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In a variety of inflation models the motion of the inflaton may trigger the production of some
noninflaton particles during inflation, for example, via parametric resonance or a phase transition.
Particle production during inflation leads to observables in the cosmological fluctuations, such as features
in the primordial power spectrum and also non-Gaussianities. Here we focus on a prototype scenario with
inflaton, ¢, and isoinflaton, y, fields interacting during inflation via the coupling g%(¢ — ¢,)>x>. Since
several previous investigations have hinted at the presence of localized “glitches” in the observed
primordial power spectrum, which are inconsistent with the simplest power-law model, it is interesting to
determine the extent to which such anomalies can be explained by this simple and microscopically well-
motivated inflation model. Our prototype scenario predicts a bumplike feature in the primordial power
spectrum, rather than an oscillatory “ringing” pattern as has previously been assumed. We discuss the
observational constraints on such features using a variety of cosmological data sets. We find that bumps
with amplitudes as large as @(10%) of the usual scale-invariant fluctuations from inflation, corresponding
to g2 ~ 0.01, are allowed on scales relevant for cosmic microwave background experiments. Our results
imply an upper limit on the coupling g* (for a given ¢,) which is crucial for assessing the detectability of
the non-Gaussianity produced by inflationary particle production. We also discuss more complicated
features that result from superposing multiple instances of particle production. Finally, we point to a
number of microscopic realizations of this scenario in string theory and supersymmetry and discuss the

implications of our constraints for the popular brane/axion monodromy inflation models.
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I. INTRODUCTION

Recently, there has been considerable interest in infla-
tionary models where the motion of the inflaton triggers the
production of some noninflation (isocurvature) particles
during inflation [1-17]. Examples have been studied where
this particle production occurs via parametric resonance
[1-6], as a result of a phase transition [7-13], or otherwise.
In some scenarios, backreaction effects from particle pro-
duction can slow the motion of the inflaton on a steep
potential [14-16], providing a new inflationary mecha-
nism. Moreover, inflationary particle production arises
naturally in a number of realistic microscopic models
from string theory [14—16,18-20] and also from supersym-
metry (SUSY) [21].

In [5] it was shown that the production of massive
isocurvature particles during inflation (and their subse-
quent interactions with the slow-roll condensate) provides
a qualitatively new mechanism for generating cosmologi-
cal perturbations. This new mechanism leads to a variety of
novel observable signatures, such as features [5] and non-
Gaussianities [5,22] in the primordial fluctuations. In this
paper we study in detail the observational constraints on
such distortions of the primordial power spectrum for a
variety of scenarios.
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One motivation for this study is to determine whether
features generated by particle production during inflation
can explain some of the anomalies in the observed primor-
dial power spectrum, P(k). A number of different studies
have hinted at the possible presence of some localized
features in the power spectrum [2,13,23-34], which are
not compatible with the simplest power-law P(k) ~ k"<~
model. Although such glitches may simply be statistical
anomalies, there is also the tantalizing possibility that they
represent a signature of primordial physics beyond the
simplest slow-roll inflation scenario. Forthcoming polar-
ization data may play a crucial role in distinguishing
between these possibilities [13]. However, in the mean-
time, it is interesting to determine the extent to which such
features may be explained by microscopically realistic
inflation models.

We consider a very simple model where the inflaton, ¢,
and isoinflaton, y, fields interact via the coupling

g2
£im = _?(Q" - ¢0)2X2- ()

We focus on this simple prototype model in order to
illustrate the basic phenomenology of particle production
during inflation; however, we expect our results to general-
ize in a straightforward way to more complicated scenar-
ios. Models of the type (1) have been considered as a probe
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FIG. 1. Rescattering diagram.

of Planck-scale effects [1] and offer a novel example of the
nondecoupling of high energy physics during inflation.’

At the moment when ¢ = ¢, (which we assume occurs
during the observable range of e-foldings of inflation), the
X particles become instantaneously massless and are pro-
duced by quantum effects. This burst of particle production
drains energy from the condensate ¢(7), temporarily slow-
ing the motion of the inflaton background and violating
slow roll. Shortly after this moment, the y particles be-
come extremely nonrelativistic, so that their number den-
sity dilutes as a3, and eventually the inflaton settles back
onto the slow-roll attractor.

Several previous papers [1-4] have studied the tempo-
rary slowing down of the inflaton background using the
mean-field equation

+3Hd +V 4+ g% (d— d)¥H =0, (2

where the vacuum average (y?) is computed following
[36,37]. Using this approach one finds that the transient
violation of slow roll leads to a ““ringing pattern” (damped
oscillations) in the spectrum of cosmological fluctuations
leaving the horizon near the moment when ¢ = ¢ [4]. In
[2,3] observational constraints on particle production dur-
ing inflation were discussed in the context of this mean-
field treatment.

However, in [5] cosmological fluctuations in the model
(1) were reconsidered, going beyond the mean-field treat-
ment of ¢.> It was pointed out that the massive y particles
can rescatter off the condensate to generate bremsstrahlung
radiation of long-wavelength 6 ¢ fluctuations via diagrams

"For reasonable values of g2 the y particles are extremely
massive for almost the entire duration of inflation except for a
tiny interval, much less than an e-folding, about the point ¢ =
¢o. However, the y field cannot be integrated out due to the
nonadiabatic time dependence of the mode functions; see [35]
for further discussion.

