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We present a detailed analysis of �0 electroproduction at intermediate energy for quasielastic knockout

kinematics. The approach is based on an effective Lagrangian which generates exchanges of scalar,

pseudoscalar, axial-vector, and tensor mesons. The specific role of mesons with different values for JPC is

analyzed. We show that the �0 exchange amplitude and its interference terms with �ð�0Þ and f1
exchanges dominate in the transverse part of the cross section �T . The main role plays the �0 ! �0

M1 spin transition when coupling the virtual photons to the nucleon. In contrast, the longitudinal cross

section �L is generated by a series of scalar meson exchanges. To extract the dominant term, more

detailed information on the inner structure of scalar mesons is required. It turns out that recent data of the

CLAS Collaboration on �L and �T can be described with reasonable accuracy if one proposes the

quarkonium structure for the heavy scalar mesons (M * 1:3 GeV). On this basis the differential cross

sections d�L=dt and d�T=dt are calculated and compared with the latest CLAS data.
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I. INTRODUCTION

Recent data of the CLAS Collaboration [1,2] on electro-
production of the �0 meson with separation of longitudinal
�L and transverse �T parts of the cross section open up
new possibilities in the study of the production mechanism.
Experimental results on �L and �T obtained at relatively
large photon virtualities of 1:5 & Q2 & 4 GeV2=c2 and at
invariant energiesW � 2–3 GeV (i.e. above the resonance
region) supplement the known data of the CLAS
Collaboration on �0 photoproduction [3] since they contain
new information on the Q2 dependence of the cross sec-
tions. At large Q2 some contributions to the cross section
are small and in first approximation they can be excluded
from the consideration. For example, at Q2 *
1:5 GeV2=c2 contributions of intermediate baryon states
(N,N�, etc.) to the cross section are sufficiently suppressed
in comparison to meson exchange contributions due to
form factors encoding finite size effects in the �NN,
�NN�, �NN, and �NN� vertices.

An important feature of �0 electroproduction is that
different meson exchange mechanisms dominate in the
longitudinal and transverse cross sections. This phenome-
non allows one to consider the contributions of these
mesons separately, while the data on only the full cross
section � ¼ �T þ ��L do not permit such a possibility.
For example, data of the JLAB F� Collaboration on elec-
troproduction of charged pions [4–6] allowed one to de-

duce the charged pion form factor using the dominance of
the pion t-pole contribution to the longitudinal part of the
differential cross section d�L=dt. Note that the transverse
part d�T=dt is dominated by the �-meson pole, and the
JLab data [4–6] on d�T=dt allow one to perform an
independent study of the �-meson exchange amplitude
[7]. It would be impossible to study both phenomena on
the basis of the total cross section only.
These new possibilities for a detailed experimental study

of the reaction ��
L;T þ p ! �0 þ p in quasielastic kine-

matics can be used to gain insight into the structure of
the meson cloud of the nucleon and into the quark origin of
the electromagnetic properties of neutral mesons. Our
present work is devoted to the theoretical study of this
reaction in the context of these new possibilities that dis-
tinguish recent electroproduction experiments [1,2] from
older ones [8].
In the case of the ��

L;T þ p ! �0 þ p reaction, until

recently, there were only integral data (integral character-
istics over the t variable—the squared momentum transfer
to the proton—see e.g. Ref. [1]) which we have used as a
basis for our consideration. Very recently, data on the
differential cross sections were also published by the
CLAS Collaboration [2] which allows for a further detailed
test of the theory presented here.
The differential cross sections d�T=dt and d�L=dt are

more informative: for small values of t near the kinemati-
cal threshold t� tmin � 0 (i.e. in the region of quasielastic
meson knockout) the nearby t-channel pole dominates in
each of these cross sections, which generates the forward
peak of electroproduction in the absorption of either a
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longitudinal (��
L) or transverse (��

T) virtual photon. In the
case of ��

L;T þ p ! �0 þ p the pion t-pole contribution

dominates in �T , and t poles of the lightest scalar mesons
dominate in �L. The dominant t pole gives also a main
contribution to the corresponding integrated cross section
(�T or �L), but contributions of heavy-meson exchanges
(mesons with masses close to and above 1 GeV) are also
important. Sometimes these corrections are quite signifi-
cant since they interfere with the leading contributions of
the light mesons.

Nevertheless, as the first step, the data on �L and �T [1]
for the reaction ��

L;T þ p ! �0 þ p can already be used to

give an estimate for the dominant contributions. The addi-
tional (in comparison to electroproduction of charged me-
sons) selection rule connected with charge parity (C)
conservation in the � ! �0 transition allows this proce-
dure. Latter conservation law reduces the number of ex-
change diagrams to be considered. Here we also can use
the models of vector meson dominance (VMD) and tensor
meson dominance (TMD) [9] for an estimate of the vertex
constants in the t-channel pole terms [10] using the under-
lying idea of charge universality.

In the reaction ��
L;T þ p ! �0 þ p both the virtual pho-

ton and �0 have the same (negative) charge parity, i.e.
JPC ¼ 1��. Such a reaction cannot be considered as a
true quasielastic knockout process, since here �0-meson
exchange is forbidden due to C-parity conservation.
Therefore, such a ‘‘knockout’’ can proceed due to the
conversion of a meson from the nucleon meson cloud
into the final �0 meson or due to the � ! �0 transition in
a diffraction process. Since pion exchange (JPC ¼ 0�þ) is
allowed here the pion pole must dominate in the region of
small jtj (i.e. at small angles in quasielastic kinematics).
However, the pion contribution only dominates in the
transverse part of the cross section �T due to the M1
spin transition �0 ! �0. At the same time, the pion pole
contribution to �L is negligibly small even at values of
t� tmin—opposite to the situations of charged meson
knockout processes. Pomeron exchange (C ¼ þ) is al-
lowed but its contribution to �L is too small in the region
of invariant energiesW � 2–3 GeV considered when com-
pared to the summation of the t-pole terms of other low-
mass mesons.

For invariant energies W slightly above the baryon
resonance region and for high virtualities of the photon
(Q2 � 1:5–4 GeV2=c2 in the JLAB experiments) it is suf-
ficient to take into account the exchanges of neutral pseu-
doscalar mesons and additionally from the three nonets
JPC ¼ Jþþ with J ¼ 0,1, 2 corresponding to the first
orbital 1P excitation of the vector nonet (see Table I).
Note that we only consider mesons with positive charge
parity (C ¼ þ) which give a contribution to the quasielas-
tic knockout of �0 supplemented either by spin flip
(M1 transitions 1S0 ! 3S1 without changing the spatial

P parity) or deexcitation of the orbital 1P state

(E1 transitions 3PJ ! 3S1 with change of the P parity).

In the first approximation one can neglect the highly ex-
cited meson nonets, because the corresponding orbital
matrix elements of the transitions 2S ! 1S, 2P ! 1S,
etc. must be suppressed in comparison to the 1S ! 1S
and 1P ! 1S contributions.
Starting with energies of W � 5–10 GeV and above the

electroproduction cross section is suitably described in the
framework of Regge phenomenology, which gives a rea-
sonable description in a wider region of the variable t than
the t-pole approximation—up to the region of hard colli-
sions where partonic degrees of freedom become manifest.
Then the most convenient description of the hadronic
processes can be done in terms of generalized partonic
distributions (see, e.g. [1,2,11,12]).
In a series of works [13–16] the Regge phenomenology

has been extended to the description of meson electro- and
photoproduction cross sections at lower energies of about
W � 2–3 GeV. In this approach meson propagators in the
exchanged diagrams are substituted by amplitudes of the
corresponding Regge trajectories (R). The Pomeron trajec-
tory (P) contribution is also included in the total sum. Here
the coupling constants and form factors of low-energy
hadron physics are used for the �R� and RNN vertices.
For the �R� vertex the dominance of vector mesons is used
and a corresponding form factor is calculated in terms
of the q �q loop in the Landshoff-Donnachie approach
[17]. Since the vertex coupling constants (excluding the
�NN coupling) are only known with a low precision an
additional free parameter [15,16] is introduced into the
amplitude which is normalized by data on �0

photoproduction.
We should stress that in the energy region of W �

2–3 GeV an equally good description of meson photo-

TABLE I. SUð3ÞF � Oð3Þ classification of neutral mesons
contributing to the electroproduction of �0 (the octet-singlet
mixing is omitted for simplicity). Quark-model (QM) and had-
ronic molecular (HM) states usually used for description of
meson properties are also shown (including a possible scalar
glueball G0).

