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TeV scale inverse seesaw model in SO(10) and leptonic nonunitarity effects
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We show that a TeV scale inverse seesaw model for neutrino masses can be realized within the

framework of a supersymmetric SO(10) model consistent with gauge coupling unification and observed
neutrino masses and mixing. We present our expectations for nonunitarity effects in the leptonic mixing
matrix, some of which are observable at future neutrino factories as well as the next generation searches
for lepton flavor violating processes such as u — e + . The model has TeV scale Wy and Z’' bosons

which are accessible at the Large Hadron Collider.
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I. INTRODUCTION

A precise understanding of the origin of observed neu-
trino masses and mixing is one of the major goals of
particle physics right now. A simple paradigm for under-
standing the smallness of the masses is the seesaw mecha-
nism [ 1], where one introduces three standard model (SM)
singlet right-handed (RH) neutrinos with Majorana masses
My, which mix with left-handed (LH) ones via the Yukawa
coupling LHN. The resulting formula for light neutrino
masses is given by M, = —M,My'MT, where M, is the
Dirac neutrino mass. Since the SM does not restrict the
Majorana mass My, we could choose this to be much larger
than the weak scale, thereby providing a natural way to
understand the tiny neutrino masses. This is called the
type I seesaw mechanism. There are several variations of
this mechanism where one replaces the RH neutrino by
either a SM triplet Higgs field (type II seesaw mechanism)
[2] or a SM triplet of fermions (called type III seesaw
mechanism) [3]. A great deal of attention has been devoted
to testing these ideas. As far as the type I seesaw mecha-
nism is concerned, the prospects of testing this depends on
the scale My as well as any associated physics that comes
with it at that scale. It can be accessible to current and
future collider experiments if the scale is not far above a
TeV. A different way to test the type I seesaw mechanism
follows from the observation that this mechanism involves
the mixing of the LH neutrinos with SM singlet heavy
neutrinos, as a result of which there would, in general, be
violation of unitarity of the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) mixing matrix that describes only the
mixing of the three light neutrinos. One could contemplate
searching for such effects in oscillation experiments [4].
However, in the type I seesaw case, the resulting mixing

effects are of order 22, and since neutrino masses are in the
My

sub-eV range, such nonunitarity effects are too small to be
observable for generic high scale seesaw models. This
would also be true with TeV mass RH neutrinos unless
there are cancellations to get small neutrino masses from
large Dirac masses using symmetries (see, for example,
cases in [5]). We note that the nonunitarity effects also
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exist in the type III seesaw case but not in the type II case
even though they have other interesting effects such as
lepton flavor violation (LFV) processes [6].

Since the testability of the seesaw mechanism is inti-
mately related to the magnitude of the seesaw scale, a key
question of interest is whether there could be any theoreti-
cal guidelines for the seesaw scale. In such a case, the
searches for seesaw effects in experiments could then be
used to test the nature of physics beyond the standard
model. It is well known that [7] the simplest grand unified
theory (GUT) realizations of the seesaw mechanism are
based on the SO(10) group which automatically predicts
the existence of the RH neutrinos (along with the SM
fermions) required by the seesaw mechanism. An advan-
tage of GUT embedding of the seesaw mechanism is that
the constraints of GUT symmetry tends to relate the Dirac
neutrino mass M, to the charged fermion masses, thereby
making a prediction for the seesaw scale M from obser-
vations. For type I seesaw GUT embedding, typical values
for the My are very high (in the range of 10'°-10'* GeV).
This makes both the collider and nonunitarity probes of the
seesaw mechanism impossible. The key feature that leads
to such restrictions in the type I seesaw case is the close
link between the B — L-breaking RH neutrino mass and
the smallness of the LH neutrino masses.

A completely different realization of the seesaw mecha-
nism is the so-called inverse seesaw mechanism [8], where
instead of one set of three SM singlet fermions, one in-
troduces two sets of them, N;, S; (i =1, 2, 3). In the
context of SO(10) models, since one of the two sets can
be identified with the SM singlet neutrino in the SO(10) 16
representation containing matter, the other would have to
be a separate set of three SO(10) singlet fermions. Because
of the existence of the second set of singlet fermions [and
perhaps additional gauge symmetries, e.g., SO(10)], the
neutrino mass formula in these models has the form

m, = MpMy' w(My)~'M}, = FuF" ()

where u breaks the lepton number. Because of the pres-
ence of this new mass scale in this theory, the seesaw scale
My can be very close to a TeV even for “large” Dirac
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masses. This makes the tests of this possibility in colliders
much more feasible. In fact, it has recently been argued
that [9] the inverse seesaw scenario can also lead to non-
negligible nonunitarity effects which can be accessible at
the future long-baseline neutrino oscillation experiments.
There are also significant LFV effects in these models, as
noted many years ago in Ref. [10]. These possibilities have
generated a great deal of interest in the inverse seesaw
models in recent days [11]. Our effort in this paper focuses
on possible grand unification of inverse seesaw models.
Similar unification studies have been performed in
Ref. [12], but the nonunitarity issues have not been
addressed.

An interesting question is whether such models are
necessarily compatible with grand unification when the
seesaw scale is in the TeV range, and if so, what kind of
nonunitarity effects they predict. We find that it is indeed
possible to embed the TeV scale inverse seesaw models
within a simple SO(10) framework consistent with gauge
coupling unification and realistic fermion masses. The
SO(10) symmetry helps to reduce the number of parame-
ters in the inverse seesaw matrix, once we require degen-
eracy of the TeV scale RH neutrinos to have successful
resonant leptogenesis. Within this set of assumptions, we
present our expectations for the nonunitarity effects as well
as consequences for lepton flavor violation, which are in
the testable range in future experiments.

This paper is organized as follows: In Sec. II, we de-
scribe the general framework of the inverse seesaw model
and its embedding into a generic supersymmetric SO(10)
theory. In Sec. III, we analyze the nonunitarity predictions
of the inverse seesaw model. In Sec. IV, we investigate a
specific SO(10)-breaking chain and obtain the gauge cou-
pling unification with TeV scale left-right symmetry with a
unification scale consistent with proton decay bounds. In
Sec. V, we analyze the renormalization group (RG) evolu-
tion of the Yukawa couplings and obtain the running
masses for quarks and leptons at the unification scale to
check that our model leads to realistic fermion masses. In
Sec. VI, we determine the Dirac neutrino mass matrix
using the results of Sec. V. In Sec. VII, we study the
implication of our model on nonunitarity effects and its
phenomenological consequences. A brief summary of the
results is presented in Sec. VIII. In Appendix A, we have
given the expressions for the masses of the SO(10) Higgs
multiplets in our model, and in Appendix B, we have
derived the RG equations for the quark and lepton masses
and the Cabibbo-Kobayashi-Maskawa (CKM) mixing ele-
ments in the context of a supersymmetric left-right model.

II. THE INVERSE SEESAW MODEL

The inverse seesaw scheme was originally suggested [8]
for theories which lack the representation required to im-
plement the canonical seesaw mechanism, such as the
superstring models. As noted in the Introduction, the im-
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plementation of the inverse seesaw mechanism requires the
addition of three extra SM gauge singlets S; coupled to the
RH neutrinos N, through the lepton number conserving
couplings of the type NS, while the traditional RH neutrino
Majorana mass term is forbidden by extra symmetries. The
lepton number is broken only by the self-coupling term
wS?. The mass part of the neutrino sector Lagrangian in the
flavor basis is given by

L ass = (PMpN + NMyS + He.) + SuS,  (2)

where w is a complex symmetric 3 X 3 matrix (with
dimension of mass), and M, and My are generic 3 X 3
complex matrices representing the Dirac mass terms in the
v-N and N-S sectors, respectively. In the basis {», N, S},
the 9 X 9 neutrino mass matrix becomes

0 M, 0
M, =M, 0 My 3)
0 My n

The LH neutrinos can be made very light (sub-eV scale), as
required by the oscillation data, even for a low My, much
smaller than the unification scale (M, << M), provided w
is sufficiently small, u << My, as the lepton-number-
breaking scale w is decoupled from the RH neutrino
mass scale. Assuming u < MD < My (with My ~
TeV), the structure of the light neutrino Majorana mass
term at the leading order in MMy is given by Eq. (1),
where F = MMy is a complex 3 X 3 matrix. We note
that in the limit x4 — 0, which corresponds to the unbroken
lepton number, we have massless LH neutrinos as in the
SM. In reality, a small nonvanishing p can be viewed as a
slight breaking of a global U(1) symmetry; hence, the
smallness of w is natural, in the ’t Hooft sense [13], even
though there is no dynamical understanding of this
smallness.

The generic form of the inverse seesaw matrix in Eq. (3)
has more parameters than the usual type I seesaw mecha-
nism. However, if we embed this theory into a grand
unified theory such as SO(10), that will help in reducing
the parameters as we show below. In order to embed the
inverse seesaw mechanism into a generic SO(10) theory,
we have to break the B — L symmetry by using a 16 ® 16
pair rather than the 126 & 126 pair of the Higgs represen-
tation. All the SM fermions are accommodated in a single
16 representation of SO(10), and we use three copies of
16} for three generations. For each of them, we add a
gauge singlet fermion 1% to play the role of S;. We assume
more than one copy of 105 Higgs multiplets in order to
have a realistic fermionic spectrum.