2See also [15] for a complimentary analysis and [38] for a
detailed analytical treatment of the dynamics.
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such as Fig. 1. Multiple rescattering processes lead to a
rapid cascade of power into the IR—IR cascading. The
inflaton modes generated by IR cascading freeze once their
wavelengths cross the horizon, and lead to a bumplike
feature in the cosmological perturbations that is illustrated
in Fig. 2. This feature is complementary to the usual
(nearly) scale-invariant quantum vacuum fluctuations
from inflation. The bump dominates over the ringing pat-
tern discussed above by many orders of magnitude, inde-
pendently of the value of g2.

In light of the results of [5] it is clear that the observa-
tional constraints on the model (1) need to be reconsidered.
Since previous studies have suggested marginal evidence
for localized power excesses in the CMB using both para-
metric [2,33] and nonparametric [30,31] techniques, it is
interesting to determine if a simple and well-motivated
model such as (1) can explain these anomalies. To answer
this question we provide a simple semianalytic fitting
function that accurately captures the shape of the feature
generated by particle production and IR cascading during
inflation. Next, we confront this modified power spectrum
with a variety of observational data sets. We find no
evidence for a detection; however, we note that observa-
tions are consistent with relatively large spectral distor-
tions of the type predicted by model (1). If the feature is
located on scales relevant for CMB experiments, then its

FIG. 2 (color online). The bumplike features generated by IR
cascading. We plot the feature power spectrum obtained from
fully nonlinear lattice field theory simulations (red points) and
also the result of an analytical calculation (dashed blue curve)
using the formalism described in [38]. We also superpose the
fitting function ~k3e~ TR/ (2K3) (solid black curve) to illustrate the
accuracy of this simple formula.
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amplitude may be as large as O(10%) of the usual scale-
invariant fluctuations, corresponding to g> ~ 0.01. Our
results translate into a ¢y-dependent bound on the cou-
pling g2, which is crucial in order to determine whether the
non-Gaussian signal associated with particle production
and IR cascading is detectable in future missions [22].

We also consider the more complicated features which
result from multiple bursts of particle production and IR
cascading. Such features are a prediction of a number of
string theory inflation models, including brane/axion mo-
nodromy [18-20]. For an appropriate choice of the spacing
between the features, we find that the constraint on g in
this scenario is even weaker than the single-bump case.

Although we focus on the interaction (1), our findings
may also have some bearing on models with phase tran-
sitions during inflation. A simple prototype model for the
latter scenario is

V(d’ =£ 2 1,2)2 8_2 2 42 .
r/\/) 4(/\/ U) + 2/\/¢ +V1nf(¢)-

At the moment when ¢ = VAv/ g, massive isoinflaton y
particles are produced copiously by tachyonic (spinodal)
instability [39]. These produced particles will subsequently
interact with the condensate via rescattering diagrams
similar to Fig. 1. Hence, we expect the features produced
by inflationary phase transitions to be qualitatively similar
to the bumps considered in this paper. (This intuition is
consistent with a second-order computation of the cosmo-
logical perturbations in a closely related model [10]. See
[33] for a discussion of the observational consequences.)

In the literature it is sometimes argued that inflationary
phase transitions can be studied using a toy model with a
sharp steplike feature in the inflaton potential. This
potential-step model predicts a ringing pattern in the power
spectrum, very much analogous to the mean-field treat-
ment of resonant particle production during inflation, dis-
cussed above. This treatment does not take into account the
violent growth of inhomogeneities of the fields that occurs
during realistic phase transitions [39] and, in particular,
does not capture rescattering effects and IR cascading. In
the case of resonant particle production, these nonlinear
effects have a huge impact on the cosmological fluctua-
tions [5]. Hence, it is far from clear if the potential-step
model provides a good effective description of inflationary
phase transitions.’

Of course, inflation models with steps in V(¢) (or its
derivatives) may be considered on phenomenological
grounds, irrespective of the motivation from inflationary
phase transitions. In [41,42] cosmological perturbations
from models with steplike features and discontinuities in
higher derivatives were considered, as were the micro-
scopic motivations for such constructions. See [43,44] for
a study of the non-Gaussianities induced in a variety of

3See also [40] for a related discussion.

PHYSICAL REVIEW D 80, 126018 (2009)

single-field models with steps or oscillations in the inflaton
potential.

The outline of this paper is as follows. In Sec. II we
provide a simple parametrization of the features that are
imprinted on the primordial power spectrum by one or
more bursts of particle production during inflation. In
Sec. III we describe our method and discuss the observa-
tional data sets employed to derive constraints on this
modified power spectrum. In Sec. IV we present observa-
tional constraints on various scenarios. In Sec. V we
present some microscopic realizations of our scenario
and discuss the implications of our findings for popular
string theory/SUSY inflation models with a special empha-
sis on brane monodromy. Finally, in Sec. VI we conclude.

