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CENTRA, Departamento de Fı́sica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
and Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677-1848, USA

Madalena Lemos† and Miguel Marques‡

CENTRA, Departamento de Fı́sica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
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Recent numerical investigations have uncovered a surprising result: Reissner-Nordström-de Sitter black

holes are unstable for spacetime dimensions larger than 6. Here we prove the existence of such instability

analytically, and we compute the time scale in the near-extremal limit. We find very good agreement with

the previous numerical results. Our results may be helpful in shedding some light on the nature of the

instability.
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I. INTRODUCTION

In physics, stability of a given configuration (solution of
some set of equations), is a useful criterium for relevance
of that solution. Unstable configurations are likely not to be
realizable in practice, and represent an intermediate stage
in the evolution of the system. Nevertheless, the instability
itself is of great interest, since an understanding of the
mechanism behind it may help one to better grasp the
physics involved. In particular, it is of interest to be able
to predict which other systems display similar instabilities,
or even have a deeper understanding of the physics behind
the instability—Why is the system unstable? Is there some
fundamental principle behind the instability?

In general relativity, the Kerr family exhausts the black
hole solutions to the electro-vac Einstein equations. Kerr
black holes are stable, and can therefore describe astro-
physical objects. However, there are many instances of
instabilities afflicting objects with an event horizon, such
as the Gregory-Laflamme [1], the ultraspinning [2] or
superradiant instabilities [3] and other instabilities of
higher-dimensional black holes in alternative theories
[4,5] (for a review see Ref. [6]).

Konoplya and Zhidenko (hereafter KZ) recently studied
small perturbations in the vicinity of a charged black hole
in de Sitter background, a Reissner-Nordström-de Sitter
black hole (RNdS) [7]. Their (numerical) results show that
when the spacetime dimensionality D> 6, the spacetime
is unstable, provided the charge is larger than a given
threshold, determined by KZ for each D. Because the
results are so surprising (the mechanism behind it is not
yet understood), we set out to investigate this instability
and hopefully understand it better. Our results can be
summarized as follows: (i) we can prove analytically the
existence of unstable modes for charge Q higher than a

certain threshold; and (ii) in the near-extremal regime, we
are able to find an explicit solution for the unstable modes,
determining the instability time scale analytically. We hope
that our incursion in this topic helps to better understand
the physics at work.

II. EQUATIONS

This work focuses on the higher-dimensional RNdS
geometry, described by the line element

ds2 ¼ �fdt2 þ f�1dr2 þ r2d�2
n; (1)

where d�2
n is the line element of the n sphere and

f ¼ 1� �r2 � 2M

rn�1
þ Q2

r2n�2
: (2)

The background electric field is E0 ¼ q=rn, with q the
electric charge. The quantities M and Q are related to the
physical mass M and charge q of the black hole [8], and �
to the cosmological constant. The spacetime dimensional-
ity is D ¼ nþ 2.
The above geometry possesses three horizons: the black

hole Cauchy horizon at r ¼ ra, the black hole event hori-
zon is at r ¼ rb and the cosmological horizon is at r ¼ rc,
where rc > rb > ra, the only real, positive zeroes of f. For
convenience, we set rb ¼ 1, i.e., we measure all quantities
in terms of the event horizon rb. We thus get

2M ¼ 1þQ2 � �: (3)

Furthermore, we can also write

� ¼ r�4�n
c ðrnþ2

c � r3cÞðrnþ2
c �Q2r3cÞ

rnþ2
c � rc

: (4)

For a fixed rc and spacetime dimension D, the existence of
a regular event horizon imposes that the charge Q must be
smaller than a certain value Qext. With our units this
maximum charge is
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Q2
ext ¼ rncð�2rc þ ðnþ 1Þrnc � ðn� 1Þrnþ2

c Þ
�rcðrcðnþ 1Þ � 2nrnc þ ðn� 1Þr2nþ1

c Þ : (5)

Gravitational perturbations of this spacetime couple to the
electromagnetic field, and were completely characterized
by Kodama and Ishibashi [8]. They can be reduced to a set
of two second-order ordinary differential equations of the
form

d2

dr2�
�� þ ð!2 � VS�Þ�� ¼ 0; (6)

where the tortoise coordinate r� and the potentials VS� are
defined through

r� �
Z

f�1dr; VS� ¼ fU�
64r2H2�

: (7)

We have

Hþ ¼ 1� nðnþ 1Þ
2

�x; (8)