The SO(10) invariant renormalizable Yukawa superpo-
tential is given by

Wy = he 167167106, + £, 16515165 + ;151 (4)

After the B — L symmetry breaking, we get the neutrino
mass matrix in Eq. (3) with M = hv, and My = fupg,
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where v, is the vacuum expectation value (VEV) of one (or
a linear combination) of the 10;’s and v the VEV of the
16, In a typical TeV scale scenario with v, ~ 100 GeV
(electroweak scale) and vp ~ TeV, assuming p K v, <
Ug, we find the lightest neutrino mass from Eq. (1) in a one
generation theory to be

hvu>2
m, = u|— 5
v M( Fon &)
and the two other heavy eigenstates with mass of order
fvg. Thus, we can get sub-eV light neutrino mass for o ~
keV. Since this is a supersymmetric theory, such small
values do not receive radiative corrections and keep the
model natural. In the following section, we consider three
generations which then result in the nonunitarity effect.

It is important to note that in our model, we do not need
to impose a discrete R parity to our matter fermions, unlike
the usual 16, SO(10) models discussed in the literature, in
order to prevent fast proton decay via dimension-4 opera-
tors of the type ﬁ 1616716516 bgcause these operators
are already suppressed by a factor % ~ 107" for a low-
scale B — L breaking with (16,,) ~ TeV.

III. NONUNITARITY EFFECTS

The 3 X 3 light neutrino mass matrix in Eq. (1) can be
diagonalized by a unitary transformation:

Utm,U* = i, = diag(m,, m,, m3), (6)

where U is the standard PMNS matrix. Since the above
diagonalization of m, does not diagonalize the matrices
My and u, there will be off-diagonal mixing between the
different light neutrinos even after diagonalization of m,
due to their mixing with the heavy neutrinos. In other
words, in the basis where the charged-lepton mass matrix
is diagonal, U is only a part of the full mixing matrix
responsible for neutrino oscillations. We have to examine
the full 9 X 9 unitary matrix V which diagonalizes the
mass matrix M, given by Eq. (3):

ViM,V* = M, = diag(m;, my, my,)

(i, k=1223). @)
We can decompose V into the blocks
Vixs V3><6)
V= . 8
(v v ®

Then the upper-left sub-block V3 will represent the full
(nonunitary) PMNS mixing matrix. For a TeV scale My
and a reasonably small wu, it is sufficient to consider only
up to the leading order in F. Then the new PMNS matrix
becomes [14]

N =Vis=(1—IFFHU. )

In the commonly used parametrization [15], N = (1 —
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1)U, and hence, all the nonunitarity effects are determined
by the Hermitian matrix 7 = %F Ft which depends only on
the mass ratio F = M My,' and not on the parametrization
of the PMNS matrix.

The LH neutrinos entering the charged-current interac-
tions of the SM now become superpositions of the nine
mass eigenstates (#;, N;, N;), and at the leading order in F,

v=Np+ KP, (10)

\Yhel;e K = V3><6 = (O) F)VGXG and P = (Nl) NZJ N3: Nl;
N,, N3). Then the charged-current Lagrangian in the mass
basis is given by

‘ECC = — l_L')/’U'VW; + H.c.

2

~ —

=~ ILy* (N + KP)W, + H.c. (11)

ol 2

This mixing between the doublet and singlet components
in the charged-current sector has several important phe-
nomenological consequences, as listed below:
(1) The flavor and mass eigenstates of the LH neutrinos
are now connected by a nonunitary mixing matrix
N = (1 — n)U, where the nonunitarity effects en-
tering different neutrino oscillation channels are
measured by the parameter 7. In particular, the
CP-violating effects in the leptonic sector will
now be governed by the PMNS matrix N instead
of U through the Jarlskog invariant [16]
JZB =Im(N ;N g N, *ﬁi), (12)
where the indices « # 3 run over e, u, and 7, while
i # j can be 1, 2, and 3. In the standard PMNS
parametrization of U by the three mixing angles
0;; and the Dirac CP phase &, one can expand
Eq. (12) up to second order in 7m,5 and s13 =
sinf3 (assuming those to be small) to obtain

Jig=J+AJ,, (13)

where the first term governs the CP-violating effects
in the unitary limit and the second term gives the
contribution coming from the nonunitarity effect:

J= C12€%3023S12S13323 sind, (14)
Ap== 3 (0 Uy U UsyUp
y=emT
+ Ny Uaily;UsUpi
+ Moy UaiUpi Uy U,

Note that the unitary term J vanishes if either 5,3 —
0 or 6 — 0. However, AJZB depends on the off-
diagonal elements of 7 (generally complex) and
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does not necessarily vanish even if both 5,3 and &
are zero; in fact, it might even dominate the
CP-violating effects in the leptonic sector.

(2) The heavy neutrinos N; and N, entering the charged-
current sector can also mediate the rare lepton de-
cays, [, — l5y. Hence, unlike in the canonical see-
saw model where this contribution is suppressed by
the light neutrino masses [17], in this case it is
constrained mainly by the ratio F = M;,My'. The
LFV decays mediated by these heavy neutrinos have

branching ratios [10]
oy 5%ym]

256 M3, T,

6 m2
s

izzl ai B M%/V

where I, is the total decay width of [, and the
function I(x) is defined by

BR(, — lgy) =

2
X , (16)

203 +5x2 — x B 3x3 Inx

1) =~ A1 -2 20 -2F

A7

For degenerate RH neutrino masses, a reasonable
assumption inspired by resonant leptogenesis [18],
the amplitude is proportional to (KXKT), g~
(FF1), p» and hence, for sizable F and a TeV scale
RH sector, one could expect appreciable rates in
the LFV channels. On the other hand, in the con-
ventional type I seesaw model, one has approxi-
mately KXK' = O(m,My"), and therefore, the
branching ratio BR(l,, — lgy) = O(m2) is strongly
suppressed.

(3) The heavy neutrinos N; and N; also couple to the
gauge sector of the SM and can be produced on
shell, if kinematically accessible, at hadron colliders
via the gauge boson exchange diagrams. Because of
their pseudo-Dirac nature, the striking lepton num-
ber violating LHC signature of the fine-tuned type I
and type III scenarios, namely pp — I3[ + jets,
will be suppressed for heavy Majorana states due to
cancellation between the graphs with internal lines
of the N and N types which have opposite
CP-quantum numbers. However, the LFV processes
are insensitive to this effect and one can expect to
get observable signals at the LHC. The most dis-
tinctive signature would be the observation of LFV
processes involving three charged leptons in the
final state plus missing energy, ie. pp—
l:;'l;;’l; v(v) + jets [19].

Thus we see that the phenomenology of the inverse
seesaw mechanism depends crucially on the mass ratio
F = MpMy'. As noted earlier, we can choose the RH
neutrino masses to be degenerate (with eigenvalue my),
inspired by resonant leptogenesis. So we are left with a
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single mass parameter my, together with the Dirac mass
matrix Mp and the arbitrary small mass parameter u. In
what follows, we explicitly determine the form of M, in
the context of a realistic supersymmetric SO(10) model
and then use the present experimental bounds on the ele-
ments of the nonunitary parameter | | to get a lower bound
on the RH neutrino mass scale my. Finally, we fit the
observed LH neutrino mass and mixing parameters by
the inverse seesaw formula to determine the structure of
. We then study the phenomenological consequences of
our results.

IV. EMBEDDING THE INVERSE SEESAW
MECHANISM IN REALISTIC SO(10) GUT

As we have mentioned earlier, in order to embed the
inverse seesaw mechanism into a supersymmetric SO(10)
theory, we have to break the B — L symmetry by using a
16 ® 16 pair rather than a 126 ® 126 pair of the Higgs
representation. In this context, there are two symmetry-
breaking chains that are particularly interesting:

(i) SO(10)253,2, 2,15, 253,2,1,(MSSM)' 2"
3.2,1,(SM)=%3,1 [20],

(i) SO(10)7%3.2,2¢15 53,2, 1;, 15 1~
3,2, 1,(MSSM) 25732, 1,(SM)=%3,1,, [21],

where, as an example of our notation, 3, means SU(3)... In
this paper, we consider only the former (and simpler) case
of the SO(10)-breaking chain. It was shown in Ref. [20]
that it is possible to obtain the gauge coupling unification
in this model with a low-energy (TeV scale) SU(2)g
symmetry-breaking scale Mpy. However, they considered
only one 104 Higgs field which contains only a single
bidoublet [corresponding to the (1, 2, 2, 0) representation
of 3.2, 2x15_;]. Getting a realistic fermion mass spectrum
in this model is difficult (see, however, some recent ideas
[22] on how this could be done). Instead, we consider a
model with two 10, at the TeV scale. This requires that we
reexamine the unification issue with two Higgs bidoublets.
We show that we not only obtain the gauge coupling
unification at a scale consistent with the proton decay
bounds, but also successfully reproduce the observed fer-
mion masses and mixing.

To study the running of the gauge couplings and the
possibility of their unification at a scale M; ~ 10'® GeV,
we divide the whole energy range (M, M) into three
parts, according to the above-mentioned symmetry-
breaking chain:

(1) First, we have the well-known SM from the weak
scale M, to the SUSY-breaking scale Mgygy (Which,
for practical purposes, we assume to be a little higher
than M).

