþ AðtÞ�js¼0 ¼ eAðtÞ½@=@s��ðsÞe�AðtÞ½@=@s�js¼0

¼ eAðtÞ½@=@s��ðsÞjs¼0; (33)

then

�
dm

dtm
�½AðtÞ�

�
t¼0

¼
�
dm

dtm
eAðtÞ½@=@s�

�
t¼0

�ðsÞjs¼0: (34)

Therefore to compute ½dmdtm �½AðtÞ��t¼0, we only need to

calculate ½dmdtm e
AðtÞ@=@s�t¼0�ðsÞjs¼0 which is just equivalent

to replacing Bl ! Al
@
@s in (22), (23), and (A1)–(A4) of

Ref. [12], followed by multiplying an extra factor �ðsÞ at
the rhs and vanishing parameter s after finishing all differ-
ential operations. Following this calculation road map, the
detailed calculation gives

�
d

dt
�½AðtÞ�

�
t¼0

¼ eAdfA0½@=@s�g
�
f

�
Ad

�
�A0

@

@s

��
A1

�

��0ðsþ A0Þjs¼0 ¼ 0; (35)
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1

2

�
d2

dt2
�½AðtÞ�

�
t¼0

¼ 1

2
eAdfA0½@=@s�g

��
e�A0½@=@s� d

dt
eAðtÞ½@=@s�jt¼0f

�
Ad

�
�A0

@

@s

���
A1

@

@s

�
þ df

dt

�
Ad

�
�AðtÞ @

@s

����������t¼0

�
�
A1

@

@s

�
þ f

�
Ad

�
�A0

@

@s

���
A2

@

@s

���
�ðsþ AðtÞÞjs¼0

¼ �ð�; �Þk��0
k

@

@k�
; (36)

where �k � �ðk2Þ. For more higher orders, we list the results of ½ d3
dt3

�½AðtÞ��t¼0, ½d4dt4 �½AðtÞ��t¼0, ½ d5dt5 �½AðtÞ��t¼0, and
½ d6
dt6

�½AðtÞ��t¼0 in Appendix A of Ref. [12]. With these results, we finally obtain the low energy expansion of B:

B0 ¼ �	ðk2 þ �2
kÞ; (37)

B1 ¼ 2	ð�a��k� þ ia�����kÞ�5; (38)

B2 ¼ �2a2�	þ ð��Þ����	� a
�
�a

�
�½��; ���	� iðd�a�� � d�a

�
�Þ�����5	þ 4s�	�k þ 2ð��Þ	k� @

@k�

þ 4ð�a��Þ���5	k��
0
k þ 4ð�a��Þ���5	�k

@

@k�
þ 2ið�a��Þ�5	þ 4ið�a��Þ�5	k�

@

@k�

þ 4ið��Þ��	k��
0
k þ 4ð��Þ	k��k�

0
k

@

@k�
: (39)

We list B3, B4, B5, and B6 in Appendix A of Ref. [12]. With
these explicit expressions for B0, B1, B2, B3, B4, B5, B6,
using (22), (23), and (A1)–(A4) of Ref. [12], we get (20)
and further substitute (20) back into (16); we can obtain the
real part of �iNc Tr ln½i6@þ J� � �ð �r2Þ� order by orders
up to the p6 order in the low energy expansion. The
analytical results of p2 and p4 orders are the same as those
given by (34), (35), and (36) in Ref. [4], except some total
derivative terms which, as we mentioned before, can be
ignored as long as we take finite cutoff �.

IV. AMBIGUITIES IN THE ANOMALY PART
CONTRIBUTIONS TO THE CHIRAL

LAGRANGIAN

In the last section, we introduced a chiral covariant

method to calculate Tr ln½i6@þ J� � �ð �r2Þ� which is al-
ready computerized now. With the help of the computer,
for the p2 and p4 order analytical formulas in the low
energy expansion, we can get results within 15 minutes,
while for the p6 order terms, we need roughly 13 hours to
output all expansion results. From our general result (7),

the term �iNc Tr ln½i6@þ J� � �ð �r2Þ� is the normal part.
To get the full result of the chiral Lagrangian, we need to
calculate the remaining anomaly part contributions
iNc Tr ln½i6@þ J�� � iNc Tr ln½i6@þ J�. As the discussion
of Ref. [13], in the 1980s there was a class of works (see
Ref. [14]) identifying this part as the full chiral Lagrangian,
and in Ref. [13] we refer to them as the anomaly approach
of calculating LECs. In our previous work [4], we pointed
out that these anomaly part contributions are completely
canceled by the normal part contribution, left nontrivial
pure � dependent terms contribute to the chiral
Lagrangian.

For the anomaly part contributions, the key is to calcu-
late the U field dependent term Tr ln½i6@þ J�� which, as
we mentioned before, can be obtained by vanishing � in

Tr ln½i6@þ J� ��ð �r2Þ�. In practice, the limit was taken by
first assuming� as a constant massm and then lettingm !
0. For p2 order, this operation gives a null result, while for
p4 order, it gives the result originally presented in the
anomaly approach. Now in this work, naively what we
need to do is to generalize the calculation to p6 order.
But to our surprise, we get many terms with divergent
coefficients. Checking the calculation carefully, we find
that the reason for appearance of infinities is due to the fact
that most of the coefficients in front of the p6 order
operators have dimension of 1=m2 which goes to infinity
when we take the limit� ¼ m ! 0. Note that the p6 terms
may also have coefficients of 1=�2 which are finite in the
limit of m ! 0, although they vanish when we take � !
1. These terms are irrelevant to our discussion on the
divergence of p6 order terms and therefore we do not
need to care about them. Applying the argument on 1=m2

dependence of the p6 order coefficients back to the p2 and
p4 order results we discussed before, coefficients in front
of p2 order operators have dimension of m2 which goes to
zero; this explains the phenomena that anomaly approach
cannot produce p2 order terms. For p4 order, the coeffi-
cients in front of operators are dimensionless and therefore
the m dependence is at most logarithmic of the form
lnm=�which implies existence of a logarithmic ultraviolet
divergence. Since we know that in the largeNc limit, the p4

order LECs (noncontact coefficients) are not divergent, the
lnm=� term then cannot appear in the final expression of
these LECs, therefore in p4 order, anomaly approach leads
finite result LECs. In general for a p2n order operator, the
corresponding coefficient should have dimension

COMPUTATION OF THE p6 ORDER CHIRAL . . . PHYSICAL REVIEW D 81, 014001 (2010)

014001-7



1=m2ðn�2Þ. This implies that the infinity in the anomaly part
contributions will be a general phenomena, when we go to
the higher orders of the low energy expansion, since the
higher the order is, the more negative powers of m depen-
dence the coefficient will have and these negative powers
of m will result in infinities as we take limit � ¼ m ! 0.

The appearance of these high order infinities provides
more evidence that the anomaly approach is not a correct
formulation in calculating LECs, at least not for the p6 and
more higher order LECs. Since the high order divergence
term is an additional part of our general result (7), we
cannot avoid them in our computations. How should we
deal with these high order infinities from negative powers
of m? There exists an alternative way, not relying on the
low energy expansion, to examine these anomaly part
contributions in which we must exploit the first equation of
(2) and we find

Tr ln½i6@þ J�� � Tr ln½i6@þ J�
¼ lnDet½i6@þ J�� � lnDet½i6@þ J�
¼ lnDet½½�PR þ�yPL�½J þ i6@�½�PR þ�yPL��

� lnDet½i6@þ J�
¼ lnDet½½�PR þ�yPL�½�PR þ�yPL��
¼ Tr ln½½�PR þ�yPL�½�PR þ�yPL��: (40)

For our interests, we are only interested in the real part of it,
then

Re Tr ln½i6@þ J�� � ReTr ln½i6@þ J�
¼ 1

2 Tr ln½½�PR þ�yPL�½�PR þ�yPL��
þ 1

2 Tr ln½½�PR þ�yPL�y½�PR þ�yPL�y�
¼ 1

2 Tr ln½½�PR þ�yPL�½�PR þ�yPL��
þ 1

2 Tr ln½½�yPR þ�PL�½�yPR þ�PL��
¼ 1

2 Tr ln½½PR þ PL�½PR þ PL�� ¼ 1
2 Tr ln1 ¼ 0; (41)

which shows that the compact form of anomaly part con-
tributions to the normal part of the chiral Lagrangian is
zero.