I1. A SIMPLE PARAMETRIZATION OF THE
POWER SPECTRUM

In [5] it was shown that particle production and IR
cascading during inflation in the model (1) generate a
bumplike contribution to the primordial power spectrum.
As shown in Fig. 2, this feature can be fit with a very simple
function Py, ~ k3¢~ ™/?%). The bumplike contribution
from IR cascading is complementary to the usual (nearly)
scale-invariant contribution to the primordial power spec-
trum P,,. ~ k"s~! coming from the quantum vacuum fluc-
tuations of the inflaton. The total observable power
spectrum in the model (1) is simply the superposition of
these two contributions: P(k) ~ k™~ + k3¢~ ™/ C2K),
This simple formula can be motivated from analytical
considerations [5,38] and provides a good fit to lattice field
theory simulations near the peak of the feature and also in
the IR tail.*

It is straightforward to generalize this discussion to
allow for multiple bursts of particle production during
inflation. Suppose there are multiple points ¢ = ¢; (i =
I, - - -, n) along the inflationary trajectory where new de-
grees of freedom y; become massless:

n g2
Lin==27(¢ = ¢Ixi. 3)
i=0

For each instant #; when ¢ = ¢;, there will be an associ-
ated burst of particle production and subsequent rescatter-
ing of the produced massive y; off the condensate ¢(z).
Each of these events proceeds as described above and leads
to a new bumplike contribution to the power spectrum.
These features simply superpose owing to the fact that each
field y; is statistically independent (so that the cross terms
involving y;x; with i # j in the computation of the two-
point function must vanish). Thus, we arrive at the follow-

“This fitting formula does not capture the small oscillatory
structure in the UV tail of the feature (see Fig. 2), which does not
concern us since that region is not phenomenologically
interesting.
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ing parametrization of the primordial power spectrum in
models with particle production during inflation:

k\n—1 & me\3/2( k\3
Pk =A.— + 2 A== Z) e (2K (4
®) s<ko) l( 3 ) <k> ¢ @

i=1 i

where A, is the amplitude of the usual nearly scale-
invariant vacuum fluctuations from inflation and k is the
pivot, which we choose to be k, = 0.002 Mpc~! following
[45]. The constants A; depend on the couplings g7 and
measure the size of the features from particle production.
We have normalized these amplitudes so that the power in
the ith bump, measured at the peak of the feature, is given
by A;. The location of each feature, k;, is related to the
number of e-foldings N from the end of inflation to the
time when the ith burst of particle production occurs:
roughly In(k;/H) ~ N;, where N = N; at the moment
when ¢ = ¢;. From a purely phenomenological perspec-
tive the locations k; are completely arbitrary.

We compare (4) to lattice field theory simulations in
order to determine the amplitude A; in terms of model
parameters. We find

A; = 1.01 X 1076/, (5)

Assuming standard chaotic inflation V = m?¢?/2, we
have tested this formula for g2 =1, 0.1, 0.01, taking both
¢y =2M, and ¢, = 3.2M,. We found agreement up to
factors of order unity in all cases.

Theoretical consistency of our calculation of the shape
of the feature bounds the couplings as 1077 < g? < 1 [5].
Hence, the power spectrum (4) can be obtained from
sensible microphysics only when 10720 < A, < 1079,
This constraint still allows for a huge range of observatio-
nal possibilities: Near the upper bound the feature is con-
siderably larger than the vacuum fluctuations, while near
the lower bound the feature is completely undetectable.

Note that for each bump in (4) the IR tail Py, — k3 as
k — 0 is similar to the feature considered by Hoi, Cline,
and Holder in [33], consistent with causality arguments
about the generation of curvature perturbations by local
physics.

ITI. DATA SETS AND ANALYSIS

The primordial power spectrum for our model is pa-
rametrized as (4). Our aim is to derive observational con-
straints on the various model parameters Ay, ny, k;, and A;
using CMB, galaxy power spectrum, and weak lensing
data. To this end we use the COSMOMC package [46] to
run Markov Chain Monte Carlo (MCMC) calculations to
determine the likelihood of the cosmological parameters,
including our new parameters A; and k;. We employ the
following data sets.

Cosmic microwave background:

Our complete CMB data sets include Wilkinson
Microwave Anisotropy Probe (WMAP) 5 yr [45,47],
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BOOMERANG  [48-50], Arcminute  Cosmology
Bolometer Array Receiver (ACBAR) [51-54], Cosmic
Background Imager (CBI) [55-58], Very Small Array
[59], DASI [60,61], and MAXIMA [62]. We have included
the Sunyaev-Zel’dovich (SZ) secondary anisotropy [63,64]
for WMAP 5 yr, ACBAR, and CBI data sets. The SZ
template is obtained from hydrodynamical simulation
[65]. Also included for theoretical calculation of CMB
power spectra is the CMB lensing contribution.

Type la supernova (SN):
We employ the union supernova Ia data (307 SN Ia
samples) from The Supernova Cosmology Project [66].