(i) Then we have the minimal supersymmetric standard

model (MSSM) from Mgygy to the B — L-breaking
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scale My (which is assumed to be of order TeV, so
that it is of interest for colliders).
(iii) Finally, we have the supersymmetric left-right
(SUSYLR) model from Mj, to the unification scale
Mg (expected to be around 10'6 GeV).
The running of the gauge couplings at one-loop level is
determined by the RG equation

dCYi bi 2 ¢~ —1( ~ bi (/‘22)
= _—q; 4 = a; + —In[ =)

ding 22% O a; (f) = a; () o 7
(18)
where «; = %, [ is the energy scale, and the b,’s are the

coefficients of the one-loop B functions. The SM and
MSSM g functions are well known [23]:
41 19 33
e (110 ) g - (21,3)
NTI e 5
(19)
where i stands for 1y, 2;, and 3., respectively. Before

calculating the S functions for the SUSYLR model, let
us first discuss the particle content of this model.

A. Particle content of the SUSYLR model

Here we consider only the doublet implementation of the
SUSYLR model [24]; i.e. we use SU(2) doublets of the
16, Higgs field to break the B — L symmetry. In order to
keep the model general, we allow for an arbitrary number
of these doublet fields, to be denoted by n; and ng,
respectively, for SU(2); and SU(2)r doublets. Likewise,
we have n;y bidoublets of the 10 Higgs field which, on
acquiring VEVs, give masses to the fermions through
Yukawa couplings. We also allow for an arbitrary number
ng of singlet fields S¢. This is the minimal set of particles
in a generic SUSYLR model.

However, it turns out that, with this minimal set of
particles, it is not possible to obtain the gauge coupling
unification at a scale higher than ~10'> GeV as required
from current bounds on the proton decay lifetime, 7, =
10** yr [25]. As we show later in Sec. IV B, unification is
possible only after adding the contribution from the color
triplets [(3, 1, %) + c.c.], which come from the 45, repre-
sentation of the Higgs at the unification scale M. It is
justified in Appendix A that it is indeed possible to have
these color triplets at the TeV scale, while all the other
Higgs multiplets are still naturally heavy at the GUT scale.

The particle content and their representations under the
3.2;2;15_; gauge group are summarized in Table I
Following the notation of Ref. [24], the SU(2) doublets
and bidoublets are represented as

o=(i) o=(4) en( )

Other doublet pairs can be written in a similar way as the
(Q, Q°) pair. The charges of the fields must obey the
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relation
B—-L

Q=1 +1; + (20)

B. Gauge coupling unification

The B function for a general supersymmetric model is
given by [23]

bRVSY = 2n, — 3N + T(Sy) (21)

for n, generations of fermions, the gauge group SU(N),
and the complex Higgs representation parametrized by
T(Sy). For the U(1) gauge group, N = 0 in Eq. (21) and
the gauge coupling is normalized as usual. For the particle
content given by Table I, the Higgs contributions in our
SUSYLR model are explicitly given by

Ty, = ny + ny,

T3c = 1’

Thr = nyo + npg, 22)
and TB*L =4+ %(I’ZL + nR).

Hence for three fermion generations, we find the B8 func-
tions for our SUSYLR model to be
biSUSYLR = (10 + %nL + %nR, N+ np, ng + ng, —2),
(23)
where i stands for 15_;, 2;, 2k, and 3., respectively. Using
these B functions, we can now obtain the running of gauge

couplings up to the scale M, knowing the initial values at
fi = M [26],

ayy(My) = 0.016829 *+ 0.000017,
ay (Mz) = 0.033493%5.000042,

a3 (M) = 0.118 = 0.003,

TABLE I. The representations of the particles under the
3.2;2x15_; gauge group in the doublet SUSYLR model. Here
a=1,...,n9 p=1...,n,, gq=1...,nz and a=
1,...,ng. The B— L quantum numbers given here are not

GUT renormalized; to do so, we multiply by a factor of ‘/%
(not \/g as mentioned in Ref. [24]).

Multiplet SU(3), SUQ2), SU2)x Ul)g_1
0 3 2 1 +1/3
Q¢ 3 1 2 -1/3
L 1 2 1 -1
L¢ 1 1 2 +1
X» 1 2 1 +1
X5 1 1 2 -1
X» 1 2 1 -1
X 1 1 2 +1
D, 1 2 2 0
S« 1 1 1 0
5 3 1 1 +4/3
5 3 1 1 —4/3
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FIG. 1 (color online). Gauge coupling unification in the
SUSYLR model. We have used n;g =2, ny =0, ngp =2,
Mgysy = 300 GeV, and My = 1 TeV. As the running behavior
is mostly controlled by the SUSYLR sector, the values of Mqysy
and My can be relaxed a little bit, still preserving unification.
However, it should be emphasized that the choice of the number
of bidoublets and doublets is the only possible choice consistent
with both gauge coupling unification and realistic fermion
masses. Increasing njy, or n;, or changing ny in either way,
will spoil the unification, and as already noted, reducing n;o will
not give us a realistic fermion mass spectrum.

and the matching condition [27] at ji = My where the
U(1)y-gauge coupling gets merged into SU(2)g X
U(Dp-r:

ay} (Mp) = a5 (Mg) + 2a5!, (Mp). (24)

For numerical purposes, we assume Mgysy = 300 GeV
and Mp = 1 TeV. Also, we take the number of Higgs
bidoublets, 1, = 2. However, the number of Higgs dou-
blets can be arbitrary, and we vary these parameters to get
the unification. As shown in Fig. 1, we achieve the gauge
unification for n; = 0 and np = 2, with the unification
scale parameters

Mg=4Xx10"° GeV and aj'(Mg)=20.3. (25)

Note the asymmetry between n; and np. We show in
Appendix A that since the VEV of the 45, Higgs breaks D
parity and decouples it from the SU(2)g-breaking scale
[28], it is possible to have only the right-handed doublets
and no left-handed ones below the GUT scale. This leads to
the asymmetry between a,; and a,g, with Z—fi =~ 1.3 in our

case.

V. RG EVOLUTION OF THE FERMION MASSES
AND MIXING

The RG evolution of the fermion masses and mixing has
been extensively studied for both the SM and the MSSM
cases [29], but not for the SUSYLR model, even though the
analytical expressions for the Yukawa couplings have al-
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ready been derived in Ref. [24]. Here we present a detailed
RG analysis in our SUSYLR model and obtain the quark
and lepton masses and the CKM matrix elements at the
unification scale M.

The superpotential relevant for the RG evolution of the
Yukawa couplings in the SUSYLR model is given by [24]

W D ihuQTTzq)aQC + l‘h;LTTZ(I)aLC + i)\aqu;Tzq)uXZ
+ i)_tapq/?£7-2q)a/?g + /“Lgabsa Tr(CDZTZCDbTZ)
+ipk,SCLT Ty x, + ink,SYL ) x5, (26)

where we have suppressed the generational and SU(2)
indices. Also, we have ignored all nonrenormalizable
terms in the superpotential, as their contributions to the
renormalization group equations (RGEs) are suppressed by
Mpy /M. We note that the superpotential given by Eq. (26)
has two additional terms of the form SLy and SL€x¢ (as
required by the inverse seesaw model) as compared to that
given in Ref. [24]. Also, note that since the &, & fields do
not couple to any of the matter fields, they do not affect the
renormalization group running except through their effect
on the color gauge coupling evolution.

We have seen from the previous section that the gauge
coupling unification requires that we take two SU(2)g
doublets and no SU(2); doublets from the Higgs fields.
Hence, dropping the y, y terms from the superpotential of
Eq. (26), we have

W D ih, 0", ®,0° + ik, LT7,® L + ipk, S L 7, x5

+ ud, St TH( D 7, D7), @7)
where a = 1,2; g = 1,2; and @ = 1, 2, 3, corresponding
to the two bidoublets, two RH doublets, and three fermion
singlets, respectively.

The RGEs for the Yukawa couplings h, and %/, in
Eq. (27) are given by (with t = Inf)

dh, 16
16772W = ha[Zhlhb - gg% — 3¢5, — 385
1
— gng,L] + hy[Te(3h} b, + MY RL)
+2h h, + 4w 1)) (28)
dh, 3
1678 = | 20 h, — 363, — 363~ 5651 ]

+ Wy [Tr(3hfh, + RTRL) + 201 R,
+ 4l uD)p + (W) guky80a)  (29)

where the repeated indices are summed over and a, b = 1,
2, g=1,2; and a = 1, 2, 3, corresponding to the two
Higgs bidoublets, two SU(2)y doublets, and three fermion
singlets, respectively. Note that we have an additional
contribution to the RGE of the lepton Yukawa coupling
h!, as compared to those given in Ref. [24] which comes
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from the Sy“L¢ term in the superpotential. Note also the
presence of the h; terms in the second line in both the
Yukawa runnings even for a # b, which are characteristic
of left-right models and are absent in the case of the
MSSM, arising from the Higgs self-energy effects.

