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We consider a deformation of the AdS5 � S5 solution of IIB supergravity obtained by taking the

boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on

the anti-de Sitter (AdS) scale thereby introducing a small parameter �. The boundary dilaton has a profile

which asymptotes to a constant in the far past and future and attains a minimum value at intermediate

times. We construct the supergravity (sugra) solution to first nontrivial order in �, and find that it is

smooth, horizon-free, and asymptotically AdS5 � S5 in the far future. When the intermediate values of the

dilaton becomes small enough the curvature becomes of order the string scale and the sugra approxima-

tion breaks down. The resulting dynamics is analyzed in the dual SUðNÞ gauge theory on S3 with a time

dependent coupling constant which varies slowly. When N� � 1, we find that a quantum adiabatic

approximation is applicable, and use it to argue that at late times the geometry becomes smooth AdS5 �
S5 again. When N� � 1, we formulate a classical adiabatic perturbation theory based on coherent states

which arises in the large N limit. For large values of the ’t Hooft coupling this reproduces the supergravity

results. For small ’t Hooft coupling the coherent state calculations become involved and we cannot reach a

definite conclusion. We argue that the final state should have a dual description which is mostly smooth

AdS5 space with the possible presence of a small black hole.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3] provides us with a
nonperturbative formulation of quantum gravity. One
hopes that it will shed some light on the deep mysteries
of quantum gravity, in particular, on the question of singu-
larity resolution.

Motivated by this hope we consider a class of time
dependent solutions in this paper which can be viewed as
deformations of the AdS5 � S5 background in IIB string
theory. These solutions are obtained by taking the bound-
ary value of the dilaton in anti-de Sitter (AdS) space to
become time dependent.1 We are free to take the boundary
value of the dilaton to be any time dependent function. To
keep the solutions under analytical control though we take
the rate of time variation of the dilaton to be small com-
pared to the radius of AdS space, RAdS. This introduces a
small parameter � and we construct the bulk solution in
perturbation theory in �. The resulting solutions are found
to be well behaved. In particular one finds that no black

hole horizon forms in the course of time evolution. The
metric and dilaton respond on a time scale of order RAdS

which is nearly instantaneous compared to the much
slower time scale at which the boundary value of the
dilaton varies. For dilaton profiles which asymptote to a
constant in the far future one finds that all the energy that is
sent in comes back out and the geometry settles down
eventually to that of AdS space. What makes these solu-
tions nontrivial is that by waiting for a long enough time, of

order RAdS

� , a big change in the boundary dilaton can occur.

The solutions probe the response of the bulk to such big
changes.
Consider an example of this type where the boundary

dilaton undergoes a big change making the ’t Hooft cou-
pling2 of order unity or smaller at intermediate times,

� � gsN � Oð1Þ; (1)

when3 t ’ 0, before becoming large again in the far future.
As was mentioned above, the bulk responds rapidly to the
changing boundary conditions and within a time of order
RAdS the dilaton everywhere in the bulk then becomes
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1It is important in the subsequent discussion that we work in

global AdS5 with the boundary S3 � R.

2When we refer to the ’t Hooft coupling we have the gauge
theory in mind and accordingly by the dilaton in this context we
will always mean its boundary value.

3Here N is the number of units of flux in the bulk and the rank
of the gauge group in the boundary theory.
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small and meets the condition, Eq. (1). Now the supergrav-
ity solution receives �0 corrections in string theory, these
are important when RAdS becomes of order the string scale.
Using the well-known relation,

RAdS=ls � ðgsNÞ1=4 (2)

we then find that once Eq. (1) is met the curvature becomes
of order the string scale everywhere along a spacelike slice
which intersects the boundary. As a result the supergravity
approximation breaks down along this slice and the higher
derivative corrections become important for the subse-
quent time development. This break down of the super-
gravity approximation is the sense in which a singularity
arises in these solutions.

In contrast the curvature in units of the 10-dimensional
Planck scale lPl (or the 5-dimensional Planck scale) re-
mains small for all time. The radius RAdS in lPl units is
given by

RAdS=lPl � N1=4: (3)

We keep N to be fixed and large throughout the evolution;
this then keeps the curvature small in Planck units.4 The
solutions we consider can therefore be viewed in the
following manner: the curvature in Planck units in these
solutions stays small for all time, but for a dilaton profile
which meets the condition Eq. (1) the string scale in length
grows and becomes of order the curvature scale at inter-
mediate times. At this stage the geometry gets highly
curved on the string scale. We are interested in whether a
smooth space-time geometry can emerge again in the
future in such situations.

It is worth relating this difference in the behavior of the
curvature as measured in string and Planck scales to an-
other fact. We saw that when the curvature becomes of
order the string scale�0 corrections become important. The
second source of corrections to the supergravity approxi-
mation are quantum loop corrections. Their importance is
determined by the parameter 1=N. Since N is kept fixed
and large, these corrections are always small. From Eq. (3)
we see that this ties into the fact that the AdS radius stays
large in Planck units.

To understand the evolution of the system once the
curvature gets to be of order the string scale we turn to
the dual gauge theory. The gauge theory lives on an S3 of
radius R and the slowly varying dilaton maps to a Yang-
Mills coupling which varies slowly compared to R. Since
these are the only two length scales in the system, the slow
time variation suggests that one can understand the result-
ing dynamics in terms of an adiabatic approximation.