Large scale structure (LSS):
The 2dF Galaxy Redshift Survey (2dFGRS) data [67] and
Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy
(LRG) data release 4 [68] are utilized.
Note that we have used the likelihood code based on the
nonlinear modeling by Tegmark et al. [68] (marginalizing
the bias b and the Q parameter). However, with a large
bump in the linear power spectrum, this naive treatment
may not be sufficient to characterize the nonlinear response
to the feature on small scales. Ideally, this should be
obtained from N-body simulations; however, such a study
is beyond the scope of the current work.
There are several other caveats on our results in the high-k
regime. First, we assume linear bias for the galaxies, which
may not be entirely safe at sufficiently small scales.
Moreover, sharp features in the matter power spectrum
can cause sharp features in the bias as a function of k.
Keeping these caveats in mind, our constraints on small
scales, k = 0.1 Mpc ™!, should be taken with a grain of salt
and considered as accurate only up to factors of order unity.

Weak lensing (WL):
Five WL data sets are used in this paper. The effective
survey area Ay and galaxy number density n.g of each
survey are listed in Table 1.
For COSMOS data we use the COSMOMC plug-in written by
Lesgourgues [70], modified to do numerical marginaliza-
tion on three nuisance parameters in the original code.
For the other four weak lensing data sets, we use the
likelihood given by [76]. To calculate the likelihood, we
have written a COSMOMC plug-in code, with simplified
marginalization on the parameters of galaxy number den-
sity function n(z). More details about this plug-in can be
found in [77].
As for the LSS data, for small scales k = 0.1 Mpc ™! there
is the caveat that the nonlinear evolution of the power

TABLE I. Weak lensing data sets.
Data sets Ay (deg?) Nege (arcmin™2)
COSMOS [69,70] 1.6 40
CFHTLS-wide [71,72] 22 12
GaBODS [73,74] 13 12.5
RCS [73,74] 53 8
VIRMOS-DESCART [72,75] 8.5 15
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spectrum in the presence of bumplike distortions may not
be treated accurately.

IV. OBSERVATIONAL CONSTRAINTS

We now present our results for the observational con-
straints on particle production during inflation, assuming
two different scenarios.

A. A single burst of particle production

The minimal scenario to consider is a single burst of
particle production during inflation, which corresponds to
taking n = 1 in (3). The power spectrum is given by (4)
with n = 1 and, with some abuse of notation, we denote
ki = kigr and A; = A. The prior we have used for Ay is
0=Agr=25X10"19 and for kg it is —9.5=
In[k/Mpc~!] = 1. The former condition ensures that the
bumplike feature from IR cascading does not dominate
over the observed scale-invariant fluctuations, while the
latter is necessary in order to have the feature in the
observable range of scales. In Fig. 3 we plot the marginal-
ized posterior likelihood for the new parameters A and
kir describing the magnitude and location of the bump,
while in Table II we give the best-fit values for the remain-
ing (vanilla) cosmological parameters.

For very large scales = Gpc ™!, the data do not contain
much information (due to cosmic variance) and hence the
constraint on any modification of the power spectrum is

1 Nonlinear scales

e
3

AR/(2.5%x107)

CMB WL +LSS

=5 0
In [kg/Mpc ™ ]

FIG. 3. Marginalized posterior likelihood contours for the pa-
rameters Ajr and kjr (the magnitude and position of the feature,
respectively) in the single-bump model. Black and grey regions
correspond to parameter values allowed at 95.4% and 99.7%
confidence levels, respectively. At small scales, to the right of the
dashed vertical line, our results should be taken with a grain of
salt since the nonlinear evolution of the power spectrum may not
be modeled correctly in the presence of bumplike distortions.
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TABLE II. Constraints on the standard (‘‘vanilla’) cosmologi-
cal parameters for the single-bump model. All errors are at the
95.4% confidence level.

O, h? 0.0227+3:5019
Q2 0.11225:900
6 1.042475:0042
T 0.0875:%3

ng 0.95672024
In[10'0A,] 3.20675:97%
Agy 1.62+07¢

Q, 0.26475:928
oy 0.807-5:938
Zre 105733

H, 71.623

weak. In this region the spectral distortion may be larger
than 100% of the usual scale-invariant fluctuations and
couplings g” order unity are allowed. For smaller scales,
k = Gpc™!, the constraints are stronger and we have, very
roughly, Ag/A, < 0.1 corresponding to g> < 0.01. For
very small scales, k£ = 0.1 Mpc_l, our constraints should
be taken with a grain of salt since the nonlinear evolution
of the power spectrum may not be modeled correctly in the
presence of bumplike distortions. At small scales nonlinear
effects tend to wipe out features of this type (see, for
example, [78]) and hence observational constraints for k =
0.1 Mpc~! may be weaker than what is presented in Fig. 3.
Note that in most of this nonlinear regime we find essen-
tially no constraint on Ag, which is consistent with what
would be expected in a more comprehensive treatment.