IGðJPCÞ QM (2Sþ1LJ) or HM SU(3) octet

states

SU(3) singlet

states

0þð0�þÞ 1S0 �ð540Þ �0ð958Þ
1�ð0�þÞ 1S0 �ð140Þ
0þð0þþÞ K �K, 2� f0ð980Þ f0ð600Þ � �
0þð0þþÞ 3P0 f0ð1370Þ f0ð1500Þ
0þð0þþÞ (G0) f0ð1710Þ
0þð1þþÞ 3P1 f1ð1285Þ f01ð1420Þ
0þð2þþÞ 3P2 f2ð1270Þ f02ð1525Þ
1�ð0þþÞ K �K a0ð980Þ
1�ð0þþÞ 3P0 a0ð1450Þ
1�ð1þþÞ 3P1 a1ð1260Þ
1�ð2þþÞ 3P2 a2ð1320Þ
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and electroproduction cross sections can also be obtained
on the basis of the usual pole approximation—also using
phenomenological vertex form factors [7,10,18,19]. An
advantage of the pole approximation is that the starting
point is set up by effective Lagrangians. Therefore the
momentum-spin structure of the meson vertices can be
consistently taken into account which also defines the
energy dependence of cross sections in the case of higher
meson spins.

In Ref. [1] a reasonable description of the CLAS data on
�0 electroproduction has been obtained in the framework
of a Regge model [15,16] using the dominance of�,�, and
f2 trajectories. The tensor f2 meson was implemented as
an isoscalar meson with positive C parity and J ¼ 1 in
accordance with the hypothesis that pomeron and f2 tra-
jectories are proportional. Also, an additional multiplier
�f2 was introduced to rescale the contribution of the f2
trajectory relative to the one of the pomeron. The size of
�f2 was normalized to experimental data on �0 photo-

production [3]. As it turns out a significant enhancement
of the f2 trajectory contribution as compared to the pom-
eron trajectory (�f2 ¼ 9) is required. The � meson ex-

change has also been enhanced, because in [15] a large
value for the ��� coupling was used (g��� � 1, see de-

tails in [16]). Data on the � ! �0�0� decay width [20,21]
can be explained using a much smaller value for the g���
coupling [20].

All this has been analyzed in Ref. [10] where the de-
scription of data on � photoproduction obtained earlier by
[15] has been reconsidered. An alternative approach was
proposed, where the amplitude of �0 photoproduction was
represented by the sum of the t-pole contributions from
physical meson exchanges with coupling constants nor-
malized to independent data (s- and u-pole contributions
were taken into account as well). A good description of
photoproduction data has been achieved in both ap-
proaches [10,15]. It seems that the � and f2 mesons
showing up in the Regge model [15] are only effective
degrees of freedom giving a useful parametrization of the
total contribution by exchange of physical mesons listed in
Table I.

In the present paper we also pursue an alternative de-
scription of the data on �0 electroproduction similar to the
approach of Ref. [10]. We start with phenomenological
Lagrangians to calculate the cross sections �L and �T in

the t-pole approximation for the set of mesons displayed in
Table I (see also Fig. 1). In our calculation we use the
coupling constants and form factors supported by and
deduced from data and which mostly coincide with those
already used in Ref. [10] in the description of photopro-
duction data. The comparison of the theoretical results with
the latest data of the CLAS Collaboration [1] allows us to
determine the set of dominant meson exchanges corre-
sponding to physical particles.
It will be found that in the description of the transverse

cross section �T the pion contribution and the summed
contribution of pseudovector mesons ðf1; f01; a1Þ and other

pseudoscalars ð�;�0Þ in interference with the pion piece
play the major role. In addition, the summed contribution
of mesons with positive P parity ðf0; f2; a0; a2Þ is practi-
cally not visible in �T above such a background. In con-
trast, mesons with positive P parity give a significant
contribution to �L. However, if we use for all scalar f0
mesons of Table I electromagnetic coupling constants
g�f0� normalized to the known radiative decay widths of

the� and f0ð980Þmesons, the contribution of all f0, a0, f2,
and a2 mesons will not be sufficient to explain the data on
�L.
In the final part of the paper we discuss different scenar-

ios for overcoming these difficulties. It is shown that the
problem can be solved using the set of known scalar
mesons (i.e. without inclusion of possible exotic states) if
the set of heavy scalars [f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ
or at least two states from this group] are considered as 3P0

states in the �qq spectrum. According to the quark model
such states should have relatively large radiative decay
widths �f0!�� * 100 KeV [22] resulting in large coupling

constants �f0� with g�f0� � g��� ( �qqg hybrid models

with anomalous large widths [23] and models [24,25] with
large values for the ��� or �NN coupling also do not
contradict data, but one can proceed without these assump-
tions). Furthermore, in addition to the included � meson
exchange a noncorrelated 2� exchange must also contrib-
ute to the cross section (recall that in Ref. [10] it was shown
that this mechanism plays an appreciable role in the �0

photoproduction at low energy).
We present our final results on the integrated �L=T and

differential d�L=T=dt cross sections where the previously

indicated corrections for the coupling constants g�f0� of

two heavy mesons f0ð1370Þ and f0ð1500Þ are included.
The results for �L=T are compared to the latest data of the

CLAS Collaboration [1,2]. Theoretical curves are in agree-
ment with data within experimental errors. The results for
d�L=T=dt appear to be in good agreement with the new

CLAS data [2] as illustrated for several experimental bins
in the range of 1:9<Q2 < 2:2 GeV2=c2. A full analysis of
all the experimental bins (more than 50 kinematical re-
gions from Q2 ¼ 1:6 GeV2=c2 and xB ¼ 0:16 to Q2 ¼
5:6 GeV2=c2 and xB ¼ 0:7) will be presented in a further
paper in its own right.

π,η, f ,a0,f1a ,0 a1,f2,a2

γ

p
p

ρ0

p p

kq

k

FIG. 1. t-pole amplitude generated by meson exchanges.
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II. FRAMEWORK

A. t-pole contributions due to exchange of mesons with
positive C parity

1. Scalar meson exchange (S ¼ f0, a0)

We start with the effective Lagrangian

L�S�ðxÞ ¼
eg�S�

4M�

SðxÞF�	ðxÞ��	ðxÞ;

F�	 ¼ @�A	 � @	A�; ��	 ¼ @��	 � @��	;

(1)

L SNNðxÞ ¼ gSNNSðxÞ �NðxÞNðxÞ; (2)

which generates matrix elements due to the exchange of
scalar mesons S ¼ f0, a0. The respective invariant ampli-
tude is

TSðs; s0; 
; 
�Þ ¼ e
g�S�

M�

gSNN

g�	k
0 � q� k0	q�

k2 �M2
f0
þ i0

�
ð
�Þ��
V ðk0Þ

� �ð
Þ	ðqÞ �uðp0; s0Þuðp; sÞ; (3)

where �ð
Þ	 ðqÞ and �
ð
�Þ
V �ðk0Þ are the polarization vectors of

the photon and �0 meson, respectively. They satisfy com-
pleteness relations in the subspace orthogonal to the 4-
momentum:

X

¼0;	1

ð�1Þ
�ð
Þ� ðqÞ�ð
Þ�	 ðqÞ ¼ g�	 �
q�q	

q2
;

X

�¼0;	1

�
ð
�Þ
V� ðk0Þ�ð
�Þ�

V	 ðk0Þ ¼ �
�
g�	 �

k0�k0	
M2

�

�
:

(4)

Further, the invariant amplitude (3) is modified as usual by
introducing vertex form factors

g�S� ! g�S�F �S�ðQ2; tÞ; gSNN ! gSNNF SNNðtÞ;
(5)

where

F �S�ðQ2; tÞ � F 1ðQ2ÞF 2ðtÞ; F SNNðtÞ � F 3ðtÞ;
(6)

t ¼ k2 andQ2 ¼ �q2. The substitution (5) is equivalent to
a nonlocal form of the interaction vertices [26–28], i.e. to
the following modification of the local Lagrangians (1) and
(2):