How can this null result be consistent with another
divergent result obtained from the low energy expansion?
The only possible explanation is that the p4 order finite
term plus all those higher order infinities results a zero ! Is
it possible? A well-known positive example is the expan-
sion 1=ð1þ xÞ ¼ 1� xþ x2 � x3 þ x4 � x5 þ x6 � � � �
goes to zero when x is very large, which implies that the
summation of series x� x2 þ x3 � x4 þ x5 � x6 þ � � �

converges to 1 when x is very large and each individual
term in the series diverges. In the following we take a more
realistic but simplified example to show that this really
happens in our formulation. Our example starts from (9)
for the case of � equal to a constant mass m:

Re Tr ln½6@� iv6 � � ia6 ��5 � s� þ ip��5 þm�

¼ � 1

2
lim
�!1

Z 1

1=�2

d	

	

�
Z

d4x
Z d4k

ð2�Þ4 tre�	ðk2þk�b0þm2þbmþCÞ; (42)

b0� � 2i �r�
x þ 2a�� b � Î� þ ~I�

C � �Eþ ði �rx þ a�Þ2:
(43)

For simplicity, we ignore the contributions from b0 which
does not change the key result of our discussion. Then our
example becomes investigating the following integration:

I �
Z 1

1=�2

d	

	

Z 1

0
k2dk2e�	k2�	m2�	bm�	C (44)

with b and C not commuting each other. We will show that
high order terms in the low energy expansion of the above
integration I will go to infinity when we take m ! 0, but if
summing all the expansion terms together, we get a finite
result which corresponds to the previous null result of
summing all higher order terms of anomaly part contribu-
tions into a compact form. We use three different methods
to finish the above integration and explain our point. The
first method is to vanish m first and then to finish the
integration, i.e.,

Ijm¼0 ¼
Z 1

1=�2

d	

	

Z 1

0
k2dk2e�	k2�	C ¼

Z 1

1=�2

d	

	3
e�	C

¼ �4

2
e�C=�2 ��2

2
Ce�C=�2 � 1

2
C2Ei

�
� C

�2

�
;

(45)

where

Eið�xÞ � �
Z 1

x

e�u

u
du

¼ �þ lnxþ X1
n¼1

ð�1Þn
n!n

xn jxj<1: (46)

The second method is first finishing the integration and
then vanishing m,
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I ¼
Z 1

1=�2

d	

	

Z 1

0
k2dk2e�	ðk2þm2þbmþCÞ ¼

Z 1

1=�2

d	

	3
e�	ðm2þbmþCÞ

¼ �4

2
e�ðm2þbmþCÞ2=�2 ��2ðm2 þ bmþ CÞ

2
e�ðm2þbmþCÞ2=�2 � 1

2
ðm2 þ bmþ CÞ2Ei

�
�m2 þ bmþ C

�2

�

¼m!0�4

2
e�C=�2 ��2

2
Ce�C=�2 � 1

2
C2Ei

�
� C

�2

�
: (47)

We obtain the same result as that obtained in the first method, therefore interchanging the order of integration and the
m ! 0 limit does not change the result.

The third method is first taking Taylor expansion in terms of the power of b and C which corresponds to performing the
low energy expansion and then finishing integration, finally vanishing m,

I ¼
Z 1

1=�2

d	

	

Z 1

0
k2dk2e�	k2�	m2

X1
n¼0

1

n!
ð�	bm� 	CÞn ¼

Z 1

1=�2
d	e�	m2

X1
n¼0

1

n!
	n�3ð�bm� CÞn

¼ m4

�
�4

2m4
e�m2=�2 � �2

2m2
e�m2=�2 � 1

2
Ei

�
�m2

�2

��
� ðbm3 þ Cm2Þ

�
�2

m2
e�m2=�2 þ Ei

�
�m2

�2

��

� 1

2
ðbmþ CÞ2Ei

�
�m2

�2

�
þ X1

n¼0

ð� b
m � C

m2Þnþ3

ðnþ 3Þ! m4�

�
nþ 1;

m2

�2

�

¼m!0�4

2
� C�2 � 1

2
C2Ei

�
�m2

�2

�
þ X1

n¼0

n!

ðnþ 3Þ!
�
� b

m
� C

m2

�
nþ3

m4e�m2=�2
Xn
k¼0

1

k!

�
m2

�2

�
k
��������m!0

: (48)

We see that there are negative powers of m terms which
will cause divergence when we take limit m ! 0. This is
just what has happened for the high order terms in the
anomaly part contributions. So if we calculate term by
terms in above expansion, we will meet infinities which
seems to contradict with results obtained in the first two
methods. The only way left to escape this contradiction is
to sum all these divergences together; to see what will
happen after the summation, we introduce a series,

gðx; cÞ � X1
n¼0

n!

ðnþ 3Þ! x
nþ3

Xn
k¼0

ck

k!
; (49)

in which c ¼ m2=�2 and x ¼ � b
m � C

m2 , which will go to
negative infinity when m ! 0. With the help of relation
d
dxEið�xÞ ¼ e�x

x and boundary condition g00ð0; cÞ ¼

g0ð0; cÞ ¼ gð0; cÞ ¼ 0, we find

g000ðx; cÞ ¼ X1
n¼0

xn
Xn
k¼0

ck

k!
¼ ecx

1� x
;

g00ðx; cÞ ¼ ec½�Eiðcx� cÞ þEið�cÞ�;
g0ðx; cÞ ¼ ðx� 1Þec½�Eiðcx� cÞ þ Eið�cÞ�

þ 1

c
ðecx � 1Þ;

gðx; cÞ ¼ 1

2
ðx� 1Þ2ec½�Eiðcx� cÞ þEið�cÞ�

þ x� 1

2c
ecx þ 1

2c
þ 1

2c2
ðecx � 1Þ � x

c
: (50)

Then (48) becomes

Ijm¼0 ¼ lim
m!0

�
�4

2
� C�2 � 1

2
C2Ei

�
�m2

�2

�
þm4e�m2=�2

g

�
� b

m
� C

m2
;
m2

�2

��

¼ lim
m!0

�
�4

2
� C�2 � 1

2
C2Ei

�
�m2

�2

�
þ 1

2
ðbmþ Cþm2Þ2

�
�Ei

��bm� C�m2

�2

�
þEi

�
�m2

�2

��

þ 1

2
�2ð�bm� C�m2Þeð�bm�C�m2Þ=�2 þ 1

2
�2m2e�m2=�2 þ 1

2
�4ðeð�bm�C�m2Þ=�2 � e�m2=�2Þ þ�2ðbmþ CÞ

�

¼ � 1

2
C2Ei

�
� C

�2

�
� 1

2
�2Ce�C=�2 þ 1

2
�4e�C=�2

: (51)

It is the same as the results obtained from the first two
methods, i.e. summing all those infinities together, we
obtain a correct finite result.