The IR cascading bump in the primordial power spec-
trum will be accompanied by a corresponding non-
Gaussian feature in the bispectrum [5,22]. From the per-
spective of potentially observing this signal, it is most
interesting if this feature is located on scales probed by
CMB experiments. (There is also the fascinating possibil-
ity that the non-Gaussianity from IR cascading could show
up in the large scale structure as in [79-82]. We leave a
detailed discussion to future studies.) To get some intuition
into what kinds of features in the CMB scales are still
allowed by the data, we focus on an example with Ag =
2.5 X 107'% which, using (5), corresponds to a reasonable
coupling value g2 ~ 0.01. We take the bump to be located
at kig = 0.01 Mpc ! and fix the remaining model parame-
ters to A, = 2.44 X 107°, n, = 0.97 (which are compat-
ible with the usual values). This sample bump in the power
spectrum is illustrated in the top panel of Fig. 4 and is
consistent with the data at 2¢. In the bottom panel of Fig. 4
we plot the associated angular CMB temperature-
temperature (TT) spectrum. This example represents a
surprisingly large spectral distortion: The total power in
the feature as compared to the scale-invariant vacuum
fluctuations is P,/ Pyac ~ 0.1, evaluated at the peak of
the bump. In [22] we discuss the non-Gaussianity associ-
ated with this feature.
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FIG. 4 (color online).
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The top panel shows a sample bump in the power spectrum with amplitude Ag = 2.5 X 1070 which

corresponds to a coupling g2 ~ 0.01. The feature is located at kg = 0.01 Mpc™~!. This example represents a distortion of @(10%) as
compared to the usual vacuum fluctuations and is consistent with the data at 2. The bottom panel shows the CMB angular TT power
spectrum for this example, illustrating that the distortion shows up mostly in the first peak.

B. Multiple bursts of particle production

Next, we consider a slightly more complicated scenario:
multiple bursts of particle production leading many local-
ized features in the power spectrum. For simplicity, we
assume that all bumps have the same magnitude A; = A
and we further suppose a fixed number of e-foldings 6N
between each burst of particle production. This implies that
the location of the ith bump will be given by k; =
e=DA%,, where A is a model parameter controlling the
density of features. We take the number of bursts, n, to be
sufficiently large that the series of features extends over the
whole observable range. In the next section we will see that
these assumptions are not restrictive and that many well-
motivated models are consistent with this simple setup.

Our multibump model, then, has three parameters: A,
ki, and A. We take the prior on the amplitude to be Ajg =
25 X 10710 as in Sec. IVA. If the features are very widely
spaced, A = 1, then the constraint on each bump will
obviously be identical to the results for the single-bump
case presented in Sec. IVA. Hence the most interesting
case to consider is A < 1 so that the bumps are partially
overlapping. Our prior for the density of features is there-

fore 0 = A = 1. Finally, the location of the first bump will
be a historical accident in realistic models; hence we
marginalize over all possible values of k; and present our
constraints and 2d likelihood plots in the space of A and
A. This marginalized likelihood plot is presented in Fig. 5.
In Table III we present the best-fit values for the vanilla
cosmological parameters.

From the likelihood plot, Fig. 5, there is evidently a
preferred value of the feature spacing, roughly A ~ 0.75,
for which the constraints are weakest. This can be under-
stood as follows. For very high density A — 0 the localized
features from IR cascading smear together and the total
power spectrum (4) is P(k) ~ A,(k/ky)™~' + C, where the
size of the constant deformation scales linearly with the
density of features: C o A~!. Therefore, the upper bound
on the amplitude A should scale linearly with A. Indeed,
this linear trend is very evident from Fig. 5 in the small-A
regime. This linear behavior must break down at some
point since as the features become infinitely widely spaced
the constraint on Ajg must go to zero. This explains the
bump in the likelihood plot, Fig. 5, near A ~ (.75.

In passing, notice that the behavior P(k)~
As(k/ky)"™~! + C for A < 1 also explains why the best-
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AR/(2.5%10°)

0 0.5 1
A

FIG. 5. Marginalized posterior likelihood contours for the pa-
rameters Ajg and A (the feature amplitude and spacing, respec-
tively) of the multiple-bump model. Black and grey regions
correspond to values allowed at 95.4% and 99.7% confidence
levels, respectively.

TABLE III. Constraints on the standard (vanilla) cosmological
parameters for the multiple-bump model. All error bars are at the
95.4% confidence level.

Q,h? 0.02270:0008
Q.h? 0.112675004
6 1.0424+0:00
T 0.0785:%51
n, 0.93+004
In[10'0A,] 2.8%04

Agy 1.60*977

Q, 0.26575:92
oy 0.807+0:03¢
Z 10.3%2¢

H, 71.47332

fit A; in Table III is somewhat lower than the standard value
and why the spectral tilt n; — 1 is somewhat more red.
To get some intuition for the kinds of multibump dis-
tortions that are allowed by the data, we consider an
example with Alg = 1 X 107°, A = 0.75 and fix the va-
nilla parameters to A; = 1.04 X 107°, n, = 0.93. This
choice of parameters is consistent with the data at 2o
and corresponds to a reasonable coupling g ~ 0.02. In
Fig. 6 we plot the primordial power spectrum P(k) and also
the CMB TT angular power spectrum for this example.

V. PARTICLE PHYSICS MODELS

From the low energy perspective one expects interac-
tions of the type (1) to be rather generic; hence particle
production during inflation may be expected in a wide
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variety of models. In this section we consider some explicit
examples in string theory and SUSY in order to show how
such models may be obtained microscopically and also to
provide the proof of concept that realistic models do exist
where ¢; are in the observable range.

