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We show that strongly coupled field theories with holographic gravity duals at finite charge density and

low temperatures can undergo de Haas–van Alphen quantum oscillations as a function of an external

magnetic field. Exhibiting this effect requires computation of the one-loop contribution of charged bulk

fermions to the free energy. The one-loop calculation is performed using a formula expressing determi-

nants in black hole backgrounds as sums over quasinormal modes. At zero temperature, the periodic

nonanalyticities in the magnetic susceptibility as a function of the inverse magnetic field depend on the

low energy scaling behavior of fermionic operators in the field theory, and are found to be softer than in

weakly coupled theories. We also obtain numerical and WKB results for the quasinormal modes of

charged bosons in dyonic black hole backgrounds, finding evidence for nontrivial periodic behavior as a

function of the magnetic field.
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I. INTRODUCTION

A. Beyond universality: One-loop effects in holography

One objective of applications of the holographic gauge/
gravity correspondence [1] to condensed matter physics is
the characterization of exotic states of matter. Recent
works have begun to uncover a rich structure in strongly
coupled theories with holographic gravity duals at finite
charge density. Initial studies [2,3] focused on hydrody-
namic aspects at higher temperatures, while many interest-
ing ground states have emerged in later studies at low
temperatures. When probed with charged scalar operators
these theories can exhibit low temperature instabilities
towards superconducting phases [4–6]. Equally interesting
are the cases in which the finite density theory admits
gapless charged scalar excitations but no superconducting
instability [7]. When probed with charged fermionic op-
erators, the response functions of the theory appear to
indicate an underlying Fermi surface with non-Landau
liquid excitations [8–11].

The recent discoveries listed above lead to a seemingly
paradoxical situation. The presence or absence of super-
conducting instabilities and Fermi surfaces is sensitive to
the charge and mass of matter fields in the gravitational
bulk spacetime [7,11]. Equivalently, it is sensitive to the
charge and scaling dimensions of low dimensional opera-
tors in the field theory. In contrast, the thermoelectric
equilibrium and response properties of the theory are com-
pletely independent of these fields: they are universally
determined by the Einstein-Maxwell sector of the bulk
action. The fact that quantities such as the shear viscosity

over the entropy density [12] or the electrical conductivity
over the charge susceptibility [13] are identical for many
distinct strongly interacting theories has been considered a
robust prediction of sorts of applied holography. However,
it seems unphysical that, for instance, the frequency de-
pendent electrical conductivity should be independent of
whether or not the theory has a Fermi surface. The latter
property depends on the matter content of the bulk theory
while the former does not.
We take the viewpoint that the emergence of a universal

thermoelectric sector from theories with radically distinct
bosonic or fermionic response is an artifact of the classical
gravity (‘‘large N’’ in field theory) limit. In the absence of
symmetry breaking condensates or relevant perturbations
of the theory, the minimal gravitational dual at finite den-
sity and temperature is the charged anti-de Sitter (AdS)-
Reissner-Nordström black hole (see e.g. [14]). In this
background only the metric and Maxwell fields are non-
trivial and all matter fields vanish. The fact that the
Einstein-Maxwell sector does not source the matter fields
is why the equilibrium and thermoelectric linear response
of the theory can be universal and blind to the matter
content. Beyond the classical limit, however, it is clear
that this ‘‘decoupling’’ cannot continue to hold. All matter
fields will run in loops and modify the gravitational propa-
gator while all charged matter fields will modify the elec-
tronic properties of the theory. These effects are obviously
small in the largeN limit, yet they may lead to qualitatively
new physics. Furthermore, in any putative ‘‘real world’’
application of holographic techniques, the desired value of
N is unlikely to be large.
This paper will initiate the study of bulk one-loop phys-

ics in applied holography. These are a more general set of
‘‘1=N’’ corrections that go beyond those captured by in-
cluding higher derivative terms in the gravitational action
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(see e.g. [15–18]). In particular, we will be interested in
effects that are not captured by local terms in an effective
action, as they involve loops of light fields.

Consideration of quantum effects in the bulk potentially
opens the Pandora’s box of quantum gravity.1 Control of
the ultraviolet properties of the quantum theory will ulti-
mately require embedding computations into a consistent
theory of quantum gravity. This may appear at odds with
the ‘‘phenomenological’’ approach to applied holography
(e.g. [14]) in which one restricts attention to a minimal set
of fields needed to capture the physics of interest. At the
one-loop level these problems do not arise. Indeed the one-
loop physics of quantum gravity was fruitfully explored
well before the availability of ultraviolet finite string theo-
ries [19]. The technical point that makes this possible is
that functional determinants can be computed up to the
renormalization of a finite number of local couplings in the
classical gravitational action. In particular, the nonlocal
effects of interest to us are insensitive to the ultraviolet
completion of the theory.

B. Quantum oscillations as a probe of exotic states of
matter

In this paper we will consider the bulk one-loop correc-
tion to the free energy due to charged matter. Our primary
objective is to study the free energy as a function of an
external magnetic field. Magnetic fields are fundamental
probes of matter at low temperatures. The quantum Hall
effect and closely related de Haas–van Alphen quantum
oscillations are examples of phenomena in which Landau-
level physics reveals important information about the finite
density system, such as the presence of a Fermi surface.

In recent years, experimental studies of quantum oscil-
lations have had a profound impact on our understanding
of a variety of correlated electron systems. In the hole-
doped cuprates, the observation [20–26] of quantum oscil-
lations with a period indicative of ‘‘small’’ Fermi surfaces
has shown that the ‘‘large’’ Fermi surface Fermi liquid
state at large doping must be strongly modified in the
underdoped regime. In the electron-doped cuprates, quan-
tum oscillations with both small and large periods have
been observed [27], separated by a presumed quantum
phase transition. In these contexts, it appears of interest
to catalog the states of matter which can exhibit the quan-
tum oscillations, apart from the familiar Fermi liquid sus-
pects. Possible examples include fermionic matter coupled
to gauge fields, or nonsuperfluid states of bosons such as
vortex liquids or ‘‘Bose metals.’’

It is not yet clear to what extent we can interpret the
finite density matter of the present gravity duals in terms of

the concepts mentioned in the previous paragraph, but it is
our hope that a study of quantum oscillations will advance
our understanding of such issues. The classical bulk (large
N) free energy is not manifestly written as a sum over
Landau levels, as we shall see. The one-loop correction to
the free energy, in contrast, will naturally appear in this
form. It follows that quantities such as the magnetic sus-
ceptibility can be expected to show novel qualitative fea-
tures at the one-loop level that are not visible classically.
In Sec. II we review the computation of the low tem-

perature magnetic susceptibility for free fermions and
bosons with a finite chemical potential. The case of fermi-
ons leads to de Haas–van Alphen oscillations (at the low
temperatures we consider, these can also be thought of as
quantum Hall transitions). We then compute the leading
order in large N magnetic susceptibility in strongly
coupled theories with gravitational duals in Sec. III, with
no indication of quantum oscillations. We go on to consider
the (bulk) one-loop magnetic susceptibility in the strongly
coupled theory. This is done using a, new to our knowl-
edge, expression for determinants in black hole back-
grounds written as a sum over the quasinormal modes of
the black hole. The formula is derived in [28] and allows us
to use the recent analytic results of [11] on fermionic
quasinormal modes. Quantum oscillations are seen to ap-
pear from the one-loop contribution of fermionic fields. We
find that the periodic delta functions characterizing the free
fermion susceptibility at zero temperatures are replaced by
power law divergences at strong coupling. In Sec. IV we
numerically explore the quasinormal modes of charged
bosonic fields, discussing the possibility of periodic oscil-
lations due to bosons also.

II. FREE THEORIES: FERMIONS AND BOSONS

To introduce some of the techniques and concepts we
will use later, we first exhibit the de Haas–van Alphen
quantum oscillations in a more familiar setting. We will
consider the cases of free charged bosons and free charged
fermions in 2þ 1 dimensions. We work in Euclidean
signature (t ¼ �i�) and place the theory in a background
chemical potential � and magnetic field B

A ¼ i�d�þ Bxdy: (1)

We are interested in computing the free energy at low
temperature (T=� ! 0) as the magnetic field is varied at
fixed chemical potential.
It is convenient to treat the case of bosons and fermions

simultaneously. For this purpose we can start with the
Euclidean action for a complex scalar boson:

SE½�� ¼
Z

d3x½j@�� iqA�j2 þm2j�j2�; (2)

and the following action for fermions

1The ‘‘box’’ of Pandora’s box is apparently a mistranslation of
the Greek word ‘‘pithos’’ which refers to a large jar, often
human-sized. As well as sickness and toil, the opening of the
jar was also said to unleash hope onto humankind.
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SE½�� ¼
Z

d3x½ ��� � ð@� iqAÞ�þm ����: (3)

These two actions give the free energy

�B ¼ T tr log½�r̂2 þm2�;

�F ¼ �T

2

X
�

tr log½�r̂2 þm2 � qB� (4)

where r̂� ¼ @� � iqA�. The only important difference

between the bosonic and fermionic cases is that the bosons
are periodic in the thermal time circle whereas the fermions
are antiperiodic. The extra term appearing in the fermionic
case is the magnetic Zeeman splitting of the spin degener-
acy. This term will not qualitatively affect the quantum
oscillations.

The traces in (4) can be computed as a sum over eigen-
values of the Laplace operator. The eigenvalues are given
by

� r̂2�þm2�� qB� ¼ ��; (5)

where the � term should be added for fermions and is
absent for bosons. We will retain this notation in the
remainder of this section. The eigenvalue spectrum can
be determined exactly by separation of variables in this
equation. Let

� ¼ e�i!n�þikyX‘ðxÞ; (6)

where k 2 R and the thermal frequencies are

!n ¼ 2�nT ðbosonsÞ; (7)

!n ¼ 2�

�
nþ 1

2

�
T ðfermionsÞ; (8)

for n 2 Z. The X‘ðxÞ satisfy
� X00

‘ þ q2B2 �x2X‘ ¼ K‘X‘; (9)

where we shifted the x variable so that �x ¼ x� k=qB. This
equation for X‘ is just the Schrödinger equation for a
harmonic oscillator and therefore

K‘ ¼ jqBjð2‘þ 1Þ; (10)

with ‘ 2 Zþ [ f0g. The eigenfunctions are Hermite poly-

nomials X‘ð �xÞ ¼ e�jqBj �x2=2H‘ð
ffiffiffiffiffiffiffiffiffiffijqBjp

�xÞ: Putting the above
together leads to

� ¼ m2 þ 2jqBj
�
‘þ 1

2
� 1

2

�
� ði!n � q�Þ2: (11)

We see that the eigenvalue � will be independent of the
momentum k. This is the degeneracy of the Landau levels.
We can now check that the degeneracy is in factZ

dk ¼ jqBjA
2�

; (12)

where A is the two-dimensional area of the sample. To see

this suppose that we had a finite sample of size Lx � Ly.

The allowed values for the momentum would be k ¼
2�ny=Ly for ny 2 Zþ [ f0g. The shift x ! x� k=qB we

noted above is possible provided that k=qB � Lx. This
places an upper bound on ny leading to (12).

Taking into account the degeneracy (12) of the Landau
levels, one can perform the sum over eigenvalues to obtain
the standard expressions for the free energy of bosons and
fermions. For future comparison we will express the result
in the following form

�free ¼ �jqBjAT
2�

X
‘

X
z?ð‘Þ

logð1� e�z?ð‘Þ=TÞ: (13)

The upper sign is for bosons and the lower for fermions.
For fermions one should additionally let

P
‘ ! 1

2

P
‘� ,

separating out the spin-up and -down contributions. A
divergent temperature independent constant proportional
to

P
‘q� has been neglected. In the above result

z?ð‘Þ ¼ q��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2jqBj

�
‘þ 1

2
� 1

2

�s
: (14)

These values of z?ð‘Þ are to be thought of as complex
frequencies which give � ¼ 0 upon analytic continuation
z ¼ i!n of (11). That is to say, they are solutions to the
equations of motion, and zeros of

�ðz; ‘Þ ¼ m2 þ 2jqBj
�
‘þ 1

2
� 1

2

�
� ðz� q�Þ2: (15)

Expressing the free energy as a sum over complex frequen-
cies that give zero modes of the differential operator is the
key step that we shall generalize below at strong coupling.
The sum over ‘ in (13) will diverge. This is a tempera-

ture independent divergence, as can be seen by rewriting

T
X
z?ð‘Þ

logð1� e�z?ð‘Þ=TÞ ¼ T½logð1� e�ð"‘�q�Þ=TÞ

þ logð1� e�ð"‘þq�Þ=TÞ�
þ ðT independent termsÞ:

(16)

The finite temperature sums over ‘ are now manifestly
convergent. We introduced the energy of the ‘th Landau
level

"‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2jqBj

�
‘þ 1

2
� 1

2

�s
: (17)

One can use a renormalization method, such as zeta func-
tion regularization, to control the zero temperature sums
over Landau levels. At this point we should also comment
on the zero magnetic field limit. The B ! 0 limit is to be
taken keeping

2jqBj‘ � k2 fixed as B ! 0: (18)
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In this limit the sum over the Landau levels becomes an
integral over momenta

jqBjX‘max

‘

!
Z kmax

0
kdk; (19)

with kmax related to ‘max via (18). The difference between
bosons and fermions due to Zeeman splitting drops out in
this large Landau-level limit.