The fermion masses arise through the Yukawa couplings
h, and h], when the two Higgs bidoublets ®;, acquire
VEVs. In general, a linear combination of z; and h, will
give masses to the up-type quarks, and similarly different
linear combinations for the other masses. The dynamics of
the superpotential can be chosen in such a way that the
bidoublets acquire VEVs in the following simple manner:

I /0 O
@)=—7(y o) 60

1 fv;, O
-5l )
and we identify the ratio v,/v,; = tan8 (MSSM) with

1’”5 + vfl = 246 GeV. For numerical purposes, we use

tanB(MSSM) = 10. To obtain the RGEs for the mass
matrices, we choose the most frequently used renormal-
ization scheme [29], where the Yukawa couplings and the
Higgs VEVs run separately. The RGEs for the Higgs VEVs
are obtained from the gauge and scalar self-energy contri-
butions:

PHYSICAL REVIEW D 81, 013001 (2010)

dv 3 3
167720,—: = vdl:ig%L + zg%R = TrGhlhy + K'Y

- 4(u‘£*u$)n]. (32)

Using Egs. (28) and (29) for fza, h’a and Egs. (31) and (32)
for v,, v,;, we have derived the RGEs for the physical
fermion masses and the quark mixing in our SUSYLR
model in Appendix B. Using the initial values for the
mass and mixing parameters at g = M, [26],

m, (M) = 2.337042 MeV,

m.(Mz) = 677738 MeV,

m,(M,) = 181 = 13 GeV,

my(My) = 469759 MeV,

my(My) = 93.47118 MeV,

my(Mz) = 3.00 = 0.11 GeV,

m,(Mz) = 0.486 84727 = 0.000000 14 MeV,
m, (M) = 102.751 38 = 0.00033 MeV,

m (M) = 1.746 6913:55039 GeV,

dv, 3 3
167 — = vul:i 851+ 5 8%~ Tr(3hih, + B hb)
and with the quark-sector mixing parameters
—4(u® u?) ] 31) 01 =13.04° £0.05°, 65 =0201°+0.011°, 0,5 =
fa faln 2.38° +0.06°, and 8,3 = 1.20 = 0.08,
|
C12C13 ' S12€13 ' s3e 100
Vexm(Mz) = | —s12¢03 — C12523513€1613 C12€23 — 5125235139’5']3 §23€13
S12823 = C1p€23813€ 03 —cpasy3 — S1pCa3si3e®s exses
0.9742 0.2256 0.0013 — 0.0033i
= | —0.2255 — 0.0001i 0.9734 0.0415 ,
0.0081 — 0.0032; —0.0407 — 0.0007{ 0.9991

and the SM and MSSM Yukawa RGEs [29], we numerically solve the SUSYLR RGEs given in Appendix B to obtain the
running quark and lepton masses and the CKM matrix elements at the unification scale Mg:

m,(Mg) = 0.0017 GeV,
m,(Mg) = 0.0263 GeV,

m,(Mg) = 0.1910 GeV,
0.9793

m,(Mg) = 77.8035 GeV;
m,(Mg) = 0.0004 GeV,
0.2023 + 0.0018i

md(Mg) = 0.0013 GCV,
m,(Mg) = 0.0911 GeV,
0.0005 — 0.0057i

m,(Mg) = 1.7096 GeV Vekm(Mg) = | —0.2023 + 0.0016i 0.9791 0.0240 (33)
0.0044 — 0.0056i  —0.0236 — 0.0013; 0.9997
|
We also have a mild running for tang with tanB(Ms) = 7 my ms, md 1
from tanB(My) = 10. — =1 —5 = 3, — g (34)
n; ny mg

Figure 2 shows the running of the quark and charged-

lepton masses up to the unification scale M. Note that we
are able to generate the fermion mass spectrum at the GUT
scale with

Figure 3 shows the running of the CKM elements involving
the third generation. Note that in addition to the significant
running for the third-generation CKM elements V., .p, 14,155
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FIG. 2 (color online). Running of fermion masses to the GUT
scale in our model for Mgysy = 300 GeV and My = 1 TeV.
Note the b — 7 unification which is a generic feature of GUT
models.
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FIG. 3 (color online). Running of the CKM mixing elements
involving the third generation to the GUT scale in our model for
Mgysy = 300 GeV and My = 1 TeV. The running of other
CKM elements, being small, is not shown here.

we have a relatively milder running for the other elements
as well [cf. Eq. (33)], even in the third-generation domi-
nance approximation. This is a characteristic of the left-
right model, in contrast to the MSSM case where in the
third-generation dominance, the first- and second-
generation elements do not run at the one-loop level.

VI. THE DIRAC MASS FOR NEUTRINOS IN A
SPECIFIC SO(10) MODEL

As discussed in Sec. I, in order to implement the inverse
seesaw mechanism, we have to use the class of SO(10)
models in which the B — L subgroup is broken by a 16; &
16, pair. We also need at least two 10,; and a 45, to have a
realistic fermion spectrum. With this minimum set of

PHYSICAL REVIEW D 81, 013001 (2010)

Higgs multiplets {10, 16, 16, 45}, several SO(10)
models have been constructed [30]. All these models re-
quire various dimension-5 operators to get the right fer-
mion masses: In principle, they are also present in our
hy;
model. However, most of them, e.g. ﬁ16,-16j16H16H, are
suppressed by the factor %—]’)‘1 ~ 1071, as the 16, Higgs
acquires only TeV scale VEVs. The only other dimension-
5 operator that can make a significant contribution to

. . hl .
fermion masses is 5/ 16,16,10,45,; we assume its effects
to be small in our model and keep the dimension-6 operator

% 16,16,10,,45,,45,,. (35)

This operator is suppressed only by (Z—;Y ~ 1074, as the
45, acquires a VEV at the scale M and plays an important
role in the fermion mass fitting given below.

The fermion mass splitting is obtained by the completely
antisymmetric combination of the operator given by the
expression (35), i.e. in the notation of Ref. [31],

(2 |BT.T;L T, A AL D, 1) (36)

with B = [],=0aal’,, and [...] denoting the completely
antisymmetric combination. Here ® and A denote the
105 and 45, fields, respectively. When the following
VEVs are nonzero:

(®g 1) # 0, (A1p3456) # 0, (37)

this antisymmetric combination acts as an effective 126
operator which gives the mass relation m, = —3m, and
m, = —3m, due to the VEVs (A;;), while m, and m, are
split in the usual manner by the two 105 VEVSs, (¢q o)
To obtain a realistic fermion mass spectrum, we construct
the following model using the Higgs multiplets
{10y, 45, 54;;}. The SO(10) symmetry breaking to
3.2;2;15_; is obtained by a combination of the 45, and
54;;, with the following VEVs in an SU(5) basis:

(45) o diag(a, a, a, 0, 0),
(54) = diag(2a, 2a, 2a, 2a, 2a, 2a, —3a, —3a, —3a, —3a).
(38)

In this model, the fermion mass matrices at the GUT scale
have the following form:

M, =h,+ f,
Me:l/;d_:sf’

Mdzl;;d—i_.f’

s y (39)
D~ hu - 3f ,
where the £, , matrices come from the usual Yukawa terms
h;;16,16,10,(10};) and the f matrix comes from the 45
contribution given by the expression (35), where we have
assumed the same coupling for both the 10y fields. The
tildes denote the normalized couplings with mass dimen-
sions where the VEVs have been absorbed. We know the
nine eigenvalues of the quark and charged-lepton mass
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matrices at the scale M from our RG analysis in Sec. V;
however, we have 18 unknowns (for three Hermitian ma-
trices) to fit into Eq. (39). Hence a unique fit is not possible;
we just give here one sample fit that is consistent with all
the masses and mixing at the GUT scale obtained from the
RGEs.

We work in a basis in which the charged-lepton mass
matrix is diagonal, i.e.

m(Mg) 0 0

0 0 mT(MG)
0.0004 0 0
= ( 0 0.0911 0 ) GeV.
0 0 1.7096

This immediately implies from Eq. (39) that
ljld’,'j = 3f~ij’ YV i# ]
For simplicity, let us choose the f matrix to be diagonal.

Then Eq. (40) implies that /1, is also a diagonal matrix. We
also have the following relations:

l’;d,aa + faa = My, Ed,BB - 3f~,8,8 = mpg, 41)
|

(40)

0.0120

M, = VexmuMe 2 Vi, = (0.0384 +0.0103i

0.038 + 0.4433i

Then from Eq. (39) the /1, matrix is given by

0.0118
h, = (0.0384 +0.0103i
0.038 + 0.4433i

Hence the Dirac neutrino mass matrix is given by

0.0111
Mp = (0.0384 + 0.0103:
0.038 + 0.4433i

It may be noted here that even though the specific form of
the Dirac neutrino mass matrix may depend on the choice
of the particular basis we have chosen, the individual
values of the matrix elements are more or less fixed by
the up-type quark mass values, due to the mass relation
(39), and hence, do not depend on the basis so much.
Therefore, all the predictions of the model that follow
from the form of M, given by Eq. (45) will be independent
of the initial choice of our basis, up to a few percent.