H� ¼ mþ nðnþ 1Þ
2

ð1þm�Þx; (9)

and the quantities U� are given by

Uþ ¼ ½�4n3ðnþ 2Þðnþ 1Þ2�2x2 � 48n2ðnþ 1Þðn� 2Þ�x� 16ðn� 2Þðn� 4Þ�y� �3n3ð3n� 2Þðnþ 1Þ4ð1þm�Þx4
þ 4�2n2ðnþ 1Þ2fðnþ 1Þð3n� 2Þm�þ 4n2 þ n� 2gx3 þ 4�ðnþ 1Þfðn� 2Þðn� 4Þðnþ 1Þðmþ n2KÞ�� 7n3

þ 7n2 � 14nþ 8gx2 þ f16ðnþ 1Þð�4mþ 3n2ðn� 2ÞKÞ�� 16ð3n� 2Þðn� 2Þgxþ 64mþ 16nðnþ 2ÞK;
(10)

U� ¼ ½�4n3ðnþ 2Þðnþ 1Þ2ð1þm�Þ2x2 þ 48n2ðnþ 1Þðn� 2Þmð1þm�Þx� 16ðn� 2Þðn� 4Þm2�y
� n3ð3n� 2Þðnþ 1Þ4�ð1þm�Þ3x4 � 4n2ðnþ 1Þ2ð1þm�Þ2fðnþ 1Þð3n� 2Þm�� n2gx3
þ 4ðnþ 1Þð1þm�Þfmðn� 2Þðn� 4Þðnþ 1Þðmþ n2KÞ�þ 4nð2n2 � 3nþ 4Þm
þ n2ðn� 2Þðn� 4Þðnþ 1ÞKgx2 � 16mfðnþ 1Þmð�4mþ 3n2ðn� 2ÞKÞ�þ 3nðn� 4Þm
þ 3n2ðnþ 1Þðn� 2ÞKgxþ 64m3 þ 16nðnþ 2Þm2K: (11)

The variables x, y and parameters�,m are defined through

x � 2M

rn�1
; y � �r2; (12)

�2 � M2 þ 4mQ2

ðnþ 1Þ2 ; m � k2 � nK; (13)

and the quantity � is implicitly given by � ¼ ð1þ
2m�ÞM. Note that the following relation holds Q2 ¼ ðnþ
1Þ2M2�ð1þm�Þ.
Note also that for the spacetime considered in this paper

K ¼ 1, which means that the eigenvalues k2 are given by
k2 ¼ lðlþ n� 1Þ, where l is the angular quantum number,
that gives the multipolarity of the field.
The behavior of the potentials varies considerably over

the range of parameters. In Fig. 1 we show V� for D ¼ 8,
rc ¼ 1=0:95, l ¼ 2 and three different values of the charge,
Q ¼ 0:2, 0.35, 0.44.

III. A CRITERIUM FOR INSTABILITY

A sufficient (but not necessary) condition for the exis-
tence of an unstable mode has been proven by Buell and
Shadwick [9] and is the following:Z rc

rb

V

f
dr < 0: (14)

The instability region is depicted in Fig. 2 for several
spacetime-dimension D, which can be compared with the
numerical results by KZ, their Fig. 4. It is apparent that

FIG. 1 (color online). Behavior of V� for different parameters,
for D ¼ 8. Here we fix the event horizon at rb ¼ 1, and the
cosmological horizon at rc ¼ 1=0:95. We consider l ¼ 2 modes
and three different charges, Q ¼ 0:2, 0.35, 0.44.

BRIEF REPORTS PHYSICAL REVIEW D 80, 127502 (2009)

127502-2



condition (14) very accurately describes the numerical
results for rb=rc � 1, a regime we explore below in
Sec. IV. As one moves away from extremality criterium
(14) is just too restrictive. An improved analysis and
refined criterium would be necessary to describe the whole
range of the numerical results. Nevertheless, Fig. 2 is very
clear: higher-dimensional (D> 6) RNdS black holes are
unstable for a wide range of parameters.