A. Open string inflation models

String theory inflation models may be divided into two
classes depending on the origin of the inflaton: closed
string models and open string models. In the former case
the inflaton is typically a geometrical modulus associated
with the compactification manifold (examples include
racetrack inflation [83], Kédhler modulus inflation [84],
and Roulette inflation [85]). In the latter case the inflaton
is typically the position modulus of some mobile D-brane’
living in the compactification manifold (examples include
brane inflation [87] such as the warped KKLMMT model
[88], D3/D7 inflation [89], and Dirac-Born-Infeld inflation
[90]). In open string inflation models there may be, in
addition to the mobile inflationary brane, some additional
“spectator’” branes. If the mobile brane collides with any
spectator brane during inflation, then some of the stretched
string states between these branes will become massless at
the moment when the branes are coincident [14,15], pre-
cisely mimicking the interaction (1). Thus, we expect
particle production, IR cascading, and the bumplike fea-
tures described above to be a reasonably generic prediction
of open string inflation.

B. String monodromy models

A concrete example of the heuristic scenario discussed
in the last subsection is provided by the brane monodromy
and axion monodromy string theory inflation models pro-
posed in [18-20]. In the original brane monodromy model
[18] one considers type ITA string theory compactified on a
nil manifold that is the product of two twisted tori. The
metric on each of these twisted tori has the form

2
A" — 12 did + L2,did + L2(dx' + Muydw,)?.  (6)

a/

where x' = x — %uluz and M is an integer flux number.
The dimensionless constants L, , L,,, and L, determine
the size of the compactification.

Inflation is realized by the motion of a D4-brane along
the direction u; of the internal manifold. The D4 spans our
large three dimensions and wraps a one-cycle along the
direction u, of the internal space. The size of this one-
cycle, in string units, is given by

L= 1/Lf,2 + L2M%ul. (7)

Hence, the brane prefers to minimize its world volume by

Uy

>One notable exception is inflation driven by the open string
tachyon, for example, nonlocal string field theory models [86].
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The top panel shows a sample multiple-bump distortion with amplitude Ajg = 1 X 10~° which corresponds to

g% ~ 0.02. The feature spacing is A = 0.75. We take the vanilla parameters to be A, = 1.04 X 10™°, n, = 0.93 so that the scale of
inflation is slightly lower than in the standard scenario and the spectral tilt is slightly redder. The bottom panel shows the CMB angular

TT power spectrum for this example.

moving to the location u#; = 0 where this one-cycle has
minimal size. This preference gives a potential to the D4-
brane position which goes like V ~ u; in the large u;
regime that is relevant for large-field inflation.

In [15] it was shown that this scenario allows for the
inclusion of a number of spectator branes stabilized at
positions u; = i/M (with i integer) along the inflationary
trajectory. As the mobile inflationary D4 rolls through
these points, particles (strings) will be produced and the
resulting distribution of features will look nearly identical
to the simple multibump scenario studied in Sec. IV B. To
see this, let us now determine the distribution of features
that is predicted from brane monodromy inflation. The
canonical inflaton ¢ can be related to the position of the
mobile D4 as

¢ = Bu)'”, (8)

where B is a constant with dimensions of mass that de-
pends on model parameters. Hence, the effective potential
during inflation has the power-law form

V(g) = u* 7. ()]

For the simplest scenario described above one has p =

2/3. However, the formulas (8) and (9) still hold for the
variant considered in [18] with p = 2/5 as long as one
replaces u; by a more complicated linear combination of
coordinates. These relations also hold for axion monod-
romy models [19] with p = 1 and u, replaced by the axion,
¢, arising from a two-form Ramond-Ramond potential C®
integrated over a two-cycle X,. For all models of the form
(9) the number of e-foldings N from ¢ = ¢(N) to the end
of inflation [which occurs at ¢ = p/ /2 when the slow-roll
parameter €(¢) = 1] is given by

_ 1 $W)

2
— S LB_MZ/P )
2p M;

2p M2 4

_P_
4

Since the spectator branes are located at u; = i/M the
bursts of particle production must occur at times N = N,

where
1 B2 /i\
Nl:__z(i> r_p
2p M5 \M 4

The location k = k; of the ith feature is defined, roughly,
by the scale leaving the horizon at the moment N = N,.
Hence, the distribution of features for brane/axion monod-

(1D

126018-8



PARTICLE PRODUCTION DURING INFLATION: ...

romy models is given by
k; - p
In[ | = B*?/P — = 12
o] =B - (12)

with p = 2/3 or p = 2/5 for brane monodromy and p =
1 for axion monodromy. In (12) the dimensionless number
B depends on model parameters.