VII. NONUNITARITY EFFECTS IN THE LEPTON
MIXING MATRIX

In this section we obtain the nonunitarity parameter 7
using the structure of the Dirac neutrino mass matrix

0.0384 — 0.0103:

1.8623 — 0.0002i

0.0384 — 0.0103i
0.2442
1.8623 — 0.0002i

0.0384 — 0.0103i
0.2928
1.8623 — 0.0002i

PHYSICAL REVIEW D 81, 013001 (2010)

where m, = (m,, m,, m;,) are the eigenvalues of M, and
mg = (m,, m,, m,) the eigenvalues of M,. These six equa-
tions (41) now fix the h,; and f matrices completely:

(3 (mg —m,) 0 0
f= 0 %(ms —m,) 0
0 0 T(my —m,)
[2.25 X 107 0 0
= 0 —0.0162 0 GeV,
\ 0 0 —0.0001
(%(3md + m,) 0 0
hy = 0 1@Bmy +m,) 0
0 0 13my, + m,)
0.0011 0 0
= 0 00425 0 GeV. (42)
\ 0 0 1.7093

The h, matrix can now be determined by fitting to M,,
which, in this basis, is given by

0.2280 1.8623 + 0.0002i

77.7569

0.038 — 0.4433i
) GeV. (43)

1.8623 + 0.0002i
77.757

0.038 — 0.4433i
GeV. (44)

1.8623 + 0.0002i
77.7573

0.038 — 0.4433i
) GeV. (45)

I
obtained in Eq. (45) and discuss the phenomenological
consequences of our results.

A. Bounds on ||

As discussed in Sec. III, the nonunitarity parameter is
given by

n=IFF' with F=MpMy'. (46)

For simplicity, choosing My to be diagonal, and motivated
by resonant leptogenesis, assuming degenerate eigenvalues
for My equal to my, we have

1

nz—zMDMD'

2my “7)
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With the form of M, derived in the last section after extrapolation to the weak scale, we can readily calculate the elements

of n:
1 GeV2 0.1 0.0412 — 0.4144;  1.5134 — 17.247i
n = 5 <0.0412 + 0.4144i 1.78 72.6794 — 0.0005i ) (48)
My 1.5134 + 17.247i  72.6794 + 0.0005i 3024.93

This is to be compared with the present bounds on |7; jl (at
the 90% C.L.) [32]:

[

present these results in Table I1. It appears that |7, " | values
are all accessible to the future uw — e + 7y searches. The
largest value of |7 MTl in this table may also be accessible to

20x1072 35X107 80X 107 neutrino oscillation experiments, preferably with short
-5 —4 -3 ’
Il <] 3.5X% 107 8.0 X 107 5.1 X 107 (49) baselines (L = 100 k).
80X 1073 51X1073% 27x1073

This gives a lower bound on the mass of the RH neutrino:
my = 1.06 TeV, (50)

which should be kinematically accessible at the LHC to be
produced on shell. Note that the right-handed neutrinos are
pseudo-Dirac fermions in our model (with a small
Majorana component), which is distinct from the type I
seesaw models where they are pure Majorana. As a result,
the like-sign dilepton final states which are the ‘““smoking
gun” collider signals of the type I seesaw mechanism are
suppressed in our model; however, the trilepton signals can
be used in this case for testing these models [19].

With this lower bound on my, we get the following
improved bounds on | 7,4l

17,.] < 8.9 % 1078,
17,,] < 1.5 % 1075,

17, <3.7X 1077,

[ <1.6X1075  (51)

17
19,,,] < 6.5 X 1075,

At least one of these bounds, namely |7, |, is reachable at
future neutrino factories from the improved branching ratio
of w — ey down to 107'8 [33]. Similar sensitivities are
also reachable in the PRISM/PRIME project [34]. We note
that relaxing the condition of degenerate RH neutrinos but
fitting the neutrino masses affects the values of 7,z; we
|

0.2244 — 0.0063i

—1.5934 + 0.0283i
M=
—0.0044 + 0.0092i

0.2244 — 0.0063i
—0.0322 + 0.0012i
0.0006 — 0.0013i

B. Fitting the neutrino oscillation data

The structure of the small mass parameter u can be
obtained using the inverse seesaw formula, Eq. (1):

pw=F'm,(F")~, (52)
where m,, is diagonalized by the new PMNS matrix N =
(I — m)U instead of U in Eq. (6):

m, = N, NT. (53)

The form of U is obtained from the standard PMNS
parametrization using the 2¢ results from neutrino oscil-
lation data [35]:

Amd = 7.67(110013) X 1073 eV?,
AmZy, = 2.39(110443) X 1073 eV?,
sin?6;, = 0.312(173138),

sin?6,; = 0.466(179:22).

(54)

Here we assume 63 = 0. Now using the form of 7 ob-
tained in Eq. (48) and taking my = 1.1 TeV for its lower
bound value, we get the new PMNS matrix N = (1 —
1)U. For illustration, let us assume normal hierarchy for
neutrino masses with m; = 1073 eV. Then we obtain from
Eq. (52)

—0.0044 + 0.0092i
0.0006 — 0.0013i

) GeV. (55)
40X 1073 +5.1 X 1073

TABLE II.  Predictions for the nonunitarity parameter |1,/ for the above choice of parameters
in the model including RH neutrino masses (given in GeVs).

le mNg mN3 |77€/.L| |77€T| |77;1,T|

1100 1100 1100 3.7 X 1077 1.5X 1073 6.5 X 1073
100 100 1100 7.9 % 1077 1.6 X 1073 8.9 X 1075
50 50 1200 2.5% 1070 2.2 %1073 1.6 X 1074
30 30 2100 6.7 X 107 4.4 %1073 32 %X 1074
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C. CP-violation effects

The CP-violation effects due to nonunitarity are mea-
sured by the Jarlskog invariant AJ;’B given by Eq. (13).
Note that AZB is nonzero in our case, as 7 is a complex
matrix (the phases arising from the Dirac neutrino sector).
Using the values of 6;; obtained from neutrino oscillation
data given by Eqgs. (54) and the structure of 7 determined in
Eq. (48) with my = 1.1 TeV, we obtain the following
values for AJZB:

AJ2 = =24 %1075, (56)
AJB = =27 %1075, (57)
AJZ =27 %107, (58)
AJL =27 X107, (59)
AJ2 =71 %1076, (60)

and AJZ;, = AJ3, = —AJL = AJZ = AJ3l. Note that
these values are just 1 order of magnitude smaller than
the quark-sector value, Jegy = (3.0570:50) X 1075 [26],
and can be the dominant source of CP violation in the
leptonic sector for vanishing 6,5, thus leading to distinctive
CP-violating effects in neutrino oscillations [36,37]. For
instance, the transition probability for the “‘golden chan-
nel” v, — v, with nonunitarity effects is given by [36]

) Am% L
P, =4y, > + 4s§3c§3sm2<74El )
] C(Am3 L
— 4|m,.|sind ;. 59303 s1n< 2;51 ), (61)

where the last term is CP odd due to the phase §,, of
the element Nur which, in our model, is ~7 X 107°
[cf. Eq. (48)]. Hence, the CP-violating effects should be
pronounced for long-baseline neutrino factories.

D. LFV decay rates

Lepton flavor violating decays such as u — ey, 7—
ey,and 7 — w7y are often a signature of seesaw models for
neutrino masses. In this model, they can arise from the
nonunitarity effects and can be obtained using Eq. (16)
which, for degenerate RH neutrinos, becomes

32,5
Qyy Sy,

BR (I, — lgy) = — W Wl
(la = 15Y) = Ssg 2mi T,

>

m3\ |2
(Jcad)aﬁz(M—g)

w

(62)

with K = V344 and I(x) defined in Eq. (17). Now that we
know all the three 3 X 3 mass matrices entering the inverse
seesaw formula given by Eq. (3), we can easily determine
the structure of the full unitary matrix V by diagonalizing
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the 9 X 9 neutrino mass matrix M ,, and hence, we obtain

Vixe-

The total decay width I', entering Eq. (62) is given by
h/7,, where the mean lifetimes for u and 7 are, respec-
tively [26],

7, = (2.197019 = 0.000021) X 1076 sec,
7, = (290.6 = 1.0) X 1071 sec.

Using these values, we obtain the following branching
ratios for the rare LFV decays:

BR (u — ey) =3.5 X 10716, (63)
BR(r—ey)~1.1 X 1071, (64)
BR (7 — uy) =20 X 10" (65)

We have estimated the contribution to the u — e + vy
branching ratio from the off-diagonal Dirac Yukawa cou-
pling contribution to slepton masses and have found that
for universal scalar mass of 500 GeV and tanf = 5, it is
comparable to this value or less. Such values for the u —
ey branching ratio are accessible to future experiments
[33,34] capable of reaching sensitivities down to 10718
They can be used to test the model.

In our model we assume that squark and slepton masses
are above a TeV so that their contribution to the flavor
changing neutral current effects are negligible. The pre-
dictions for u — 3e and w — e conversion [38] for a TeV
scale slepton mass, as in our model, are much smaller than
what can be probed in planned experiments.

