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We study 3-form auxiliary field formulation for chiral multiplets in the Wess-Zumino model. The

conventional auxiliary fields F and G are replaced by their Hodge duals K���� and H���� which are the

field strengths of the 3-form potential auxiliary fields G��� and F���. Even though duality trans-

formations connect these two formulations, there exist certain differences from the conventional

formulation. When boundary conditions are taken into account, the field equations in the 3-form

formulation are equivalent to the conventional ones, while our Lagrangian is not. We also show that

the new field strengths acquire generalized Chern-Simons terms. The O’Raifeartaigh mechanism works

for spontaneous supersymmetry breaking also in the 3-form auxiliary field formulation via the boundary

conditions on the 3-form auxiliary fields.
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I. INTRODUCTION

In this paper, we study the so-called 3-form potential
field formulation for chiral multiplets in four dimensions
(4D). This formulation was first given in [1] as a complex
3-form superfield. In that formulation, the ordinary scalar
and pseudoscalar auxiliary fields in the conventional chiral
multiplet ðA; B; �;F;GÞ [2,3] are replaced by 3-form po-
tential fields. This is easily understood by duality trans-
formations [4]; i.e., regarding the auxiliary fields ðF;GÞ as
‘‘zero-rank’’ field strengths, we perform duality transfor-
mations on them into their Hodge dual ðK����;H����Þ
that are the field strengths of third-rank tensor potential
fields: K�����þ4@½�G����, H�����þ4@½�F����.

The usage of alternative representations for auxiliary
fields is not limited to this formulation [1]. For example,
in [5,6], the D-auxiliary field in the conventional vector
multiplet is replaced by its Hodge dual field strengthH���.

Another example is N¼1 supergravity with two different
sets of minimal auxiliary fields [7,8]. Compared with the
old minimal set [7], there are certain differences in the new
minimal set [8], such as that chiral gauge invariance is
required for matter couplings. These examples show that a
new multiplet with new auxiliary fields is not necessarily
equivalent to the old multiplet.

Higher-rank tensor auxiliary fields may well be impor-
tant in the context of superstring [9]or D-brane theory [10].
For example, the Neveu-Schwarz sector in superstring
theory [9] generates the massless second-rank antisymmet-
ric tensor B�� as a moduli field, which is in conflict with

low-energy phenomenology. One way out [5,6] is to absorb
its field strength G��� into a third-rank tensor auxiliary

field C���, as a compensator making the latter massive.

In this paper, we study the 3-form auxiliary field for-
mulation first given in [1], and show certain differences
from, as well as similarities to, the Lagrangians and field

equations of the conventional system [2,3]. Even though a
superspace formulation has been given in [1], we give
explicit component Lagrangians within 4D. We show that
spontaneous supersymmetry breaking can occur, as in the
conventional O’Raifeartaigh mechanism [11]. There is no
analog of the so-called ‘‘F-linear term’’ in the 3-form
auxiliary field system, but the effect of this term is replaced
by an integration constant determined by an initial or a
boundary condition.

II. LAGRANGIAN AND TRANSFORMATION RULE

Consider the plural chiral multiplets ðAi;Bi;�i;
F���

i;G���
iÞ (i;j;���¼1;2;��� ;n), in the 3-form auxiliary

field formulation [1], where the latter two fields are auxil-
iary fields whose field strengths are Hodge dual to the
conventional auxiliary fields Gi and Fi, respectively:

K����
i�þ4@½�G����

i; H����
i�þ4@½�F����

i: (2.1)

As in the conventional case [2,3], we have the actions of
the kinetic terms IK�

R
d4xLK, mass terms Im�R

d4xLm,

and the cubic interaction terms Ig�
R
d4xLg, all with the

x-space component Lagrangians1:

LK��1

2
ð@�AiÞ2�1

2
ð@�BiÞ2þ1

2
ð ��i@6 �iÞ� 1

48
ðH½4�

iÞ2

� 1

48
ðK½4�

iÞ2; (2.2a)

Lm�þmij½FiAj�GiBj� 1
2ð ��i�jÞ�; (2.2b)

Lg�gijk
�
1

2
FiðAjAk�BjBkÞ�GiAjBk

�1

2
ð ��i�jÞAkþ i

2
ð ��i�5�

jÞBk

�
; (2.2c)

where mij ¼ mji, gijk ¼ gðijkÞ. These component

Lagrangians have not been given in [1]. In the ‘‘kinetic’’
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1We use the symbol [4] for the totally antisymmetric four-
indices, e.g., H½4� is equivalent to H����, in order to save space.
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term LK, the ðH½4�Þ2 and ðK½4�Þ2 terms carry no kinetic

energy, as is well known in 4D. The F and G fields [1] are
defined by2

Fi � þ 1

24
�����K����

i; Gi � þ 1

24
�����H����

i:

(2.3)

This symbolism facilitates the comparison with the con-
ventional formulation [2,3]. Note that the Lagrangians
linear in H½4� or K½4� with the constants ei and fi,

L eK � 1

24
ei�����K����

i ¼ eiFi;

LfH � 1

24
fi�����H����

i ¼ fiGi;

(2.4)

are total divergences, and do not affect field equations.
Each of our actions IK, Im, and Ig is invariant under

supersymmetry,

�QA
i¼þð ���iÞ; �QB

i¼þið ���5�
iÞ; (2.5a)

�Q�
i¼�ð���Þ@�Aiþ ið�5�

��Þ@�Bi� 1

24
ð�½4��ÞH½4�

i

� i

24
ð�5�

½4��ÞK½4�
i; (2.5b)

�QF���
i¼þð �������

iÞ; �QG���
i¼þið ���5�����

iÞ:
(2.5c)

Equations (2.5b) and (2.5c) can also be rewritten as

�Q�
i ¼ �ð���Þ@�Ai þ ið�5�

��Þ@�Bi þ �Fi � ið�5�ÞGi;

�QF
i ¼ �ð ��@6 �iÞ; �QG

i ¼ þið ���5@6 �iÞ; (2.6)

whose structures are parallel to the conventional formula-
tion [2,3].

The closure of gauge algebra is easily confirmed as
½�Qð�1Þ; �Qð�2Þ� ¼ �Pð	Þ for the translation operator

�Pð	Þ with the infinitesimal parameter 	��þ2ð ��1���2Þ.
Crucial identities employed to achieve the closure on F½3�
and G½3� are

ið ��1�5�½�j
�
�1ÞKj����


i � 0;

ið ��1�5�½�j
�
�1ÞHj����


i � 0:
(2.7)

III. FIELD EQUATIONS

Even though we have seen the similarity of the 3-form
auxiliary field formulation to the conventional one [2,3],
there are also certain differences, which we allude to now.
Most importantly, the field equations of the 3-form auxil-
iary fields of the total action Itot � IK þ Im þ Ig are

�Ltot

�F���
i ¼ �4�����@�

�
�L
�Gi

�

¼ �4�����@�½Gi �mijBj � gijkAjBk�
¼: 0; (3.1a)

�Ltot

�G���
i ¼ �4�����@�

�
�L
�Fi

�

¼ �4�����@�

�
Fi þmijAj

þ 1

2
gijkðAjAk � BjBkÞ

�
¼: 0; (3.1b)

where the symbol ¼: is for a field equation or a solution.
These field equations are one derivative higher than the
conventional F- and G-field equations [2,3], so that the set
of solutions for (3.1) is much larger than the conventional
set, in which only the quantity inside the square brackets is
zero. In fact, the most general solutions for (3.1) are

Gi �mijBj � gijkAjBk ¼: di;

Fi þmijAj þ 1
2g

ijkðAjAk � BjBkÞ ¼: ci;
(3.2)

where ci and di are real integration constants determined
by the initial or boundary conditions at jx�j ! 1. Note
that the absence of the Fi- or Gi-linear terms at the
Lagrangian level is compensated by the integration con-
stants ci and di in (3.2).
As for the A- and B-field equations, they are

@2�A
i þmijFj þ gijðFjAk �GjBkÞ � 1

2g
ijkð ��j�kÞ ¼: 0;

(3.3a)

@2�B
i �mijGj � gijkðFjBk þGjAkÞ þ i

2
gijkð ��j�5�

kÞ ¼: 0:

(3.3b)

We can eliminate the Fi and Gi fields using their general
solutions (3.2):

@2�A
i � ðm2ÞijAj � 1

2m
ijgjklðAlAm � BlBmÞ � gikjmjlðAkAl þ BkBlÞ � 1

2g
ikjgjlmAkðAlAm � BlBmÞ

� gikjgjlmBkAlBm þmijcj þ gijkðcjAk � djBkÞ � 1
2g

ijkð ��j�kÞ ¼: 0; (3.4a)

@2�B
i � ðm2ÞijBj �mijgjklAkBl þ gikjmjlBkAl � gikjmjlAkBl þ 1

2
gikjgjlmBkðAlAm � BlBmÞ

� gikjgjlmAkBmAl �mijdj � gijkðcjBk þ djAkÞ þ i

2
gijkð ��j�5�

kÞ ¼: 0: (3.4b)