With the above discussion, our result now is that the
total anomaly part contributions to the normal part of the

chiral Lagrangian vanish. Just taking several individual
terms cannot reflect the true result of the full action. In fact,
finite result of the p4 order plays a role to cancel the
summations of all higher order terms. Finally, it gets the
total summation zero. In this sense, in order to make sense
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for the p6 and more higher order divergent terms, we must
sum them together and then we get the p4 order result with
an extra minus sign. To avoid the appearance of divergen-
ces in p6 and higher orders terms, what we need to do is to
drop out all anomaly part contributions, since divergences
from high order terms are finally canceled by p4 order
terms. In this view, our general result (7) must be changed
to

Seff jnormal part � �iNc ReTr ln½i6@þ J� � �ð �r2Þ�: (52)

In fact in Ref. [11], we already show that including the total
effective action in the anomalous part takes the form [see
Eq. (21) in Ref. [11]]

SGND ¼ �iNc Tr ln½i6@þ J� ��ð �r2Þ�
þWess-Zumino terms: (53)

With this new viewpoint on all anomaly part contribu-
tions, we need to modify our original numerical results on
p4 order LECs, since it takes into account the finite values
of anomaly part contributions, and now we know that these
nontrivial values must be used to cancel the infinities
coming from all higher order terms. In Table I, we list
our modified p4 order LECs for cutoff � ¼
1000þ100

�100 MeV. The 10% variation of the cutoff is consid-

ered in our calculation to examine the effects of cutoff
dependence and the result change can be treated as the
error of our calculations. The result LECs are taken the
values at � ¼ 1 GeV. The superscript is the LEC’s differ-
ence caused at � ¼ 1:1 GeV and the subscript is the
difference caused at � ¼ 0:9 GeV, i.e.,

L�¼1 GeVjL�¼1:1 GeV�L��1 GeV

L�¼0:9 GeV�L�¼1 GeV

�l�¼1 GeVj�l�¼1:1 GeV��l�¼1 GeV
�l�¼0:9 GeV��l�¼1 GeV

or l�¼1 GeVjl�¼1:1 GeV�l�¼1 GeV

l�¼0:9 GeV�l�¼1 GeV
:

(54)

In obtaining the result, we have taken the running cou-
pling constant as model A given by (40) of Ref. [4] and the

low energy value of this �s is already chosen well above
the critical value to trigger the S�SB of the theory. It
should be noted that �s depends on the number of quark
flavors, so does for � from SDE. In fixing the �QCD, we

have taken input F0 ¼ 87 MeV. The reason for taking this
value is that if the final F� is around the value of 93 MeV,
then our formula shows F0 must be located around
87 MeV. In Sec. VI, we will exhibit this phenomena
explicitly.

V. p6 ORDER OF CHIRAL LAGRANGIAN:
NORMAL PART

The general form of the p6 order chiral Lagrangian was
first introduced in Ref. [15] and then discussed in Ref. [16].
Now we can express the normal part of it in terms of our
rotated sources as we have done in (10) for the p4 order
terms. Considering that our computation is done under the
large Nc limit, within this approximation, terms in the
chiral Lagrangian with two and more traces vanish when
we do not apply the equation of motion. To avoid unnec-
essary complicities, in this paper we only write down those
terms with one trace,

Seff jp6;normal ¼
Z

d4x

�X94
n¼1

Zn trf½ �On� þO

�
1

Nc

��
; (55)

with �On being the p6 order operator we could get in our
calculation and Zn being the corresponding coefficient;
Oð 1Nc

Þ consist of most multitrace terms. Our computations

then give the explicit expressions of Zn in terms of quark
self-energy. The detailed expressions are given in (B1) of
Ref. [12]. The definitions of operators �On for n ¼
1; 2; . . . ; 94 are given in Table II, where some operators
have i in front of them to ensure their coefficients being
real. In Ref. [16], the p6 order operator was denoted by Yi

for the case of n flavor with coefficient Ki [17], Oi for the
case of three flavor with coefficient Ci, and Pi for the case
of two flavors with coefficient ci,

TABLE I. The obtained values of the p4 coefficients L1 . . . ; L10 for three flavor quarks and �l1 . . . ; �l6; l7 for two flavor quarks where

li ¼ 1
32�2 �ið�li þ lnM

2
�

�2 Þ for i ¼ 1; . . . ; 7, � ¼ 770 MeV, and �i are given in Ref. [2]. Since �7 ¼ 0, we calculate l7 instead of �l7. We

collect the experimental values given in Ref. [2] and our old result given in Ref. [4] for comparisons. �QCD, and � and �h �c c i1=3 are
in units of MeV, and L1 . . . ; L10; l7 are in units of 10�3.

�QCD �h �c c i1=3 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

� ¼ 1000þ100
�100 453�6

þ12 260�8
þ9 1:23þ0:03

�0:04 2:46þ0:05
�0:08 �6:85�0:14

þ0:21 0:0þ0:0
�0:0 1:48�0:01

�0:03 0:0þ0:0
�0:0 �0:51þ0:05

�0:06 1:02�0:06
þ0:06 8:86þ0:24

�0:37 �7:40�0:29
þ0:44

Ref. [4]: 484 296 0.403 0.805 �3:47 0 1.47 0 �0:792 1.83 2.28 �4:08

Experiment 250 0:9� 0:3 1:7� 0:7 �4:4� 2:5 0� 0:5 2:2� 0:5 0� 0:3 �0:4� 0:15 1:1� 0:3 7:4� 0:7 �6:0� 0:7

�QCD �h �c c i1=3 �l1 �l2 �l3 �l4 �l5 �l6 l7

� ¼ 1000þ100
�100 465�6

þ12 227�6
þ8 �4:77�0:17

þ0:24 8:01þ0:09
�0:14 1:97þ0:29

�0:35 4:34�0:01
�0:02 17:35þ0:53

�0:80 19:98þ0:44
�0:67 �8:18þ0:50

�0:43

Experiment 250 �2:3� 3:7 6:0� 1:3 2:9� 2:4 4:3� 0:9 13:9� 1:3 16:5� 1:1 Oð5Þ
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Seffjp6;normal ¼
Z

d4x

8><
>:
P

112
i¼1 KiYi þ 3 contact terms n flavorsP90
i¼1 CiOi þ 4 contact terms three flavorsP
53
i¼1 ciPi þ 4 contact terms two flavors:

(56)

We list down the relations among symbols used in the
present paper and those in Ref. [16] in Table XV of
Appendix A. Consider that our parametrization of the p6

order chiral Lagrangian (55) is general to the case of n
flavor quarks; there exist some relations among our coef-
ficients and n flavor coefficients given in (56). With the
help of computer derivations, we have worked out these
relations and list them in Appendix B of Ref. [12]. As a
check, we vanish the quark self-energy � in the codes
which correspond to taking m ¼ 0 before other further
calculations and find the null p6 result. This verifies the
analytical result discussed in Sec. IV that the anomaly part
contributions do not contribute to the normal part of the
chiral Lagrangian. Another consistency check is done for
those operators which have two terms combined together

by C and P symmetry requirements. For the n flavor case,
such operators are �O9, �O11, �O12, �O14, �O17, �O18, �O19, �O20,
�O28, �O29, �O32, �O34, �O35, �O37, �O38, �O39, �O40, �O44, �O45, �O46,
�O47, �O48, �O49, �O73, �O76, �O77, �O78, �O80, �O82, �O84, �O85.
Since in each of these operators there are two terms, we can
compute the coefficients in front of each term and check if
they are the same. We have done the checks for all of these
operators and all obtain the same analytical expressions for
the two terms in the same operator. This partly verifies the
correctness of our result given in (B1) of Ref. [12]. From n
flavors to three flavors, there are some extra constraints
[see (B1) in Ref. [16] ] which make some operators de-
pending on others. Further from three flavors to two fla-
vors, there are also some extra constraints [see (B3) in
Ref. [16] ] which make some more operators depending on

TABLE II. p6 order operators.