VIII. SUMMARY

In conclusion, we have presented a TeV scale realistic
inverse seesaw scenario that arises from a supersymmetric
SO(10) model consistent with gauge coupling unification
and a fermion mass spectrum. This required us to carry out
an extrapolation of quark masses and mixing to the GUT
scale with a TeV scale SUSYLR rather than a MSSM. This
appears to be the first time that such an extrapolation has
been carried out. Implementation of the inverse seesaw
mechanism within the SO(10) helps to reduce the number
of parameters, making the model predictive. We present
our expectations for the nonunitarity of the PMNS leptonic
mixing matrix with the choice of parameters and its other
phenomenological consequences. The heavy RH neutrinos
which are pseudo-Dirac fermions have TeV scale mass and
can be produced in colliders, thus giving rise to distinctive
signatures. We also give our predictions (with our choice of
parameters) for the nonunitarity contribution to the branch-
ing ratios for the rare LFV decays of muons and taus. The
model can also be tested by the production of Wy and Z'
bosons which are at the TeV scale. Of these, the branching
ratio u — e + vy could be testable in future experiments.
Some of the elements of the nonunitarity matrix || pre-
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dicted by our model may be accessible to the next-
generation neutrino factories too.
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APPENDIX A: MASSES OF THE SO(10) HIGGS
MULTIPLETS

As discussed in Sec. IV B, we obtain the gauge coupling
unification at an acceptable scale only after including the
contribution from the color triplets &(3,1, 1, + %),
53,1, 1, — 3. This pair of Higgs fields is contained in
the 45 representation of the Higgs in a generic SO(10)
model. However, in principle, there could be other light
gauge multiplets of 45 and/or 54 that might contribute to
the gauge coupling running as well. Here we argue that in a
generic SO(10) model with only 45, and 54 representa-
tions of the Higgs (apart from the essential 105 and 16y), it
is possible to have only the §’s as light states (TeV scale),
whereas all the other states are very heavy at the GUT scale
and, hence, do not contribute to the RG running. It turns out
that we need to have at least two 45y s in our model in
order to have these light color triplets.

The most general Higgs superpotential with two
A =45’s and an E = 54 Higgs field is given by

WH = %mlAz + %m/lA/Z + %mQEz + /\1E3 + )l2EA2

+ MEA”? + ;EAA/ (A1)

where we have absorbed the AA’ term by a redefinition of
the fields. The Higgs fields A, A’, and E contain three
directions of singlets (with A and A’ VEVs parallel) under
the SM subgroup 3,.2;1y [39]. The corresponding VEVs
are defined by

(E) = EE,

2 2
(A= 4aA, (A= AlA]
i=1 i=1

(A2)

where in the notation of Ref. [39], the unit directions A,-
and E in the Y-diagonal basis are given by

A=A = —[78 +90] = A1,

A, = Aﬁiﬁ,fi) =7_[12+34+56] = A},
E= EEH?;_\/__( 2 X [12 + 34 + 56]

+ 3 X [78 +90])), (A3)

where the upper and lower indices denote the 3,2;1, and
4.2, 2, quantum numbers, respectively. The unit directions
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in Eq. (A2) satisfy the orthonormality relations

AAi'AAjzaij and E'EZI (A4)

The superpotential of Eq. (A1) calculated at the VEVs in
Eq. (A2) is given by

Wi = S (AR + LA + Lol + 4, (B
+ Aa(ENAY + MUENAD + Ay(EXAXA)

1 1 1
A gy [A,(3A% — 2A2)
2J_ 2J_
+ /\’2(3A’12 — 2A’22) + A3(3A1A] — 2A,A%)] (AS)

using the definitions in Eqs. (A3) and the orthonormality
relations given by Egs. (A4). The VEVs are determined by
the minimization of the superpotential with respect to the
fields:

o oa o =0 @e

dA|" 0A," 0A|" 0AL OE

This yields a set of five equations for A, A,, A}, A}, and E:

3 3
0=mA, + —=MEA, + —= \EA’,
Art g B T A
2 2
0=mA, — —=MEA, — ——= \EA),
1412 \/T—S' 2 2 2\/13 3 2
3 3
— I Al 2 / ! 2
0= m1A2 - \/?AZEAZ - TB/\}EAQ,
1
0 = myE + —=[3A,E? + \,(3A% — 242
my z\ﬁg[ 1 2( 1 2)
+ N(BAZ — 242) + A;(3A,4] — 24,40 (A7)

As in our model, the SO(10) symmetry is broken by the 45
and 54 VEVs to the 3.2;2;15_; gauge group at the scale
Mg, and we are interested in the 3.2;2x15_; symmetry
solutions [39]

A=A =0, A, # 0, A, # 0, E #0.
Hence it follows from Eqs. (A7) that
2ME - ME A , 2ME  MEA,
m; — = =, m) — =— .
LU V15 A bOVIS V15 4L
(A8)

In order to study the mass matrices, it is convenient to
decompose the Higgs representations under the SM gauge
group 3,.2;1y. In Table III we present the explicit decom-
positions of all the Higgs representations under the chain of
subgroups
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TABLE III. Decomposition of the 10, 16, 45, and 54 Higgs representations under the chain of subgroups 4.2;2r D 3.2;2;15_; D
3.2, 1y.
SO(IO) 40’ 2L’ 2R 3(,-3 ZL’ 2R’ 1B—L 3()7 ZL’ 1Y
10 1,2,2) (1,2,2,0) (1,2, x1)
6,1, 1) (,1,1,-3)(3,1,1,3) (3,1,-9 G 13
16 4.2 G219 121-1) (3.2 (1.2 -1
41,2 (G.1,2,-9 (,1,9)G1,—3%
(1,1,2, 1) 1,1,2) (1, 1, 0)
45 (1,1, 3) (1, 1,3,0) 1, L2 1, 1,0 (1L 1, =2)
(1,3, 1) (1,3, 1,0 (1,3,0)
(6,2,2) (3.22,-9) 32-9)3B2-3
(3,223 (3239 G2 -3
s, 1, D (LL1L,0)G3, 1,15 G 1,1, 1,1,0) (1,1,0) (3,1, 3,1, -9 (8 1,0)
54 (1, 1, 1) (1,1, 1,0) (1, 1,0
(1, 3,3) (1,3,3,0) (1,3,2) (1,3,0) (1,3, -2)
6,2,2) (3,22 -2 (3.2H(32 -3
(222 (.29 G2 -
(20,1, 1) 6,1,1,-9(6,1,1,9 (8,1, 1,0) (6,1,—3 (61,9 (8, 1,0)

4,2,2: 232,215, D 3,21,

Using the Clebsch-Gordan coefficients given in Ref. [39],
we obtain the masses of these multiplets as follows. The
basis designating columns (c) of the mass matrices is given
in the same way as in Table III, while rows (r) are desig-
nated by the corresponding complex conjugated 3.2;1y
multiplets.

First, we obtain the masses of the multiplet [(3, 1, %) +
c.c.] in the basis

L AG14/3) 2(3.1,4/3).
CrANS T P AGs L)

m, — 2hE _ ME
JYaEE . L5 JI5
4 ME ; _ 2ME
Ji5

. 2(B1,-4/3) 21(3,1,-4/3).
I A(15,1,1) ’A(15,1,1) >

s

CNE( R -
VA
using Eq. (A8). It is obvious that det(Mz) = 0, and hence,

one of the two eigenvalues is zero while the other eigen-
value is given by

ME (A, A
Tr(M;) = L(—Z + —f).
JI5\A4; A}

The zero eigenvalues (six in total) are easily identified as
the longitudinal Nambu-Goldstone modes as the SU(4),
gauge group breaks to SU(3), X U(1)z_; and they acquire
mass of order M by the usual Higgs mechanism once the
45, gets VEVs at the GUT scale. We keep the other six
eigenvalues given by Eq. (A10) at the TeV scale by fine-
tuning the coupling A;. In what follows, we explicitly
calculate the mass eigenvalues for all the other multiplets

(A9)

(A10)

given by Table III and show that it is possible to have only
the above six massive 0’s at the TeV scale while all the
other states of 45 and 54 are heavy at the GUT scale.

We note that once we assume A5 to be small, the effect of
the second 45, multiplet becomes negligible and we can
drop the primed terms in the superpotential as well. For
simplicity, we also assume that A, = E ~ M. Then the
VEV conditions given by Egs. (A7) yield

mle_ZE m22i<)\2_§,\]>' (A11)

Vis' V15 2

We list below the mass eigenvalues for all the multiplets
given in Table III.
(1) (1, 1, 0): We have three such states, and the mass
matrix is given by

L ALL0) A(LLO)  A(1L1,0).
c: A(1,1,3)’ A(15,1,1)’ E(1,1,1)’

L ALLO) A(LLO)  A(1LLO).
A3 Ausy Ears

3INLE 3NMA
3A0A " ;/\ 1\4/12_5 - \/2]3_5)\2E
WU mry
g (5% 0 0
——1 o 0 -2,
\/E 0 _Z)lz )\2 + %Al

So the mass eigenvalues are
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S5E
M(ll,l,()) = ﬁA2 F* 0,

E 3
(1,1,0) __
M =—=|(An+3A
2=l (e 3m)
3 2
+J(A2+§A1) +16/\§]¢0,
E 3
M(""O)=—|:</\ +—A)
3 2\/B 2 B 1

2
_ \/</\2 + %Al) + 16/\5] £0. (AI2)

(i1) [(1,1,2) + c.c.]: There is only one such multiplet,
and its mass is

. ~(1,1,2) . A(L1,-2)
c: A(1,1,3)’ r: A(1,1,3) R
3 5E (A13)
MWL) = + —— M E=-"=), # 0.
J15 15

(iii) [(3,2, — %) + c.c.]: There are two such multiplets,
and the mass matrix is

L 23273 AB2-9). L 2(2Y) AG2Y).
c:Ag2y  Egans 10 Aoy Egaa)s
ME LA MA,
( m Tt 2 7{)
_MAL _ MA + 3ME
2 2 T
_
_ ME 3 5

S\

with the eigenvalues

_ EA
M(B,zz, ) — 222 14 + \J14] # 0. (Al4)