In fact we find it useful to consider two different adia-
batic perturbation theories. The first, which we call quan-
tum adiabatic perturbation theory, is a good approximation

when the parameter � satisfies the condition,

N� � 1: (4)

Once this condition is met, the rate of change of the
Hamiltonian is much smaller than the energy gap between
the ground state and the first excited state in the gauge
theory. As a result, the standard text book adiabatic ap-
proximation in quantum mechanics applies and the system
at any time is, to good approximation, in the ground state of
the instantaneous Hamiltonian. In the far future, when the
time dependence turns off, the state settles into the ground
state of the resulting N ¼ 4 super Yang-Mills (SYM)
theory, and admits a dual description as a smooth AdS
space.
Note that this argument holds even when the ’t Hooft

coupling at intermediate times becomes of order unity or
smaller. The fact that the states of the time independent
N ¼ 4 SYM theory furnish a unitary representation of the
conformal group guarantees that the spectrum has a gap of
order 1=R for all values of the Yang-Mills coupling [4]; see
also, [5,6]. Thus as long as Eq. (4) is met, the conditions for
this perturbation theory apply. As a result, we learn that for
very slowly varying dilaton profiles which meet the con-
dition, Eq. (4), the geometry after becoming of order the
string scale at intermediate times, again opens out into a
smooth AdS space in the far future.
The supergravity solutions we construct are controlled

in the approximation,

� � 1: (5)

This is different, and much less restrictive, than the condi-
tion stated above in Eq. (4) for the validity of the quantum
adiabatic perturbation theory. In fact one finds that a differ-
ent perturbation theory can also be formulated in the gauge
theory. This applies when the conditions,

N� � 1; � � 1; (6)

are met. This approximation is classical in nature and
arises because the system is in the large N limit [otherwise
Eq. (6) cannot be met]. We will call this approximation the
‘‘large N classical adiabatic perturbation theory’’
(LNCAPT) below. The behavior of the system in this
approximation reproduces the behavior of the supergravity
solutions for cases where the ’t Hooft coupling is large for
all times.
Let us now discuss this approximation in more detail.

Each gauge invariant operator in the boundary theory gives
rise to an infinite tower of coupled oscillators whose fre-
quency grows with the growing mode number. The gauge
invariant operators are dual to bulk modes. The infinite
tower of oscillators which arises for each operator is dual to
the infinite number of modes, with different radial wave
functions and different frequency, which arise for each
bulk field. Of particular importance is the operator dual

to the dilaton Ô and the modes which arise from it. The

4The backreaction corrects the curvature but these corrections
are suppressed in �.
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time varying boundary dilaton results in a driving force for
these oscillators. When N� � 1, these oscillators are ex-
cited by the driving force into a coherent state with a large
mean occupation number of quanta, of order N�, and
therefore behave classically. This is a reflection of the
fact that at large N, the system behaves classically: coher-
ent states of these oscillators correspond to classical con-
figurations (see, e.g., Ref [7]).

Usually a reformulation of the boundary theory in terms
of such oscillators is not very useful, since these oscillators
would have a nontrivial operator algebra which would
signify that the bulk modes are interacting.
Simplifications happen in low dimensional situations like
matrix quantum mechanics [8] where one is led to a
collective field theory in 1þ 1 dimensions as an explicit
construction of the holographic map [9]. Even in this
situation, the collective field theory is a nontrivial interact-
ing theory, i.e., the oscillators are coupled. In our case there
are an infinite number of collective fields which would
seem to make the situation hopeless.

In our setup, however, the slowness of the driving force
simplifies the situation drastically. The source couples
directly to the dilaton in the bulk, and when � � 1, to
lowest order the response of the dilaton as well as the other
fields is linear and independent of each other. This will be
clear in the supergravity solutions we present below. This
implies that to lowest order in �, the oscillators which are
dual to these modes are really harmonic oscillators which
are decoupled from each other.

The resulting dynamics is then well approximated by the
classical adiabatic perturbation theory, which we refer to as
the LNCAPT as mentioned above. The criterion for its
applicability is that the driving force varies on a time scale
much slower than the frequency of each oscillator. In
particular if the frequency of the driving force is of order
that of the oscillators, one would be close to resonance and
the perturbation theory would break down. In our case this
condition for the driving force to vary slowly compared to
the frequency of the oscillators becomes Eq. (5). When this
condition is met, the adiabatic approximation is valid for
all modes—even those with the lowest frequency. The
expectation value of the energy and the operator dual to

the dilaton, Ô, can then be calculated in the resulting
perturbation theory and we find that the leading order
answers in � agree with the supergravity calculations.5