n �On n �On n �On

1 ða2�Þ3 33 a
�
�a

�
�a��d�p� 65 d2a��d�p�

2 a2�a
�
�a



�a��a�
 34 a

�
�a

�
�ðd�a��p� þ p�d�a��Þ 65 d�d�a��d�p�

3 a2�a
�
�a

2
�a�� 35 a

�
�a

�
�ðd�a��p� þ p�d�a��Þ 67 d�s�d�s�

4 a
�
�a

�
�a��a



�a��a�
 36 a

�
�p�a��d

�a�� 68 d�p�d�p�

5 a
�
�a

�
�a



�a��a��a�
 37 a

�
�p�a

�
�ðd�a�� þ d�a��Þ 69 iV

��
� V��


V��


6 a2�ðd�a��Þ2 38 a
�
�ðd�a��d�s� þ d�s�d�a��Þ 70 V

��
� V���a

2
�

7 a2�d
�a
�d�a�
 39 a

�
�ðd�a��d�s� þ d�s�d�a��Þ 71 V

��
� V��


a��a�


8 a2�d�a


�d
a�� 40 a

�
�ðd�a��d�s� þ d�s�d

�a��Þ 72 V
��
� V��


a�
a��

9 a��a
�
�ðd�a��d


a�
 þ d
a�
d�a��Þ 41 ða2�Þ2s� 73 V��
� ða��V��


a�
 � a
�V��
a��Þ
10 a

�
�a

�
�d�a



�d�a�
 42 a

�
�a

�
�a��a��s� 74 V

��
� a
�V���a�


11 a
�
�a

�
�ðd�a
�d
a�� þ d
a��d�a�
Þ 43 a

�
�a

2
�a��s� 75 V

��
� V���s�

12 a
�
�a

�
�ðd�a��d


a�
 þ d
a�
d�a��Þ 44 ia
�
�ðd�a��d
V��
 þ d�V��


d�a�
Þ 76 iV
��
� ða��d�p� þ d�p�a��Þ

13 a
�
�a

�
�d�a



�d�a�
 45 ia

�
�ðd�a��d


V��
 þ d�V��

d
a��Þ 77 iV��ðp�d�a�� � d�a��p�Þ

14 a
�
�a

�
�ðd�a
�d
a�� þ d
a��d�a�
Þ 46 ia

�
�ðd�a��d


V��
 � d�V���d

a�
Þ 78 iV

��
� ðd�a��d


a�
 � d
a�
d�a��Þ
15 a

�
�a

�
�d


a��d
a�� 47 ia
�
�ðd�a
�d�V��
 � d�V

�

� d�a�
Þ 79 iV

��
� d�a



�d�a�


16 a
�
�a

�
�d


a��d
a�� 48 ia
�
�ðd�a
�d�V��
 � d�V��


d�a�
Þ 80 iV
��
� ðd�a
�d
a�� þ d
a��d�a�
Þ

17 a
�
�ðd�a��a�� þ d�a��a��Þd
a�
 49 ia

�
�ðd�a
�d
V��� � d�V��


d
a��Þ 81 iV
��
� d
a��d
a��

18 a
�
�ðd�a��a
�d�a�
 þ d�a
�a��d
a��Þ 50 d�V��

�d
V��
 82 iV
��
� ða��a��s� þ s�a��a��Þ

19 a
�
�ðd�a��a
�d
a�� þ d�a
�a��d�a�
Þ 51 d�V�


� d�V��
 83 iV
��
� a��s�a��

20 a��ðd�a��a


�d�a�
 þ d�a
�a�
d�a�� 52 d�V�


� d�V��
 84 iV��
� ða��a��a

2
� þ a2�a��a��Þ

21 a��d
�a��a��d


a�
 53 d2a��d�d

a�
 85 iV��

� ða��a


�a��a�
 þ a
�a��a�
a��Þ

22 a
�
�d

�a
�a��d�a�
 54 d2a��d

d�a�
 86 iV

��
� a��a

2
�a��

23 a
�
�d

�a
�a��d
a�� 55 d2a��d
2a�� 87 iV

��
� a
�a��a��a�


24 a2�s
2
� 56 d�d�a��d�d


a�
 88 s3�
25 a2�p

2
� 57 d�d�a��d


d�a�
 89 s�p
2
�

26 a
�
�s�a��s� 58 a�d�a��d�d


a�
 90 s�p�d
�a��

27 a
�
�p�a��p� 59 d�d�a
�d�d�a�
 91 s�d

�a��p�

28 a
�
�ðs�d�p� þ d�p�s�Þ 60 d�d�a
�d�d
a�� 92 s�d

�a��d�a��

29 a
�
�ðp�d�s� þ d�s�p�Þ 61 d�d�a
�d�d�a�
 93 s�d

�a��d�a��

30 a2�d
�a��p� 62 d�d�a
�d�d
a�� 94 s�ðd�a��Þ2

31 a2�p�d
�a�� 63 d�d�a
�d
d�a��

32 a2�a
�
�d�p� þ a��a

2
�d�p� 64 d�d�a��d�p�
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others. The sequence number for n flavors, three flavors,
and two flavors are different; their comparisons are listed in
Table 2 in Ref. [16].

VI. NUMERICAL VALUES OF p6 ORDER LECS:
NORMAL PART

With all above preparations in the previous sections, we
now come to the stage of giving numerical values to the p6

order LECs in the normal part of the chiral Lagrangian.
Note that the necessary input and process of the present
computations for the p6 order LECs are the same as those
for the p2 and p4 order LECs given in the end of Sec. IV,
we list the numerical results in Table III. As done in
Table I, the result LECs are taken for the values at � ¼
1 GeV with superscript the difference caused at � ¼
1:1 GeV and subscript the difference caused at � ¼
0:9 GeV,

TABLE III. The obtained values of the p6 order LECs C1 . . . ; C90 for three flavors and c1 . . . ; c53 for two flavors. The LECs are in
units of 10�3 GeV�2. The resulting LECs are taken as the values at � ¼ 1 GeV with the superscript the difference caused at � ¼
1:1 GeV and the subscript the difference caused at � ¼ 0:9 GeV. The value � 0 means that the constants vanish at the large Nc limit.