L�S�ðxÞ ! LNL
�S�ðxÞ

¼ eg�S�
4M�

Z
d4y

Z
d4z�1ðz2Þ�2ðy2Þ

� Sðxþ yÞF�	ðxþ zÞ��	ðxÞ;
LSNNðxÞ ! LNL

SNNðxÞ
¼ gSNN

Z
d4y�3ðy2ÞSðxþ yÞ �NðxÞNðxÞ; (7)

where �iðy2Þ are relativistic invariant vertex functions. In
momentum space F iðk2Þ ¼

R
�iðy2Þeik�yd4y defines the

corresponding vertex form factor.
The factors g�f0� and F �f0�ðQ2; tÞ in the effective

Lagrangian (1) should correspond to a specific physical
process in the vertex. In particular, they should take into
account the VMD transition � ! �0 with further diffrac-
tive scattering of the �0—in accordance with the diagram
shown in Fig. 2(a). An analogous process should contribute
to the vertex ��� [see Fig. 2(b)] with the difference that
here the spin M1 transition �0 ! �0 is understood. As a
result the dependence of the form factors F �f0�ðQ2; tÞ and
F ���ðQ2; tÞ on the virtuality Q2 of the photon is described

by the propagator of the vector meson 1
Q2þM2

V

in the first

approximation. The dependence on t involves the specific
scale ��1 corresponding to the size of the interaction
volumes in the transitions �0 þ f0 ! �0 and !þ � !
�0 (see below).
The magnitudes of the �S� coupling constants can be

estimated using the radiative decay width of the scalar
meson f0 with

�f0!�� ¼ �
g2�f0�

M2
�

�M2
f0
�M2

�

2Mf0

�
3
; (8)

while for the lightest scalar meson f0ð600Þ � � the decay
width for �0 ! �þ �

��!�� ¼ �

3

g2���

M2
�

�
M2

� �M2
�

2M�

�
3

(9)

is used. In Eqs. (8) and (9) we use coupling constants g�f0�
fixed on the mass shell (Q2 ¼ 0, t ¼ M2

f0
). Therefore, the

form factor (5) for the �f0� vertex must be normalized at
Q2 ¼ 0 as

F �S�ðQ2 ¼ 0; t ¼ M2
f0
Þ ¼ 1: (10)

The �NN form factor is normalized according to

F �NNðt ¼ 0Þ ¼ 1; (11)

since the constant g�NN is defined from NN scattering data
at low energies in the limit t ! 0.
According to the data of the SND Collaboration [20] the

width of �0 decay into the channel with the lightest scalar
meson � is sufficiently large: ��!�� � 2:83 keV.

Estimates of the decay width �f0!�� are also known for

FIG. 2. Microscopic mechanism for the �f0� and ��� cou-
plings.
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heavier scalar mesons, e.g. for f0ð980Þ (� 3:4 keV) ob-
tained in the framework of the molecular K �K model
f0ð980Þ [22,29]. In both cases we obtain quite similar
predictions for the coupling constants:

g���=M� ¼ 0:25=M� ¼ 0:32 GeV�1;

g�f0�=M� � 0:21=M� ¼ 0:27 GeV�1:
(12)

For the present purposes we use a unique value g��� ¼
0:25 for all scalar mesons in the calculation of the total
exchange contribution involving f0ð600Þ, f0ð980Þ,
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ.

Presently no data are available to constrain the f0NN
couplings except for the lightest scalar � ¼ f0ð600Þ. Here
we take the value g2�NN=4� ’ 4–8 commonly used in
boson-exchange models of the NN interaction. As a rough
estimate for the contribution of the higher mass f0 ex-
changes we use the common value gf0NN ¼ g�NN ¼ 10.

We note that�T is only weakly sensitive to even significant
variation of the constants gf0NN . Only �L allows one to

search for an averaged contribution of f0 meson
exchanges.

2. Pseudoscalar meson exchange (S5 ¼ �0, �, �0)
The t-pole contribution due to pseudoscalar meson ex-

change is described as

T�0ðs; s0; 
; 
�Þ ¼ � eg���
2mNM�

F ���ðQ2; tÞg�NNF �NNðtÞ

� "�	��
�ð
Þ� ðqÞq	�ð
�Þ�

V � ðk0Þk0�
M2

� � k2 � i0

� �uðp0; s0Þk6 �5uðp; sÞ; (13)

where g��� and g�NN are the coupling constants related to

the ��� and �NN vertices. The vertex ��� is generated
by an effective Lagrangian with a minimal number of
derivatives:

L ���ðxÞ ¼
eg���
4M�

"�	��F�	ðxÞ ~���ðxÞ � ~�ðxÞ: (14)

For the �NN vertex we use a pseudovector coupling with

f�NN ¼ M�

2mN
g�NN:

L �NNðxÞ ¼ g�NN

2mN

�NðxÞ���5 ~
NðxÞ � @� ~�ðxÞ: (15)

The coupling constant g��� is deduced from the �0 ! �þ
�0 decay width

��!�� ¼ �

3

g2���

M2
�

�
M2

� �M2
�

2M�

�
3
: (16)

With the experimental value of ��!�� ¼ 93	 19 keV

[21] we get

g���=M� ¼ 0:658=M� ¼ 0:848 GeV�1: (17)

For the �NN coupling constant we use the standard value
of g�NN ¼ 13:4.
For the � and �0 mesons we have correspondingly:

g���=M� ¼ 1:230=M� ¼ 1:585 GeV�1;

g��0�=M� ¼ 1:052=M� ¼ 1:356 GeV�1;
(18)

using ��!�� ¼ 45	 3 keV and ��0!�� ¼ 60	 6 keV

[21]. For the strong couplings g�NN and g�0NN the SU(3)

relation is used

g�8NN ¼ 3F�Dffiffiffi
3

p ðFþDÞ g�NN (19)

for the mixing angle �P � �10
 [21] defining the state
�0 ¼ �1 cos�P þ �8 sin�P (see e.g. Refs. [30,31]). With
F=D ¼ 0:575	 0:016 [32] we get

g�NN ¼ 4:38; g�0NN ¼ 4:34; (20)

where in addition we use the ratio g�1NN:g�8NN ¼ ffiffiffi
2

p
:1

which follows from a quark-model evaluation of the non-
strange components in �1 and �8.

3. Tensor meson exchange (T ¼ f2, f
0
2, a2)

The Lagrangians for tensor meson interaction with nu-
cleons and vector particles are constructed in the frame-
work of TMD [9]. We follow Ref. [10] and only present
necessary formulas for understanding the final results (see
details in [10]).
The Lagrangian for a free tensor field f�	 is described in

the Fierz-Pauli framework and has a complicated form
when external fields are included. However, the equations
of motion are reduced to the usual Klein-Gordon equations
for each independent component of the symmetric tensor
field f�� ¼ f��:

ð@2� �M2
TÞf�� ¼ 0 (21)

with the additional constraints

@�f�� ¼ 0; g��f�� ¼ 0: (22)

As result there are only 5 independent components of the
tensor field with spin 2. The propagator of the tensor field
has the form

G��;�0�0 ðk2Þ ¼ iP��;�0�0 ðkÞ 1

k2 �M2
T

;

P��;�0�0 ðkÞ ¼ 1

2
ðg��0

g��
0 þ g��

0
g��

0 Þ � 1

3
g��g�

0�0
;

g�� ¼ �g�� þ k�k�

M2
T

: (23)

The electromagnetic vertex �� þ f2 ! �0 depends on four
Lorentz indices of the tensor and vector fields f��, A�, and

�	 and is described as a sum of two independent Lorentz-
covariant terms with corresponding coupling constants
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f�f2� and g�f2� [9,10]:

���;�	ðk0; qÞ ¼ ef�f2�

M2
f2

½�g�	q � k0 þ k0	q��ðqþ k0Þ�

� ðqþ k0Þ� þ eg�f2�½g�	ðqþ k0Þ�
� ðqþ k0Þ� � g��k0	ðqþ k0Þ�
� g��k0	ðqþ k0Þ� � g	�q�ðqþ k0Þ�
� g	�q�ðqþ k0Þ�
þ 2q � k0ðg	�g�� þ g	�g��Þ�: (24)

The strong coupling f2NN also includes two independent
Lorentz-covariant terms:

���ðp; p0Þ ¼ Gf2NN

mN

½ðpþ p0Þ��� þ ðpþ p0Þ����

þ Ff2NN

m2
N

ðpþ p0Þ�ðpþ p0Þ�: (25)