Having understood the supergravity solutions in the
gauge theory language we turn to asking what happens if
the ’t Hooft coupling becomes of order unity or smaller at
intermediate times [while still staying in the parametric

regime Eq. (6)]. The new complication is that additional
oscillators now enter the analysis. These oscillators corre-
spond to string modes in the bulk. When the ’t Hooft
coupling becomes of order unity their frequencies can
become small and comparable to the oscillators which
are dual to supergravity modes.
At first sight one is tempted to conclude that these

additional oscillators do not change the dynamics in any
significant manner and the system continues to be well
approximated by the large N classical adiabatic approxi-
mation. The following arguments support this conclusion.
First, the anharmonic terms continue to be of order � and
thus are small, so that the oscillators are approximately
decoupled. Second, the existence of a gap of order 1=R for
all values of the ’t Hooft coupling, which we referred to
above, ensures that the driving force varies much more
slowly than the frequency of the additional oscillators, thus
keeping the system far from resonance. Finally, one still
expects that in the parametric regime, Eq. (6), an OðN�Þ
number of quanta are produced keeping the system classi-
cal. These arguments suggest that the system should con-
tinue to be well approximated by the LNCAPT. In fact,
since the additional oscillators do not directly couple to the
driving force produced by the time dependent dilaton, but
rather couple to it only through anharmonic terms which
are subdominant in �, their effects should be well con-
trolled in an � expansion. If these arguments are correct,
the energy which is pumped into the system initially should
then get completely pumped back out and the system
should settle into the ground state of the final N ¼ 4
theory in the far future. The dual description in the far
future would then be a smooth AdS5 space-time.
However, further thought suggests another possibility

for the resulting dynamics which is of a qualitatively
different kind. This possibility arises because, as was men-
tioned above, when the ’t Hooft coupling becomes of order
unity, string modes can get as light as supergravity modes.
This means that the frequency of some of the oscillators
dual to string modes can become comparable to oscillators
dual to supergravity modes, and thus the string mode
oscillators can get activated. Now there are many more
string mode oscillators than there are supergravity mode
oscillators, since the supergravity modes correspond to
chiral operators in the gauge theory which are only Oð1Þ
in number, while the string modes correspond to nonchiral
operators which are OðN2Þ in number. Thus once string
mode oscillators can get activated there is the possibility
that many new degrees of freedom enter the dynamics.
With so many degrees of freedom available the system

could thermalize at least in the large N limit. In this case
the energy which is initially present in the oscillators that
directly couple to the dilaton would get equipartitioned
among all the degrees of freedom. The subsequent evolu-
tion would be dissipative and this energy would not be
recovered in the far future. At late times, when the ’t Hooft

5More precisely, both the supergravity and the forced oscil-
lator calculations need to be renormalized to get a finite answer.
One finds that after the counterterms are chosen to get agreement
for the standard two-point function (which measures the re-
sponse for a small amplitude dilaton perturbation) the expecta-
tion value of the energy and Ô agree.
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coupling becomes big again, the gravity description of the
dissipative behavior depends on how small is �. From the
calculations done in the supergravity regime, one knows
that the total energy that is produced is of order N2�2.

When N� � 1, but � � ðg2YMNÞ�7=8 the result is likely to

be a gas of string modes. However if � > ðg2YMNÞ�7=8, the

energy is sufficient to form a small black hole (with
horizon radius smaller than RAdS). A big black hole cannot
form since this would require an energy of the order of N2,
and � � 1 always. Thus, in the far future, once the ’t Hooft
coupling becomes large again, the strongest departure from
normal space-time would be the presence of a small black
hole in AdS space. The small black hole would eventually
disappear by emitting Hawking radiation but that would
happen on a much longer time scale of order N2RAdS.

It is difficult for us to settle here which of the two
possibilities discussed above, either adiabatic nondissipa-
tive behavior well described by the LNCAPT, or dissipa-
tive behavior with organized energy being lost in heat, is
the correct one. One complication is that the rate of time
variation which is set by � is also the strength of the
anharmonic couplings between the oscillators. In thermo-
dynamics, working in the microcanonical ensemble, it is
well known that with energy of order N2�2 the configura-
tion which entropically dominates is a small black hole.6

This suggests that if the time variation in the problem were
much smaller than the anharmonic terms, a small black
hole would form. However, in our case their being compa-
rable makes it a more difficult question to decide. One
should emphasize that regardless of which possibility is
borne out our conclusion is that most of the space-time in
the far future is smooth AdS, with the possible presence of
a small black hole.

Let us end with some comments on related work. The
spirit of our investigation is close to the work on AdS
cosmologies in [10] and related work in [11–14]. See
also [15–17] for additional work. Discussion of cosmologi-
cal singularities in the context of the matrix theory appears
in [18].

The supergravity analysis we describe is closely related
to the strategy which was used in the paper [19], for finding
forced fluid dynamics solutions; in that case one worked
with an infinite brane at temperature T and the small
parameter was the rate of variation of the dilaton (or
metric) compared to T. Our regime of interest is comple-
mentary to that in [20] where the dilaton was chosen to be
small in amplitude, but with arbitrary time dependence and
which leads to formation of black holes in supergravity for
a suitable regime of parameters.

This paper is organized as follows. In Sec. II we find the
supergravity solutions and use them to find the expectation
value of operators in the boundary theory like the stress

energy and Ô in Sec. III. The quantum adiabatic perturba-
tion theory is discussed in Sec. IV. A forced harmonic
oscillator is discussed in Sec. V. This simple system helps
illustrate the difference between the two kinds of perturba-
tion theory and sets the stage for the discussion of the large
N classical adiabatic approximation in Sec. VI.
Conclusions and future directions are discussed in
Sec. VII. There are three appendices which contains details
of derivation of some of the formulas in the main text.