2415

@iv) [(3,2, %) + c.c.]: There are two of them, and the
mass matrix is

CZA(3’2’]/3) E(3,2,1/3)_ - A(é,z,fl/.%) E(3,2,71/3),

622) =622 622)  *F622)
ME A AA
+ 2 241 __ A241)
my T 2 3276
LA, MoA, 4 3NE
2 % ™M

_ME(3

NZE] WY

with the same eigenvalues as the previous one:

EX
M = T2 (42141 # 0. (ALS)

2415
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(v) (1, 3, 0): There are also two of them, and the mass
matrix is

CIA(I’S’O) E’\(l,3,0), r A"(I,S,O) E’\(l,3,0),

(1,3,1Y ~(1,3,3)° (1,3,1 ~(1,3,3)°
3MLE
nm;y + 7—'125 )\2A1
)\2A1 my + %b:

_E (51 0
S JIS\N 0 A+ B )
So the mass eigenvalues are

5E
M0 = ), # 0,

V15
15

E
M“’3’0)=—</\ +—/\)¢o.
2 \/E 2 D) 1

(A16)

(vi) [(1,3,2) + c.c.]: There is only one such multiplet
whose eigenvalue is given by

L A(1,32) L A(1,3,-2)
c: E(1,3,3)’ I: E(1,3,3) R

9 E 15
M(l'?”z) =m, + 7A1E = 7<)L2 + 7A1) # 0.

J15 J15 2
(A17)

(vii) [(6,1, —3) + c.c.]: Its eigenvalue is

c: E(G'l’_4/3)

oo - E(6,1,4/3)

(20',1,1)°

MOL=43) = gy, — o ME

V15

E 15
=—(A——A/)#0 Al8
,-——15< 275 1) (A18)

unless A, = % Aq (which we assume not to be the

case).
(viii) (8, 1, 0): There are two of them, and the mass
matrix is

AL ABLO) . L AL ABLO) .
¢t AGsy Egoy AN 1y EQon

J%/\QAz my — 6\//\%5

E[ o NS

IS\ B -5

with the mass eigenvalues
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E 15\
(8,1,0) _

mBL0 — = () —2)
12 2\/15|:<2 2 ')

15 \2 )
+ <A2 — 7A1) + 90/\2] # 0,

(A19)

Thus we see that all the other multiplets have nonzero
masses, and moreover, all these masses are of order E ~
M. Hence, none of these multiplets will contribute to the
running of the gauge coupling up to the unification scale
M except the color triplets since these color triplets have
masses of order of the SUSY-breaking scale.

Note that the 10,-Higgs field also has a color triplet pair
[(3.1, —3) + c.c.] under the SM gauge group, apart from
the TeV scale bidoublet fields @, , used in the SUSYLR
model in Sec. IV which reduce to (1, 2, =1) under the SM
gauge group. At the GUT scale, the H = 104 field inter-
acts with the E = 54, field by the following term in the
superpotential:

Wy = im;H? + A;EH2. (A20)

After the 545 acquires a VEV, this gives rise to the color
triplet mass

. A(3.1,-2/3) . 5(3,1,2/3)
c: H(6,1’1) s I: H(6,1,1) s
MG/ = . — 2BE (A2
1, = ms ,
J15

while the doublet mass is

r A2

L a(12.10)
c: H (122)

1,2,1) — 3
(21 MO2D =+ \/;A3E.

(A22)

We see that the (1,2, +1) field can be made light by fine-
tuning m; + \/§A3E ~ TeV, which still leaves the (3, 1,2)
field heavy (of order M;).

Finally, let us discuss how only the right-handed doublet
fields (x¢, x°) from 16;-Higgs fields (¢ ) remain mass-
less at the GUT scale. Note that in the left-right language,
the fields in 16 are Qy(3,2,1,1) ® 05,(3,1,2, —1) and
x(1,2,1, —=1)® x°(1, 1,2, +1), and similarly for the
16, = ¢ field. The superpotential involving these fields
is

Wi =Mighuhy + APyAiy. (A23)

The second coupling has been worked out explicitly in
Ref. [40]. On substituting the VEV of the 45-Higgs field
(A), we get the following masses for the 0y(3,2,1,}) @
053, 1,2, =P and x(1,2,1, = 1) ® x“(1, 1,2, +1) fields:

PHYSICAL REVIEW D 81, 013001 (2010)
MQH,QH = M16 + )lAz, MQ;-IiQ;I = M16 - )\Az,

M,*:M16_3)\A2; M

X—X :M16+3AA2.

(A24)

Xc — /\71'

From this we see that to get only the y¢ fields light, we
have to fine-tune M,q + 3AA, ~ TeV. With this assump-
tion, all other fields remain heavy at the GUT scale.

APPENDIX B: RGES FOR FERMION MASSES AND
MIXING

Given the form of the bidoublet VEVs as in Eq. (30), it
immediately follows from the first two terms of the super-
potential Eq. (27) that the fermion mass matrices can be
written as

1 1
M, = —=v,h,, M, =—=vghy,
\/z 2 1 \/-2' d'1 (Bl)
1 1
M,=—=v b}, and Mp=-—=v,h.
N SN A

Henceforth, for clarity, we will denote the Yukawa cou-
plings as

]’ZUEI’ZQ, hDEhl, hEEI’l/, hNEhIZ

Then using Egs. (28), (29), (31), and (32), the RGE:s for the
fermion mass matrices can be written as

M 3
1672 = = MM[MJ,hU +2hknp, — Zcﬁ.‘”g%]

+ My tanB[Tr(3hLhy + hihy) + 20} hy,

+ %) (B2)
dM - M

1 2—d=M|:4T +2hfny — Y E9 2]+—“

61 dr d| 4hphp hyhy ch 8i tan3
X [Tr(3h,hp + hlhg) + 2hihy + C3],

(B3)

dM .
167~ < = Me[4h};hE + 2hlhy + CY - Zcﬁ’)gg]

Mp
+ @[TrGthD + hihg) + 2hlng

+ C3] (B4)
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1672 aMp

= MD[4thN +2hthy + CX — Z(’ff”g,?]

hihy) + 2hihy
(B5)

+ M, tanﬁ[Tr(3h;5hU +
+ Ch]

where C%, = 4(u2" 1), CX = (u") &gk, and for i =
3C’ 2L7 2R’ lB—Lv

égq)=<l6 33 1)

i 333
3°2°2°6 ¢ = (0___) ®6)

2°2°2

Note that the second line in Eq. (B3) and the second and
third lines in Egs. (B2), (B4), and (B5) are characteristic of
the left-right models, and do not appear in the MSSM.
Not all the parameters of the Yukawa matrices are
physical. Under an arbitrary unitary transformation on
the left (right)-handed fermion fields, JFpg —
L(R);F r) (Where F = U, D, E, N), the Yukawa matri-
ces undergo a bi-unitary transformation, hy — L fth},
and the charged current becomes off-diagonal, with the
CKM mixing matrix LUL};. We will also have a leptonic

d - : N
S W) = [LyLy, M7+

PHYSICAL REVIEW D 81, 013001 (2010)

counterpart of the CKM matrix that represents the mixing
between the charged lepton and the Dirac neutrino sector.
However, as the running of lepton masses is very mild and
we are working only to the one-loop order, we can safely
ignore this mixing in the leptonic sector. Moreover, if we
assume the CP phase in the Higgs VEV to be zero, then the
mass matrices are Hermitian and Ly = R, (manifest left-
right). Thus we may perform scale-dependent unitary
transformations L;(u) on the fermion bases so as to di-
agonalize the Yukawa matrices, and hence the mass ma-
trices, at each scale:

hi(p) = Lf'(M)hf(M)LT(M) and

My =L ()M, (M)L (), (B7)

where ﬁf and Mf denote the diagonalized Yukawa and
mass matrices, respectively.

The RGEs for the physically relevant quantities,
namely, the mass eigenvalues M ¢(u) and the scale-

LU(M)L££M), are
RGEs of Mj%(,u,)z

dependent CKM matrix Vegm(u) =
both  contained in the

L}(M)M f(,u)M}(M)L ()

[4;;%, LR - zcg%g]wg

1672 -
1 A [ 9 9 AN A A
+ re— BT Vaanhn Viho) + CHIVeruM Vi) + 2VeuMahp VigyhoM, + Hel  (B8)
d, . . i )
L) = [LpLh W) + 15[ 4y + 20 Zcﬁff@;]m@
1
+ — 167 PV tan ﬁ [{Tr(3VCKMhD CKMhU) + C }(Md CKMM VCKM) + 2MthVCKMhUM VCKM + H.c. ], (B9)
d - : . 1 [or o N )
5010 = [LyLL, = [4}@ + 2% + Re(CX) — Zcﬁ.l)g%]zMg, (B10)
—(MD> = [LyL}, - [4% + 272 + Re(CX) — zag»g,z]mz, B1D)

— dL

where [ = n

and Re(CX) denotes the real part of CX. The commutator [L fL e M> 7l has vanishing diagonal elements

because M2 is diagonal. Thus the RGEs for the mass eigenvalues m? follow 1mmed1ately from the diagonal entries of
Egs. (B8)- (Bl 1). Using the dominance of Yukawa couplings of the third generation over the first two, i.e.

h? > h2 > h, hi > h? > h2,

2 2 2
h2 > h2, > 2,

2 2 2
W > b, > h,

we obtain the following RGEs for the mass eigenvalues of the fermions:
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dm
lom? —2=~
T