The magnitudes of the coupling constants f�f2�, g�f2�,

Ff2NN , and Gf2NN can be estimated in the framework of

VMD and TMD models (see details in [9,10]). In particu-
lar, the couplings are expressed in terms of two universal
constants gV and gT :

eg�f2� ¼ e
gf2VV
f�Mf2

¼ e
gT

gVMf2

; Gf2NN ¼ mN

2Mf2

gT;

f�f2� ¼ Ff2NN ¼ 0; (26)

where f� ¼ g��� ¼ gV , and gf2VV ¼ gf2�� ¼ gT . The

diagrams in Figs. 3 and 4 illustrate these conditions.
Tensor meson exchange contributions are described by

the amplitude

Tf2ðs; s0; 
; 
�Þ ¼
2eg�f2�Gf2NN

mNðt�M2
f2
Þ F �f2�ðq2; tÞF f2NNðtÞ

� �uðp0; s0Þ�f2uðp; sÞ; (27)

where

�f2 ¼ ð�ð
�Þ�
V �ð
ÞÞ

�
ððpþ p0Þðqþ k0ÞÞðq6 þ k6 0Þ

þ 2mN

3

�
ðqþ k0Þ2 � 1

M2
f2

ðk � ðqþ k0ÞÞ2
��

þ 2qk0
�
ððpþ p0Þ�ð
�Þ�

V Þ�6 ð
Þ þ ððpþ p0Þ�ð
ÞÞ�6 ð
�Þ�
V

þ 4mN

3

�
ð�ð
�Þ�

V �ð
ÞÞ � 1

M2
f2

ð�ð
�Þ�
V kÞð�ð
ÞkÞ

��
: (28)

Here we introduced the vertex form factors F �f2�ðq2; tÞ
andF f2NNðtÞ. These modify the constants g�f2� andGf2NN

in analogy with Eqs. (5)–(7) as

g�f2� ! g�f2�F �f2�ðQ2; tÞ;
Gf2NN ! Gf2NNF f2NNðtÞ:

(29)

The values of these constants (see Fig. 4), gV ¼ 5:33 and
gT ¼ 5:76, have been obtained using the decay data,
��!�� ¼ 150 MeV and �f2!�� ¼ 156:5 MeV [21], and

the expressions:

��0!�� ¼ g2V
4�

M�

12

�
1� 4M2

�

M2
�

�
3=2

;

�f2!�� ¼ g2T
4�

Mf

20

�
1� 4M2

�

M2
f

�
5=2

:

(30)

Here we suppose ideal mixing between f2ð1270Þ and
f02ð1525Þ. This means that the coupling of f02ð1525Þ to
the �� channel is suppressed by the Okubo-Zweig-
Iizuka rule as observed in experiment [21]. Therefore, in
the first approximation one can neglect the contribution of
f02ð1525Þ in the electroproduction of �0.

4. Axial-vector meson exchange (V5 ¼ f1, f
0
1, a1)

Considering the JPC ¼ 1þþ particle V5 as a quark-
antiquark 3P1 bound state one can write the coupling
1þþ ! ��ðqÞVðk0Þ in a form analogous to the 3P1 !
���� coupling calculated in the quark model (see, e.g.
[33]):

Mð1þþ ! ��VÞ ¼ �
ð
�Þ�
V	 ��;�	

V5
�ð
Þ� �V5�;

��;�	
V5

¼ eg�V5�"
�	��

k02q� � q2k0�
M2

;

q��ð
Þ� ðqÞ ¼ 0 (31)

(V ¼ �0 and �V5� is the polarization vector of V5). Here it
FIG. 3. Tensor meson contribution to the vector meson electro-
production in VMD and TMD models.

FIG. 4. Amplitudes of tensor meson decay into �� in VMD
and TMD models.
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is implied that the radial derivative R0
q �qð0Þ of the q �q wave

function is included to the constant g�V5� and the coupling

can be further modified by a form factor.
Starting with this analogy we introduce the interaction

Lagrangian

L �V5�ðxÞ ¼ e
g�V5�

M2
�

"�	��V5�ð@�A�h�	

� @��	ðg��0h� @�@�0 ÞA�0 Þ; (32)

L V5NNðxÞ ¼ gV5NN
�NðxÞ���5NðxÞV5�ðxÞ; (33)

and write down the t-pole axial-vector meson contribution
to the electroproduction amplitude modified by form fac-
tors:

TV5
ðs; s0; 
; 
�Þ ¼ �eg�V5�gV5NNF �V5�ðq2; tÞF V5NNðtÞ

� "�	��

�
q	 � q2

M2
�

k0	
�
�ð
Þ� ðqÞ�ð
�Þ�

V � ðk0Þ

� g��0 � k�k�0=M2
f

k2 �M2
f

� �uðp0; s0Þ��0
�5uðp; sÞ: (34)

On this basis the radiative decay f1 ! �� width is
calculated as

�f1!�� ¼ �

3

g2�f1�

M2
�

�
1þ M2

�

M2
f1

��M2
f1
�M2

�

2Mf1

�
3
: (35)

Using the experimental value �f1!�� ¼ 1:34	 0:32 MeV

[21] we get

g�f1�=M� ¼ 1:901=M� ¼ 2:45 GeV�1;

g�f0
1
�=M� ¼ 0:582=M� ¼ 0:748 GeV�1:

(36)

To get g�f0
1
� we have used quark counting [34] for the

matrix element of the charge operator

eq ¼
X
i

�
1

2

ðiÞ
3 þ 1

2
ffiffiffi
3

p 
ðiÞ
8

�
(37)

in neutral meson-meson transitions of opposite C parity (in
our case we deal with the transitions f1 ! �0, f01 ! �0,
and a1 ! �0). The dependence of the matrix element on
the isospin part of the meson (fn or an) wave function is
described by the simple relations [34]:

hfnðI ¼ 0ÞjeqjanðI ¼ 1Þi ¼ 1;

hfnðI ¼ 1ÞjeqjfnðI ¼ 1Þi ¼ 1
3;

hanðI ¼ 0ÞjeqjanðI ¼ 0Þi ¼ 1
3:

(38)

The final results for the f1ð1285Þ and f01ð1410Þ mesons

h�0jeqjf01i=h�0jeqjf1i ¼ sin�= cos�;

g�f
0
1� ¼ g�f1� tan� (39)

only depend on the mixing angle � � 17
 [35] relating
nonstrange and strange components in the initial meson

[the final meson is the isovector �0 ¼ ð �uu� �ddÞ= ffiffiffi
2

p
] with

f1ð1285Þ ¼ cos�
�uuþ �ddffiffiffi

2
p � sin��ss;

f1ð1410Þ ¼ sin�
�uuþ �ddffiffiffi

2
p þ cos��ss:

(40)

For the axial-vector isovector meson a1ð1260Þ the corre-
sponding coupling in the electromagnetic transition a1 þ
� ! �0 can be expressed through the constant g�f1� also

using relations (38): g�a1� ¼ 1
3g�f1�. This is also fulfilled

for any type of fnðanÞ meson considered here and we
accept

g�an� ¼ 1
3g�fn�; n ¼ J ¼ 0; 1; 2: (41)

In Ref. [36] an estimate for the couplings of the f1ð1285Þ
and f01ð1410Þ mesons to nucleons was obtained using the
hypothesis of partial conservation of the axial-vector cur-
rent, i.e. in analogy to the VMD model, which in this case
is extended to neutral axial-vector mesons. According to
Ref. [36] jgf1NNj ¼ 1:46 and jgf01NNj ¼ 10:5. If the neutral

axial-vector current is only connected to the strange com-
ponent in the nucleon [36,37] then, following (40), it
follows that these couplings have different signs and we
use the values

gf1NN ¼ �1:46; gf0
1
NN ¼ 10:5: (42)

B. Form factors

Finally in this section we make a few comments con-
cerning the vertex form factors F �M� and FMNN showing

up in expression forN M (see Table III). In the calculations
we use a common monopole form factor describing the
dependence on the virtuality of the (absorbed) particle in
the case that the other two are on the mass shell:

F �M�0ðQ2; t ¼ M2
MÞ ¼

�2
q

�2
q þQ2

;

FMNNðtÞ ¼ �2
t

�2
t � t

; �t ¼ �q ¼ M�:

(43)

For the upper vertex in the diagrams of Fig. 2 this form
factor is the propagator of the virtual vector meson in the
VMD. The same is also true for the form factors in the
upper vertex of the analogous diagram of Fig. 1. In the
interpretation of the form factor as the Fourier transform of
the function �ðy2Þ [describing a nonlocal interaction in
(7)], the expression of Eq. (43) takes only into account the
characteristic scale � 1

� � 1
M�

of the charge distribution of

QUASIELASTIC �0 ELECTROPRODUCTION ON THE . . . PHYSICAL REVIEW D 81, 013007 (2010)

013007-7



(any sort) in the hadron (but this is quite sufficient for our
purposes). This procedure is also based on a similar de-
scription for quasielastic knockout of pions on the nucleon
[7,19] with similar kinematics. The corresponding magni-
tude of �t is correlated with data on �þ electroproduction
[4–6].