II. THE BULK RESPONSE

In this section we will calculate the deformation of the
supergravity solution in the presence of a slowly varying
time dependent but spatially homogeneous dilaton speci-
fied on the boundary. This will be a reliable description of

the time evolution of the system so long as e�ðtÞ never
becomes small.

A. Some general considerations

IIB supergravity in the presence of the Ramond-Ramond
five form flux is well known to have an AdS5 � S5 solu-
tion. In global coordinates this takes the form

ds2 ¼ �
�
1þ r2

R2
AdS

�
dt2 þ dr2

1þ r2

R2
AdS

þ r2d�2
3 þ R2

AdSd�
2
5:

(7)

Here RAdS is given by

RAdS ¼ ð4�gsNÞ1=4ls � N1=4lpl (8)

where ls is the string scale and lpl � g1=4s ls is the 10-

dimensional Planck scale. gs is the value of the dilaton,
which is constant and does not vary with time or spatial
position,

e� ¼ gs: (9)

In the time dependent situations we consider below N
will be held fixed. Let us discuss some of our conventions
before proceeding. Wewill find it convenient to work in the
10-dimensional Einstein frame. Usually one fixes lPl to be
of order unity in this frame. Instead for our purposes it will
be convenient to set

RAdS ¼ 1: (10)

From Eq. (8) this means setting lPl � 1=N1=4. The AdS5 �
S5 solution then becomes

ds2 ¼ �ð1þ r2Þdt2 þ 1

ð1þ r2Þdr
2 þ r2d�2

3 þ d�2
5;

(11)

for any constant value of the dilaton, Eq. (9). Let us also
mention that when we turn to the boundary gauge theory

6At least when the ’t Hooft coupling is big enough so that
supergravity can be trusted.
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wewill set the radius R of the S3 on which it lives to also be
unity.

The essential idea in finding the solutions we describe is
the following. Consider a situation where � varies with
time slowly compared to RAdS. Since the solution above
exists for any value of gs and the dilaton varies slowly one
expects that the resulting metric at any time t is well
approximated by the AdS5 � S5 metric given in Eq. (11).
This zeroth order metric will be corrected due to the
varying dilaton which provides an additional source of
stress energy in the Einstein equations. However these
changes should be small for a slowly varying dilaton and
should therefore be calculable order by order in perturba-
tion theory.

Let us make this more precise. Consider as the starting
point of this perturbation theory the AdS5 metric given in
Eq. (11) and a dilaton profile,

� ¼ �0ðtÞ (12)

which is a function of time alone. We take �0ðtÞ to be of
the form

�0 ¼ f

�
�t

RAdS

�
(13)

where fð �t
RAdS

Þ is a dimensionless function of time and � is a

small parameter,

� � 1: (14)

The function f satisfies the property that

f0
�

�t

RAdS

�
�Oð1Þ (15)

where prime indicates the derivative with respect to the
argument of f.

When � ¼ 0, the dilaton is a constant and the solution
reduces to AdS5 � S5. When � is small,

d�0

dt
¼ �

RAdS

f0
�

�t

RAdS

�
� �

RAdS

(16)

so that the dilaton is varying slowly on the scale RAdS, and
the contribution that the dilaton makes to the stress tensor
is parametrically suppressed.7 In such a situation the back-
reaction can be calculated order by order in �. The time
dependent solutions we consider will be of this type and �
will play the role of the small parameter in which we carry
out the perturbation theory. A simple rule to count powers
of � is that every time derivative of�0 comes with a factor
of �.

The profile for the dilaton we have considered in
Eq. (12) is S5 symmetric. It is consistent to assume that

the backreacted metric will also be S5 symmetric with the
radius of the S5 being equal to RAdS. The interesting time
dependence will then unfold in the remaining five direc-
tions of AdS space and we will focus on them in the
following analysis.
The zeroth order metric in these directions is given by

ds2 ¼ �ð1þ r2Þdt2 þ 1

ð1þ r2Þdr
2 þ r2d�3

3: (17)

And the zeroth order dilaton is given by Eq. (12),

�0 ¼ fð�tÞ: (18)

We can now calculate the corrections to this solution order
by order in �.
Let us make two more points at this stage. First, we will

consider a dilaton profile �0 which approaches a constant
as t ! �1. This means that in the far past the corrections
to the metric and the dilaton which arise as a response to
the time variation of the dilaton must also vanish. Second,
the perturbation theory we have described above is a
derivative expansion. The solutions we find can only de-
scribe slowly varying situations. This stills allows for a big
change in the amplitude of the dilaton and the metric
though, as long as such changes accrue gradually. It is
this fact that makes the solutions nontrivial.

B. Corrections to the dilaton

Let us first calculate the corrections to the dilaton. We
can expand the dilaton as

�ðtÞ ¼ �0ðtÞ þ�1ðr; tÞ þ�2ðr; tÞ � � � ; (19)

where �0 is the zeroth order profile we start with, given in
Eq. (13).�1 is of order �,�2 is of order �

2, and so on. The
metric can be expanded as

gab ¼ gð0Þab þ gð1Þab þ gð2Þab þ � � � (20)

where gð0Þab is the zeroth order metric given in Eq. (17) and

gð1Þab; g
ð2Þ
ab . . . are the first order, second order, etc.

corrections.
The dilaton satisfies the equation

r2� ¼ 0: (21)

Expanding this we find that to order �2,

r2
0�0 þr2

0�1 þr2
1�0 þr2

1�1 þr2
0�2 ¼ 0: (22)

Herer2
0 is the Laplacian which arises from the zeroth order

metric, and r2
1, r2

2 are the corrections to the Laplacian to
order �, �2, respectively, which arise due to the corrections
in the metric. The first term on the left-hand side is of order
�2, since it involves two time derivatives acting on�0. The
second term is of order8 �, and so is the third term.