Although the distribution of features (12) is not exactly
the same as the evenly spaced distribution considered in
Sec. IV B, the two are essentially indistinguishable over the
range of scales which are probed observationally (corre-
sponding to roughly 10 e-foldings of inflation). The reason
for this is simple: The inflaton is nearly constant during the
first 10 e-foldings of inflation and hence 6N ~ 6¢ ~ du;
within the observable region. It follows that k; = e\~ V3,
to a very good approximation for a huge class of models.
To see this more concretely in the case at hand, let us
compute dN/du; from (10). It is straightforward to show
that

dN 1 1 B \»r
du,  p? [2€(gp)] 7/ (Mp) , 4
where
ZMf, VI\2  p? (M,\2
=35 -5 (14

is the usual slow-roll parameter. Observational constraints
on the running of the spectral index imply that €(¢) cannot
change much over the observable 10 e-foldings of infla-
tion. Since dN/du; = const to very high accuracy, it fol-
lows trivially that N = N(u;) is very close to linear and
k; = e=DAk, as desired.

In the context of axion monodromy inflation models [19]
the multiple-bump features discussed here will be comple-
mentary to the oscillatory features described in [20] which
result from the sinusoidal modulation of the inflaton po-
tential by instanton effects. If the bursts of particle produc-
tion are sufficiently densely spaced, then the signal from IR
cascading may appear oscillatory; however, it differs from
the effect discussed in [20] in both physical origin and
functional form.

Let us now estimate the effective value of the couplings
g7 appearing in the prototype interaction (3) that are pre-
dicted from the simplest brane monodromy model. A
complete calculation would involve dimensionally reduc-
ing the Dirac-Born-Infeld action describing the brane mo-
tion and would require knowledge of the full 10-
dimensional geometry with the various embedded branes.
For our purposes, however, a simple heuristic estimate for
the collision of two D4-branes will suffice. When N D-
branes become coincident, the symmetry is enhanced from
U(1)Y to a U(N) Yang-Mills gauge theory. The gauge
coupling for this Yang-Mills theory is given by

PHYSICAL REVIEW D 80, 126018 (2009)

Qmp
= (1)

where L is the volume of the one-cycle that the D4-branes
wrap and is given by (7). If the inflationary brane is at
position u; and the ith spectator brane is at u, ;, then the
distance between the two branes is given by

d* = a’Lﬁl(ul —uyp ;) (16)

The mass of the gauge bosons corresponding to the en-
hanced symmetry is

d? gL (uy —uy)?

— o2
— g _ .
R C D N A ETVERE

To put this in the prototype form M? = g(¢ — ¢;)?, we
must first convert to the canonical variable ¢ using formula
(8) with p = 2/3 and

M; (17)

. M1/2 LulL)lc/z
67 \fg.d

Next, we must Taylor expand the resulting equation about
the minimum ¢ = ¢;. We find

(18)

MY =g — b+, (19)
g2 — 16g27* 1 _ legim 1
l . »
MLang J12 v p2m2i, W2+ 122
(20)

where in the second equality of (20) we have used the fact
that u; ; = i/M (with i integer) in the simplest models. We
see that the effective couplings g7 become larger as the D4
unwinds during inflation. [The apparent divergence for
uy; = 0 in formula (20) is an artifact of the fact that
relation (8) is not valid at small values of u;. This will
not concern us here since inflation has already terminated
at the point where our formulas break down.]

To compute the amplitude of the bumplike feature pro-
duced by brane monodromy inflation, we should take into
account also combinatorial factors. When two branes be-
come coincident the symmetry is enhanced from U(1)? to
U(2), so there are 2> — 2 = 2 additional massless spin-1
fields appearing at the brane collision. Thus, using Eq. (5),
the amplitude of the feature that will be imprinted in the
CMB is

Ajerr =2 X (22 =2) X [1.01 X 1076 - g% (21)

where the extra factor of 2 counts the polarizations of the
massless spin-1 fields. This combinatorial enhancement
can be much larger if the inflationary brane collides with
a stack of spectators.

The above discussion is predicated on the assumption
that the original brane monodromy setup [18] is supple-
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mented by additional spectator branes. This may seem like
an unnecessary contrivance; however, in order for this
model to reheat successfully it may be necessary to include
spectator branes. For example, with the reheating mecha-
nism proposed in [91] semirealistic particle phenomenol-
ogy can be obtained by confining the standard model (SM)
to a D6-brane which wraps the compact space. In order to
reheat into SM degrees of freedom we orient this brane so
that its world volume is parallel to the mobile (inflationary)
D4. In this case the end of inflation involves multiple
oscillations of the D4 about the minimum of its potential.
At each oscillation the D4 collides with the D6, and SM
particles are produced by parametric resonance preheating
[36,37]. However, due to the periodic structure of the
compactification, D4/D6 collisions will necessarily occur
also during inflation, leading to IR cascading features in
the CMB.

The timing of these D4/D6 collisions was computed in
[91] for the minimal p = 2/3 brane monodromy model,
assuming the same choices of parameters used in [18]. For
this particular case there is only one collision (and hence
one feature) during the first 10 e-foldings of inflation, and
the phenomenology is essentially the same as that consid-
ered in Sec. IVA. What is the amplitude of this feature?
Assuming, again, the parameters employed in [18] and
noting that the first collision takes place at i = 13 [91],
Eq. (20) gives g2 = 0.001. From (21) we find the effective
amplitude of the feature to be A .r/A; = 0.01. This value
is well within the observational bounds derived in
Sec. IVA.