If a vertex in the diagram contains two off-shell particles
(as is the case for the upper vertex in the diagrams of
Figs. 1 and 2), then a form factor should depend on both
virtualities t�M2

M andQ2. In the case of pion exchange in
the quasielastic knockout (t � 0), the virtuality on t is
negligible M2

� � t � 0 and the t dependence in the ���
vertex can be neglected. However, in case of heavy-meson
exchange M ¼ f0ða0Þ, f1ða1Þ, and f2ða2Þ we cannot ne-
glect the dependence on the virtuality t�M2

M for typical
values of the momentum transfer squared t � tmin in qua-
sielastic knockout. Therefore we use for the �M� form
factor a more complicated parametrization:

F �M�0ðQ2; tÞ ¼ �2
q

�2
q þQ2

�2
0

�2
0 þM2

M � t
;

MM ¼ Mf0ða0Þ; Mf1ða1Þ:

(44)

Here the second factor is normalized to 1 for t ¼ M2
M, in

correspondence with the normalization of the coupling
�M�0 for the observable decay widths chosen in Eqs. (8),
(12), (30), (35), and (36). We use in the form factor (44) the
same value for the cutoff�2

0 ¼ 1:2 GeV2=c2 as in Ref. [7].
There we showed that such a parametrization is successful
to describe data on the electroproduction of pions [4–6] in
the framework of an analogous t-pole mechanism with the
off-shell ��� coupling.

In the literature the t dependence of the form factor (44)

is usually represented in the form ~�2
0 �M2

M=
~�2
0 � t with

approximately the same value for ~�0 � 1:2–1:5 GeV=c.
For a relatively small value of the meson mass
MM & 1 GeV in expression (44) both parametrizations
lead to approximately the same results in the considered
region t� 0. For more massive mesons MM *

1:3–1:5 GeV the value of ~�0 will depend on the meson
mass. To avoid the introduction of new free parameters we
use the parametrization (44) for all the f0ða0Þ and f1ða1Þ
mesons. Only in the case of the f2 meson we keep the
standard parametrization (for the value of �f2 ¼
1:4 GeV=c),

F �f2�
0ðQ2; tÞ ¼ �2

q

�2
q þQ2

�2
f2
�M2

f2

�2
f2
� t

;

F f2NNðtÞ ¼
�2

f2
�M2

f2

�2
f2
� t

;

(45)

which was already used by other authors (see e.g. Ref. [10]
and references therein).

III. ELECTROPRODUCTION CROSS SECTION:
TRANSVERSE AND LONGITUDINAL PARTS

Recent experiments of the CLAS [1,2,38] and F� [4–6]
Collaborations at JLAB on meson electroproduction in the
quasielastic region allow in principle to separate individual
meson exchange contributions. Therefore the correspond-
ing electromagnetic and strong vertex form factors can be
measured directly. In particular, in the CLAS experiments
[1,2,4–6] the differential cross section of meson electro-
production is separated in longitudinal (L), transverse (T),
and mixed ðTT; LTÞ parts as

d4�

dW2dQ2dtd’M0
¼ �

�
"
d�L

dt
þ d�T

dt
þ "

d�TT

dt
cos2’M0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"ð1þ "Þ

p d�LT

dt
cos’M0

�
(46)

by varying " and �M0 (via the Rosenbluth separation).
In Eq. (46) W2 is the square of the invariant mass with

W2 ¼ s ¼ ðqþ pÞ2 ¼ ðk0 þ p0Þ2; p and p0 are the 4-
momenta of the target and recoil nucleon, respectively, k0
is the 4-momentum of the produced mesonM0, and q is the
4-momentum of the virtual photon q ¼ ðq0;qÞ (see Fig. 1)
with Q2 ¼ �q2; t ¼ ðp0 � pÞ2 ¼ ðk0 � qÞ2 ¼ k2 (k being
the 4-momentum of a virtual meson M); and �M0 is the
angle between the electron scattering plane and the plane
spanned by the ðk0;p0Þ momenta. The value of

� ¼ 1

ð4�Þ2
W2 �m2

N

Q2E2
em

2
N

1

1� "

is the virtual photon flux. Here Ee is the initial electron
energy and

" ¼
�
1þ 2 ~q2

Q2
tan2

�e
2

��1

characterizes the degree of longitudinal polarization of the
virtual photon (�e is the angle between the momenta of the
incident and scattered electrons).
This separation permits one to determine the contribu-

tions of � and � meson poles in the cross section of pion
electroproduction (M0 ¼ �þ) [7]. In the reaction
pðe; e0�0Þp the Rosenbluth separation (46) (M0 ¼ �0)
also increases the chances (in comparison to older less
precise data [8]) to determine the contribution e.g. of the
pion pole (see below).
In this section we derive and present the formula for the

individual contribution of each meson exchange consid-
ered to the longitudinal and transverse part of the cross
section (also including the interference terms) using the
previously shown amplitudes with a fixed photon polariza-
tion 
 ¼ 0, 	1.
We start from the full amplitude as a sum of t-pole

contributions of isoscalar (fn) and isovector (an) mesons
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Tðs; s0; 
; 
�Þ ¼
X
fn;an

ðTS þ TS5 þ TV5
þ TTÞ; (47)

containing the expressions (3), (13), (27), and (34) ob-
tained in the previous section. The original expression for
the t-pole amplitude TM corresponding to the exchange of
meson M ¼ S, S5, V5, and T is written in general form as

TMðs; s0; 
; 
�Þ ¼ �
ð
�Þ
	 ðk0Þ��ß;�	

M �ð
Þ� ðqÞGß;ß0
M ðkÞ

� �uðp0; s0Þ�ß0
Muðp; sÞ; (48)

where �
ß;�	
M and �ß0

M are expressions for the �M� and

MNN vertices, respectively (see Table II), and Gß;ß0
M ðkÞ is

the meson propagator. Here it is understood that the index
ß encodes the Lorentz indices of the exchanged meson M,
i.e. ß ¼ � forM ¼ V5 [see Eq. (31)], ß ¼ �� forM ¼ T,
while the ß is omitted in the case of M ¼ S, S5.

After averaging and summing the probability jTj2 over
all polarizations (excluding the polarization 
 of the initial
photon) with

jTð
Þj2 ¼ 1

2

X
s;s0;
�

Tðs; s0; 
; 
�ÞT�ðs; s0; 
; 
�Þ; (49)

the separate components of the differential cross section in
the Rosenbluth formula are reduced to the form:

d�L

dt
¼ N

1

4�
jTð
¼0Þj2;

d�T

dt
¼ N

1

2

X

¼	1

1

4�
jTð
Þj2;

d�TT

dt
¼ N

�
� 1

2

X

¼	1

1

4�
Tð
ÞTð�
Þ�

�
;

d�LT

dt
¼ N

�
� 1

2

X

¼	1




�
Tð0ÞTð
Þ� þ Tð
ÞTð0Þ�

4�
ffiffiffi
2

p
��
:

(50)

Here we introduce the standard constant

N ¼
�
2mNQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
W2 �m2

N þQ2

2mNQ

�
2

s
ðW2 �m2

NÞ
��1

corresponding to the normalization of the cross section to
unit flow of virtual photons.