7The more precise statement for the slowly varying nature of
the dilaton, as will be discussed in a footnote before Eq. (85), is
that its Fourier transform has support at frequencies much
smaller than 1=RAdS.

8It is easy to see that �1, if nonvanishing, must depend on the
radial coordinate; this makes r2

0�1 of order �. �1 would be r
dependent for the same reason that �2 in in Eq. (25).
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However, we see in Sec. II C that theOð�Þ correction to the
metric and thusr2

1 vanishes. So the second term is the only
one of Oð�Þ and we learn that

�1 ¼ 0: (23)

The first correction to the dilaton therefore arises at Oð�2Þ.
Equation (22) now becomes

r2
0�0 þr2

0�2 ¼ 0: (24)

Since�0 preserves the S
3 symmetry of AdS5,�2 will also

be S3 symmetric and must therefore only be a function of t,
r. Further since�2 isOð�2Þ any time derivative on it would
be of higher order and can be dropped. Solving Eq. (24)
then gives

�2ðr; tÞ ¼
Z r dr0

ðr0Þ3ð1þ ðr0Þ2Þ
�Z r0 y3

1þ y2
dy €�0ðtÞ

þ a1ðtÞ
�
þ a2ðtÞ: (25)

Here a1ðtÞ, a2ðtÞ are two functions of time which arise as
integration ‘‘constants.’’

The integrations in (25) can be performed, leading to

�2ðr; tÞ ¼ 1

4
€�0ðtÞ

�
1

r2
logð1þ r2Þ � 1

2
ðlogð1þ r2ÞÞ2

� dilogð1þ r2Þ
�

þ a1ðtÞ 12
�
logð1þ r2Þ � 1

r2
� 2 logr

�
þ a2ðtÞ:

(26)

The first term in �2 is regular at r ¼ 0, while the term
multiplying a1ðtÞ diverges here. To find a self-consistent
solution in perturbation theory�2 must be small compared
to �0 for all values of r, we therefore set a1 ¼ 0. The first
term in �2ðr; tÞ has the following expansion for large
values of r,

€� 0ðtÞ
�
�2

24
� 1

4r2
þ

�
3

16
þ 1

4
logr

�
1

r4
þ � � �

�
: (27)

Since we are solving for the dilaton with a specified
boundary value�0ðtÞ,�2ðr; tÞ should vanish at the bound-
ary. This determines a2ðtÞ to be

a2ðtÞ ¼ ��2

24
€�0ðtÞ; (28)

leading to the final solution

�2ðr; tÞ ¼ 1

4
€�0ðtÞ

�
1

r2
logð1þ r2Þ � 1

2
ðlogð1þ r2ÞÞ2

� dilogð1þ r2Þ � �2

6

�
: (29)

The solution is regular everywhere. Since Limt!�1 _�0ðtÞ,

€�0ðtÞ ¼ 0, the correction vanishes in the far past, as
required.

C. Corrections to the metric

The time varying dilaton provides an additional source
of stress energy. The lowest order contribution due to this
stress energy isOð�Þ2 as we will see below. It then follows,
after a suitable coordinate transformation if necessary, that
the Oð�Þ corrections to the metric vanish and the first
nonvanishing corrections to it arise at order �2. The essen-
tial point here is that anyOð�Þ correction to the metric must
be r dependent and thus would lead to a contribution to the
Einstein tensor of order �, which is not allowed. This is
illustrated by the dilaton calculation above, where a similar
argument leads to the Oð�Þ contribution, �1, vanishing. In
this subsection we calculate the leading Oð�2Þ corrections
to the metric.
Before we proceed it is worth discussing the boundary

conditions which must be imposed on the metric. As was
discussed in the previous subsection, we consider a dilaton
source, �0, which approaches a constant value in the far
past, t ! �1. The corrections to the metric that arise from
such a source should also vanish in the far past. Thus we
see that as t ! �1 the metric should approach that of
AdS5 space-time. Also the solutions we are interested in
correspond to the gauge theory living on a time indepen-
dent S3 � R space-time in the presence of a time dependent
Yang-Mills coupling (dilaton). This means the leading
behavior of the metric for large r should be that of AdS5
space. Changing this behavior corresponds to turning on a
non-normalizable component of the metric and is dual to
changing the metric of the space-time on which the gauge
theory lives.
We expect that these boundary conditions, which specify

both the behavior as t ! �1 and as r ! 1 should lead to
a unique solution to the super gravity equations. The
former determine the normalizable modes and the latter
the non-normalizable modes. This is dual to the fact that in
the gauge theory the response should be uniquely deter-
mined once the time dependent Lagrangian is known (this
corresponds to the fixing the non-normalizable modes) and
the state of the system is known in the far past (this
corresponds to fixing the normalizable modes).
Since �0 is S3 symmetric, we can consistently assume

that the corrections to the metric will also preserve the S3

symmetry. The resulting metric can then be written as

ds2 ¼ �gttðt; rÞdt2 þ grrðt; rÞdr2 þ 2gtrðt; rÞdtdr
þ R2d�2: (30)