1672 e <4h2 + 2K — Zc(‘” 2)m + tan B3IV, Phyh, + 1] Y IV, Pm,
j=d,s,b
s <4h2 +2n) — Y EPg )m, + tanBLGIVy |2 + 2hyh, + r IV, Pmy,
» dmy 2 2 Aq) 2 2 2
1672 T 4n3 + 202 = D C7¢ md+—[3|v,b| hyhy + 1] Y ViglPm
i Jj=u,ct
s <4h2 + 282 — ZC(‘” Z)mf - —[3|v,,,|2h,,h +r,] S 1,
Jj=u,ct
d
1672 ﬂ ~ (4h2 +on2 — Zc(‘” )m;, + —[(3|v,h|2 + 2 hyh, + 1V Pm,
(B12)
16m2 e o (4h2 + 21, - Zc@ )m
T <4h2 + 203+ - Zc(” 2)mﬂ,
T~ <4h2 + 2h2 +r - ZC(I) )mT,
(4 +212+ = Y CY 2)m
dm
o (4h,2V2 + 2K + 1 — C‘” )mNZ,
dmN 2 2 (1)
—= <4h +2h2 + ) — Zc >mN3,
|
where 7, = Re(C%) and r; = Re(CX). d - et —
The VEV RGEs, Egs. (31) and (32), for third-generation EVCKM =LyLp + LyLp = LyLyVexm = VexmloLp
dominance become d
or —Vap= 3 LoLPayVys = > VayLoLh)yp.
y=u,c,t y=d,s,b
dv, 3 3 B15
167 < [ngL g3~ 30— I, cg;], B15)

(B13)

dv, 3 3
16772?2 vdl:ig%L + 58%R = 3hy = h? = C(1D1i|-

(B14)

The RGE for the CKM matrix Vcegy = LUL p 1s given
by

PHYSICAL REVIEW D 81, 013001 (2010)

<4h5 +2h§—ZCW) )m + tan B3IV, Phyh, + 1] Y 1V, lPm,

j=d,s,b

However, the diagonal elements of L DLL, p are not de-
termined by Eqgs. (B8) and (B9). This is because Eq. (B7)
determines L p only up to right multiplication by a di-
agonal matrix of scale-dependent phases. These undeter-
mined phases contribute arbitrary imaginary functions to
the diagonal elements of L, DLZD’ p- But the off-diagonal
elements are unambiguously determined because they re-
ceive no contribution from the phases. We can, neverthe-
less, make the diagonal entries of LU’DL{], p» Which are
manifestly imaginary, vanish by an appropriate choice of
phases. With this choice of phases, we can then obtain the
RGEs for the CKM matrix elements using Eq. (B15):
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d . .
_Va,B = Z (LUL-[i-])ayVyﬁ - Z Vay(LDLI))yIB
dt y=thc.t y=d,s,b
y#Fa v#B
1 ( [ tan3 Aen ~ 4 mi+mi .
= Tr3VhpVihy) + r (VM VY, + — —2(VMZVT) ]V
1672 ’§'§" Mo — My D U q ay v?, m2 — m%/ av Jay |V yB
- v [—1 {TrBVhpVthy) + r JVIM, V), 5 + 4 my +m (Vimiv) ]) (B16)
y=d,s,b “ tanﬁ(m’y - mﬁ) 1 " 7R vlz, m%, - m% “ VB
v#B

As before, we use the third-generation dominance and get the following RGEs for V,z:

(VMdVT)uchd + (VMdVT)utth

d 4 N N
1675V = — tan IV Py, + ) |- S ARV, + VIV,
d

dt m, m;
1 s ViVIMV)q Vi (VIM, V), 4 f o oS
- —(3|th| hbht + rq) + - _z[Vus(V MuV)Sd + Vub(V MuV)bd]’
tan8 s my, v

(VMdVT)ucvcs + (VMdVT)utvts
m. my;
Vud(VTMuV)ds + Vub(VTMuV)bs]
ng my,

d 4 « n
167T2_Vus = tanB(3|th|2hbht + rq)l: :| - ?[(VMgVT)ucvcs + (VMtziVT)utVts]
d

dt

1
- m(ﬂvﬂzphhhz + ”q)[_

4 . N
= [V VI oy + Vi (VEITLV),,]
u

(VMdVT)ucVCb + (VMdVT)utth

m,. m;

d 4 - ~
167 -V, = — tan B3|V, Phyh, + rq)[ ] = [ (VMGV eV + (VMY Vi)
d

1
my tanS

A A 4 A ~
(3|th|2hbht + rq)[vud(VTMuv)db + VuS(VTMuV)sb] + ?[Vud(VTM%V)db + Vus(VTMﬁv)sb];
u

_ (VMdVT)cuVud + (VMdVT)Cthd

d 4 N ~
1675 Vg = — anfGIVaPhyh + )| |- S VRV + VDY)
d

m. m,
1 Ve (VIM,V)gy Ve (VIM,V) 4 . .
‘tanﬁ(3'V’b'2hbh’+rq)[ B bd]‘? [Veo(VINEV)yy + Vi (VHTV) 0],
s u

d VM V)WV VMV, V] 4 . .
1672 Ve = = a1V, Py + [ =Y Jeres WMV ] gyt v, + (Y0,
d

dt mc mt
1 s VeaVIM V)5 Vi (VIM, V), 4 f o f o
- _(3|th| hbht + rq) - + - _2[_Vcd(v Muv)ds + Vcb(V Muv)bs]’
tan8 my my, vy,

VMV Vi (VMGVD) eV

m. m,;

d 4 - .
167 -V, = — tan B3IV, [*hyhy + n,)[ ] — VMGV eV + (VIGV Vi
d

1 ~ A 4 A A
e anp GIViplPhph, + r)VeaVIMV) gy + Ve, (VIM, V)] + F[Vcd(VTMI%V)dh + Ve (VIMV) )
b u
d tanf N . 4 N N
167 = Vi == = GV Phyhy + r)UV MV Vg + VEGV D Vedd + S TVIEVD Vg + (VIGYD, V)
! d

1
- m(ﬂvszhbht + rq)[

V..(VIM, Vv v, (Vim v 4 . .
VMV Va VM )bd]——z[v,s(v*M%,V)mth(V*M%,vm],
UM

s my,
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_tanp

PHYSICAL REVIEW D 81, 013001 (2010)

d ~ - 4 N ~
167725‘/1‘3 _7(3|th|2hbhl + rq)[(VMdVT)tuVus + (VMdVT)tchs] + ?[(VMgivT)tuVus + (VM?IVT)tchs]
t d

1

VI V)as | Vie(VIML V)

- m@lvrblzhbht + rq)[

mg

tan

d
2 V., =~
167 : h =

1
my, tan B

We have presented the results for these RGEs, even though
they look quite messy, because we believe this is the first
time such an analysis has been carried out in the SUSYLR
model, and these analytical results at the one-loop level
may be useful later for future work in this direction.

In order to solve these mass and mixing RGEs numeri-
cally, we need to know the initial values for all the 23
variables (12 masses, 9 CKM elements, and 2 VEVs). We
know the experimental values at i = M, for all of them
except for the Dirac neutrino masses my,. We fix these
values by iterations using the GUT scale predicted values,
my. (M), which, in turn, are determined completely in
terms of the other fermion masses at the GUT scale in
SO(10) GUT models. Here we note that adjusting the GUT
scale values of my to fit the SO(10) model prediction does
not change the other fermion masses at this scale signifi-
cantly, even though they are all coupled equations, because
of the mild running of the neutrino masses. Hence the mass
and mixing values given in Egs. (33) can be considered as
generic and independent of the specific SO(10) model
chosen.

We also have the free parameters r, and r; correspond-
ing to the couplings u® and ,u,ﬁcq Assuming the couplings
M, to be the same, V a = 1, 2, 3, we have

2
T t *
Co, =g naw = 12(u® u®),, = 12 E wdud

c=1

CX = (u)bgmby = 3" )juf 1

4 ~ A
m, ] = S VUV V) + Vi (VI V)]

« - 4 « -
B (3|th|2hbht + rq)[(VMdV+)tuVub + (VMdVT)tcVCb] + F[(VMgV-r)tuVub + (VM?ZV‘r)tcVCb]
t d

~ ~ 4 ~ ~
GIVisPhyhy + r)Via(VIMV)ap + Vis(VIM V)] + = [Via(VIMEV )y + Vi (VIMEV) )
u

(B17)

|
Further assuming u&, = uy V a, b=1,2and pt" =
u; V g=1,2, we have

|2

rg =24 ugl? rp =06y,

where p 4 and u; can take values between 0 and 1 (for the
theory to remain perturbative).

For the running behavior shown in Fig. 2, we have
chosen ugy = 0.01 and w; = 0.46 (requiring b — 7 unifi-
cation) and the initial values of the Dirac neutrino masses

le (MR) = 00031 GeV, mNZ(MR) = 02825 GeV,
my, = 71.86 GeV

such that the masses evaluated at the GUT scale, my (M),
agree with those predicted by the specific SO(10) model
described in Sec. VI. For a consistency check, we note that
the SO(10) model predicted eigenvalues of M, given by
Eq. (45),

miye i = (0.0028, 0.2538, 77.8046) GeV,

agree quite well with those obtained from the RGEs,

m%?(MG) = (0.0028, 0.2538, 77.8106) GeV.
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