IV. AN EXACT SOLUTION IN THE NEAR-
EXTREMAL RNDS BLACK HOLE

Let us now specialize to the near-extremal RNdS black
hole, which we define as the spacetime for which the
cosmological horizon rc is very close (in the r coordinate)
to the black hole horizon rb, i.e.,

rc�rb
rb

� 1. The wave

equation in this spacetime can be solved exactly, in terms
of hypergeometric functions [10]. The key point is that the
physical region of interest (where the boundary conditions
are imposed), lies between rb and rc. Thus,

f� 2�b

ðr� rbÞðrc � rÞ
rc � rb

; (15)

where we have introduced the surface gravity �b associated
with the event horizon at r ¼ rb, as defined by the relation
�b ¼ 1

2df=drr¼rb . For near-extremal black holes, it is

approximately

�b � ðrc � rbÞðn� 1Þ
2r2b

ð1� nQ2Þ: (16)

In this limit, one can invert the relation r�ðrÞ of (7) to get

r ¼ rce
2�br� þ rb

1þ e2�br�
: (17)

Substituting this on the expression (15) for f we find

f ¼ ðrc � rbÞ�b

2 coshð�br�Þ2
: (18)

As such, and taking into account the functional form of the
potentials for wave propagation, we see that for the near-
extremal RNdS black hole the wave Eq. (6) is of the form

d2�ð!; rÞ
dr2�

þ
�
!2 � V0

coshð�br�Þ2
�
�ð!; rÞ ¼ 0; (19)

with

V0 ¼ ðrc � rbÞ�b

2

VS�ðrbÞ
f

: (20)

The potential in (19) is the well-known Pöshl-Teller po-
tential [11]. The solutions to (19) were studied and they are
of the hypergeometric type (for details see Refs. [12,13]). It
should be solved under appropriate boundary conditions:

�� e�i!r� ; r� ! �1 (21)

�� ei!r� ; r� ! 1: (22)

These boundary conditions impose a nontrivial condition
on ! [12,13], and those that satisfy both simultaneously
are called quasinormal frequencies. For the Pöshl-Teller
potential one can show [12,13] that they are given by

! ¼ �b

�
�
�
jþ 1

2

�
iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

�2
b

� 1

4

s �
; j ¼ 0; 1; . . . :

(23)

We conclude therefore that an instability is present
whenever V0 is negative. The threshold of stability in the
near-extremal regime is therefore given by

VS�ðrbÞ
f

¼ 0: (24)

The expression for VS�ðrbÞ=f is lengthy, and we will not
present it here. The values of the chargeQ=Qext that satisfy
the condition above are given in Table I (for l ¼ 2) and
compared to the prediction from the analysis in Sec. III,
criterium (14). The agreement is excellent. Furthermore,

TABLE I. The threshold of instability for near-extremal RNdS
black holes (i.e., black holes for which the cosmological and
event horizon almost coincide) for l ¼ 2 modes. We show the
prediction from the exact, analytic expression obtained in the
near-extremal limit (24), which we label Q=QN

ext and the one
from criterium (14) which we label as Q=QV

ext. Both these results
are compared to the numerical results by KZ.

D

7 8 9 10 11 D ! 1
Q=QN

ext 0.913 0.774 0.683 0.617 0.567
ffiffiffiffiffiffiffiffiffi
2=D

p
Q=QV

ext 0.913 0.775 0.684 0.618 0.568
ffiffiffiffiffiffiffiffiffi
2=D

p
Q=QNum

ext 0.94 0.78 0.68 0.61 0.55 —

FIG. 2 (color online). The parametric region of instability in
Q=Qext � rb=rc coordinates, according to criterium (14), for l ¼
2. Top to bottom, D ¼ 7, 8, 9, 10, 11.

BRIEF REPORTS PHYSICAL REVIEW D 80, 127502 (2009)

127502-3



we compare these predictions against the numerical results
by KZ, extrapolated to the extremal limit (� ¼ 1 in KZ
notation). The agreement is remarkable.

V. CONCLUSIONS

We have shown analytically that charged black holes in
de Sitter backgrounds are unstable for a wide range of
charge and mass of the black hole, confirming previous
numerical studies [7]. The stability properties of the ex-
tremal D ¼ 6 black hole remain unknown. Our methods
and results are inconclusive at this precise point; further
dedicated investigations would be necessary.

Our analytical result in the near-extremal regime could
be used to investigate further the nature of this instability,
something we have not attempted to do here. A possible
refinement concerns the large-D limit of the instability,

where it could be possible to find an analytical expression
throughout all range of parameters. We have in mind
results and techniques similar to those of Kol and Sorkin
[14]. It would also be interesting to investigate the stability
properties, using this or other techniques, of near-extremal
Kerr-dS black holes, which have recently been conjectured
to have an holographic description [15].
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