Now as is discussed in Appendix A up to Oð�2Þ we can
consistently set gtr ¼ 0. In addition to this order we can set
R2 ¼ r2. Below we also use the notation

gtt � e2Aðt;rÞ; (31)
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grr � e2Bðt;rÞ: (32)

The metric then takes the form

ds2 ¼ �e2Aðt;rÞdt2 þ e2Bðt;rÞdr2 þ r2d�2: (33)

The trace reversed Einstein equation is

RAB ¼ �gAB þ 1
2@A�@B�: (34)

In our conventions,

� ¼ �4: (35)

To order �2 we can set � ¼ �0 in the second term on the
right-hand side (rhs).

A few simple observations make the task of computing
the curvature components to Oð�2Þ much simpler. As we
mentioned above, the first corrections to the metric should
arise at Oð�2Þ. To order �2 the metric is then

gabðt; rÞ ¼ gð0ÞabðrÞ þ gð2Þabðt; rÞ: (36)

Now the zeroth order metric, gð0Þab , is time independent. The

time derivatives of gð2Þab are nonvanishing but of order �3

and thus can be neglected for calculating the curvature
tensor to this order. As a result for calculating the curvature
components to order �2 we can neglect all time derivatives
of the metric, Eq. (36).

Before proceeding we note that the comments above
imply that the equations determining the second order
metric components schematically take the form

ÔðrÞgð2Þab ¼ fabðrÞ _�2
0 (37)

where ÔðrÞ is a second order differential operator in the
radial variable, r. As a result the solution will be of the
form

gð2Þab ¼ F ðrÞab _�2
0; (38)

where F ðrÞ are functions of r which arise by inverting

ÔðrÞ. We see that the corrections to the metric at time t are
determined by the dilaton source �0 at the same instant of
time t. Note also that since we are only considering a
dilaton source �0 which vanishes in the far past, the
solution Eq. (38) correctly imposes the boundary condition

that gð2Þab vanishes in far past and the metric becomes that of

AdS5.
Bearing in mind the discussion above, the curvature

components are now easy to calculate. The t� t compo-
nent of Eq. (34) gives

ðA0eðA�BÞÞ0
eðAþBÞ þ 3

A0e�2B

r
¼

_�2
0

2
e�2A þ 4: (39)

The r� r component gives

� ðA0eðA�BÞÞ0
eðAþBÞ þ 3

B0e�2B

r
¼ �4: (40)

The component with legs along the S3 gives

B0 � A0

e2Br
þ 2

r2
ð1� e�2BÞ ¼ �4: (41)

In these equations primes indicate derivatives with respect
to r and dots indicate derivatives with respect to time.
Adding the t� t and r� r equations gives

3ðA0 þ B0Þ e
�2B

r
¼

_�2
0

2
e�2A: (42)

Equations (41) and (42) then lead to

2B0e�2B

r
� 1

6
_�2
0e

�2A þ 2

r2
ð1� e�2BÞ ¼ �4: (43)

This is a first order equation in B. Integrating we get to
order �2,

e�2B ¼ 1þ r2 þ c1
r2

� 1

6

_�2
0

r2

�Z r

0
e�2A0r3dr

�
: (44)

Here c1 is an integration constant and e2A0 ¼ 1þ r2 is the
zeroth order value of e2A. We require that the metric
become that of AdS5 space as t ! �1 this sets c1 ¼ 0.9

A negative value of c1 would mean starting with a black
hole in AdS5 in the far past.
The integral within the square brackets on the rhs in Eq.

(44) is given by

Z r

0
e�2A0r3dr ¼ 1

2
½r2 � lnð1þ r2Þ þ d1	: (45)

This gives

e�2B ¼ 1þ r2 � 1

12

_�2
0

r2
½r2 � lnð1þ r2Þ þ d1	: (46)

A solution which is regular for all values of r is obtained by
setting d1 to vanish. This gives

e�2B ¼ 1þ r2 � 1

12
_�2
0

�
1� 1

r2
lnð1þ r2Þ

�
: (47)

We can obtain e2A from Eq. (42). To second order in �2

this equation becomes

A0 ¼ 1
6r

_�2
0e

�2ðA0�B0Þ � B0; (48)

which gives

A ¼ �Bþ 1

12
_�2
0

�
� 1

1þ r2
þ d3

�
; (49)

with d3 being a general function of time. Equations (47)
and (49) lead to

9Note that c1 could be a function of time and still solve Eq.
(43); recall though that the equations above were derived by
neglecting all time derivatives of the metric, Eq. (36). Only a
time independent constant c1 is consistent with this assumption.
A similar argument will also apply to the other integration
constants we obtain as we proceed.
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e2A ¼ 1þ r2 þ _�2
0

�
� 1

4
þ 1

12

lnð1þ r2Þ
r2

þ d3
6
ð1þ r2Þ

�
:

(50)

The last term on the right-hand side changes the leading
behavior of e2A as r ! 1, if d3 does not vanish, and
therefore corresponds to turning on a non-normalizable
mode of the metric. As was discussed above, we want
solutions where this mode is not turned on, and we there-
fore set d3 to vanish.