From (13) and (16) we can see the de Haas–van Alphen
magnetic oscillations in the case of fermions (the lower
sign in these two equations). Take the T ! 0 limit of (16)
with fermionic signs and with � and B fixed. Whether or
not a given term contributes to the sum over ‘ in this limit
depends on whether�"‘ � q� is positive or negative. If it
is negative, then the exponential in (16) diverges and the
term gives a finite contribution. However, if it is positive,
then the exponential goes to zero, the argument of the
logarithm goes to one, and hence the total term goes to
zero. Therefore we have

lim
T!0

� ¼ jqBjA
2�

X
‘

ðq�� "‘Þ�ðq�� "‘Þ þ � � � ;

ðfermions; q� > 0Þ: (20)

Here �ðxÞ is the Heaviside step function and is equal to 1 if
x > 0 and zero otherwise. The dots denote analytic terms.
As before for fermions

P
‘ � 1

2

P
‘� . We see that the free

energy changes nonanalytically whenever one of the z?ð‘Þ
changes sign, say by tuning the magnetic field B. Note that
this can only occur for one of the signs in (14), depending
on the sign of q�. In (20) we have assumed for concrete-
ness that q�> 0. Of course, these nonanalyticities will get
smoothed out at any finite temperature. The jumps in the
derivative clearly occur whenever a Landau level crosses
the Fermi energy. To see the oscillations themselves we
should differentiate twice to obtain the zero temperature
magnetic susceptibility

� � � @2�

@B2

¼ � jqBjA
2�

X
‘

q2ð‘þ 1
2 � 1

2Þ2
"2‘

�ðq�� "‘Þ þ � � � ; (21)

where dots denote terms without delta functions. We can
see that the susceptibility � shows a strong response with
period

�

�
1

B

�
¼ 2q

q2�2 �m2
¼ 2�q

AF

; (22)

where AF ¼ �k2F is the cross-sectional area of the Fermi
surface, with k2F ¼ E2

F �m2 ¼ q2�2 �m2.
In (20) the zero temperature free energy is piecewise

linear in the chemical potential. It we compute the charge

density via � ¼ @�=@� then we find that the charge
density is piecewise constant, with finite jumps at specific
values of the magnetic field. These are the integer quantum
Hall phases.
The boson system is quite different. The system is only

stable if "‘ > jq�j. If jq�j becomes larger than "0 then
either the charged particles or antiparticles will condense,
at any temperature. Using (16) the expression (13) is
rewritten in the more familiar form

� ¼ jqBjAT
2�

X
‘

½logð1� e�ð"‘�q�Þ=TÞ

þ logð1� e�ð"‘þq�Þ=TÞ� þ�jT¼0 ðbosonsÞ: (23)

This last equation is recognized as the free energy of a gas
of free charged particles and antiparticles. There are no
jumps in the derivative, instead � diverges if jq�j be-
comes equal to one of the "‘.
Assuming that the mass is sufficiently large compared to

the chemical potential so that the system is stable, the zero
temperature free energy may be computed by, for instance,
zeta function regularizing the sum over Landau levels. One
obtains

�jT¼0 ¼ AjqBj3=2ffiffiffi
2

p
�

	H

�
� 1

2
;
1

2
þ m2

2jqBj
�
; (24)

where the Hurwitz zeta function is defined by analytic
continuation of

	Hðs; xÞ ¼
X1
n¼0

1

ðxþ nÞs : (25)

The susceptibility obtained by differentiating this expres-
sion twice is shown in Fig. 1. There are clearly no oscil-
lations of the type obtained for fermions. The values of the
dimensionless susceptibility appearing in the plot are seen
to be small. Note that the chemical potential does not

0 5 10 15 20

0.012

0.010

0.008

0.006

0.004

0.002

B q

m2

m

A q2

FIG. 1 (color online). The zero temperature magnetic suscep-
tibility for bosons as a function of the magnetic field. The
expression plotted has been made dimensionless by dividing
by the sample area and multiplying by the boson mass m.
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appear in (24), so there is no charge density. The suscep-
tibility in the plot is purely due to vacuum fluctuations.

In condensed matter applications, the theory Eq. (2)
describes the superconductor-insulator transition of
charged bosons at integer filling in a periodic potential;
for this case Eq. (24) describes the diamagnetic response of
the insulating phase.

III. STRONGLY COUPLED THEORIES WITH
GRAVITATIONAL DUALS

A. Normal state geometry and large N free energy

In the previous section we reviewed the computation of
magnetic susceptibility for free theories of bosons and
fermions at finite chemical potential. We will now study
the magnetic susceptibility of certain strongly coupled field
theories, again with a finite chemical potential.
Specifically, we study field theories which have large N
gravitational duals described ‘‘holographically’’ by
Einstein-Maxwell theory in one dimension higher than
the field theory (see e.g. [14] for a motivation of this dual
description). Wework with (2þ 1)-dimensional field theo-
ries and hence (3þ 1)-dimensional gravitational duals.

Recall that our motivation is twofold. Firstly, we would
like to see if any novel features arise in the magnetic
response for theories that are stable against superconduct-
ing instabilities at finite chemical potential, despite having
massless charged bosons [7]. Secondly, we would like to
see if the putative Fermi surfaces identified in fermion
spectral functions in [8–11] manifest themselves in the
expected way as quantum oscillations.

In the absence of superconducting instabilities, the state
of the field theory is dually described by a solution to
Einstein-Maxwell theory. We are interested in thermody-
namic properties and so we shall work in the Euclidean
theory. The Euclidean action is

SE½A; g� ¼
Z

d4x
ffiffiffi
g

p �
� 1

2
2

�
Rþ 6

L2

�
þ 1

4g2
F2

�
: (26)

Here F ¼ dA is the electromagnetic field strength. The
Einstein equations of motion are

R�� � R

2
g�� � 3

L2
g��

¼ 
2

2g2

�
2F��F�

� � 1

2
g��F��F

��

�
; (27)

while the Maxwell equation is

r�F
�� ¼ 0: (28)

The normal state at a finite temperature, chemical po-
tential and magnetic field is described by the dyonic black
hole metric (see e.g. [14,29])

ds2 ¼ L2

r2

�
fðrÞd�2 þ dr2

fðrÞ þ dxidxi
�
; (29)

with

fðrÞ ¼ 1�
�
1þ ðr2þ�2 þ r4þB2Þ


2

��
r

rþ

�
3

þ ðr2þ�2 þ r4þB2Þ

2

�
r

rþ

�
4
; (30)

together with the gauge potential

A ¼ i�

�
1� r

rþ

�
d�þ Bxdy: (31)

In these expressions we introduced the dimensionless
quantity


2 ¼ 2g2L2


2
; (32)

which is a measure of the relative strengths of the gravita-
tional and Maxwell forces. For a given theory, this ratio
will be fixed. Some values arising in Freund-Rubin com-
pactifications of M theory are described in [7].
The field theory dual to this background has chemical

potential �, magnetic field B and a temperature given by
the Hawking temperature of the black hole

T ¼ 1

4�rþ

�
3� r2þ�2


2
� r4þB2


2

�
: (33)

Note that whereas the chemical potential � and tempera-
ture T have mass dimension one in field theory, the back-
ground magnetic field has mass dimension two. The free
energy is given by evaluating the on shell classical action
(see e.g. [14,29])

�0 ¼ � AL2

2
2r3þ

�
1þ r2þ�2


2
� 3r4þB2


2

�
; (34)

where A is the spatial area. From the free energy one
computes the charge density

� ¼ � 1

A

@�0

@�
¼ 2L2


2

�

rþ
2
; (35)

and the magnetization density

m ¼ � 1

A

@�0

@B
¼ � 2L2


2

rþB

2

: (36)

In these expressions, rþ should be thought of as a function
of �, B and T via (33).
Using the above results, the magnetic susceptibility � ¼

�@2B�0 is easily computed from (34) and (33). The zero
temperature result is plotted in Fig. 2.
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Figure 2 is the leading order large N limit of the mag-
netic susceptibility.2 The plot is disturbingly similar to that
for free bosons in Fig. 1. Note however that the strongly
coupled theory is scale invariant, and so the only scale at
zero temperature is the chemical potential �, whereas in
the free theory of the previous section we had a mass scale
m.

B. One-loop (1=N) corrections to the free energy

The leading order at large N result for the free energy,
(34), clearly does not show any nonanalytic structure as a
function of the magnetic field at low temperature. The
magnetic susceptibility is correspondingly uneventful as
shown in Fig. 2.

We will show in the remainder of this paper that this
uneventfulness is an artifact of the large N limit. As we
mentioned in the introduction, a similar issue is known to
arise in linear response. While the bulk Einstein-Maxwell
theory captures all of the leading order in N electromag-
netic and thermal response of the field theory, it appears to
be independent of the spectrum (charges and scaling di-
mensions) of low lying fermionic and bosonic operators in
the theory. Yet it is precisely this spectrum that determines
whether or not there is a superconducting instability [7]
and whether or not the fermionic response shows Fermi
surfacelike features [11]. A natural resolution to this ten-
sion is found in the fact that the Einstein-Maxwell and
matter fields (fermions and bosons) are coupled in the bulk
at a nonlinear level. Thus at higher orders in the 1=N

expansion, or in higher point correlators, the matter fields
will explicitly influence thermoelectric response.
In what follows we consider 1=N corrections to equilib-

rium thermodynamic quantities, in particular the magnetic
susceptibility, which is simpler than considering linear
response. We shall do this by computing one-loop correc-
tions to the classical result in the bulk. The flavor of the
computation is identical to that for free fields in Sec. II. The
crucial difference is that the one-loop contribution is to be
computed in the curved black hole background of the
previous subsection, which is 3þ 1 dimensional, as op-
posed to the 2þ 1 dimensions of the (strongly coupled)
field theory.
There are several different sources of 1=N corrections to

the free energy. It is helpful to identify those most likely to
be related to the quantum oscillation structure we are
seeking. The most universal one-loop corrections to the
free energy are those coming from the graviton and
Maxwell field in (26). These will likely not lead to
Landau-level related structure, however, as both fields are
neutral. The same comment applies to higher derivative
corrections to the classical action (26). Instead we will
focus on the contribution of an additional charged field,
vanishing in the dyonic black hole background, which
could be bosonic or fermionic. For bosons the action takes
the form

SE½�� ¼
Z

d4x
ffiffiffi
g

p ½jr�� iqA�j2 þm2j�j2�; (37)

while for fermions

SE½c � ¼
Z

d4x
ffiffiffi
g

p �
�c� �

�
@þ 1

4
!ab�

ab � iqA

�
c

þm �c c

�
; (38)

where !ab is the spin connection. Roman letters denote
tangent space indices.
There are one-loop contributions to the free energy from

fluctuations of the scalar and fermionic fields:

� ¼ �0 þ�B þ�F

¼ �0 þ T tr log½�r̂2 þm2� � T tr log½� � D̂þm�
þ � � � (39)

where �0 is the classical result (34), r̂ ¼ r� iqA and

D̂ ¼ @þ 1
4!ab�

ab � iqA. The boson and fermion masses

in (39) need not be the same, of course. The dots in (39)
indicate that we are not computing the one-loop contribu-
tion from the neutral fields A and g. While the classical
contribution�0 will scale as some positive power ofN, the
one-loop logarithms in (39) are order one. This is the sense
in which we are computing a ‘‘1=N’’ effect.

0 1 2 3 4 5
7

6

5

4

3

2

B

2

2 2

L2 A

FIG. 2 (color online). The zero temperature magnetic suscep-
tibility to leading order at large N as a function of the magnetic
field. The expression plotted has been made dimensionless by
dividing by the sample area and multiplying by the chemical
potential �.

2We did not specify the connection between the normalization
of the action (26) and some dual field theoretical quantity N. In
general one expects that L2=
2 scales like N to a positive power.
That the coefficient of the classical action is large is precisely
what allows the bulk side of the AdS/CFT correspondence to be
treated classically.
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C. Determinants in black hole backgrounds and
quasinormal modes

In order to cleanly extract possible T ¼ 0 nonanalytic-
ities in the one-loop determinants (39), we would like to
obtain an expression analogous to (13) in the free field
case. To do this, we must first write down the eigenvalue
equation for bosons

� r̂2�þm2� ¼ ��; (40)

and for fermions

� � D̂c þmc ¼ �c : (41)

The next step is to separate variables. For bosons this is
done by writing

� ¼ e�i!n�þikyX‘ðxÞ�ðrÞ: (42)

The quantities appearing in this expression are identical to
those in Sec. II. The important difference is that there is
one more dimension, the bulk radial direction, and hence a
new function �ðrÞ.

Separation of variables is a little more complicated for
spinors in a magnetic field because there are several com-
ponents that couple differently to the field. However, it is
straightforwardly achieved following Feynman and Gell-
Mann [30]. One introduces the auxiliary spinor � defined
by

c ¼ ð� � D̂þ ��mÞ�; (43)

which is found to satisfy the second order equation

� D̂2�þ 1

4
R�þ iq

2
Fab�

ab�þ ðm� �Þ2� ¼ 0: (44)

This second order equation can now be separated exactly
as in the bosonic case

� ¼ e�i!n�þikyX‘ðxÞ�ðrÞ: (45)

Every � satisfying the second order equation (44) gives an
eigenspinor c of the original Dirac operator (41). The
solutions will be double counted, because of the extra
derivatives. However, the matrix �5 commutes with the
second order operator. Therefore by imposing, say, �5� ¼
� one obtains the correct eigenfunctions without double
counting.