i Ci j cj i Ci j cj i Ci j cj

1 3:79þ0:10
�0:17 1 3:58þ0:09

�0:15 31 �0:63þ0:05
�0:09 17 �1:10þ0:12

�0:19 61 2:88�0:22
þ0:28 34 2:84�0:22

þ0:26

2 � 0 32 0:18�0:03
þ0:04 18 0:43�0:07

þ0:08 62 � 0

3 �0:05þ0:01
�0:01 2 �0:03þ0:01

�0:01 33 0:09�0:00
þ0:03 19 0:41�0:06

þ0:10 63 2:99�0:24
þ0:30

4 3:10þ0:09
�0:15 3 2:89þ0:08

�0:13 34 1:59�0:10
þ0:16 20 1:56�0:10

þ0:17 64 � 0

5 �1:01þ0:08
�0:11 4 1:21�0:07

þ0:06 35 0:17�0:12
þ0:17 21 0:29�0:18

þ0:24 65 �2:43þ0:15
�0:16 35 3:39�0:32

þ0:41

6 � 0 36 � 0 66 1:71þ0:07
�0:12 36 1:57þ0:06

�0:10

7 � 0 37 �0:56þ0:09
�0:11 67 � 0

8 2:31�0:16
þ0:18 38 0:41�0:08

þ0:07 22 �1:32þ0:18
�0:25 68 � 0

9 � 0 39 � 0 23 0:86�0:12
þ0:15 69 �0:86�0:04

þ0:06 38 �0:68�0:03
þ0:05

10 �1:05þ0:08
�0:09 5 �0:98þ0:07

�0:09 40 �6:35�0:18
þ0:32 24 �4:84�0:14

þ0:25 70 1:73�0:08
þ0:07 39 1:81�0:08

þ0:07

11 � 0 41 � 0 71 � 0

12 �0:34þ0:02
�0:01 6 �0:33þ0:01

�0:01 42 0:60þ0:00
�0:00 72 �3:30þ0:05

�0:00 40 �3:17þ0:05
�0:02

13 � 0 43 � 0 73 0:50þ0:43
�0:56 41 0:30þ0:42

�0:54

14 �0:83þ0:12
�0:19 7 �1:72þ0:25

�0:35 44 6:32þ0:20
�0:36 25 6:03þ0:19

�0:33 74 �5:07�0:16
þ0:27 42 �4:74�0:14

þ0:24

15 � 0 8 0:86�0:12
þ0:15 45 � 0 75 � 0

16 � 0 46 �0:60�0:02
þ0:04 26 �1:14�0:05

þ0:07 76 �1:44�0:23
þ0:31 43 �1:29�0:23

þ0:30

17 0:01�0:01
�0:01 9 �0:84þ0:12

�0:17 47 0:08þ0:01
�0:00 77 � 0

18 �0:56þ0:09
�0:11 48 3:41þ0:06

�0:10 78 17:51þ1:02
�1:59 44 16:16þ0:94

�1:45

19 �0:48þ0:09
�0:13 10 �0:37þ0:07

�0:10 49 � 0 79 �0:56�0:30
þ0:40 45 0:26�0:26

þ0:34

20 0:18�0:03
þ0:04 11 � 0 50 8:71þ0:78

�1:12 27 13:57þ1:41
�2:00 80 0:87�0:04

þ0:03 46 0:85�0:04
þ0:02

21 �0:06þ0:01
�0:01 51 �11:49þ0:18

�0:09 28 0:93þ0:98
�1:25 81 � 0

22 0:27þ0:19
�0:25 12 0:15þ0:18

�0:24 52 �5:04�0:67
þ0:93 82 �7:13�0:32

þ0:51 47 �6:73�0:29
þ0:47

23 � 0 53 �11:99�0:87
þ1:33 29 �11:01�0:81

þ1:23 83 0:07þ0:20
�0:27 48 �0:22þ0:18

�0:25

24 1:62þ0:04
�0:07 54 � 0 84 � 0

25 �5:98�0:49
þ0:72 13 �5:39�0:45

þ0:66 55 16:79þ0:96
�1:49 30 15:72þ0:89

�1:38 85 �0:82þ0:03
�0:02 49 �0:78þ0:03

�0:01

26 3:35þ0:29
�0:47 14 4:17þ0:30

�0:49 56 19:34þ0:52
�0:98 31 17:57þ0:42

�0:82 86 � 0

27 �1:54þ0:15
�0:18 15 �2:71þ0:21

�0:25 57 7:92þ1:34
�1:85 32 7:18þ1:28

�1:76 87 7:57þ0:37
�0:60 50 7:18þ0:34

�0:55

28 0:30þ0:01
�0:01 58 � 0 88 �5:47�0:73

þ1:03 51 �4:85�0:69
þ0:97

29 �3:08�0:26
þ0:32 16 �2:22�0:22

þ0:27 59 �22:49�1:21þ1:89 33 �21:19�1:12
þ1:76 89 34:74þ1:61

�2:62 52 32:19þ1:46
�2:37

30 0:60þ0:02
�0:03 60 � 0 90 2:44�0:38

þ0:46 53 2:51�0:37
þ0:46
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C�¼1 GeVjC�¼1:1 GeV�C�¼1 GeV

C�¼0:9 GeV�C�¼1 GeV

c�¼1 GeVjc�¼1:1 GeV�c�¼1 GeV
c�¼0:9 GeV�c�¼1 GeV

:

We further list results of the p6 order LECs at � ¼ 1 in
Table IV. Consider that in the limit of� ¼ 1, dropping out
momentum total derivative terms in Eq. (14) is problem-
atic, we only take resulting LECs at � ¼ 1 as a reference.
Since the terms of three flavors and two flavors may have
different sequence numbers, as done in Ref. [16], we put
them in the same line in our table. Since the number of
independent operators in the two flavors is smaller than
that in the three flavors, there are some operators in three
flavors being independent operators, but being dependent
in two flavors. Then these operators will not have their two
flavor counterparts in our table, these leave the rhs some
empty blanks in the corresponding two flavor columns. For
the two flavor case, Ref. [18] further proposes a new
relation among operators,

0 ¼ 8P1 � 2P2 þ 6P3 � 12P13 þ 8P14 � 3P15 � 2P16

� 20P24 þ 8P25 þ 12P26 � 12P27 � 28P28 þ 8P36

� 8P37 � 8P39 þ 2P40 þ 8P41 � 8P42 � 6P43

þ 4P48; (57)

which implies that one of the operators appearing in the
above formula should be a further dependent operator.
Because of ignorance of the values of the coefficients in
front of these operators, Ref. [18] arbitrarily chooses this
operator being P27. Now our computations show that c27 �
0, so the original choice is not suitable. Considering that
c37 ¼ 0 in our computation, we instead now take P37 as
that dependent operator. P37 now is a dependent operator;
its name then is deleted in our Table III.
To verify our choice of F0 ¼ 87 MeV really results in

the experimental value of F�, we exploit the relation
between F0 and F� given in Ref. [19]:

TABLE IV. p6 order LECs the same as the result given in Table III, but at � ¼ 1 C1 . . . ; C90

are for three flavor and c1 . . . ; c53 are for two flavors in units of 10�3 GeV�2. The value � 0
means that the constants vanish at the large Nc limit.

i Ci j cj i Ci j cj i Ci j cj

1 3.61 1 3.39 31 �0:22 17 �0:22 61 1.36 34 1.45

2 � 0 32 0.02 18 0.09 62 � 0
3 �0:01 2 0.00 33 0.08 19 0.09 63 1.41

4 2.98 3 2.77 34 1.03 20 0.97 64 � 0
5 �0:51 4 0.66 35 �0:40 21 �0:46 65 �1:28 35 1.56

6 � 0 36 � 0 66 1.73 36 1.58

7 � 0 37 �0:06 67 � 0
8 1.16 38 �0:01 22 �0:25 68 � 0
9 � 0 39 � 0 23 0.20 69 �0:90 38 �0:71
10 �0:49 5 �0:49 40 �6:10 24 �4:70 70 0.91 39 1.08

11 � 0 41 � 0 71 � 0
12 �0:19 6 �0:20 42 0.49 72 �2:43 40 �2:37
13 � 0 43 � 0 73 2.47 41 2.08

14 �0:26 7 �0:42 44 6.17 25 5.86 74 �4:96 42 �4:61
15 � 0 8 0.20 45 � 0 75 � 0
16 � 0 46 �0:58 26 �1:11 76 �2:33 43 �2:08
17 �0:15 9 �0:29 47 0.08 77 � 0
18 �0:06 48 3.13 78 18.97 44 17.41

19 �0:08 10 �0:09 49 � 0 79 �1:81 45 �0:89
20 0.02 11 � 0 50 10.73 27 17.28 80 0.49 46 0.52

21 �0:01 51 �8:65 28 4.93 81 � 0
22 1.11 12 0.91 52 �7:24 82 �7:27 47 �6:83
23 � 0 53 �13:65 29 �12:49 83 0.96 48 0.59

24 1.55 54 � 0 84 � 0
25 �7:21 13 �6:46 55 18.10 30 16.83 85 �0:47 49 �0:49
26 3.93 14 4.68 56 17.99 31 16.33 86 � 0
27 �0:60 15 �1:42 57 12.69 32 11.45 87 7.83 50 7.39

28 0.29 58 � 0 88 �7:83 51 �6:96
29 �3:81 16 �2:78 59 �23:88 33 �22:35 89 35.69 52 32.93

30 0.58 60 � 0 90 0.25 53 0.51

COMPUTATION OF THE p6 ORDER CHIRAL . . . PHYSICAL REVIEW D 81, 014001 (2010)

014001-13



F�

F0

¼ 1þ x2ðlr4 � LÞ þ x22

�
1

16�2

�
� 1

2
lr1 � lr2 þ

29

12
L

�

� 13

192

1

ð16�2Þ2 þ
7

4
k1 þ k2 � 2lr3l

r
4 þ 2ðlr4Þ2

� 5

4
k4 þ rrF

�
þOðx32Þ; (58)

x2 ¼ M2
�

F2
�

L ¼ 1

16�2
ln
M2

�

�2
ki ¼ ð4lri � �iLÞL

rrF ¼ ð8c7 þ 16c8 þ 8c9ÞF2
0; (59)

in which rrF is from Ref. [17] and lri and �i for i¼1;2; . . . ;7
are defined in Ref. [2]. Scale � is taken to be � mass �¼
M�¼770MeV. Numerical calculations show that for� ¼
1000þ100

�100 MeV, the contributions up to order of p4 [ignor-

ing x22 terms in (58)] give result F� ¼ 92:99þ:00
�:03 MeV and

the contributions up to the order of p6 [ignoring x32 terms in

(58)] give result F�¼92:97þ:00
�:04 MeV with rrF¼

�5:036þ0:730
�1:290�10�5. We see that the p6 order contribu-

tions to F� are very small and F0¼87MeV is directly
related to F�¼93MeV.