This finally gives

e2A ¼ 1þ r2 � 1

4
_�2
0 þ

1

12
_�2
0

lnð1þ r2Þ
r2

: (51)

Equations (47) and (51) are the solutions to the metric,
Eq. (33), to second order. Note that the Einstein equations
give rise to three equations, Eqs. (39)–(41). We have used
only two linear combinations out of these to find A, B. One
can show that the remaining equation is also solved by the
solution given above.

In summary we note that the Einstein equations can be
solved consistently to second order in �2. The resulting
solution is horizon-free and regular for all values of the
radial coordinate and satisfies the required boundary con-
ditions discussed above. The second order correction to the
metric is parametrically suppressed by �2 compared to the
leading term for all values of r, thereby making the per-
turbation theory self-consistent.

Let us end by commenting on the choice of integration
constants made in obtaining the solution above. The
boundary conditions, as t ! �1 and r ! 1, determine
most of the integration constants. One integration constant
d1 which appears in the solution for e2B, Eq. (46) is fixed
by regularity at r ! 0.10 For d1 ¼ 0 the second order
correction is small compared to the leading term, and the
use of perturbation theory is self-consistent. Moreover we
expect that the boundary conditions imposed here lead to a
unique solution to the supergravity equations, as was dis-
cussed at the beginning of this subsection. Thus the solu-
tion obtained by setting d1 ¼ 0 should be the correct one.

The solution above is regular and has no horizon. It has
these properties due to the slowly varying nature of the
boundary dilaton. The dual field theory in this case is in a
nondissipative phase. Once the dilaton begins to change
sufficiently rapidly with time we expect that a black hole is
formed, corresponding to the formation of a strongly dis-
sipative phase in the dual field theory. In [20] the effect of a
small amplitude time dependent dilaton with arbitrary time
dependence was studied. Indeed it was found that when the
time variation is fast enough, there are no regular horizon-
free solutions and a black hole is formed.

Finally, the analysis of this section holds when e� is
large enough to ensure applicability of supergravity. The
fact that a black hole is not formed in this regime does not
preclude formation of black holes from stringy effects
when e� becomes small enough. In fact we will argue in
later sections that the latter is a distinct possibility.

D. Effective decoupling of modes

An important feature of the lowest order calculation of
this section is that the perturbations of the dilaton and the
metric are essentially linear and do not couple to each
other. To this order, the dilaton perturbation is simply a
solution of the linear d’Alembertian equation in AdS5.
Similarly the metric perturbations also satisfy the linear-
ized equations of motion in AdS, albeit in the presence of a
source provided by the energy-momentum tensor of the
dilaton. This is a feature present only in the leading order
calculation. As explained above, this arises because of the
smallness of the parameter �. We will use this feature to
compare leading order supergravity results with gauge
theory calculations in a later section.

III. CALCULATION OF STRESS TENSOR AND
OTHER OPERATORS

In this section we calculate the boundary stress tensor
and the expectation value of the operator dual to the
dilaton, staying in the supergravity approximation. This
will be done using standard techniques of the holographic
renormalization group [21–28].

A. The energy-momentum tensor

The metric is of the form of Eqs. (33), (47), and (51). For
calculating the stress tensor, a boundary is introduced at
large and finite radial location, r ¼ r0. The induced metric
on the boundary is

ds2B � h��dx
�dx�

¼ �e2Adt2 þ r2ðd�2 þ sin2�d�2

þ sin2�sin2�dc 2Þ: (52)

The 5-dimensional action is given by

S5 ¼ 1

16�G5

Z
M
d5x

ffiffiffiffiffiffiffi�g
p �

Rþ 12� 1

2
ðr�Þ2

�

� 1

8�G5

Z
r¼r0

d4x
ffiffiffiffiffiffiffi�h

p
�: (53)

Here h�� is the induced metric on the boundary, and � is

the trace of the extrinsic curvature of the boundary. In our
conventions, with RAdS ¼ 1,

G5 ¼ �

2N2
: (54)

A counterterm needs to be added, it is

10Similar in solving for the dilaton perturbation the integration
constant a1 is fixed by requiring regularity at r ¼ 0, Eq. (25).
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Sct ¼ � 1

8�G5

Z
@M

d4x
ffiffiffiffiffiffiffi�h

p �
3þR

4
� 1

8
ðr�Þ2

� logðr0Það4Þ
�
: (55)

The last term is needed to cancel logarithmic divergen-
ces which arise in the action; it is well known and is
discussed in, e.g., [21,27]. From Eq. (24) of [27] we
have11 that

að4Þ ¼ 1
8R��R

�� � 1
24R

2 � 1
8R

��@��@��

þ 1
24Rh

��@��@��þ 1
16ðr2�Þ2 þ 1

48fðr�Þ2g2:
(56)

Here r is a covariant derivative with respect to the metric
h��.

Varying the total action ST ¼ S5 þ Sct gives the stress
energy,

T�� ¼ 2ffiffiffiffiffiffiffi�h
p 	ST

	h��

¼ 1

8�G5

�
��� ��h�� � 3h�� þ 1

2
G��

� 1

4
r��r��þ 1

8
h��ðr�Þ2 þ � � �

�
: (57)

Here G�� is the Einstein tensor with respect to the metric
h��. The ellipses stand for extra terms obtained by varying

the last term in Eq. (55) proportional to að4Þ. While these

terms are not explicitly written down in Eq. (57), we do
include them in the calculations below.