The individual meson M ¼ fn, an contributions to the
cross section (50) can be presented in a general form—in

the form of products of the polarization vectors �ð
Þ� �ð
Þ��0

with five independent tensors: k�k�
0
, p�p�0

, p�k�
0 þ

k�p�0
, g��0

, and "�	��"�
0	0�0�0

q	q	0k�k�0p�p�0 (tensors

of the form q�k�
0
, q�p�0

, etc. can be omitted because of

the condition q��ð
Þ� ¼ 0). In the lab frame with p� ¼
fmN; 0; 0; 0g, the latter tensor, after contraction with

�ð
Þ� �ð
Þ
�

�0 , is transformed into the mixed product of 3-

vectors:

f"�	��"�
0	0�0�0

�ð
Þ� �ð
Þ
�

�0 q	q	0k�k�0p�p�0 glab
¼ 
2m2

Nð½q� k� � �ð
ÞÞð½q� k� � �ð
Þ� Þ: (51)

Using the tensor decomposition we obtain the following
expression for the individual contribution of meson M:

jTð
Þ
M j2 � 1

2

X
ss0

X

�

jTMðs; s0; 
; 
�Þj2

¼ N 2
M

�
AMð�ð
Þ�ð
Þ� Þ þ BM

1

m2
N

ðk�ð
ÞÞðk�ð
Þ� Þ

þ CM

1

m2
N

ðp�ð
ÞÞðp�ð
Þ� Þ

þDM

1

m2
N

½ðp�ð
ÞÞðk�ð
Þ� Þ þ ðk�ð
ÞÞðp�ð
Þ� Þ�

þ EM

1

m4
N

½k� q� � �ð
Þ½k� q� � �ð
Þ�
�
; (52)

where the coefficients AM, BM, CM, DM, and EM are
functions of three independent invariants t ¼ k2, Q2 ¼
�q2�, and s ¼ ðpþ qÞ2 ¼ W2. The full expressions are

given in Table III and in the Appendix.
We use dimensionless invariant variables

�s � pq

mNQ
¼ W2 �m2

N þQ2

2mNQ
;

�t � kq

mNQ
¼ �tþM2

� þQ2

2mNQ
; � ¼ �t

4m2
N

;

(53)

in terms of which the coefficients AM, BM,CM, andDM can
be expressed in the simplest form. Parameter �s has a
simple physical meaning because it is proportional to the

inverse of the Bjorken variable xB ¼ Q2

2pq ¼ Q
2mN�s

(here the

parameter �t has an analogous meaning in the t channel for
the virtual mesonM). The factorN M, given in the last line
of Table III, depends on the coupling constants, form
factors, and the meson propagator.

TABLE II. Expressions for the �M� and MNN vertices.

M S5ð�;�0Þ V5ðf1; a1Þ Sðf0; a0Þ Tðf2; a2Þ
�ß;�	
M �eg�M�"

�	�� q�k
0
�

M�
�eg�M�"

�	�� k02q��q2k0
�

M2
�

eg�M�
qk0
M�

ðg�	 � q�k0	
qk0 Þ eg�M�

1
MT

½g�	ðqþ k0Þ�ðqþ k0Þ� � g��k0	ðqþ k0Þ�
�g��k0	ðqþ k0Þ� � g	�q�ðqþ k0Þ�

�g	�q�ðqþ k0Þ� þ 2qk0ðg	�g�� þ g	�g��Þ�
�ß
M

gMNN

2mN
k6 �5 gMNN�

��5 gMNN
gMNN

mN
½ðpþ p0Þ��� þ ðpþ p0Þ����
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The interference terms have the same parametrization as the diagonal terms:

Tð
Þ
M Tð
Þ�

M0 þ Tð
Þ
M0 T

ð
Þ�
M � 1

2

X
ss0

X

�

½TMðs; s0; 
; 
�ÞTM0 �ðs; s0; 
; 
�Þ þ TM0 ðs; s0; 
; 
�ÞTM
�ðs; s0; 
; 
�Þ�

¼ N MN M0

�
AMM0 ð�ð
Þ�ð
Þ� Þ þ BMM0

1

m2
N

ðk�ð
ÞÞðk�ð
Þ� Þ þ CMM0
1

m2
N

ðp�ð
ÞÞðp�ð
Þ� Þ

þDMM0
1

m2
N

½ðp�ð
ÞÞðk�ð
Þ� Þ þ ðk�ð
ÞÞðp�ð
Þ� Þ� þ EMM0
1

m4
N

½k� q� � �ð
Þ½k� q� � �ð
Þ�
�

(54)

and vanish for mesons of opposite parity after averaging over the polarizations 
�, s, and s
0. We therefore consider only the

two nontrivial contributions forMM0 ¼ ST andMM0 ¼ S5V5. The corresponding coefficients A, B, C,D, and E are given
in Table IV.

Such a form of the final results has to simplify the calculation of �LðTÞ—one only substitutes the following expressions

into the right-hand side of Eqs. (52) and (54):
(1) For �L (
 ¼ 0):

ð�ð
¼0Þ�ð
¼0ÞÞ ¼ 1;
1

m2
N

ðk�ð
¼0ÞÞðk�ð
¼0Þ�Þ ¼ ð�2�þ �s�tÞ2
1þ �2

s

¼ ð�2
t � 4�Þ þ k2

lab

m2
N

sin2�labk ;

1

m2
N

ðp�ð
¼0ÞÞðp�ð
¼0Þ� Þ ¼ ð1þ �2
sÞ; 1

m2
N

½ðp�ð
¼0ÞÞðk�ð
¼0Þ� Þ þ ðp�ð
¼0Þ� Þðk�ð
¼0ÞÞ� ¼ 2ð�2�þ �s�tÞ;
1

m4
N

ð½q� k� � �ð
¼0ÞÞð½q� k� � �ð
¼0Þ� Þ ¼ 0:

(55)

(2) For �T (
 ¼ 	1):

TABLE III. Coefficients AM, BM, CM, DM, and EM of Eq. (52).

M S5ð�;�0Þ V5ðf1; a1Þ Sðf0; a0Þ Tðf2; a2Þ
AM ��ð�2

t � 4�Þ 2� �2
s þ �s�t � ð�2

t � 4�Þ m2
N

M2
�
½m2

N

Q2 ð1þ �Þ þ 2M2
�

M2
V5

ð1þ 2�
m2

N

M2
V5

Þ�
þz2ð1þ �Þ½4m2

N

Q2 �� ð�2
t � 4�Þ m2

N

M2
�
� þ z 2mN

Q ½2��s � ð1þ 2�Þ�t�
ð1þ �ÞðM2

�

m2
N

� �2
t þ 4�Þ a

BM �
m2

N

M2
�
½m2

N

Q2 ð1þ �Þ þ 2M2
�

M2
V5

ð1þ 2�
m2

N

M2
V5

Þ� þ z2½m2
N

Q2 ð1þ 2�Þ þ m2
N

M2
�
ð1þ �Þ� 1þ � a

CM 0 1þ z2
4m2

N

Q2 �� z 2mN

Q �t 0 a

DM 0 � 1
2 � z2

2m2
N

Q2 �þ z mN

Q �s 0 a

EM 0
m4

N

M2
�Q

2 ð1þ z2Þ 0 0

~g�M�
mN

M�
g�S5�

Q2

zM2
�
g�V5�, z ¼ Q2

M2
�þQ2

mN

M�
g�S�

mN

MT
g�T�

N M e~g�M�gMNNF �M�ðQ2; tÞFMNNðtÞ2mNQ=ðM2
M � tÞ

aSee AT , BT , CT , and DT in the Appendix.

TABLE IV. AMM0 , BMM0 , CMM0 , DMM0 , and EMM0 of Eq. (54).