As in Sec. II above we will want to analytically continue
!n into the complex plane. Setting z ¼ i!n and substitut-
ing the separation of variables Ansätze into the eigenvalue
equations, we obtain ‘‘reduced’’ equations for each mode

MBðz; ‘Þ� ¼ �ðz; ‘Þ�; MFðz; ‘Þc ¼ �ðz; ‘Þc : (46)

These differential equations for �ðrÞ and c ðrÞ, when
viewed as eigenvalue problems, will provide a connection
between � and z, similar to (15) in the free case. As
previously, the k momentum can be eliminated from the
equations and only leads to the Landau-level degeneracy.

The important difference between (46) and (15) is that the
MB=F are now differential operators in the radial direction,

so we do not have an algebraic expression for �ðz; ‘Þ.
Mimicking the free theory procedure, the idea now is to

express the determinants as sums over specific complex
frequencies z?ð‘Þ that lead to zero modes; �ðz?ð‘Þ; ‘Þ ¼ 0
solutions of (46). Because MB=F are differential operators

we expect to find infinitely many such frequencies. For the
operators to be well defined, we need to specify the bound-
ary condition of �ðrÞ and c ðrÞ near the horizon at r ¼ rþ
and near the boundary r ¼ 0. The subtler boundary condi-
tion is at the horizon. The general radial behavior near the
horizon is found to be

�; c 	 ðr� rþÞ� þ � � � ; with � ¼ � iz

4�T
: (47)

In computing the Euclidean determinant directly as a sum
over eigenvalues, regularity at the Euclidean horizon re-
quires taking

� ¼ j!nj
4�T

: (48)

This then shows that once we have defined the boundary
condition for MB=Fðz; ‘Þ on the imaginary z ¼ i!n axis,

the positive and negative values of !n will have different
analytic continuations into the complex z plane. It is im-
portant to treat this point carefully in deriving the formula
we present shortly.
At general complex z the two boundary conditions in

(47) can be called ingoing (the minus sign) and outgoing
(the positive sign). This corresponds to whether the corre-
sponding Lorentzian signature solutions have flux going
into the future horizon of the black hole, or coming out of
the past horizon. On shell modes, with �ðz?ð‘Þ; ‘Þ ¼ 0,
satisfying ingoing boundary conditions at the horizon are
called quasinormal modes.
The quasinormal frequencies z? of a wave equation in a

black hole spacetime are poles in the corresponding re-
tarded Green’s function in the black hole background. To
see this explicitly it is useful to consider the trace of the
inverse of our operators MB=F, which we will denote

collectively as M. Starting on the imaginary axis we have

tr
1

Mði!n; ‘Þ ¼
Z rþ

0
Gði!n; ‘; r; rÞdr; (49)

where the Euclidean Green’s function satisfies

Mði!n; ‘ÞGði!n; ‘; r; r
0Þ ¼ r4�ðr; r0Þ: (50)

The expression (49) follows directly from the usual repre-
sentation of the Green’s function as a sum over eigenfunc-
tions. The boundary condition for the Green’s function at
the horizon is (47) together with (48).
Now consider the analytic continuation of this trace to

general complex z ¼ i!n, where we analytically continue
(48) from the upper imaginary axis. That is, we take the
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minus sign (ingoing) boundary condition in (47). Denote
this object by tr� 1

Mðz;‘Þ . In general one needs to perform the

integral in (49) before analytically continuing. It is clear
that the poles in this analytically continued Green’s func-
tion with ingoing boundary conditions at the horizon are
given by precisely the quasinormal frequencies of the black
hole, as this is whenMðz; ‘Þ has a zero eigenvalue. See e.g.
[31] for a more detailed discussion.3 As usual, continuing
the Euclidean Green’s function from the upper imaginary
axis gives the retarded Green’s function. If the black hole is
stable against linearized perturbations (as they will be in
the cases we study below) then these poles are necessarily
in the lower half plane. Furthermore, at finite temperature,
the quasinormal modes give isolated poles.

The conclusion of the previous paragraph is that the
nonanalyticities of tr� 1

Mðz;‘Þ are isolated poles in the lower

half z plane. We could have instead analytically continued
the Euclidean Green’s function from the negative imagi-
nary axis. Denote this object by trþ 1

Mðz;‘Þ . Theþ boundary

condition at the horizon corresponds to outgoing modes.
This necessarily leads to the advanced Green’s function,
with poles in the upper half plane. In fact

trþ
1

Mðz; ‘Þ ¼ tr�
1

Mð�z; ‘Þ: (51)

This relation follows from taking the complex conjugate of
(46) and (47). In the following we will express our results
in terms of the poles z? of the retarded Green’s function
(the quasinormal modes), as these are more physical for
most purposes. If we wish we can always obtain the poles
of the advanced Green’s function from (51).

In the paper [28] we derive the following formulas
expressing the one-loop contributions to the action coming
from bosonic and fermionic determinants as a sum over the
quasinormal modes of the operators MB and MF respec-
tively. The reader may also find Appendix B useful, in
which we derive an analogous formula for the simple case
of a single damped harmonic oscillator. No assumption is
made about the quasinormal modes forming a complete
basis. For bosons

�B ¼�jqBjAT
2�

X
‘

X
z?ð‘Þ

log

�jz?ð‘Þj
4�2T

���������
�
iz?ð‘Þ
2�T

���������2
�
þLoc:

(52)

For fermions we obtain

�F ¼ jqBjAT
2�

X
‘

X
z?ð‘Þ

log

�
1

2�

���������
�
iz?ð‘Þ
2�T

þ 1

2

���������2
�
þ Loc:

(53)

The difference between bosons and fermions is due to the
different thermal frequencies (7) and (8). In both of these
two expressions, the Loc term refers to a ‘‘local’’ contri-
bution to the one-loop effective action for the metric and
Maxwell fields induced by integrating out the charged
bosons and fermions. We will discuss these terms a little
more below, they will not contribute to the various inter-
esting effects we are looking for. Finally, we should note
that while we have written (52) and (53) in a way adapted
to Landau levels and magnetic fields, the representation of
determinants in black hole backgrounds as sums over
quasinormal modes is much more general [28]. The for-
mulas (52) and (53) will be the strong coupling analogues
of Eq. (13).
Generally the sums over ‘ and z?ð‘Þ in (52) and (53) do

not converge. These are high frequency divergences that
should be renormalized, for instance using zeta function
regularization. Sometimes to control the asymptotic be-
havior it is useful to take a step back from the above
expressions and reintroduce a sum over the thermal fre-
quencies:

�B ¼ jqBjAT
2�

X
‘

X
z?ð‘Þ

�X
n
0

log

��������nþ iz?ð‘Þ
2�T

��������2

� log

��������z?ð‘Þ2�T

��������
�
þ Loc: (54)

An entirely analogous expression exists for fermions. This
formula is related to the result (52) using the following
identity from zeta function regularization:

X1
n¼0

logðnþ zÞ ¼ � d

ds

X1
n¼0

1

ðnþ zÞs
��������s¼0

¼ � log
�ðzÞffiffiffiffiffiffiffi
2�

p :

(55)

Yet another expression for the determinant is in a spec-
tral representation form. This is derived from (54) using
contour integration and the fact that the z?ð‘Þ are all in the
lower half plane. For bosons we have

�B ¼ jqBjA
2�

X
‘

X
z?ð‘Þ

Z 1

�1
d�

�

1

e�=T � 1
Im logðz?ð‘Þ��Þ

þLoc: (56)

We will not develop this expression further. A rigorous
treatment would need to address the validity of closing the
contour and the divergences of (56) at � ¼ 0 and � ¼
�1. Regularity at � ¼ 0 may impose constraints on the
quasinormal modes. In Appendix B we show how this
works for the case of a single damped harmonic oscillator.

3The quasinormal modes also give the poles of the retarded
Green’s function of the operator dual to the bulk field in the dual
field theory [32]. The field theory Green’s function is essentially
given by the behavior of our bulk Green’s function near the
boundary at r ¼ 0 [33].
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There is again an analogous integral expression for
fermions.

Finally, we should say a few words about the ‘‘local’’
contribution Loc. Essentially Loc contains the local UV
counterterms as well as terms that ensure the correct large
mass behavior in (52) and (53). Equality of the right- and
left-hand sides of these formulas at large mass, including
order one terms, requires [28] (for bosons, say)

Loc ¼
�
T tr log½�r̂2 þm2�

þX
z?

log

� jz?j
4�2T

���������

�
iz?
2�T

���������2
�����������
0

: (57)

Where j�
0 means that we should only keep the terms
which remain nonzero in the limit� ! 1 (the ‘‘nonpolar’’
terms). Here � determines the scaling of the field near the
boundary, and is related to the mass by the standard AdS/
CFT formulas

�ð�� 3Þ ¼ L2m2 ðbosonsÞ;
� ¼ 3

2
þ Lm

�
fermions; m >� 1

2

�
:

(58)

To shorten the expression (57) we have written
P

z?
to

include the sum over the Landau levels and their degener-
acy. The reason that � appears in (57) is that this is the
quantity that determines the asymptotic boundary condi-
tions. The proof in [28] of the central formulas (52) and
(53) uses analyticity arguments in � rather than m2.

The first term in (57) is closely related to the large mass
limit of a determinant of the form Laplacian plus mass
squared. It is well known, see e.g. [34] for a review, that the
only terms that survive the large mass expansion of such a
determinant are given by integrals of local curvatures of the
background metric and Maxwell fields. Therefore, the
effect of this first term is to renormalize the Einstein-
Maxwell action (26), including the generation of higher
curvature terms. These terms are blind to Landau levels
and therefore will not lead to nonanalytic physics as a
function of the magnetic field.

The second term in (57) could likely be computed in
principle by using WKB methods to obtain the quasinor-
mal frequencies to the first few leading orders in a 1=�
expansion, perhaps along the lines of [35]. These WKB
computations would not be expected to detect nonanaly-
ticities of the sort we will describe shortly, which occur at
low or zero frequencies. In the following we will therefore
generally ignore the Loc contribution to the determinant.

D. Zero temperature nonanalyticities

The zero temperature limit of (52) and (53) is especially
simple. As our theory is scale invariant, only the ratios
B=�2 and T=� are meaningful. Let us work at fixed B=�2

and take the limit T=� ! 0. How do the quasinormal poles
behave in this limit? The two possibilities for a given

quasinormal frequency z? are firstly that z? ! 0, for in-
stance if z? 	 T, and secondly that z? remains finite, which
requires that z? 	�. We will see explicitly in Sec. IV
below that both possibilities occur. The quasinormal modes
that go to zero with temperature coalesce and form a
branch cut at zero temperature.
Formally taking the low temperature limit of (52) or (53)

gives

lim
T!0

�B=F ¼�jqBjA
2�

X
‘

X
z?ð‘Þ

1

�
Im

�
z?ð‘Þ logiz?ð‘Þ2�T

�
þ�� � :

(59)

In this expression the logarithmic branch cut must be taken
along the positive imaginary z axis. This is determined by
the singularities of the gamma functions in (52) and (53)
which are along the positive imaginary z axis. This zero
temperature limit is discussed for the damped harmonic
oscillator in Appendix B.
The sum in (59) will only get finite contributions from

modes that scale as z? 	� at low temperatures.
Frequencies that go to zero with T give a vanishing con-
tribution, as is already discernible in (52) and (53).
However, the finite contribution can come from either
isolated poles or those coalescing to give a branch cut:
even though the coalescing poles eventually go to zero with
T, at any finite T there will be coalescing poles with z? 	
�. For the poles forming a branch cut, the sum

P
z?
in (59)

will become an integral.
In general the low temperature sum (59) is still difficult

to perform. One difficulty is the UV divergences in the
sums. We will present in Sec. IV below some WKB results
for the large frequency quasinormal modes that are a first
step towards a direct evaluation of the UV tail of this
formula. However, there are specific situations in which
the representation as a sum of quasinormal modes becomes
extremely useful. This is when a particular mode or set of
modes undergoes nonanalytic motion as a function of a
parameter such as B=�2. Derivatives with respect to this
parameter will then pick out the contribution of these
particular modes as dominating over the others. Using
results from [11] we will shortly perform the sum (59)
exactly over a set of poles close to the real frequency axis
that undergo nonanalytic motion as a function of the mag-
netic field.
It was shown in [11] that quasinormal frequencies of

charged fermions, i.e. � ¼ 0 solutions to the Dirac equa-
tion (41) with ingoing boundary conditions at the horizon,
can undergo nonanalytic motion as a function of spatial
momentum k. Specifically, if the charge of the fermion is
big enough compared to its mass, 3m2L2 < q2
2, then
there exists a critical momentum k ¼ kF at which a quasi-
normal mode bounces off the real frequency axis at z ¼ 0.
This leads to a low energy peak in the spectral function of
the dual field theory fermionic operator near to a particular
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finite momentum. At T ¼ 0 the peaks becomes a delta
function. The momentum kF was therefore identified as
the ‘‘Fermi momentum’’ indicative of an underlying
strongly coupled Fermi surface.