In the conventional formulation [2,3], one can eliminate auxiliary fields by substituting their algebraic field equations
into the original Lagrangian. In the 3-form auxiliary field system, however, the ‘‘auxiliary’’ field equations (3.1) have

2Note that the potential F½3�
i (or G½3�

i) is parity even (or odd), and H½4�
i (or K½4�

i) is parity even (or odd), so that Gi (or Fi) is parity

odd (or even). Namely, the corresponding fields ðFi;GiÞ and ðG½3�
i; F½3�

iÞ flip parities because of the duality (2.3) with the � tensor.
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higher derivatives, so that such substitutions lead to erro-
neous results. Instead, what we can rely on is the consis-
tency of field equations (3.2) and (3.3) or (3.4).

This feature is also elucidated by rewriting our total
Lagrangian Ltot � LK þLm þLg

3:

Ltot ¼ �1
2ð@�AiÞ2 � 1

2ð@�BiÞ2 þ 1
2ð ��i@6 �iÞ þ 1

2m
ijð ��i�jÞ

þ 1
2½Fi þmijAj þ 1

2g
ijkðAjAk � BjBkÞ�2

þ 1
2ðGi �mijBj � gijkAjBkÞ2

� 1
2½mijAj þ 1

2g
ijkðAjAk � BjBkÞ�2

� 1
2ðmijBj þ gijkAjBkÞ2: (3.5)

The last two lines seem to correspond to the positive-
definite ‘‘potential’’

V � þ1
2½mijAj þ 1

2g
ijkðAjAk � BjBkÞ�2

þ 1
2ðmijBj þ gijkAjBkÞ2: (3.6)

However, this is not the case, because the variations of V by
the Ai and Bi fields do not yield the terms consistent with
their field equations (3.4). In fact, the ci- and di-dependent
terms in the latter are entirely absent in (3.6).

The second and third lines in (3.5) can be interpreted as
the ‘‘kinetic terms’’ for G½3� and F½3�, where their field

strengths now have generalized Chern-Simons (CS) terms:

~H����
i � þ4@½�F����

i

� �����½mijAj þ 1
2g

ijkðAjAk � BjBkÞ�; (3.7a)

~K����
i � þ4@½�G����

i þ �����ðmijBj þ gijkAjBkÞ:
(3.7b)

The first terms on the right-hand side are the unmodified
field strengths H½4�

i and K½4�
i. The remaining terms are

generalized CS terms, such that the Bianchi identities
vanish,modulo field strengths. In fact, due to their maximal
ranks, their Bianchi identities automatically vanish:

@½� ~H���
�
i � 0; @½� ~K���
�

i � 0: (3.8)

This feature again clarifies the incorrectness of the ‘‘elimi-
nation’’ of Fi or Gi in (3.5). This is because Fi and Gi are
not fundamental fields, and moreover the field redefinitions
of the fundamental fields F½3� and G½3� cannot absorb the

generalized CS terms in (3.7).
We have seen that the field equations (3.1) and (3.3) are

different from the conventional formulation [2,3], due to

(3.1) with derivatives. However, when the general solutions
(3.2) are considered, (3.2) and (3.4) are equivalent to the
conventional field equations [2,3]. The constant ci and di

correspond to the F- and G-linear Lagrangian terms in the
conventional formulation [2,3]. Despite this equivalence,
the difference at the Lagrangian level is caused by the
higher derivatives for the potential fields F½3� and G½3�.

IV. SPONTANEOUS SUPERSYMMETRY
BREAKING

We now consider possible spontaneous supersymmetry
breaking, using O’Raifeartaigh’s mechanism. We stress
that this was not discussed in [1]. First, (2.6) shows that
Fi and Gi

4 enter linearly in �Q�i. When they develop

nonzero vacuum expectation values, the �i field becomes
a Nambu-Goldstone boson. As in the conventional case
[2,3,11], we can use hFii � 0 as a criterion for parity-
preserving spontaneous supersymmetry breaking.
However, the difference is that we have to satisfy the field
equations (3.1) or (3.2) and (3.3), instead of ‘‘minimizing
the potential’’ (3.6).
Based upon this criterion, we mimic the conventional

O’Raifeartaigh mechanism for three chiral multiplets
[3,11]. We first put n ¼ 3, and impose the ansätze

m12 ¼ m21 � m � 0; g113 ¼ g131 ¼ g311 � g � 0

ðother gijk and mij are 0Þ;
c3 � c � 0; c1 ¼ c2 ¼ di ¼ 0: (4.1)