VII. COMPARISONS WITH EXPERIMENTAND
MODEL RESULTS

As we have mentioned in the Introduction of this paper,
present experiment data is far enough to fix the p6 order
LECs. But there do exist some combinations of the LECs
which already have their experiment or model calculation
values. Usually, these LECs are labeled by dimensionless
parameters with convention4 of Cr

i � CiF
2
0 or cri � ciF

2
0.

In this section, we collect those combinations of LECs in
the literature which have their experiment or model calcu-
lation values and compare them with our numerical results
obtained in the last section with finite cutoff5 as the check
of our computations.

A. �� and �K scattering

From the investigation of �� scattering amplitudes, one
can work out the values of some combinations of p6 order
LECs. Reference [17] introduces the following combina-
tions:

rr1 ¼ 64cr1 � 64cr2 þ 32cr4 � 32cr5 þ 32cr6 � 64cr7 � 128cr8 � 64cr9 þ 96cr10 þ 192cr11 � 64cr14 þ 64cr16 þ 96cr17 þ 192cr18

rr2 ¼�96cr1 þ 96cr2 þ 32cr3 � 32cr4 þ 32cr5 � 64cr6 þ 32cr7 þ 64cr8 þ 32cr9 � 32cr13 þ 32cr14 � 64cr16

rr3 ¼ 48cr1 � 48cr2 � 40cr3 þ 8cr4 � 4cr5 þ 8cr6 � 8cr12 þ 20cr13 rr4 ¼�8cr3 þ 4cr5 � 8cr6 þ 8cr12 � 4cr13

rr5 ¼�8cr1 þ 10cr2 þ 14cr3 rr6 ¼ 6cr2 þ 2cr3 (60)

and gives the values of them by two theoretical methods of the resonance-saturation (RS) [20] and pure dimensional
analysis (ND) which only accounts for the order of magnitude and in Table V.We see that all coefficients obtained from our
calculations are consistent with those more precise RS results given in Ref. [17]. With our predictions for p4 and p6 order
LECs, we can directly calculate the scattering lengths aIl and slope parameters bIl which relate to p4 and p6 order LECs
through formulas given in Appendices C and D of Ref. [20]. We list experimental and our results in Table VI. In our results,
as done in Table III, we take �¼770MeV, but to match the result given in Ref. [20] where � is taken at �¼1GeV, we
also take�¼1000MeV for comparison. We take two options, one only includes p4 order contributions and the other com-
bines in p6 order contributions. For p6 order contributions, for comparison, we consider the cases of without and with rri
coefficients. We see that the contributions from p6 order LECs are rather small and only change the third digit of the result.

Further, Ref. [22] introduces coefficients in �K scattering:

c�01 ¼ 32m3
Kþð�Cr

1 þ 2Cr
3 þ 2Cr

4Þ; c�20 ¼ 6mKþð�Cr
1 þ 2Cr

3 þ 2Cr
4Þ;

cþ11 ¼ 8m2
Kþð3Cr

1 þ 6Cr
3 � 2Cr

4Þ; cþ30 ¼ 1
2ð�7Cr

1 � 32Cr
2 þ 2Cr

3 þ 10Cr
4Þ;

cþ01 ¼ 16m2
Kþm2

�þðCr
6 þ Cr

8 þ Cr
10 þ 2Cr

11 � 2Cr
12 � 2Cr

13 þ 2Cr
22 þ 4Cr

23Þ
þ 16m4

KþðCr
5 þ 2Cr

6 þ Cr
10 þ 4Cr

11 � 2Cr
12 � 4Cr

13 þ 2Cr
22 þ 4Cr

23Þ;
c�10 ¼ 8mKþm2

�þð�4Cr
4 � Cr

6 � Cr
8 þ Cr

10 þ 2Cr
11 � 2Cr

12 � 6Cr
13 þ 2Cr

22 � 2Cr
25Þ

þ 8m3
Kþð�4Cr

4 � Cr
5 � 2Cr

6 þ Cr
10 þ 4Cr

11 � 2Cr
12 � 12Cr

13 þ 2Cr
22 � 2Cr

25Þ;
cþ20 ¼ m2

Kþð12Cr
1 þ 48Cr

2 � 8Cr
4 þ Cr

5 þ 10Cr
6 þ 8Cr

7 þ 4Cr
8 þ Cr

10 þ 4Cr
11 � 2Cr

12 � 4Cr
13 þ 2Cr

22 � 4Cr
23 þ 4Cr

25Þ
þm2

�þð12Cr
1 þ 48Cr

2 � 8Cr
4 þ 4Cr

5 þ 5Cr
6 þ 8Cr

7 þ Cr
8 þ Cr

10 þ 2Cr
11 � 2Cr

12 � 10Cr
13 þ 2Cr

22 � 4Cr
23 þ 4Cr

25Þ:

(61)

5If the LECs at finite cutoff are replaced with those at � ¼ 1, we have checked that qualitative feature of the comparison results of
this section will not change.

4An alternative convention is that Cr
i and cri are used to denote the renormalized LECs in some literature.
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In the Table I of Ref. [23], in terms of cþ30, c
þ
11, c

�
20, c

�
01,

three constraints of p6 order LECs are fixed from �K
subthreshold parameters, �� amplitude and a resonance
model. In the Table II of Ref. [23], in terms of cþ20, cþ01, c�10,
another three constraints of p6 order LECs are fixed from
the dispersive calculations and a resonance model, In
which for the left-hand side (lhs) of Table VII, except
C2, all other LECs or combinations of LECs obtained by
us have the same signs and orders of magnitudes as those
from Ref. [23]. While for the rhs of Table VII, our results
are not consistent with those obtained from the dispersive
calculations.