The results from [11], at finite momentum but zero
magnetic field, can be adapted to our context as follows.4

We can note that the magnetic field B appears in the
‘‘second order Dirac equation’’ (44) in two ways. Firstly
it appears as just B in the metric function fðrÞ and in the
spin-magnetic ‘‘Zeeman’’ interaction Fab�

ab. Secondly, it
appears as ‘B, i.e. multiplied by the Landau level, in the
gauge covariant kinetic term. If we take the limit B ! 0
with 2‘jqBj � k2 fixed then we lose the first terms while
retaining the kinetic term. As in the free field case dis-
cussed around (18) above, this limit reproduces precisely
the B ¼ 0 and finite momentum k equation studied in [11].
We can therefore directly use results from that paper, with
the pole now bouncing off the real axis at 2‘jqBj ¼ k2F.
The B ! 0with ‘B fixed limit is not essential to use results
from [11]. Keeping B finite introduces some smooth B
dependence into the various ‘‘constants’’ that appear in
this and the following sections.

E. Summing low temperature poles:
Quantum oscillations

Before taking the strict zero temperature limit, it is
useful to look at the pole motion at finite but low tempera-
ture. At frequencies and temperatures that are small com-
pared to the chemical potential, z; T � �, it is possible to
solve the Dirac equation explicitly, see Appendix D4 of
[11]. Using the observation of the previous section we may
translate the expressions from that paper into results for the
quasinormal frequencies with a finite magnetic field in the
limit B ! 0 with ‘B fixed. As we noted, this limit is not
essential but cleanly extracts the nonanalytic behavior.

A crucial parameter in the discussion of [11] is �. This
quantity controls the low energy (! � �) scaling dimen-
sion of the dual fermionic operator in the strongly coupled
field theory. This scaling dimension is related to the charge
and mass of the field by

� ¼ 1ffiffiffiffiffiffi
12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2L2 � q2
2 þ 3

2


2k2F
�2

s
: (60)

The Fermi momentum in units of the chemical potential,

kF=�, also depends on m and q. This dependence must
be determined by numerically solving the Dirac equation
in the Reissner-Nordström black hole background. A plot
of � as a function ofm and qmay be found in Fig. 6 of [11].
It can be shown that � is always real.

We will assume for concreteness that � < 1
2 (a similar

discussion will hold for the case � > 1
2 ). In this case, the

quasinormal frequencies z? in the low temperature and
small frequency regime were found to be given by

F ðz?Þ ¼ 0; (61)

where

F ðzÞ ¼ k?
�ð1=2þ �� iz=2�T � iq
=

ffiffiffiffiffiffi
12

p Þ

� hei�ei��ð2�TÞ2�
�ð1=2� �� iz=2�T � iq
=

ffiffiffiffiffiffi
12

p Þ : (62)

We have rearranged the expression appearing in [11] be-
cause it will be important that F ðzÞ has zeros but no poles.
In (62) we have introduced

k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘jqBj

q
� kF; (63)

which is a measure of the magnetic field and can be either
positive or negative. The constants h and � in (62) are
determined in [11] in terms of the charge and mass of the
fermionic field (numerically in the case of h). It will be
sufficient for our purposes to take them to be order one in
units of the chemical potential. The value of � is con-
strained to lie in the range

0< �< �ð1� 2�Þ; (64)

which guarantees that the poles are in the lower half plane
for both signs of k?.
The equation (61) will clearly lead to quasinormal fre-

quencies of the form

zðnÞ? ðk?Þ ¼ TF ðnÞ
�
k?�2��1

T2�

�
; (65)

for some sequence of functions F ðnÞ. It is straightforward
to solve (61) numerically and obtain the motion of the
quasinormal poles as a function of k?.

5 In Fig. 3 we
show the low temperature motion of the poles closest to
the real axis as k? is varied through zero, for a particular
choice of numerical values of the parameters involved.
In Fig. 3 we see several interesting effects. Firstly we

can see the advertised pole that moves up to and then
sharply bounces off the real axis. The bounce has been
smoothed out at finite temperature. Secondly, there are
poles coalescing to form a zero temperature branch cut.
These poles show a nontrivial circular motion as a function
of k?. We now need to compute the magnitude of these
effects on the magnetic susceptibility as k? goes through
zero.
Figure 4 shows the contribution of these lowest few

quasinormal poles to the magnetic susceptibility as a func-
tion of k?. These are computed using our formula (53) and

4Fermionic quasinormal modes in a magnetic field were
recently studied in [36,37].

5The authors of [11] have considered this problem in detail in
unpublished work on the motion of quasinormal poles in this low
frequency regime.
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strictly speaking we plot the quantity ~�, see (68) below,
which is closely related to the susceptibility. The darker
line in the first plot is the contribution of the ‘‘T ¼ 0’’ pole
that bounces off the real axis in Fig. 3. The figure also
shows the total susceptibility arising from the sum of the
contributions of the lowest 50 modes. As anticipated, there
is a strong feature in the response around k? ¼ 0. We
can also discern other features in the individual responses
of the modes. Somewhat magically, the motion of the
‘‘branch-cut’’ poles is choreographed to precisely cancel
out these extra features. The contributions of these other
poles are the lighter lines in the first plot, while the second
(right-hand) plot shows the total response due to the lowest
50 poles. In the second plot only a single feature remains in
the magnetic response. The cancellation between oscilla-
tions may perhaps be thought of as analogous to a Fourier
transformation, in which sums of oscillations can cancel to
give simple functions.

The peak seen in Fig. 4 will occur whenever 2‘jqBj ¼
k2F. Thus the peaks are periodic in 1=B with period
2�q=AF, as expected for quantum oscillations due to a
Fermi surface. We will shortly make this statement sharper
by going to the zero temperature limit.
The right-hand plot in Fig. 4, the sum of the lowest 50

poles, only makes sense if the series being summed is
convergent. We are interested in the magnetic susceptibil-
ity, � ¼ �@2B�, with� given by (59) and the quasinormal
modes z? given by (61). To determine convergence of this
second derivative of the sum we need to know the depen-
dence of z? on the magnetic field B at large values of z?.
Let us focus on B close to the critical value B‘ at which the
‘th oscillation occurs: B ¼ B‘ þ �B ¼ k2F=2‘qþ �B.
Then from (63)

k? ¼ ‘q

kF
�Bþ � � � : (66)

From (61), by expanding the right-hand gamma function in
(62) in the vicinity of a negative integer, we find that at
large z? and for these small values of k?:

dz?
dB

	 z�2�
? : (67)

We can now see by differentiating (59) and using (67)
that while the sum over z?ð‘Þ in � ¼ �@2B� is UV diver-
gent, this is only due to derivatives acting on the ‘‘trivial’’
overall factor of B in (59). The divergent factor can be
removed by considering for instance �@2B�þ
2@Bð�B�1Þ, which does lead to a convergent sum. As we
expect the term with most derivatives of � with respect to
B to capture the strongest nonanalyticities, extra terms
depending on single derivatives of � should not be im-
portant for k? 	 0. Alternatively we can define, using (66),

~� � �B
X
‘

q2‘2

k2F

@2�‘

@k2?
; (68)

FIG. 3 (color online). Motion of the quasinormal frequencies
closest to the real axis as k?=� is varied from �1 to þ1,
according to (61). The temperature is T ¼ 0:005�. The other
constants are taken to have values q ¼ 1, 
 ¼ ffiffiffiffiffiffi

12
p

, � ¼ 1=3,
� ¼ �=6, h ¼ �1=3.
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FIG. 4 (color online). Left: Contributions of the lowest few quasinormal modes to the magnetic susceptibility, according to (53), as a
function of k?=�. The darker line is the pole nearest the real axis. Right: The total magnetic susceptibility due to the lowest 50 modes.
The temperature is T ¼ 0:005�. The constants have the same values as in Fig. 3. The vertical axis is proportional to ~� of (68).
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where�‘ is the ‘th component of� ¼ B
P

‘�‘. This leads
to a convergent sum over z?ð‘Þ and is again equivalent to �
up to first derivatives of�. In particular, we expect ~� � �
at very low temperatures and k? 	 0. The finite quantity ~�
has been used as the vertical axis of Fig. 4.

Having obtained convergent sums over z?ð‘Þ, the sum
over ‘ itself is still not convergent. We shall not be con-
cerned with this divergence, as we are considering low
temperature nonanalyticities that occur for each ‘ individu-
ally at different values of the magnetic field. These non-
analyticities are not sensitive to the large ‘ UV
divergences, analogously to the free field case of Sec. II.
In order to exhibit the quantum oscillations at high tem-
peratures, one will likely have to perform the sum over ‘.

F. Zero temperature limit

In this section we will obtain the susceptibility exactly at
zero temperature and for k? 	 0. To this end, the sum over
quasinormal modes in (59) is helpfully rewritten as an
integral along the real frequency axis

�F ¼ jqBjA
2�

X
‘

1

�
Im

1

2�i

Z 1

�1
z log

iz

2�T

F 0ðzÞ
F ðzÞ dz: (69)

This expression follows from contour integration and the
fact that F , given in (62), has zeros at the quasinormal
modes z? and no poles. The expression (69) is somewhat
formal, but we now take two derivatives with respect to B
to obtain a convergent expression as described at the end of
the previous section.

The zero temperature limit of the susceptibility is ob-
tained by differentiating (69). Using (68) for the suscepti-
bility (recall that ~� � � in this regime):

~�jT!0 ¼ �jqBjA
2�

X
‘

q2‘2

2�2k2F
Re

Z 1

�1
4h�ei�z2�

ðk? � hei�z2�Þ3

� log
iz

2�T
dz: (70)

In the integrand it is important to take the branch cut due to
the powers z2� to run down the negative imaginary axis,
this is required by the coalescence of poles of the gamma
functions in (62). As we noted previously, the logarithmic
branch cut must run along the positive imaginary axis. The
integral can be performed exactly to yield

~� ¼ jqBjA
2�

ð2�� 1Þ
4�2

q2

k2Fh
1=2�

sinð�=2�Þ
sinð�=2�Þ

X
‘

‘2

ð�k?Þ2�1=2�
;

ðk? < 0Þ: (71)

For k? > 0 one replaces k? ! �k? and sin �
2� ! sin���

2� .

The integral is only convergent if 1
4 < �. This extra condi-

tion is required to be able to close the contour in the lower
half plane in the derivation of (70) and is also the condition
for the power of k? appearing in (71) to be negative. For
smaller values of � one needs to differentiate the free

energy more times to obtain a convergent integral and
furthermore a divergent dependence on k?. There is no
temperature dependence in (71). Technically this occurs
because the integral in (70) vanishes if the logarithmic term
is not included. This shows that the logT in (70) does not
lead to a logarithmic divergence in the susceptibility at low
temperatures.6 The zero temperature result (71) is plotted
in Fig. 5.
Schematically, (71) can be written as

� ¼ �lim
T!0

@2�F

@B2
	þjqBjAX

‘

‘2j2‘jqBj � k2Fj�2þ1=2�:

(72)

The sign is important and physical. The divergences in the
susceptibility at 2‘jqBj ¼ k2F are seen to be positive, with
opposite sign to the delta functions appearing for free
fermions in (21). The sign follows from the observation
that sin �

2� = sin
�
2� < 0 in the region we are studying: 1

4 <

�< 1
2 and (64). The sum over ‘ can be performed in (72) in

terms of generalized zeta functions. The formula (72) is
analogous to the result (21) for free fermions. Once again,
it indicates the existence of oscillations in the magnetic
susceptibility with period

�

�
1

B

�
¼ 2�q

AF

: (73)

As well as the sign with which the susceptibility di-
verges, another important difference with respect to the
free fermion result (21) is that the nonanalyticity is softer

0.5 0.0 0.5
0

2

4

6

8

10

k

FIG. 5 (color online). The magnetic susceptibility at T ¼ 0 as
a function of k?=�. The constants have the same values as in
Fig. 3. The vertical axis is proportional to ~� of (68).

6Vanishing of the integral without the logarithm also indicates
that

P
z?
z?, suitably regularized, is an analytic expression even

though individual poles undergo nonanalytic motion. We suspect
this may be a general phenomenon. Thus

P
z?
z? logz? is needed

to extract the nonanalytic dependence on B. To obtain the correct
answer one must sum all the poles near the real axis, it is not
sufficient to focus on a single pole.
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in the strongly coupled theory. Rather than the delta func-
tions of the free theory (21) we find the absolute value of a
(generally noninteger) power in (72). The power is deter-
mined by the low energy scaling dimension � in (60). Our
computation is valid for 1

4 < �< 1
2 . These inequalities are

satisfied for a range of values of q and m, including for
instance m ¼ 0 with 
q ¼ 1, see Fig. 6 of [11].

To restate the main results of the last few sections
(i) For a range of values of the mass m and charge q of

the bulk fermion there is a quasinormal pole which
(at T ¼ 0) nonanalytically bounces off the origin of
the real frequency axis at 2‘jqBj ¼ k2F.

(ii) For a certain range ofm and q, corresponding to 1
4 <

�< 1
2 , these bounces produce periodic in 1=B di-

vergences in the one-loop magnetic susceptibility.
The periodicity is given by (73) and the strength of
the divergence by (72).

This behavior would seem to be aptly characterized as a
strong coupling manifestation of de Haas–van Alphen os-
cillations at low temperatures. Thus our results simulta-
neously support the characterization of kF as a Fermi
momentum in [8–11] and also indicate qualitative differ-
ences between de Haas–van Alphen oscillations at weak
and strong coupling.