Accordingly, we have in (3.2) that

F1 ¼: �mA2 � gðA1A3 � B1B3Þ; (4.2a)

F2 ¼: �mA1; (4.2b)

F3 ¼: �1
2gA

2
1 þ 1

2gB
2
1 þ c; (4.2c)

G1 ¼: þmB2 þ gðA1B3 þ A3B1Þ; (4.2d)

G2 ¼: þmB1; (4.2e)

G3 ¼: þgA1B1: (4.2f)

Similarly to [11], F2, F3, and G2 cannot be simultaneously
zero, due to c � 0. In other words, c � 0 causes sponta-
neous supersymmetry breaking. This is because the linear
F orG terms are simply replaced by the initial or boundary
conditions with ci and di in (3.2).
The A- and B-field equations can be obtained from (3.4),

as

m2A1þgmA2A3þgmB2B3þ 1
2g

2A1ðA2
1�B2

1Þþg2A3ðA1A3�B1B3Þþg2A1B
2
1þg2A1B

2
3þg2A3B1B3�gcA1¼: 0; (4.3a)

m2A2þmgðA1A3�B1B3Þ¼: 0; m2B2þmgA1B3þmgA3B1¼: 0; (4.3b)

mgA1A2þgmB1B2þg2A1ðA1A3�B1B3Þþg2A1B1B3�g2A3B
2
1¼: 0; (4.3c)

mgB1A2�gmA1B2þg2ðA1A3�B1B3ÞB1�g2A2
1B3�g2A1A3B1¼: 0; (4.3d)

mgB1A2�mgA1B2þg2B1ðA1A3�B1B3Þ�g2A2
1B3�g2A1A3B1¼: 0: (4.3e)

4We use subscripts for i; j; . . . only in this section to avoid confusing expressions, such as ðA1Þ2.
3Although we use the same symbols Fi and Gi as in the conventional formulation, ours are defined by (2.3) with higher derivatives.
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The significant difference from the conventional case
[11] is that the crucial value c � 0 is not from the
Lagrangian, potential or action, but is an integration con-
stant determined at jx�j ! 1. Hence in the 3-form auxil-
iary system, spontaneous supersymmetry breaking is
controlled by the integration constants ci.

V. CONCLUDING REMARKS

We have studied the alternative field representations [1]
for the conventional auxiliary fields F and G for chiral
multiplets [2,3]. We used the field strengths H½4� and K½4�
for the third-rank potential fields F½3� and G½3�.

There are both differences and similarities between this
3-form auxiliary formulation [1] and the conventional one
[2,3]. The most important difference is that the field equa-
tions for the auxiliary fields F��� and G��� have one

derivative higher than the conventional ones [2]. The dif-
ference is also crystallized as the general solutions (3.2) to
(3.1) with ci and di determined by the initial or boundary
conditions at jx�j ! 1. These subtle and nontrivial fea-
tures are regarded as progress since [1].

Although the field equations (3.1) have higher deriva-
tives than the conventional ones [2,3], the general solutions
(3.2) to (3.1) combined with (3.4) are equivalent to the
conventional set. The terms (2.4) analogous to the conven-
tional ‘‘F- and G-linear terms’’ are total divergences in the

3-form auxiliary field system, while their roles are played
by the integration constants ci and di.
The 3-form auxiliary field formulation [1] uses the

maximal-rank field strengths in 4D. In our paper in 2006
[12], we have shown a vanishing cosmological constant
mechanism using maximal-rank tensors. Therefore, the 3-
form auxiliary field formulation may well be associated
also with the cosmological constant problem.
The situation with the constants ci and di determined by

initial conditions resembles the so-called ‘‘unimodular’’
(super)gravity [13,14] with the cosmological constant de-
termined as an initial condition. In our model, the integra-
tion constants ci and di determined at jx�j ! 1 control the
magnitudes of supersymmetry breaking. To our knowl-
edge, such a mechanism of supersymmetry breaking has
never been presented in the past.
Even though we have not introduced interactions with

other multiplets, such as that of supergravity, there is no
reason to believe that our system is entirely equivalent to
the conventional chiral multiplet [2,3]. This is analogous to
the newminimal auxiliary fields inN ¼ 1 supergravity [8].
We have seen lots of nontrivial features for the 3-form

auxiliary field formulation [1] for chiral multiplets [2,3].
These are also reflected in spontaneous supersymmetry
breaking mechanisms. Hence, it is naturally expected that
considerable nontrivial differences from the conventional
formulation [2,3] are yet to be uncovered in future studies.
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