B. Form factors

In Ref. [17], in dealing with the vector form factor of the
pion, rrV1 and r

r
V2 are introduced into theory which relate to

p6 order LECs through

rrV1 ¼ �16cr6 � 4cr35 � 8cr53; rrV2 ¼ �4cr51 � 4cr53:

(62)

For the scalar form factor, people introduce rrS2 and rrS3

relating to p6 order LECs by

rrS2 ¼ 32cr6 þ 16cr7 þ 32cr8 þ 16cr9 þ 16cr20;

rrS3 ¼ �8cr6:
(63)

In Ref. [17], discussion of the decay of �ðpÞ ! e��ðqÞ
further introduces rrA1 and r

r
A2 relating to p

6 order LECs by

rrA1 ¼ 48cr6 � 16cr34 þ 8cr35 � 8cr44 þ 16cr46

� 16cr47 þ 8cr50;

rrA2 ¼ 8cr44 � 16cr50 þ 4cr51: (64)

In Ref. [24], a naive estimation of Cr
12 is made from scalar

meson dominance of the pion scalar form factor and
2Cr

12 þ Cr
34 is estimated through 
0 in Kl3 measurements

[see Eq. (8.11) in Ref. [24] ], while in Ref. [25], Cr
12 and

Cr
12 þ Cr

34 are also estimated from the �K form factors. In

Table VIII, we list the numerical results for the above
combinations of LECs given by our calculations based
on Table III in the last section and by Refs. [17,24,25],
from which we see that among ten parameters between our

TABLE VI. The obtained values for aIi and bIi in �� scattering from experimental values given by Ref. [21] and our work.

a00 b00 �10a20 �10b20 10a11 102b11 102a02 103a22
Ref. [21] 0:26� 0:05 0:25� 0:03 0:28� 0:12 0:82� 0:08 0:38� 0:02 0:17� 0:03 0:13� 0:30

p4 � ¼ 103 MeV 0:210�0:000
þ0:000 0:260�0:000

þ0:000 0:406þ0:001
�0:001 0:662�0:002

þ0:003 0:405þ0:001
�0:002 0:772þ0:015

�0:020 0:264þ0:002
�0:003 0:195�0:009

þ0:012

p4 � ¼ 770 MeV 0:204�0:000
þ0:000 0:248�0:000

þ0:000 0:411þ0:001
�0:001 0:685�0:002

þ0:003 0:401þ0:001
�0:002 0:772þ0:015

�0:020 0:235þ0:002
�0:003 0:076�0:009

þ0:012

p6 � ¼ 103 MeV rri � 0 0:237�0:000
þ0:000 0:307�0:000

þ0:000 0:394þ0:001
�0:001 0:637�0:004

þ0:005 0:447þ0:002
�0:003 1:255þ0:029

�0:037 0:421þ0:005
�0:008 0:339�0:011

þ0:011

p6 � ¼ 103 MeV rri ¼ 0 0:237�0:000
þ0:000 0:305�0:000

�0:000 0:392þ0:001
�0:001 0:629�0:003

þ0:004 0:445þ0:002
�0:002 1:217þ0:019

�0:024 0:409þ0:004
�0:006 0:337�0:005

þ0:003

p6 � ¼ 770 MeV rri � 0 0:228�0:000
þ0:000 0:287�0:000

þ0:000 0:402þ0:001
�0:001 0:665�0:003

þ0:005 0:435þ0:002
�0:003 1:164þ0:028

�0:037 0:336þ0:005
þ0:008 0:212�0:012

þ0:012

p6 � ¼ 770 MeV rri ¼ 0 0:227�0:000
þ0:000 0:285�0:000

�0:000 0:400þ0:001
�0:001 0:657�0:003

þ0:004 0:433þ0:002
�0:002 1:125þ0:018

�0:023 0:352þ0:004
�0:006 0:210�0:006

þ0:004

TABLE VII. The obtained values for the combinations of the p6 order LECs from �K, �� scattering, and our work. The coefficients
in the lhs of the table are in units of 10�4 GeV�2.

C1 þ 4C3 C2 C4 þ 3C3 C1 þ 4C3 þ 2C2 cþ20
m4

F4
�

cþ01
m2

F4
�

c�10
m3

�

F4
�

Input cþ30, cþ11, c�20 20:7� 4:9 �9:2� 4:9 9:9� 2:5 2:3� 10:8
Input cþ30, cþ11, c�01 28:1� 4:9 �7:4� 4:9 21:0� 2:5 13:4� 10:8 Dispersive 0:024� 0:006 2:07� 0:10 0:31� 0:01
�� amplitude 23:5� 2:3 18:8� 7:2
Resonance model 7.2 �0:5 10.0 6.2 Resonance model 0.003 3.8 0.09

Ours 35:9þ1:3
�2:1 0:0þ1:3

�0:0 29:5þ1:1�1:9 35:9þ1:3
�2:1 Ours 0:006�0:002

þ0:003 �0:159þ0:133
�0:178 0:020þ0:037

�0:050

TABLE V. The obtained values for the combinations of the p6 order LECs from �� scattering
and our work. The coefficients in the table are in units of 10�4.

rr1 rr2 rr3 rr4 rr5 rr6

RS in Ref. [17] �0:6 1.3 �1:7 �1:0 1.1 0.3

ND in Ref. [17] 80 40 20 3 6 2

Ours �9:32�2:62
þ3:51 8:93þ3:12

�4:27 �3:06�0:81
þ1:11 �0:12þ0:22

�0:29 0:87þ0:04
�0:06 0:42þ0:02

�0:03
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predictions and values given in the literature, four of them
have the same orders of magnitudes and signs (rrV1, r

r
V2,

rrS3, and Cr
12 þ Cr

34), another one of them has different

orders of magnitudes but the same signs (Cr
12 in

Ref. [24]), the left five of them have opposite signs (rrS2,
rrA1, r

r
A2, 2C

r
12 þ Cr

34, and Cr
12 in Ref. [25]).

Further in Fig. 1, we compare the experimental data for
vector form factors collected in Figs. 4 and 5 of Ref. [19]
with our results. In obtaining our numerical predictions, we
have exploited the formula given by Eq. (3.16) in Ref. [19]
which especially depends on p6 order LECs through rrV1,
rrV2 defined in (62) and we input the formula p4 and p6

LECs obtained in Tables I and III of previous sections.
From Fig. 1, we see that p6 order LECs explicitly

improve the p4 and p2 order chiral perturbation predic-
tions, making them more consistent with experimental
data.

C. Photon-photon collisions

In Ref. [26], discussion of the photon-photon collision
�� ! �0�0 introduces ar1, a

r
2, and br relating to p6 order

LECs by

ar1 ¼ 4096�4ð�cr29 � cr30 þ cr34Þ
ar2 ¼ 256�4ð8cr29 þ 8cr30 þ cr31 þ cr32 þ 2cr33Þ
br ¼ �128�4ðcr31 þ cr32 þ 2cr33Þ:

(65)

In Ref. [27], calculation of the photon-photon collision
�� ! �þ�� introduces another type of ar1, a

r
2, and br

relating to p6 order LECs by

FIG. 1 (color online). The spacelike and timelike data for the vector form factor. The red solid curve corresponds to predictions from
chiral perturbation up to p6 order with LECs obtained in Table III of this paper. The red dashed line is the result by vanishing p6 order
LECs in corresponding red solid curve. The blue dot-dashed curve corresponds to predictions from chiral perturbation up to p4 order
with LECs obtained in Table I of this paper. The blue dotted line is the result by vanishing p4 order LECs in corresponding blue dot-
dashed curve. The black x axis with jFV

�j2 ¼ 1:0 corresponds to predictions from p2 order chiral perturbation.

TABLE VIII. The obtained values for the combinations of the p6 order LECs appear in vector
and scalar form factor of pion. The coefficients in the table are in units of 10�4.

Ours Ref. [17] Ours Ref. [17] Ours Ref. [17]

rrV1 �2:13þ0:30
�0:39 �2:5 rrS2 0:07þ0:05

�0:08 �0:3 rrA1 1:14þ0:07
�0:09 �0:5

rrV2 2:23þ0:10
�0:16 2.6 rrS3 0:20�0:01

þ0:01 0.6 rrA2 �0:38�0:06
þ0:08 1.1

Ours Ref. [24] Ours Ref. [25]

Cr
12 �0:026þ0:001

�0:001 �0:1 Cr
12 �0:026þ0:001

�0:001 ð0:3� 5:4Þ � 10�3

2Cr
12 þ Cr

34 0:068�0:006
þ0:010 �0:10� 0:17 Cr

12 þ Cr
34 0:094�0:007

þ0:011 ð3:2� 1:5Þ � 10�2
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ar1 ¼ �4096�4ð6cr6 þ cr29 � cr30 � 3cr34 þ cr35 þ 2cr46

� 4cr47 þ cr50Þ;
ar2 ¼ 256�4ð8cr29 � 8cr30 þ cr31 þ cr32 � 2cr33

þ 4cr44 þ 8cr50 � 4cr51Þ;
br ¼ �128�4ðcr31 þ cr32 � 2cr33 � 4cr44Þ: (66)

In Table IX, we list the numerical results for the above
combinations of LECs given by our calculations based on
Table III in the last section and by Refs. [26,27], for which
we see that among six parameters between our predictions
and values given in the literature, except two have opposite
signs, the other four all have the same orders of magnitudes
and signs.