We now turn to a numerical study of the quasinormal
modes of charged bosons and show that the modes can
have an interesting magnetic field dependence in that case
also. Quantum oscillations from stable charged bosons
would be a novel effect.

IV. CHARGED SCALAR QUASINORMAL MODES
OF DYONIC BLACK HOLES

A. Equations for bosons

In the previous section we found analytic results for
quantum oscillations due to fermionic quasinormal modes.
This was possible because the relevant nonanalytic motion
of the quasinormal mode occurred close to zero frequency,
z? � 0, as the mode bounced off the real frequency axis.
The Dirac equation in the zero temperature AdS-Reissner-
Nordström black hole was solved analytically at small
frequencies in [11].

For bosons, in contrast, if a quasinormal mode moves
towards z? � 0 it typically indicates the onset of a super-
conducting instability [4–6]. Rather than bounce back into
the lower half frequency plane, the mode continues up into
the upper half plane causing an instability and the con-
densation of the bosonic field. Therefore, if wewish to look
for possible nonanalytic motion of bosonic quasinormal
modes, without going through a phase transition, we will
need to look away from small frequencies. To this end we
will study the bosonic quasinormal modes numerically.
The hunt for analogues of quantum oscillations leads us
to look for special values of K‘ 	 ‘B. Near the end of this

section we will also look at the magnetic susceptibility at
the onset of superconductivity.
Recall that after separating variables as in (42), and

analytically continuing z ¼ i!n, the eigenvalue equation
became

MBðz; ‘Þ� ¼ ��: (74)

The ‘‘reduced’’ operator is found to take the form

L2MBðz; ‘Þ ¼ �r4
d

dr

�
f

r2
d

dr

�
� r2

f

�
z� q�

�
1� r

rþ

��
2

þ ðK‘r
2 þ ðLmÞ2Þ: (75)

Recall that f was given in Eq. (30). In Appendix Awe put
this eigenvalue equation in Schrödinger form. We are
looking for the quasinormal modes of the operator MB.
These are � ¼ 0 eigenmodes of MB satisfying ingoing
boundary conditions at the horizon and normalizable
boundary conditions at infinity. We have already noted
that ingoing boundary conditions at the horizon (r ¼ rþ)
correspond to taking the minus sign in (47). Near the
asymptotic boundary of the spacetime (r ¼ 0) the general
behavior of � ¼ 0 modes is

c ¼ r� þ � � � ; with � ¼ 3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ L2m2

s
: (76)

Normalizability at infinity generally requires taking the
faster of the two falloffs. In this paper we will ignore the
possible ambiguities that arise for masses sufficiently close
to the Breitenlohner-Freedman bound (m2

BF ¼ �9=4L2)
and simply impose the faster falloff at the boundary. For
a discussion of determinants in AdS with m2

BF � m2 �
m2

BF þ 1 see e.g. [38,39].

B. Matrix method for quasinormal modes

The quasinormal modes of a black hole are complex
frequencies z?ð‘Þ such that there are solutions� satisfying

MBðz?ð‘Þ; ‘Þ� ¼ 0; (77)

together with ingoing boundary conditions at the horizon
and normalizability at infinity. These are the frequencies
that contribute to our sum (52).
The technical challenge we face is to find the quasinor-

mal modes of a charged scalar field in planar dyonic
Reissner-Nordström-AdS black holes. In particular, we
will be interested in low and zero temperatures. While
there is an immense literature on quasinormal modes, to
our knowledge this particular problem has not been ad-
dressed. The most relevant references are collected in
Sec. 6.2 of the review [40]. It was noted in [41] that
sometimes quasinormal modes in AdS are easier to find
than in asymptotically flat spacetimes, because the AdS
conformal boundary gives a regular singular point in the
relevant differential equation rather than an irregular sin-
gular point. Unfortunately, the techniques of [41] will not
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work for us because at low temperatures there are singular
points in the differential equation (77) that become arbi-
trary close to the horizon (r ¼ rþ) and make a Taylor
series expansion at the horizon useless. At strictly zero
temperature the horizon becomes an essential singular
point and a series expansion there has zero radius of
convergence.

A useful discussion of asymptotically flat zero tempera-
ture Reissner-Nordström quasinormal modes can be found
in [42]. The authors of that paper noted that, after a change
of variables to bring infinity to a finite radial coordinate,
then a Taylor series expansion at the midpoint between the
horizon and infinity had a radius of convergence that
reached both the horizon and infinity. The same property
holds for our Eq. (77): the Taylor series about the midpoint
rmid ¼ 1

2 rþ has radius of convergence 1
2 rþ and therefore

reaches both the horizon at r ¼ rþ and the boundary r ¼
0. This is true for all values of various parameters in the
equation, including the zero temperature limit.

While [42] were then able to find the quasinormal modes
by reducing a 5-term recurrence relation for the Taylor
series about the midpoint to two 3-term recurrence rela-
tions and then using a continued fraction method due to
Leaver [43], our case is more complicated. ATaylor series
expansion of (77) about r ¼ 1

2 rþ leads to a 9-term recur-

rence relation. Fortunately [43] also presented a method for
dealing with arbitrary length recurrence relations. We will
now review the algorithm.

(1) Expand � in a series expansion about the midpoint,
having first factored out the desired leading (singu-
lar) behavior at the horizon and infinity. Thus at
finite temperature

� ¼ f�iz=4�Trð1=2Þð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ4L2m2

p
Þ XN
n¼0

an

�
r� 1

2
rþ

�
n
;

(78)

while at zero temperature

� ¼ eizr
2
þ=6ðrþ�rÞf�ið4z�3q�Þrþ=36rð1=2Þð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ4L2m2

p
Þ

� XN
n¼0

an

�
r� 1

2
rþ

�
n
: (79)

Note that at zero temperature fðrÞ ¼ 1�
4ðr=rþÞ3 þ 3ðr=rþÞ4.

(2) Plug the relevant series expansion into the differen-
tial equation (77) and expand. Collecting in powers
of r� 1

2 rþ gives N þ 1 linear relations between the

N þ 1 coefficients fang. Write these as a matrix
equation:

XN
n¼0

AmnðzÞan ¼ 0: (80)

Because the recurrence relation between the fang

involves nine terms in general, A will have nonzero
entries only along a diagonal band of width nine.

(3) The quasinormal modes z? are given by the zeros of
the determinant of the matrix A

detAðz?Þ ¼ 0: (81)

Given that the matrix A is fairly sparse, this deter-
minant can be numerically computed quickly and
robustly using, for instance, MATHEMATICA.

As an illustration and to introduce concepts we first
present the results of this method for a neutral scalar field
(q ¼ 0) with no magnetic field background (B ¼ 0) at low
and zero temperature. For the moment we will make the
choice of massm2 ¼ 0; with this mass, neutral scalar fields
are stable all the way down to zero temperature [7].
Furthermore, for concreteness we will take 
 ¼ 1 through-
out the remainder of this paper. For some values of 

obtained via Freund-Rubin compactifications of M theory,
see [7].
Figure 6 shows the quasinormal modes closest to the real

axis for a small (left) and zero (right) temperature. The
structure we are about to describe was to a large extent
previously noted in [44,45]. One sees clearly that at finite
low temperature there are two distinct types of quasinormal
modes. Along the negative imaginary axis we have a
sequence of closely spaced modes, while on each side of
the negative imaginary axis there is another sequence of
modes descending diagonally. Because we are at low tem-
peratures, it is natural to think of the closely spaced modes
as having positions dominantly determined by T whereas
the off-axis modes are more sensitive to �. This statement
can be made precise by varying the temperature, but we
shall not go into detail here. The symmetry of the plot
under z � ��z follows from the corresponding transforma-
tion of the differential equation (77) and ingoing boundary
conditions (47) when q ¼ 0.
In the zero temperature limit, T=� ! 0, we should

expect the modes along the negative real axis to bunch
together and possibly form a branch cut. The right-hand
plot in Fig. 6, showing the zero temperature quasinormal
modes, supports this picture. The fact that discrete poles
are still visible in the plot is an artifact of truncating the
differential equation to a finite matrix equation (with rank
N þ 1) in step 2 of the algorithm we presented above. AsN
is increased one can check that the modes in the figure
move up the imaginary axis, becoming arbitrarily clumped
as N ! 1. The modes away from the imaginary axis
remain fixed, consistent with the notion that their spacing
is dominantly set by �.
For the case of a neutral scalar it is straightforward to

argue analytically that there is a branch cut in the retarded
Green’s function at zero temperature (while the quasinor-
mal modes correspond to poles in the Green’s function).
Making the change of variables
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� ¼ r�;
dr

f
¼ ds; (82)

the differential equation (77) with m2 ¼ q ¼ 0 at T ¼ 0
becomes the Schrödinger equation

� d2�

ds2
þ fðrÞ

r

�
2fðrÞ
r

� f0ðrÞ
�
� ¼ !2�; (83)

where we think of r as rðsÞ. By integrating (82) one easily
finds that s ! þ1 as r ! rþ. Furthermore, the potential
in the Schrödinger equation (83) has the leading near-
horizon behavior

V ¼ fðrÞ
r

�
2fðrÞ
r

� f0ðrÞ
�
¼ rþ

3s3
þ � � � as s ! 1:

(84)

The fact that the Schrödinger potential has a power law
rather than exponential falloff near the horizon is charac-
teristic of extremal rather than finite temperature horizons.
When a Schrödinger equation has an asymptotic region in
which the potential has power law falloff, one generically
expects that the late time evolution of the wave function at
some fixed position will be dominated by scattering events
in which an excitation travels a long distance into the
asymptotic region and is reflected back. This occurs at a
rate proportional to the asymptotic potential and hence
leads to a power law decay in time (see e.g. [31,46] for
more precise arguments). Fourier transforming to fre-
quency space, the power law tail leads to a branch cut
running along the negative imaginary axis from z ¼ 0.
This is the branch cut we are seeing in Fig. 6 at T ¼ 0.
In contrast, an exponential falloff near the horizon can be
shown to imply that there cannot exist branch cuts emanat-
ing from z ¼ 0 [47,48]. The presence of a late time power
law tail in extreme Reissner-Nordström-AdS was previ-
ously shown in [45], in agreement with the observations we

have just made. Furthermore [11] have recently exhibited
this branch cut by explicitly solving the Schrödinger equa-
tion near z ¼ 0.

C. Charged scalars and magnetic field dependence

1. Scales involved: T, B, �

We now wish to determine the behavior of the quasi-
normal modes as a function of the magnetic field in the low
temperature limit. There are three scales characterizing the
black hole and dual field theory: T, � and B. The remain-
ing dimensionful quantity is the quasinormal mode fre-
quency z?. Because there are no other scales, the
underlying strongly coupled theory is a conformal field
theory (CFT), only the ratios of these dimensionful quan-
tities can be physical. We will implement this freedom as
follows.
Firstly, note that the following rescalings completely

eliminate rþ and 
 from our differential equation (77)

r̂ ¼ r

rþ
; ẑ ¼ zrþ; T̂ ¼ Trþ;

�̂ ¼ �rþ



; B̂ ¼ Br2þ



; q̂ ¼ q
:

(85)

The quantities fT̂; �̂; B̂g are dimensionless and satisfy the
constraint, from (33),

4�T̂ ¼ 3� �̂2 � B̂2: (86)

Wewill use this constraint to eliminate, for instance, �̂. We
will then find the dimensionless quasinormal modes ẑ? as a

function of T̂ and B̂ using the algorithm above. Finally, the
physical quasinormal frequency in units of the chemical
potential is obtained by

z?
�

¼ ẑ?

�̂

¼ 1



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� B̂2 � 4�T̂

p : (87)

FIG. 6 (color online). Left: Quasinormal modes at temperature T=� ¼ 0:075. Right: Quasinormal modes at zero temperature T ¼ 0.
The plots show the lower half z=� frequency plane, and bright spots denote quasinormal modes. Both plots have q ¼ 0, m2 ¼ 0,

 ¼ 1 and no magnetic field. The plots were generated as density plots of j detA0ðzÞ= detAðzÞj. The finite temperature plot has N ¼ 200
while the zero temperature plot has N ¼ 500. The discreteness of the poles on the imaginary axis at T ¼ 0 is an artifact of finite N. As
N ! 1 the poles coalesce and form a branch cut.
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This will be a quasinormal mode at physical temperature
and magnetic field

T

�
¼ T̂



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� B̂2 � 4�T̂

p ;
B

�2
¼ B̂


ð3� B̂2 � 4�T̂Þ :

(88)

The upshot of the considerations of the previous para-
graph will be quasinormal modes of the form

zðpÞ? ð‘Þ ¼ F ðpÞ
�
T

�
;
B

�2
; ‘

�
�; (89)

for some sequence of functions F ðpÞ. Our objective is to
explore these functions, particularly the B dependence.
This will then allow us to evaluate some of the terms in
the sum (52).

2. Dependence on the charge q of the scalar field

Before switching on a magnetic field we make a few
observations about the q dependence. Without loss of
generality we will focus on positive charges. Taking nega-
tive charge q would simply result in a reflection about the
imaginary axis:

q $ �q , z? ! ��z?: (90)

This follows from taking the complex conjugate of (75)
together with noting that z ! ��z will preserve ingoing
boundary conditions at the horizon.