MM0 ST S5V5

AMM0 �8ð QmN
� �tÞf QmN

ð2�s � �tÞ2 � 4
3 ð1þ �Þ½2ð QmN

� �tÞ þ �mN

Q þ m2
N

M2
T

Q
mN

ð�t � 2�mN

Q Þ2�g �ð�2
t � 4�Þð1þ 4m2

N

M2
V5

�Þ
BMM0 �8ð QmN

� �tÞ½�s � 2 Q
mN

þ 4
3 ð1þ �Þ m2

N

M2
T

� 1þ 4m2
N

M2
V5

�
CMM0 32ð QmN

� �tÞ2 0

DMM0 8ð QmN
� �tÞ½2�s þ �t � 2 Q

mN
� 0

EMM0 0 0
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1

2

X

¼	1

ð�ð
Þ�ð
Þ� Þ ¼ �1;
1

2

X

¼	1

1

m2
N

ðk�ð
ÞÞðk�ð
Þ� Þ ¼ k2
lab

2m2
N

sin2�labk ;
1

2

X

¼	1

1

m2
N

ðp�ð
ÞÞðp�ð
Þ� Þ ¼ 0;

1

2

X

¼	1

1

m2
N

½ðp�ð
ÞÞðk�ð
Þ� Þ þ ðp�ð
Þ� Þðk�ð
ÞÞ� ¼ 0;

1

2

X

¼	1

1

m4
N

ð½q� k� � �ð
ÞÞð½q� k� � �ð
Þ� Þ ¼ ð1þ �2
sÞ Q

2

m2
N

k2
lab

2m2
N

sin2�labk :

(56)

Here we use the lab frame (p ¼ 0) with the z axis parallel
to the photon momentum q. Then the square of the 3-
momentum k and the energy k0 of the virtual meson M
have the forms: k2 ¼ 4m2

N�ð1þ �Þ and k0 ¼ t
2mN

¼
�2mN�. The polar angle �M ¼ �labk of the virtual meson
3-momentum is only used as a variable in Eqs. (55) and
(56). It is expressed by values of the dimensionless pa-
rameters �s, �t, and � as

k2

m2
N

sin2�labk ¼ 4�ð1þ �þ �2
s � �s�tÞ � �2

t

1þ �2
s

;

jkj
mN

cos�labk ¼ �ð�t þ 2��sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

s

p :

(57)

The momentum k0 and the polar angle �0� of the emitted �0

meson can be related to the variables k and �labk using the
following relations:

k 02sin2�0� ¼ k2sin2�labk ;

jk0j cos�0� ¼ jqj þ jkj cos�labk ;
(58)

where it is understood that in the lab frame jqj ¼
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

s

p
, q0 ¼ Q�s, k00 ¼ Q�s � 2mN�, and k02 ¼

k020 �M2
�.

IV. RESULTS AND DISCUSSION

Results for the cross sections �LðTÞ of �0 electroproduc-

tion in comparison with the data of the CLAS
Collaboration [1] are presented in Fig. 5—separately for
transverse (right side) �T and for longitudinal (left side)
�L parts. ForW * 2 GeV (i.e. at xB ¼ 0:31 and 0.38 in the
CLAS kinematics) the underlying mechanism of quasielas-
tic meson knockout [quark spin flip in the M1 transitions
��
T þ �0ð�;�0Þ ! �0 and change of internal orbital mo-

mentum in the E1 transitions ��
T þ fnðanÞ ! �0, n ¼ 0; ,

1, 2] summed over all meson exchange contributions (see
Table I and solid curves in Figs. 5–8) is in agreement with
the data on �TðQ2;WÞ. However, there is no such agree-
ment for �L. As seen from Fig. 5 for �T the pion exchange
contribution is enhanced due to the interference with the
exchanged contributions of other pseudoscalar (S5 ¼ �,
�0) and axial-vector (V5 ¼ f1, f

0
1, and a1) mesons (curves
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FIG. 5. Longitudinal (left panel) and transverse (right panel) cross sections �L and �T of �0 electroproduction as functions of Q2.
The sum of exchange contributions of all mesons listed in Table I is shown by solid lines. The sum of scalar meson contributions (dash-
dotted lines) is calculated with a common value of g�f0� ¼ 0:25. The sum of contributions of scalar and tensor mesons is shown by

long-dashed lines. The sum of pseudoscalar and pseudovector-meson contributions is shown by short-dashed lines (the dotted lines
show the pseudoscalar meson contributions). Experimental values are the recent CLAS data [1].
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with short-dashed lines in Figs. 5, 6, and 8) while it is
suppressed in �L. It seems that a full explanation of the
large value of �L is based on another reaction mechanism.

We therefore conclude that the mechanism of quasielas-
tic meson knockout from the nucleon cloud (with the
conversion M5 ! �0) is only weakly realized in the lon-
gitudinal cross section. At the same time, electroproduc-
tion through scalar f0 meson exchange could be connected
to another—diffractive—mechanism [see Fig. 2(a)]. It
seems that in this case the couplings �f0� for different
f0 mesons must be such that their total contribution to the
longitudinal part �L is equivalent to the contribution of the
diffractive mechanism. However, as seen from the results
displayed in Fig. 5 the total contribution of five f0 mesons,
further enhanced because of interference with the other
mesons f2, a0, and a2 of positive parity (curves with long-
dashed lines in Fig. 5), is not enough to reproduce the data
on �L.

The mismatch of theory with data on �L is perhaps
connected with the fact that for all five f0 mesons we use
a universal �f0� constant g�f0� justified only for the

radiative decay widths of the lightest scalars f0ð980Þ !
�0 þ � and �0 ! �þ �. The value used here g�f0� ¼
0:25 corresponds to a typical scale of electromagnetic
interactions of the f0 meson interpreted as a weakly bound
molecular K �K state [in the case of f0ð980Þ] [22,29] or as
coupled channel state � ��þ q �q with a dominant � �� com-
ponent [in the case of the � ¼ f0ð600Þ] [39]. Then there
must be further scalar states with the q �q component as the
dominant one. In many studies (see, e.g. [23,29,34,40,41])
the heavy scalar mesons f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ
are interpreted as either q �q 3P0 states or as a mixed state

including an additional glueball GJ, J ¼ 0 with mass
�1:7 GeV according to lattice calculations [42].

In the classification of the scalar mesons we follow the
SUð3ÞF �Oð3Þ scheme of Table I. We adopt the view that
the lowest scalar nonet [�ð600Þ, f0ð980Þ, a0ð980Þ, and
�ð800Þ] is described by four-quark (antiquark) S-wave
configurations q2 �q2 which are strongly coupled to the
open 2�, 2K, and �K channels. For the lowest-lying 3P0

nonet of the q �q system we use the scalar states with their
masses close to the averaged mass of the other 3PJ¼1;2

nonets [i.e. to the masses of f1ð1285Þ, f01ð1420Þ, f2ð1270Þ,
f02ð1525Þ, . . ., etc.]. Since the 3P0 nonet can accommodate

only two isoscalar-scalar f0 configurations only two of the
three observed resonances, f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ, can be described as quarkonium states. In this
case we follow the view [41] that these f0 states result from
the mixing of two scalar-isoscalar q �q states and an addi-
tional isosingulet glueball configuration predicted to reside
in this mass regime. It should be noted that our final results
for the �L and d�L=dt cross sections are not very sensitive
to the detailed mixing scheme residing in this f0 sector.
Out of the three mesons f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ
we may take any two and treat them in the meson exchange
diagrams as if they were quarkonium states. Here, for
simplicity, we take the two lowest scalars f0ð1370Þ and
f0ð1500Þ.
An estimate of the radiative decays of 3P0 quarkonia

states done in Refs. [22,23] shows that the decay width
f0 ! �0 þ � is rather large with �f0!�� ¼ 125 KeV as-

suming a mass of Mf0 ¼ 0:98 GeV. This means that the

coupling constant should have the value g�f0� ¼ 1:3, i.e.

about 5 times larger than the value used in the calculations.
Starting with this alternative estimate of the coupling
constant we recalculated the cross sections �L and �T

substituting for the cases of f0ð1370Þ and f0ð1500Þ the
value g�f0� ¼ 1:3 instead of g�f0� ¼ 0:25. Here we sup-
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FIG. 6. The same results as in Fig. 5 but with an enhanced �f0� coupling (g�f0� ¼ 1:3) for the two scalar mesons f0ð1370Þ and
f0ð1500Þ [and for a0ð1450Þ we use the common rule (41): g�a0� ¼ 1

3g�f0�].
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pose that the true quarkonia states lie above�1:2–1:3 GeV
[and thus f0ð980Þ is not a 3P0 quarkonium state], but the

behavior of the quarkonia wave function at the origin
R �qqðr ! 0Þ (which defines the value of g�f0�) does not

change significantly if the mass of the q �q system used in
calculation of the f0 ! �0� branching will increase from
0.98 to 1.4–1.5 GeV.

In Fig. 6 we present the results of this recalculation (the
notations are the same as in Fig. 5). The influence of the
change of couplings on �T is negligible, consistent with a
relatively small contribution of f0 exchanges to �T . At the
same time the longitudinal cross section �L is increased
considerably and now theoretical curves shown in Fig. 6
are in good agreement with the data [1] within experimen-
tal errors.