We stress that the conclusions in the previous paragraph
apply only for the particular choice of model parameters
employed in [18]. There exist other consistent parameter
choices for which the simplest brane monodromy model
predicts a much higher density of features with much larger
amplitude.

Note that both brane and axion monodromy models may
be used to realize trapped inflation [15]. Here we are
restricting ourselves to the large-field regime where the
potential V = u* ?¢? is flat enough to drive inflation
without the need for trapping effects. For a given choice
of parameters one should verify that this classical potential
dominates over the quantum corrections from particle
production.

C. A supersymmetric model

Another microscopic realization of multiple bursts of
particle production and IR cascading during inflation
which does not rely on string theory can be obtained
from the so-called “distributed mass” model derived in
[21] with warm inflation [17] in mind; however, the theory
works equally well for our scenario. This model is based on
N =1 global SUSY and allows for the inclusion of
multiple points along the inflationary trajectory where
scalar degrees of freedom and also their associated fermion

PHYSICAL REVIEW D 80, 126018 (2009)

superpartners become massless. The distribution of fea-
tures in this setup is essentially arbitrary.

VI. CONCLUSIONS

In this paper we have studied the observational con-
straints on models with particle production during infla-
tion. We have focused on the simple prototype model (1)
for each burst of particle production; however, we expect
that our qualitative results will apply also to more compli-
cated models (for example, with gauged interactions or
fermion isoinflaton fields) and perhaps also to the case of
inflationary phase transitions. We find no evidence for the
detection of the features associated with particle produc-
tion and IR cascading; however, it is interesting to note that
rather large localized features are still compatible with the
data. Our results differ significantly from previous studies
because of a more realistic treatment of the cosmological
perturbations in models with particle production. The
bounds we have derived on g? will play a crucial role in
assessing the detectability of the non-Gaussianity pro-
duced by particle production and IR cascading.

We have also discussed the implications of our results
for popular brane/axion monodromy string theory inflation
models. Successful reheating in these constructions may
require the inclusion of spectator branes which collide with
the mobile D4-brane during inflation, and hence we expect
CMB features to be a fairly generic prediction. We have
shown that brane/axion monodromy models predict a dis-
tribution of bumplike features which are evenly spaced in
Ink over the observable range of scales. In the case of axion
monodromy this multiple-bump spectral distortion is com-
plementary to the oscillatory features discussed in [20]. We
have also estimated the magnitude of these bumplike fea-
tures in terms of model parameters.

One motivation for the present study was to determine
the extent to which microscopically realistic models such
as (1) can reproduce the localized “glitches” in the power
spectrum that have been detected (albeit with marginal
significance) by several previous studies. These anomalies
can be classified as follows:

(1) Localized power excesses:

In both [2,33] power spectra with localized spikes
were studied, and in both cases marginal evidence
was found for the detection of such features. In [31]
a nonparametric reconstruction of the power spec-
trum was performed, and the result is marginally
consistent with a power law everywhere; however,
several localized spikes are evident in the
reconstruction.

Localized excesses are naturally obtained in our
model (1). Sadly, however, we did not find that our
model fits the data significantly better than the sim-
plest slow-roll inflation scenario. This does not nec-
essarily imply a disagreement with [2,33] since we
use a different shaped feature and different data sets.
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2

3)

(1]
(2]

(4]
(5]
(6]
(7]
(8]
(91
[10]
(11]
[12]
[13]

[14]

(Indeed, when the authors of [33] repeat their analy-
sis using the WMAP 5-yr data, they do not obtain a
detection [92], consistent with our findings.)
Localized power deficits:

In [24] the Richardson-Lucy deconvolution algo-
rithm was used to perform a nonparametric recon-
struction of the primordial power spectrum which
displayed a prominent IR cutoff near the horizon. In
[34] a similar analysis was performed, and the re-
constructed power spectrum displays a localized dip
in power near k ~ 0.002 Mpc~!.

Localized deficits can be produced by our model (3)
but only in a rather contrived way. Hence, we have
not focused on such features in Sec. IV.

Damped oscillations:

In [11,13,25,26] power spectra with superimposed
ringing patterns were studied. Such features provide
a marginally improved fit over the simplest power-
law model.

As we have discussed in the introduction, damped
oscillatory ringing features are not predicted by
inflationary particle production. Nor is it clear if
such features are predicted by models with phase
transitions. (Of course damped oscillations can be
obtained from a toy model with a step in V(¢).
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However, it may be difficult to obtain such a poten-
tial from realistic microphysics; generically one ex-
pects that any sharp features in V(¢) will be
smoothed out by quantum corrections.)

Finally, let us note that features of the type studied here
will lead to other observables beyond the distortion of the
primordial power spectrum. In particular, bumps in P(k)
will lead to features in the tensor spectrum (resulting from
the sourcing of gravitational waves by scalar fluctuations at
second order in perturbation theory) and also, possibly,
black hole production. In [93,94] these effects were esti-
mated assuming a power spectrum which is qualitatively
similar to ours. As discussed in [5], inflationary particle
production will also lead to potentially large localized non-
Gaussian features in the bispectrum (and higher order
statistics) of the cosmological fluctuations. These non-
Gaussianities will be discussed in detail in an upcoming
work [22].
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