For a given mass squared there exists a critical charge
such that if q is larger than the critical value the extremal
Reissner-Nordström black hole becomes unstable. A pre-
cise expression for the critical charge as a function of the
mass was obtained in [7], following the initial discussions
of the instability in [4–6]. New instabilities were discov-
ered in [11], we briefly discuss these near the end of this
section. The instability indicates the onset of a supercon-
ducting phase. A finite temperature improves the stability
of the black holes, although a sufficiently large charge q
will always result in an instability. In Fig. 7 we show how
the location of the quasinormal mode closest to the real
axis moves as a function of charge q at a fixed low
temperature T=� ¼ 0:05 and m2 ¼ 0. At q ¼ 0 the
mode is on the imaginary axis, as in Fig. 6. As the charge
is increased the mode moves up towards the real axis
following an almost semicircular trajectory. At a critical
charge qc � 4:3 the pole crosses into the upper half plane,
indicating the onset of a superconducting instability. This
value for qc agrees nicely with Fig. 1 in [7].

While the onset of superconductivity is the most dra-
matic effect that occurs as a function of the charge of the
scalar field, it is also interesting to see how the higher
quasinormal modes rearrange themselves. The low lying
quasinormal modes at low temperature of a scalar field
with charges q ¼ 1, 2 and 4 are shown in Fig. 8. The q ¼ 0

quasinormal modes for the same mass and temperature
were already shown in Fig. 6.
In the plots of Fig. 8 we can see how the mode closest to

the real axis moves up towards the axis as the charge is
increased, as we saw previously in Fig. 7. The motion of
the other quasinormal modes is very curious. The line of
quasinormal modes that was along the negative imaginary
axis at zero charge bends increasingly towards the left.
Meanwhile, the modes that were to the left of these in
Fig. 6 move upwards and to the right, and one by one
merge with the sequence of modes that were along the
imaginary axis. By the time the charge is q ¼ 4, the right-
most plot in Fig. 8, it is impossible to distinguish any more
between these two types of low lying modes. On the other
hand, the modes that were to the right of the imaginary axis
are pushed down and further to the right, eventually dis-
appearing from our plot.
Figure 8 suggests the following interpretation. There are

quasinormal modes that for charges less than some critical
charge q < qcrit remain of order � as T ! 0, while at
sufficiently large charge q > qcrit they coalesce with other
poles that are forming a branch cut as T ! 0. At strictly
zero temperature this would presumably correspond to a
critical charge at which the pole crosses the branch cut into
an ‘‘unphysical’’ sheet. Any given pole forming the branch
tends to the origin as T ! 0. Therefore one would have the
nonanalytic in q behavior that

lim
T!0

z? ¼
�
Oð�Þ for q < qcrit
0 for q > qcrit:

(91)

0.2 0.1 0.0 0.1 0.2
0.4
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FIG. 7 (color online). The location of the quasinormal mode
closest to the real axis as a function of charge. The temperature is
T=� ¼ 0:05 and B ¼ 0. The charge ranges from q ¼ 0 to q ¼
4:3. The mass is m2 ¼ 0 while 
 ¼ 1. At the upper limit of q the
mode crosses into the upper half plane, indicating the onset of a
superconducting instability.
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To establish this behavior unambiguously would require
higher precision numerics at low temperature than we are
currently able to perform.

Varying the charge q corresponds to varying the charge
of an operator in the field theory and so is not an operation
that can be performed within a given theory. However, we
will now see that the merging effect shown in Fig. 8 and
Eq. (91) can be undone by a magnetic field. This leads to a
possible source of (periodic in 1=B) nonanalytic behavior
of the free energy due to bosons.

3. Dependence on B: Possible periodic nonanalyticities
from bosons

We now turn to the dependence of the quasinormal
modes on the magnetic field. We will focus on a case in
which, in the absence of a magnetic field, the merging of
poles with a branch cut uncovered in Fig. 8 has occurred.
This requires a sufficiently large charge q. As we would
like to work at zero temperature, we will increase the mass
of the field so that it remains stable at zero temperature.
The choice q ¼ 4, m2 ¼ 10 (hence � ¼ 5Þ does the job
[7]. We will also work in the limit of large ‘ and small B,
with B‘ order one, so that we can isolate effects that are
potentially periodic in 1=B.

Figure 9 shows the behavior of the T ¼ 0 quasinormal
modes of this charged scalar (q ¼ 4, m2 ¼ 10) as a mag-
netic field is turned on. The top left plot, with a small value
of ‘B, is analogous to the rightmost plot in Fig. 8. The
branch cut bends to the left whereas various poles have
either merged with the branch cut or moved off to the right
of the plotted region (as in Fig. 8). As the magnetic field is
increased, the poles that had merged with the branch cut
are seen to reappear, moving out to the left.

Within the current accuracy of our numerics, it is not
completely clear whether the poles emerge from the cut at
specific finite values of ‘B or whether the pole is distinct
from the cut at arbitrarily small ‘B. If the former case is

true, then this may lead to nonanalyticities in the free
energy that are periodic in 1=B, with qcrit in (91) replaced
by a critical kcrit (with k2 � 2‘jqBj). Given that such non-
analyticities are usually associated strictly with fermions, it
would be very interesting indeed if bosonic operators can
lead to these effects at strong coupling. We hope that future
work will settle this question.
A possible simple interpretation for why the poles move

to the left in Fig. 9 suggests itself. Recall that in the limit
we are working here, the poles in a magnetic field B at
some Landau level ‘ are the same as the poles in the
absence of a magnetic field and at a spatial momentum
k2 ¼ 2‘jqBj. At zero chemical potential (� ¼ 0), relativ-
istic invariance will require a branch cut in the T ¼ 0
retarded Green’s function emanating from k ¼ z. It may
be that the vertically spaced poles in the lower rightmost
plots of Fig. 9 are a finite � remnant of this branch cut.

D. Magnetic susceptibility near a superconducting
instability

We have already mentioned that if a bosonic quasinor-
mal mode hits the real axis it typically indicates the onset
of a superconducting instability. We saw an example of this
in Fig. 7 as a function of the charge of the scalar field. One
expects to see a strong response in the susceptibility as the
temperature is lowered close to the critical temperature Tc,
yet this is absent to leading order at large N (i.e. in the
classical result of Eq. (34) which is unaware of the exis-
tence of Tc). In this section we will outline a one-loop
computation of a divergent magnetic susceptibility. The
computation is essentially identical to the standard compu-
tation in flat space, see e.g. [49], except that we will use
zeta function regularization. The simple steps below form
the conceptual outline of a more complete calculation.
Firstly, we assume that only quasinormal modes close to

the origin in frequency space are important. This is rea-
sonable because the divergence we find is directly due to

FIG. 8 (color online). Quasinormal modes at temperature T=� ¼ 0:075. Charges from left to right: q ¼ 1, q ¼ 2 and q ¼ 4. The
plots show the lower half frequency plane z=�, and bright spots denote quasinormal modes. Both plots have m2 ¼ 0, 
 ¼ 1 and no
magnetic field.
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the logz? divergence of our formula (52) as z? ! 0. At
least one such mode exists, by assumption, because T 	
Tc. To obtain the correct susceptibility we must sum over
the higher Landau levels associated to this mode [49].
These are also close to the origin in the limit of small
magnetic field, a limit wewill assume in this calculation. In
fact, the computation we are about to present will require

B � ðT � TcÞTc: (92)

However, we will not sum over the ‘‘excited’’ quasinormal
modes, as these will be at a distance at least of order Tc

from the origin. Using the fact that �ðxÞ 	 1=xþ � � � , as
x ! 0, then for the modes of interest, z? 	 0, (52) reduces
to

�B ¼ jqBjAT
2�

X
‘

Re log
z?ð‘Þ
T

þ � � � : (93)

Secondly, we assume that the quasinormal modes appear-
ing in (93) can be written as

z?ð‘Þ ¼ �1jqBj
�
‘þ 1

2

�
þ �2ðT � TcÞ þ � � � ; (94)

with �i complex constants with negative imaginary parts.

The temperature dependence is fixed by the requirement
that z? go to zero at T ¼ Tc in the absence of a magnetic
field. The magnetic field and Landau-level dependence at a
linearized level at small B is fixed by the fact that only the
combination Bð‘þ 1

2Þ appears in the differential operator

(75). The offset of 12 is crucial in this computation. Thus the

free energy (93) becomes, using zeta function regulariza-
tion,

�B ¼ �AT

2�
Re	 0Bð0Þ; (95)

with

	BðsÞ ¼
X
‘

jqBj
ð�1jqBjð‘þ 1

2Þ þ �2ðT � TcÞÞs

¼ jqBjð�1jqBjÞ�s	H

�
s;
1

2
þ �2ðT � TcÞ

�1jqBj
�
; (96)

where as previously 	Hðs; xÞ is the Hurwitz zeta function.
To leading order in B � ðT � TcÞTc this gives a diver-

gent susceptibility

FIG. 9 (color online). Emergence of quasinormal modes from a branch cut as a function of magnetic field and at zero temperature.
All plots have q ¼ 4, 
 ¼ 1, m2 ¼ 10 and ‘ ¼ 10. The plots show the lower half frequency plane z=�, and bright spots denote

quasinormal modes. From top left k=� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2‘jqBjp

=� � 0:283; 0:632; 0:894; 1:26; 1:79; 2:53. The closely spaced modes are a branch
cut that has been discretized into poles by the finite value of N ¼ 500 in (80).
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� ¼ �@2�B

@B2
¼ � AT

24�
Re

�
�1

�2

�
1

T � Tc

: (97)

If the real part of �1=�2 is positive, then the divergence is
diamagnetic, as we should expect for the onset of super-
conductivity. Numerical computations suggest that this is
the case. As previously, the divergence indicates the break-
down of perturbation theory and the need to resum higher
order corrections. This divergence is a second vivid ex-
ample of physics beyond the classical gravity limit, albeit
not the focus of this paper. It is of interest to flesh out the
computation outlined above.

A different order of limits is to take T ¼ 0 with a large
magnetic field stabilizing the superconducting instability.
One then lowers the magnetic field, finding an instability at
B ¼ Bc2 [6,50]. Distinct to the case we have just treated,
this would be a zero temperature quantum phase transition.
Furthermore the zero temperature ground state for B< Bc2

is not known in this regime. It is plausible that we can use
the same logic as in Secs. III D, III E, and III F. The relevant
(likely ‘ ¼ 0) quasinormal mode should behave for B just
above Bc2 like

Im z?ð0Þ 	 �jB� Bc2j�; (98)

for some positive � > 0. The bosonic analogue of (72) will
then give

�	�jqBjAjB� Bc2j��2: (99)

Interestingly, the sign depends on the value of the angle �
of Sec. III F which now lies in the range �ð1� 2�Þ< �<
�. For cases in which the divergence is paramagnetic
rather than diamagnetic, it may be that the state at B<
Bc2 is not superconducting at T ¼ 0. To fully address this
question one should generalize the results of [11] for
scalars in a magnetic field. We cannot simply use the
existing results as these translate into statements about
large ‘ modes, while the T ¼ 0 finite B instability is likely
sensitive to the lowest Landau level only, with the higher
levels being ‘‘gapped’’ by the magnetic field.

E. WKB results for charged scalar quasinormal modes

As a check on our numerics, and also with a view to
eventually controlling the UV behavior of the sums over
quasinormal modes in (52) and (53), we have computed the
large frequency limit of the charged bosonic quasinormal
modes, at fixed ‘. The derivation is given in Appendix C,
closely following the WKB analysis of neutral massless
scalars in the AdS-Reissner-Nordström background in
[51]. The method used for obtaining the asymptotic behav-
ior of quasinormal modes was pioneered by [52].

The result is that the asymptotic quasinormal modes for
the equation (75) are

Z x0

0
dx

�
z? � q�

ðrþ � rðxÞÞ
rþ

�

¼ n�þ 1

2i
log

�
2 cos

�
�

6

��
þ �ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2 þ 9
p Þ
4

;

(100)

with n 2 N, while x0 and xðrÞ are given by

x0 ¼
X4
p¼1

1

f0ðrpÞ log
�
� rþ

rp

�
;

xðrÞ ¼ � X4
p¼1

1

f0ðrpÞ log
�
1� rp

r

�
;

(101)

where rp are the zeros of fðrÞ. Thus rðxÞ in (100) must be

found by inverting the second of these expressions. The
integral in (100) is along the Stokes line specified in [51].
In the complex x plane this is simply a straight line con-
necting 0 and x0. In computing rðxÞ one must be careful to
remain on the correct sheet. The ‘‘mirror’’ poles, z? !
��z? and q ! �q, are obtained with a different choice of
Stokes lines.
The result (100) does not depend on the Landau level ‘

and so only depends on B through fðrÞ. To capture the
Landau-level dependence will require a more refined
analysis, perhaps along the lines of [35]. The complication
is that the large ‘ and large n limits do not commute.
Ideally we would like a single formula encapsulating
both of these limits.
We have checked that (100) agrees with our numerical

results for the sequence of poles extending down in the
complex plane with a spacing set by � (the slope agrees
very well, there is a slight mismatch in the offset which we
believe is due to not being able to access the large fre-
quency limit with our numerics). A curious feature, how-
ever, is that the sequence of poles coalescing to form a
branch cut, i.e. those that appear more closely spaced at
low temperatures in Figs. 6 and 8, do not appear in this
formula. This may suggest that the zero temperature
branch cut emanating from the origin terminates at some
large but finite frequency rather than extending asymptoti-
cally. We hope this can be determined precisely in future
work.