Recall that the CLAS data at xB ¼ 0:31 and 0.38 corre-
spond to invariant energies W mostly above the resonance
region (W ffi 2–2:2 GeV). At lower energies (i.e. at xB ¼
0:45 and 0.52 in the CLAS data) theoretical predictions
failed to explain the data (Fig. 7). It is possible that the
enhancements of the cross sections observed in the region
W ffi 1:95–2 GeV (this region corresponds to Q2 ffi
2:4–2:6 GeV2=c2 at fixed xB ¼ 0:45 in Fig. 7) are consis-
tent with some high-mass baryon resonances. A similar
enhancement is also seen in �T at xB ¼ 0:38 near Q2 ffi
1:7–1:8 GeV2=c2 (i.e. near W � 1:95 GeV), but unfortu-
nately the experimental uncertainties (especially for �L)
are too large in this region. It is interesting to note that our
theoretical curves represented in Fig. 7 for all the kine-
matical region of the CLAS experiment are well correlated
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FIG. 7. Longitudinal (left panel) and transverse (right panel) cross sections of �0 electroproduction. The last CLAS data [1] for
xB ¼ 0:31, 0.38, 0.45, and 0.52 are shown in comparison to the theoretical curves. Solid lines correspond to the quasielastic knockout
mechanism in which we take into account the full sum of exchange diagrams for intermediate mesons listed in Table I. The results [1]
obtained on the basis of a Regge model of Refs. [13–16] are also shown for comparison (dotted lines).
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(with only one exception for �L at xB ¼ 0:31) with the
theoretical curves of Ref. [1] obtained on the basis of a
Regge model [13–16].

The new published CLAS data at electron beam energy
Ee ¼ 5:754 GeV with full information on differential
cross sections [2] allow a more detailed test of our results.
In the region of quasielastic knockout jt� tminj &
ð0:2–0:3Þ GeV2=c2 these results can be considered as pre-
dictions and can be used in the analysis of differential cross
sections. In Fig. 8 we show the results for d�Tðt;W;Q2Þ=dt
and d�Lðt;W;Q2Þ=dt calculated in the kinematics above
the resonance region (W ¼ 2–2:4 GeV, Q2 ¼
1:9–2:2 GeV2=c2) using enhanced values for g�f0� as

done for the satisfactory description of �L;T (Figs. 6 and

7). The transverse cross section d�T=dt largely depends on
the sign of the interference term between pseudoscalar-
and pseudovector-meson exchange contributions (the last
column of Table IV), and thus we show in Fig. 8 two cases:
destructive (solid lines) and constructive (dashed lines)
interference of the S5 and V5 contributions. As can be
seen from Fig. 8 the variant with destructive interference
correlates well with the CLAS data on both d�L=dt and
d�T=dt at small jtj close to the quasielastic knockout
region. For larger values of jtj * 1 GeV our prediction
underestimates the data, but this deviation may not greatly
change the integrated cross sections �L=T . For this reason,

our model predictions, originally fitted to the old CLAS
data on the integrated cross sections�L=T , also succeed in a

satisfactory description of the new data on d�L=T=dt [2].

The full analysis of the new CLAS data [2] will be
presented in its own right in a separate forthcoming paper.
The analysis of this new high-precision experimental in-
formation in terms of the above model could clarify the
role of scalar mesons in the �0 electroproduction and,
finally, could give definite constraints on the free parame-
ters of the effective Lagrangians: coupling constants and
form factors.
We also should comment on the possible role of the

‘‘noncorrelated’’ two-pion exchange mechanism not con-
sidered here. The explicit contribution of the three-pion
box diagram to the �0 photoproduction was studied in
Ref. [10] (note that the meson exchange parameters used
in Ref. [10] are practically the same as in the present
model). The calculations performed for values of E� ¼
2:8, 3.28, 3.55, and 3.82 GeV showed that the contribution
of this mechanism to the differential cross section becomes
comparable to other contributions only for the very for-
ward and backward angles, e.g. for jtj &
0:1–0:2 GeV2=c2. Recall that the threshold value of t ¼
t0min for the � photoproduction is very small (jt0minj � 0)
when compared to the electroproduction threshold value

tQmin at Q2 * 1:5–2 GeV2=c2 (e.g., values of jtQminj *
0:2–0:4 GeV2=c2 are characteristic of the CLAS kinemat-
ics as can be seen from Fig. 8). Based on the results of
Ref. [10] we therefore think that the noncorrelated two-
pion exchange does not significantly change our results at
jtj * 0:2–0:4 obtained for the CLAS kinematics with

jtQminj * 0:2–0:4 GeV2=c2. But we also plan to perform
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FIG. 8. Differential cross sections d�L=dt (top panel) and d�T=dt (bottom panel) averaged over intervals 0:28< xB < 0:34 (left
panel) and 0:34< xB < 0:40 (right panel) at 1:9<Q2 < 2:2 GeV2=c2 calculated for the same values of g�f0� as used in Figs. 6 and 7.

Comparison with the latest CLAS data [2] for the respective experimental bins: the solid and dashed lines represent the results of
calculations for the cases of destructive and constructive interference between contributions of pseudoscalar (S5) and pseudovector
(V5) mesons, respectively (the destructive interference corresponds to the inverse sign of expressions in the last column of Table IV).
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an exact evaluation of the 2� contribution to d�L=T=dt in a
full analysis of the new CLAS data.
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APPENDIX: COEFFICIENTS AT, BT, CT, AND DT

The coefficients A, B, C, D, and E in Eqs. (52) and (54)
are polynomials in Q, t, and W. In particular, the coeffi-
cients AT , BT , CT , andDT which are rather lengthy and not

shown in Table III can be written in the form:

AT ¼ X4
n¼�2

�
Q

mN

�
n
anð�; �s; �tÞ;

BT ¼ X4
n¼�2

�
Q

mN

�
n
bnð�; �s; �tÞ; . . . ;

(A1)

where the coefficients an; bn; . . . are polynomials in three
dimensionsless variables:

� ¼ �t

4m2
N

; �s ¼ pq

mNQ
¼ Q

2mNxB
;

�t ¼ kq

mNQ
¼ Q

2mN

þM2
� � t

2mNQ
:

(A2)

Here we use the standard designation for Bjorken’s vari-

able xB ¼ Q2

2pq and introduce relative values �� ¼ mN

M�
and

�f ¼ mN

Mf
to simplify formulas. In terms of these variables

the polynomials an, bn, cn, and dn for n ¼ �2;�1; . . . ; 4
take the form:

a�2 ¼ � 64

9
�2ð�þ 1Þð4��2

f þ 1Þ2; b�2 ¼ 64

9
�2

��
2ð�þ 1Þð4��2

f þ 1Þ2; c�2 ¼ 0; d�2 ¼ 0; (A3)

a�1 ¼ 256

9
�ð8�2ð�þ 1Þ�4

f þ 6�ð�þ 1Þ�2
f þ �þ 1Þ�t;

b�1 ¼ � 32

9
�t�ð4��2

f þ 1Þf4½8�ð�þ 1Þ�2
� þ �þ 1��2

f þ 8ð�þ 1Þ�2
� � 3g;

c�1 ¼ 128

3
�ð4��2

f þ 1Þ�t; d�1 ¼ � 64

3
�ð4��2

f þ 1Þ�t;

(A4)

a0 ¼ � 512

3
�4

f�
2
t �

2ð�þ 1Þ � 128

9
�2

f�½�12��sð�s � �tÞ þ �2
t ð6�þ 9Þ þ 8�ð�þ 1Þ�

� 16

9
ð�24��sð�s � �tÞ þ �2

t ð16þ �� 9�2Þ þ 16�ð�þ 1ÞÞ;

b0 ¼ 256

9
�4

f�ð�þ 1Þ½4�ð5�2
t þ 2�Þ�2

� þ 3�2
t þ 2�� þ 128

9
�2

ff�2�2 � �2
t �þ 6�2

��½�2��2
s þ 3��t�s

þ ð2�þ 3Þ�2
t þ 2�ð�þ 1Þ� þ �þ 2�2

t g þ 4

9
f9��2

t � 75�2
t � 24�þ 4�2

�½�24��2
s þ 36��t�s

þ ð�9�2 þ 4�þ 16Þ�2
t þ 16�ð�þ 1Þ�g;

c0 ¼ � 64

3
ð8�ð�2

t þ �Þ�2
f þ ð3�2�2

� þ 7Þ�2
t þ 2�Þ;

d0 ¼ 128

3
�2

f�½��2
���tð2�s � �tÞ þ 2ð�2

t þ �Þ� þ 32

3
½7�2

t þ 2�þ ��2
��tð�2�s þ 3��t þ �tÞ�; (A5)
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