D. Radiative pion decay

In Ref. [28], through reanalysis of the radiative pion
decay, a group of p6 order LECs is fixed. From Table X, we
find that all LECs and combinations of LECs from our
predictions have the same signs and orders of magnitudes
as those from experiment values.

E. Model calculations

Except the above phenomenological estimations on the
values of some LECs, there are model calculations for
some others of them and most of these analyses use a
(single) resonance approximation. In contrast, our calcu-
lations do not rely on the assumption of existence of
resonances. In this subsection, we list these calculation
values we can collect from the literature and compare
with our results.
Reference [29] estimates values of some LECs. The

comparison between their results and our results is given
in Table XI.
For Cr

63 and Cr
65, Ref. [30] gives the value for their

combination 2Cr
63 � Cr

65 ¼ ð1:8� 0:7Þ � 10�5 which,

compared to our result of 6:36�0:48
þ0:56 � 10�5, is at the

same order of magnitude and has the same sign.
For Cr

87, there are several works to estimate its values;

we list them in Table XII. Where Cr
87 given in Refs. [32,33]

are in the form of C87 in units of GeV�2, we have trans-
formed them into our expression of Cr

87 with C
r
87 ¼ C87F

2
0.

Further, Ref. [34] exploits resonance Lagrangian esti-
mates values of LECs C78, C82, C87, C88, C89, C90. From

TABLE IX. The obtained values for the combinations of the p6 order LECs appear in photon-
photon collisions.

Ours Ref. [26] Ours Ref. [27]

ar1 �5:65�0:91
þ1:23 �14� 5 ar1 �5:86�0:49

þ0:58 �3:2

ar2 3:79þ0:02
�0:05 7� 3 ar2 �0:98�0:07

þ0:12 0.7

br 1:66þ0:05
�0:09 3� 1 br �0:23�0:01

þ0:02 0.4

TABLE X. The obtained values for the combinations of the p6 order LECs from pion radiative
decay and our work. The coefficients in the table are in units of 10�5.

Cr
12 Cr

13 Cr
61 Cr

62 2Cr
63 � Cr

65 Cr
64

Ref. [28] �0:6� 0:3 0� 0:2 1:0� 0:3 0� 0:2 1:8� 0:7 0� 0:2
ours �0:26þ0:01

�0:01 0:0þ0:0
�0:0 2:18�0:17

þ0:20 0:0þ0:0
�0:0 6:36�0:42

þ0:58 0:0þ0:0
�0:0

Cr
78 Cr

80 Cr
81 Cr

82 Cr
87 Cr

88

Ref. [28] 10:0� 3:0 1:8� 0:4 0� 0:2 �3:5� 1:0 3:6� 1:0 �3:5� 1:0
Ours 13:26þ0:77

�1:20 0:66�0:03
þ0:02 0:0þ0:0

�0:0 �5:39�0:24
þ0:39 5:73þ0:28

�0:45 �4:14�0:55
þ0:78

TABLE XI. The obtained values for the p6 order LEC in Ref. [29] and our works. The
coefficients in the table are in units of 10�3 GeV�2.

C14 C19 C38 C61 C80 C87

Ref. [29] �4:3 �2:8 1.2 1.9 1.9 7.6

Ours �0:83þ0:12
�0:19 �0:48þ0:09

�0:13 0:41�0:08
þ0:07 2:88�0:22

þ0:26 0:87�0:04
þ0:03 7:57þ0:37

�0:60
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Table XIII, we find that our results are consistent with
those obtained from the resonance Lagrangian.

Reference [35] estimates the value of C38 and gives
Cr
38 ¼ ð2� 6Þ � 10�6 which is also consistent with our

result of Cr
38 ¼ 3:1�0:6

þ0:6 � 10�6.

In terms of resonance exchange, Ref. [36] proposes
some relations among different p6 order LECs,

C20 ¼ �3C21 ¼ C32 ¼ 1
6C35 C24 ¼ 6C28 ¼ 3C30:

(67)

To check the validity of these relations for our results, in
Table XIV, we write corresponding values obtained in our
calculations We see that except C35, all the other LECs
satisfy the relations.

VIII. SUMMARY

In this paper, we revise our original formulation of
calculating LECs to a chiral covariant one suitable to
computerize. With the help of the computer, we success-
fully obtain the analytical expressions for all the p6 order
LECs in the normal part of the chiral Lagrangian for
pseudoscalar mesons on the quark self-energy �ðk2Þ. The
ambiguities for the anomaly part contributions to the nor-
mal part of the chiral Lagrangian are clarified and we prove
that this part totally should vanish and therefore need not
be considered in our computations. Since our calculation is
done under the large Nc limit, only operators of p6 order
with one trace and some multitraces from the equation of
motion survive in our formulation. We set up relations

among the coefficients in front of these operators and
LECs defined in Ref. [16]. Then with input of F0 ¼
87 MeV to fix the �QCD in the running coupling constant

of �sðk2Þ appear in the kernel of SDE and choose cutoff of
the theory being � ¼ 1000þ100

�100 MeV and � ¼ 1, we

calculate all p6 order LECs numerically both for two flavor
and three flavor cases. Comparing our resulting LECs with
those combinations which we can find experimental or
model calculation values in the literature, we find that
except for a few of them havng wrong signs, most of our
predicted combinations of p6 order LECs have the same
signs and orders of magnitudes with experiment or model
calculation values. This sets the solid basis for our p6 order
computations. For those combinations with wrong signs or
wrong order of magnitudes with experiment values, we
need further investigation. Based on these obtained p6

order LECs, we expect a very large number of predictions
for various pseudoscalar meson physics in the near future.
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APPENDIX A: RELATIONS AMONG OUR
SYMBOLS AND THOSE USED IN REF. [16]

To help in understanding the mutual relation between
the definition of symbols in our formulation and those in
Ref. [16], in Table XV we give a comparison.

TABLE XIII. The obtained values for the p6 order LEC from resonance Lagrangian given by Ref. [34] and our work. The
coefficients in the table are in units of 10�4=F2

0.

C78 C82 C87 C88 C89 C90

Lowest meson dominance 1.09 �0:36 0.40 �0:52 1.97 0.0

Resonance Lagrangian I 1.09 �0:29 0.47 �0:16 2.29 0.33

Resonance Lagrangian II 1.49 �0:39 0.65 �0:14 3.22 0.51

Ours 1:326þ0:077
�0:120 �0:539�0:024

þ0:039 0:573þ0:028
�0:045 �0:414�0:055

þ0:078 2:630þ0:122
�0:198 0:185�0:029

þ0:035

TABLE XIV. The obtained values for the p6 order LEC from our work. The coefficients in the table are in units of 10�3 GeV�2.

C20 �3C21 C32
1
6C35 C24 6C28 3C30

0:18�0:03
þ0:04 0:18�0:03

þ0:03 0:18�0:03
þ0:04 0:028�0:020

þ0:028 1:62þ0:04
�0:07 1:80þ0:06

�0:06 1:80þ0:06
�0:09

TABLE XII. The obtained values for the p6 order LEC Cr
87. The coefficients in the table are in

units of 10�5.

Ours Ref. [31] Ref. [32] Ref. [33]

Cr
87 5:73þ0:28

�0:45 3:1� 1:1 4:3� 0:4 3:70� 0:14
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