V. DISCUSSION

In this paper we have argued that one-loop effects in the
bulk contain information that needs to be accessed if the
‘‘applied holography’’ research program is to successfully
disentangle the different physical contributions to observ-
ables such as the free energy and electrical conductivity.
We illustrated this point of view by showing that the one-
loop contribution to the magnetic susceptibility exhibits
the de Haas–van Alphen quantum oscillations that are not
manifest at a bulk classical level. In achieving this, we
discovered that the oscillations at strong coupling differ
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from their weak coupling counterparts in that the periodic
low temperature nonanalyticities of the magnetic suscep-
tibility are not delta functions but rather power law
divergences.

The key step in our arguments has been the (new to our
knowledge) observation that one-loop determinants can be
expressed as a sum over quasinormal modes. The quasi-
normal frequencies give the poles of retarded Green’s
functions in the strongly coupled dual field theory and
are therefore natural physical quantities. In particular, if
one of these poles comes close to the real frequency axis
then we may be able to think of it as an emergent quasi-
particle excitation of sorts (although it may not have a
finite residue [11]). It may therefore be sensible to think
about the isolated individual contribution of this pole to
physical quantities. In our computation it was precisely
such poles near the real axis which lead to the de Haas–
van Alphen oscillations. More generally it might be inter-
esting to compute the one-loop contribution of such poles
to other quantities such as the electrical conductivity.

We primarily examined the low temperature regime in
this paper, as the sum over quasinormal modes simplified
in this limit and the nonanalytic motion of a specific pole
contained the physics of interest. In general one would like
to exhibit quantum oscillations at the higher temperatures
more relevant for comparison with recent experiments. In
particular, it would be interesting to obtain a strong cou-
pling analogue of the Lifshitz-Kosevich formula [53]. To
deal with higher temperatures it will likely be necessary to
Poisson resum the Landau levels. Before this can be done,
the asymptotic behavior of the quasinormal poles will need
to be well characterized. We took some first steps in this
direction above by computing the WKB form of the qua-
sinormal poles at a fixed Landau level ‘. It would also be of
interest to study the charged fermionic quasinormal modes
numerically in a similar way to our studies of charged
bosons in this paper.

At the low temperatures we have studied, quantum
oscillations are usually closely connected to the quantum
Hall effect. It seems possible that the novel nonanalytic
behavior of the low temperature free energy as a function
of the magnetic field in theories with gravitational duals
may indicate nonconventional quantum Hall states.

In our numerical studies of the quasinormal frequencies
of charged bosons we uncovered some nontrivial depen-
dence of the pole locations on the charge of the field and
the background magnetic field. It would be very interesting
to improve the numerical determination of the positions of
the poles, perhaps by implementing a better numerical
algorithm than the rather general method used in this paper.
A more accurate knowledge of the ‘‘pole dancing’’ will be
necessary to establish unambiguously whether there are
nonanalyticities as a function of the magnetic field due to
bosonic quasinormal modes ‘‘disappearing’’ into branch
cuts. Also, it would be useful to be able to extend the

numerics further into the lower half frequency plane and
determine whether the branch cut terminates or whether it
continues asymptotically.
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APPENDIX A: SCHRÖDINGER FORM

The equation (74) can be converted into a Schrödinger
form (albeit with a complex potential at general z)

� d2�

dr2?
þ Vðr?Þ� ¼ L2��; (A1)

by setting

� ¼ r3=2

f1=4
�; dr? ¼ dr

rf1=2
: (A2)

This shows that the required norm isZ
dr?j�j2 ¼

Z dr

r4
j�j2 <1: (A3)

The potential is, written in terms of r,

V ¼ L2m2 þ K‘r
2 � r2

f

�
z� q�

�
1� r

rþ

��
2 þ 9f

4

þ r2f00

4
� 5rf0

4
� r2f02

16f
: (A4)

At the boundary at infinity, r ¼ 0, the potential tends to
Vð0Þ ¼ 9

4 þ ðLmÞ2 which is positive so long as the scalar

field satisfied the Breitenlohner-Freedman bound. This
naturally suggests a continuum of eigenvalues at � 

9

4L2 þm2.

For self-adjoint operators one can prove that a complete
basis of eigenstates lives in an extended Hilbert space
which allows certain non-normalizable functions. At van-
ishing charge (q ¼ 0) and pure imaginary frequencies z ¼
i!n the operator Mðz; ‘Þ is self-adjoint and positive. From
the definition of the extended Hilbert space (see e.g. [54])
one can easily check that in this case there is a basis of
eigenfunctions for which the condition � 
 9

4L2 þm2

holds. While the operator is not self-adjoint on the imagi-
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nary z axis with nonzero charge and chemical potential,
these do not alter the boundary behavior of the field and we
expect the continuum to persist as a basis of states. This
statement is routinely used for charged fields in flat space
and finite chemical potential. The only generalization we
are making is to consider a curved spacetime background.

APPENDIX B: DAMPED HARMONIC
OSCILLATOR

In this appendix we show how some of the methods we
have developed in this paper can be applied to the very
simple case of a damped harmonic oscillator.

Consider the retarded Green’s function

GRðzÞ ¼ 1

�ðz��Þ2 � 2i
zþm2
; (B1)

with j�j<m and 
 > 0. This is just the response function
of a damped simple harmonic oscillator. All the poles of
GRðzÞ are in the lower half frequency plane. Associated
with this retarded Green’s function, we have the Matsubara
Green’s function defined on the imaginary frequency axis
by

Gði!nÞ ¼ 1

ð!n þ i�Þ2 þ 2
j!nj þm2
: (B2)

We now use the spectral representation to write

GðzÞ ¼
Z 1

�1
d�

�
Im

�
1

�ð���Þ2 � 2i
�þm2

�

� 1

ð�� zÞ : (B3)

Note thatGðzÞ ¼ GRðzÞ in the upper half plane, butGðzÞ �
GRðzÞ in the lower half plane. However, on the imaginary
frequency axis, with z ¼ i!n, the expressions in Eqs. (B3)
and (B2) agree for all positive and negative !n. Note that
(B3) defines an analytic function GðzÞ which has a branch
cut on the real z axis, and no poles anywhere.

We can use the spectral representation to perform the
frequency summation

T
X
!n

Gði!nÞ ¼
Z 1

�1
d�

�
Im

�
1

�ð���Þ2 � 2i
�þm2

�

� 1

e�=T � 1
: (B4)

This object is of interest because it is related to the free
energy F by

dF
dm2

¼ T
X
!n

Gði!nÞ: (B5)

We can try to simplify (B4) by using the position of the
poles of GR:

GRðzÞ ¼ X
i

ci
zi � z

; (B6)

with Im½zi�< 0. Explicitly the poles are z1;2 and they obey

z1 þ z2 ¼ 2�� 2i
; z1z2 ¼ �2 �m2;

z1;2 ¼ �� i
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 
2 � 2i
�

q
:

(B7)

Note that at large z the left-hand side of (B6) goes like
	� 1=z2 which implies from the right-hand side thatX

i

ci ¼ 0: (B8)

This condition may often hold more generally indepen-
dently of the number of poles, and was implicitly used in
performing the frequency summation in Eq. (B4). So we
have

T
X
!n

Gði!nÞ ¼
X
i

Z 1

�1
d�

�
Im

�
ci

zi ��

�
1

e�=T � 1
: (B9)

Convergence of the integral at � ¼ 0 requires that

X
i

Im

�
ci
zi

�
¼ 0; (B10)

which is also seen to hold from Eqs. (B6) and (B1). Again,
we expect Eq. (B10) to hold more generally. It does not
seem to be possible to simplify the integral in Eq. (B9)
further, in general. However, at T ¼ 0, we obtain

T
X
!n

Gði!nÞ ¼ 1

�

X
i

Im½ci logðziÞ�: (B11)

Now we turn to the free energy. Let us write

½GRðzÞ��1 ¼ fðzÞ þm2: (B12)

Then, near a pole zi,

GRðzÞ � � 1

f0ðziÞ
1

ðzi � zÞ : (B13)

But fðziÞ ¼ �m2 and so

f0ðziÞ dzi
dm2

¼ �1; (B14)

and hence

GRðzÞ � dzi
dm2

1

ðzi � zÞ : (B15)

So we have

ci ¼ dzi
dm2

: (B16)

This is an interesting result linking the residue and location
of the ‘‘quasinormal poles.’’ With this expression, we can
write the constraints in Eqs. (B8) and (B10) as
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d

dm2

X
i

zi ¼ 0;
d

dm2

X
i

Im½logzi� ¼ 0: (B17)

For the frequency summation, we have

T
X
!n

Gði!nÞ ¼
X
i

Z 1

�1
d�

�

d

dm2
Im½logðzi ��Þ�

� 1

e�=T � 1
: (B18)

Integrating this, using (B5), we obtain

F ¼ X
i

Z 1

�1
d�

�
Im½logðzi ��Þ� 1

e�=T � 1
; (B19)

up tom-independent terms. This expression is analogous to
(56) in the main text.

For the damped harmonic oscillator, we obtain as T !
0:

F jT!0 ¼ �X
i

Z 1

0

d�

�
Im½logðzi þ�Þ�

� 4

�




ðm2 ��2Þ
Z 1

0

�d�

e�=T � 1

¼ 1

�

X
i

Im½zi logzi� � 2�

3


T2

ðm2 ��2Þ ; (B20)

where the zi are given in Eq. (B7).
Alternatively, we can write

T
X
!n

Gð!nÞ ¼
X
i

�
T
X
!n>0

ci
zi � i!n

þ T
X
!n�0

c
i
z
i � i!n

�
:

(B21)

Integrating this with respect to m2 we obtain

F ¼ X
i

�
T
X
!n>0

logðzi � i!nÞ þ T
X
!n�0

logðz
i � i!nÞ
�
:

(B22)

This formula is analogous to (54) in the main text We can
now evaluate the frequency summation by using the iden-
tities of zeta function regularization in Eq. (55). This yields

F ¼ X
i

�
T
X1
n¼1

log

�
nþ izi

2�T

�
þ T

X�1

n¼0

log

�
nþ iz
i

2�T

��

¼ X
i

�
T
X1
n¼0

log

�
nþ izi

2�T

�
þ T

X1
n¼0

log

�
n� iz
i

2�T

�

� T log

� jzij
2�T

��

¼ �T
X
i

log

�jzijj�ðizi=ð2�TÞÞj2
4�2T

�
: (B23)

This result is analogous to (52) in the main text.
As T ! 0 at fixed zi, we can use the asymptotic expan-

sion of the � function

log�ðxÞ 	
�
x� 1

2

�
logx� xþ 1

2
logð2�Þ þ 1

12x
: (B24)

Working with all the terms in Eq. (B24), we have the
complete expression as T ! 0, assuming all the zi remain
finite in this limit

F jT!0 ¼
X
i

�
�T log

� jzij
4�2T

�
þ ImðziÞ

�
log

�
1

2�eT

�
þ 1

�
Im½zi logðiziÞ� þ T

2
log

� jzij2
4�2T2

�
� T logð2�Þ � T

6
Im

�
2�T

zi

��

þOðT3Þ

¼ logð1=ð2�eTÞÞ
�

X
i

ImðziÞ þ 1

2

X
i

ReðziÞ þ 1

�

X
i

Im½zi logzi� � �T2

3

X
i

Im

�
1

zi

�
þOðT3Þ: (B25)

The above expression is very general. Specializing to the
values in Eq. (B7) we obtain

F jT!0 ¼ � 2


�
log

�
1

2�eT

�
þ�þ 1

�

X
i

Im½zi logzi�

� 2�

3


T2

ðm2 ��2Þ þOðT3Þ: (B26)

Apart from the first twom-independent terms, this matches
precisely with Eq. (B20).

APPENDIX C: ASYMPTOTIC FREQUENCIES

In this appendix we outline the derivation of the WKB
formula (100) for the charge quasinormal modes in the
main text. We will follow the notation of [51] which uses
different coordinates to those in this paper. Let us therefore
rewrite our Eq. (75) as�
�R4 d

dR

�
F

R2

d

dR

�
� R2

F

�
!� q�

�
1� R

rþ

��
2

þ ðK‘R
2 þm2Þ

�
�ðRÞ ¼ 0; (C1)

where
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FðRÞ ¼ 1� 4

�
R

rþ

�
3ð1� �rþTÞ þ

�
R

rþ

�
4ð3� 4�rþTÞ:

(C2)

The boundary is at R ¼ 0 and the horizon is at R ¼ rþ. We
are interested in the quasinormal frequencies ! of this
equation.

We want to transform Eq. (C1) into the notation of
Ref. [51]. So we define

r ¼ rþ
R

;

fðrÞ ¼ rþR�2FðRÞ

¼ r2

rþ
� 4ð1� �rþTÞ

rrþ
þ ð3� 4�rþTÞ

r2rþ
;

�ðrÞ ¼ r�ðRÞ:

(C3)

Now the boundary is at r ¼ 1 and the horizon is at r ¼ 1,
and the differential equation transforms to

� f
d

dr

�
f
d�

dr

�
þ

�
m2

rþ
þ K‘rþ

r2
þ 1

r

df

dr

�
f�

¼
�
!� q�

ðr� 1Þ
r

�
2
�: (C4)

This is similar to Eq. (3.2) of Ref. [51], allowing us to map
some of their results to ours.

We will need the roots of fðrÞ below. The roots are at
r ¼ rp with

r1 ¼ 1; f0ðr1Þ ¼ 4�T;

r2 ¼ r�=rþ; 0< r2 < 1; f0ðr2Þ< 0;

r3;4 ¼ �ð1þ r�=rþÞ=2� i�;

(C5)

where � is real. These roots satisfy some useful identities:

X4
p¼1

rp ¼ 0;

X4
p¼1

rnp
f0ðrpÞ ¼ 0 for n ¼ 2; 0;�1;�2;

X4
p¼1

rp
f0ðrpÞ ¼ rþ:

(C6)

The WKB formulas will involve contour integrals which
are most easily expressed in terms of a coordinate x, related
to r by

dx ¼ dr

fðrÞ : (C7)

This can be integrated to obtain

xðrÞ ¼ X4
p¼1

1

f0ðrpÞ log
�
1� r

rp

�
: (C8)

TheWKB limit of the quasinormal modes is captured by
matching together the behavior of solutions to (C4) near
several special values of r. We now consider these values in
turn.

1. r ¼ 0 (black hole singularity)

The branch cuts in Eq. (C8) should be chosen so that
there is no monodromy around r ¼ 0, and also none
around r ¼ 1. Then the expansion near r ¼ 0 is

x ¼ rþ
3ð3� 4�rþTÞ r

3 þ � � � ; (C9)

and the differential equation (C4) becomes

� d2�

dx2
� 2

9x2
� ¼ !2�: (C10)

This has the same form as that in Sec. 3.3.2 of Ref. [51]
with

j ¼ 1=3: (C11)

Note that for jxj � 1, the term proportional to q in
Eq. (C4) is subdominant to either the !2 or the 1=x2 terms
in Eq. (C10). This means that we can solve Eq. (C10) in
terms of Bessel functions. In the regime where !x � 1,
but with jxj � 1, we have the solution as in Eq. (3.40) of
[51]:

�ðxÞ 	 2Bþ cosð!x� �þÞ þ 2B� cosð!x� ��Þ;
(C12)

where �þ ¼ �ð1� jÞ=4.
However, for the matching below, we have to extend this

solution to x � 1. In this regime we can use the WKB
method, where the right-hand side of Eq. (C4) dominates
over the potential on the left-hand side. From this method,
with j!j � 1, we find that we must replace Eq. (C12) by

�ðxÞ 	 2Bþ cos

�Z x

0
dx

�
!� q�

ðr� 1Þ
r

�
� �þ

�

þ 2B� cosð
Z x

0
dx

�
!� q�

ðr� 1Þ
r

�
� ��

�
:

(C13)

The integral is to be taken over a suitable contour in the
complex plane, which we will discuss below.

2. r ¼ 1 (asymptotic AdS region)

Here we have

x0 ¼ xðr ! 1Þ ¼ X4
p¼1

1

f0ðrpÞ log
�
� 1

rp

�
; (C14)

where x0 is a complex number which will play an impor-
tant role below. Despite the ambiguity in the branch cuts of
the logarithms, the value of x0 is unique: the identities in
Eq. (C6) ensure that there is no monodromy around r ¼ 1
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provided none of the branch cuts extend to r ¼ 1. For x
close to x0, we have

r � rþ
x0 � x

; (C15)

and the differential equation -(C4) becomes

� d2�

dx2
þ m2 þ 2

ðx0 � xÞ2 � ¼ !2�: (C16)

Again, the q� term is subdominant everywhere for jx�
x0j � 1. In the limit of large ! this is the same as in
Sec. 3.3.2 of Ref. [51] with

j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ 9

p
: (C17)

As x ! x0, the solutions of Eq. (C16) are of the form

�	 rð�1�
ffiffiffiffiffiffiffiffiffiffiffi
4m2þ9

p
Þ=2; (C18)

implying that in terms of our original variables �	
Rð3�

ffiffiffiffiffiffiffiffiffiffiffi
4m2þ9

p
Þ=2, as expected.

The connection to the regime where jx� x0j � 1, but
!ðx0 � xÞ � 1, can be performed using Bessel functions,
as in Ref. [51]. Requiring falloff at infinity yields the result
above (3.41) in [51]:

�ðxÞ 	 2Cþ cosð!ðx� x0Þ þ �þÞ; (C19)

with �þ ¼ �ð1þ j1Þ=4. As for Eq. (C12), we have to
extend this result for x0 � x	 1, but j!j � 1. Here the
WKB method shows that Eq. (C19) is replaced by

�ðxÞ 	 2Cþ cos

�Z x

x0

dx

�
!� q�

ðr� 1Þ
r

�
þ �þ

�
;

(C20)

where the contour of integration is left unspecified for now.

3. r ¼ 1 (black hole horizon)

Near the horizon of the black hole

x � logðr� 1Þ
4�T

! �1: (C21)

The equation (C4) becomes

� d2�

dx2
¼ !2�; (C22)

and so the solution is

�ðrÞ � ðr� 1Þ�i!=ð4�TÞ; (C23)

which is as expected. We will want to impose ingoing
boundary conditions, as in the main text.

4. Asymptotic frequencies

We now see that the determination of the frequencies of
the quasinormal modes can be mapped onto the solution in
Sec. 3.3.2 of Ref. [51], after using the values of j, j1 and x0
quoted above, and including the phase shifts from the q�
term.
Matching the behavior near r ¼ 0 in Eq. (C13), with that

near r ¼ 1 in Eq. (C20), we find that the condition (3.41)
in [51] is replaced by

exp

�
2i

�Z x0

0
dx

�
!� q�

ðr� 1Þ
r

�
� �þ

��

¼ Bþei�þ þ B�ei��

Bþe�i�þ þ B�e�i��
; (C24)

where the integral is to be taken along contour B connect-
ing these points in Fig. 15 of Ref. [51]. Namely, it is the
Stokes line satisfying Im!x ¼ 0. This is crucial in order to
be able to accurately distinguish ingoing and outgoing
modes at the horizon.
The matching between r ¼ 0 and the horizon r ¼ 1

remains as in Ref. [51], and we have the result above their
(3.42):

Bþe�3i�þ þ B�e�3i�� ¼ 0: (C25)

The final result for ! is obtained by solving these last
two equations, and this shows that Eq. (3.42) of Ref. [51] is
replaced by

Z x0

0
dx

�
!� q�

ðr� 1Þ
r

�
¼ n�þ 1

2i
log

�
2 cos

�
�

6

��

þ �ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ 9

p Þ
4

;

(C26)

where n is an integer, and the integral is along contour B.
This is Eq. (100) in the main text. In the main text we
transformed back to our coordinates.

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999).

[2] S. A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdev,
Phys. Rev. B 76, 144502 (2007).

[3] S. A. Hartnoll and C. P. Herzog, Phys. Rev. D 76, 106012
(2007).

[4] S. S. Gubser, Phys. Rev. D 78, 065034 (2008).
[5] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys.

Rev. Lett. 101, 031601 (2008).
[6] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, J. High

Energy Phys. 12 (2008) 015.
[7] F. Denef and S.A. Hartnoll, Phys. Rev. D 79, 126008

FREDERIK DENEF, SEAN A. HARTNOLL, AND SUBIR SACHDEV PHYSICAL REVIEW D 80, 126016 (2009)

126016-24



(2009).
[8] S. S. Lee, Phys. Rev. D 79, 086006 (2009).
[9] H. Liu, J. McGreevy, and D. Vegh, arXiv:0903.2477.
[10] M. Cubrovic, J. Zaanen, and K. Schalm, arXiv:0904.1993.
[11] T. Faulkner, H. Liu, J. McGreevy, and D. Vegh,

arXiv:0907.2694.
[12] P. Kovtun, D. T. Son, and A.O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[13] P. Kovtun and A. Ritz, Phys. Rev. D 78, 066009 (2008).
[14] S. A. Hartnoll, Classical Quantum Gravity 26, 224002

(2009).
[15] Y. Kats and P. Petrov, J. High Energy Phys. 01 (2009) 044.
[16] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S.

Yaida, Phys. Rev. D 77, 126006 (2008).
[17] D. Anninos and G. Pastras, J. High Energy Phys. 07 (2009)

030.
[18] A. Buchel, R. C. Myers, and A. Sinha, J. High Energy

Phys. 03 (2009) 084.
[19] G.W. Gibbons and S.W. Hawking, Euclidean Quantum

Gravity (World Scientific, Singapore, 1993).
[20] N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois,

J.-B. Bonnemaison, R. Liang, D. A. Bonn, W.N. Hardy,
and L. Taillefer, Nature (London) 447, 565 (2007).

[21] E. A. Yelland, J. Singleton, C.H. Mielke, N. Harrison, F. F.
Balakirev, B. Dabrowski, and J. R. Cooper, Phys. Rev.
Lett. 100, 047003 (2008).

[22] A. F. Bangura, J. D. Fletcher, A. Carrington, J. Levallois,
M. Nardone, B. Vignolle, P. J. Heard, N. Doiron-Leyraud,
D. LeBoeuf, L. Taillefer, S. Adachi, C. Proust, and N. E.
Hussey, Phys. Rev. Lett. 100, 047004 (2008).

[23] C. Jaudet, D. Vignolles, A. Audouard, J. Levallois, D.
LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Nardone,
A. Zitouni, Ruixing Liang, D.A. Bonn, W.N. Hardy, L.
Taillefer, and C. Proust, Phys. Rev. Lett. 100, 187005
(2008).

[24] S. E. Sebastian, N. Harrison, E. Palm, T. P. Murphy, C. H.
Mielke, Ruixing Liang, D. A. Bonn, W.N. Hardy, and
G.G. Lonzarich, Nature (London) 454, 200 (2008).

[25] D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou,
J.-B. Bonnemaison, N. E. Hussey, L. Balicas, B. J.
Ramshaw, R. Liang, D. A. Bonn, W.N. Hardy, S.
Adachi, C. Proust, and L. Taillefer, Nature (London)
450, 533 (2007).

[26] S. E. Sebastian, N. Harrison, C. H. Mielke, Ruixing Liang,
D. A. Bonn, W.N. Hardy, and G.G. Lonzarich,
arXiv:0907.2958.

[27] T. Helm, M.V. Kartsovnik, M. Bartkowiak, N. Bittner, M.

Lambacher, A. Erb, J. Wosnitza, and R. Gross, Phys. Rev.
Lett. 103, 157002 (2009).

[28] F. Denef, S. A. Hartnoll, and S. Sachdev, arXiv:0908.2657.
[29] S. A. Hartnoll and P. Kovtun, Phys. Rev. D 76, 066001

(2007).
[30] R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193

(1958).
[31] E. S. C. Ching, P. T. Leung, W.M. Suen, and K. Young,

Phys. Rev. D 52, 2118 (1995).
[32] D. T. Son and A.O. Starinets, J. High Energy Phys. 09

(2002) 042.
[33] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[34] D. V. Vassilevich, Phys. Rep. 388, 279 (2003).
[35] G. Festuccia and H. Liu, arXiv:0811.1033.
[36] T. Albash and C.V. Johnson, arXiv:0907.5406.
[37] P. Basu, J. He, A. Mukherjee, and H.H. Shieh,

arXiv:0908.1436.
[38] S. S. Gubser and I. Mitra, Phys. Rev. D 67, 064018 (2003).
[39] T. Hartman and L. Rastelli, J. High Energy Phys. 01

(2008) 019.
[40] E. Berti, V. Cardoso, and A.O. Starinets, Classical

Quantum Gravity 26, 163001 (2009).
[41] G. T. Horowitz and V. E. Hubeny, Phys. Rev. D 62, 024027

(2000).
[42] H. Onozawa, T. Mishima, T. Okamura, and H. Ishihara,

Phys. Rev. D 53, 7033 (1996).
[43] E.W. Leaver, Phys. Rev. D 41, 2986 (1990).
[44] E. Berti and K.D. Kokkotas, Phys. Rev. D 67, 064020

(2003).
[45] B. Wang, C. Y. Lin, and C. Molina, Phys. Rev. D 70,

064025 (2004).
[46] E. S. C. Ching, P. T. Leung, W.M. Suen, and K. Young,

Phys. Rev. Lett. 74, 2414 (1995).
[47] G. G. Newton, J. Math. Phys. (N.Y.) 1, 319 (1960).
[48] S. A. Hartnoll and S. Prem Kumar, J. High Energy Phys.

12 (2005) 036.
[49] A. Schmid, Phys. Rev. 180, 527 (1969).
[50] T. Albash and C.V. Johnson, J. High Energy Phys. 09

(2008) 121.
[51] J. Natario and R. Schiappa, Adv. Theor. Math. Phys. 8,

1001 (2004).
[52] L. Motl and A. Neitzke, Adv. Theor. Math. Phys. 7, 307

(2003).
[53] D. Shoenberg, Magnetic Oscillations in Metals

(Cambridge University Press, Cambridge, England, 1984).
[54] L. E. Ballentine, Quantum mechanics (World Scientific,

Singapore, 1998).

QUANTUM OSCILLATIONS AND BLACK HOLE RINGING PHYSICAL REVIEW D 80, 126016 (2009)

126016-25