The expectation value of the stress tensor in the bound-
ary theory is then given by

hT�
� i ¼ r40T

�
� : (58)

Carrying out the calculation gives a finite answer,

hTt
ti ¼ N2

4�2

�
� 3

8
�

_�2
0

16

�

hT�
�i ¼ hTc

c i ¼ hT�
� i ¼

N2

4�2

�
1

8
�

_�2
0

16

� (59)

where we have used Eq. (54). We remind the reader that in
our conventions the radius of the S3 on which the boundary
gauge theory lives has been set equal to unity. The first
term on the right-hand side of (59) arises due to the Casimir
effect. The second term is the additional contribution due
to the varying Yang-Mills coupling.

From Eq. (59) the total energy in the boundary theory
can be calculated. We get

E ¼ �hTt
t iVS3 ¼

3N2

16
þ N2 _�2

0

32
; (60)

where VS3 ¼ 2�2 is the volume of a unit three-sphere.
Note that the varying dilaton gives rise to a positive con-
tribution to the mass, as one would expect. Moreover this

additional contribution vanishes when the _� vanishes. In
particular, for a dilaton profile which in the far future, as
t ! 1, again approaches a constant value (which could be
different from the starting value it had at t ! �1) the net
energy produced due to the varying dilaton vanishes.

B. Expectation value of the operator dual to the dilaton

The operator dual to the dilaton has been discussed
explicitly in [3,10,29].
Its expectation value is given by

hÔl¼0i ¼ 	ST
	�B

���������B!0
: (61)

Here ST is the total action including the boundary terms,
Eq. (55). Since�B is a function of t alone the left-hand side
(lhs) is the l ¼ 0 component of the operator dual to the

dilaton which we denote by Ôl¼0.
The steps involved are analogous to those above for the

stress tensor and yield,

hÔl¼0i ¼ �N2

16
€�0: (62)

Note that the lhs refers to the expectation value for the dual
operator integrated over the boundary S3. In obtaining
Eq. (63) we have removed all the divergent terms and
only kept the finite piece. A quadratically divergent piece
is removed by the third term in Eq. (55) proportional to
ðr�Þ2, and a log divergence is removed by a contribution
from the last term in Eq. (55) proportional to að4Þ.

C. Additional comments

Let us end this section with a few comments.
The only source for time dependence in the boundary

theory is the varying Yang-Mills coupling. A simple ex-
tension of the usual Noether procedure for the energy, now
in the presence of this time dependence, tells us that

dE

dt
¼ � _�0hÔl¼0i: (63)

It is easy to see that the answers obtained above in
Eqs. (60) and (62) satisfy this relation. The relation
Eq. (63) is a special case of a more general relation which
applies for a dilaton varying both in space and time; this
was discussed in Appendix A of [19].
In general, for a slowly varying dilaton one can expand

hÔl¼0i in a power series in _�0. For constant dilaton, the

solution isAdS5 where one knows that the hÔl¼0i vanishes.
Thus one can write

11Note that our definition of the dilaton � is related to �ð0Þ in
[27] by �ð0Þ ¼ �=2.
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hÔl¼0i ¼ c1 _�0 þ c2 €�0 þ c3ð _�0Þ2 � � � (64)

where the ellipses stand for higher powers of derivatives of
the dilaton. Comparing with the answer in Eq. (62) one
sees that in the supergravity limit c1 and c3 vanish. As a
result dEdt is a total derivative, and as was discussed above if

the dilaton asymptotes to a constant in the far future there is
no net gain in energy.

It is useful to contrast this with what happens in the case
of an infinite black brane at temperature T subjected to a
time dependent dilaton which is slowly varying compared
to the temperature T. This situation was analyzed exten-
sively in [19]. In that case [see Eq. (2.13), Eq. (3.20), and
section 7.2 of Ref. [19]] the leading term in Eq. (64)

proportional to _�0 does not vanish. The temperature then
satisfies an equation,

dT

dt
¼ 1

12�
_�2
0: (65)

As a result any variation in the dilaton leads to a net
increase in the temperature, and the energy density. Note
the first term in Eq. (64) contains only one derivative with
respect to time and breaks time reversal invariance. It can
only arise in a dissipative system. In the case of a black
hole, the formation of a horizon breaks time reversal
invariance and turns the system dissipative allowing this
term to arise. In the solution we construct no horizon forms
and are consistent that the first term is absent.

We see in the solution discussed above that the second
order corrections to the dilaton and metric arise in an
instantaneous manner—at some time t, and for all values
of r, they are determined by the boundary value of the
dilaton at the same instant of time t. This might seem a
little puzzling at first since one would have expected the
effects of the changing boundary conditions to be felt in a
retarded manner. Note though that in AdS space a light ray
can reach any point in the bulk from the boundary within a
time of order RAdS. When � � 1 this is much smaller than
the time taken for the boundary conditions to change
appreciably. This explains why the leading corrections
arise in an instantaneous manner. Some of the corrections
which arise at higher order would turn this instantaneous
response into a retarded one.

From the solution and the expectation values of the

energy and Ôl¼0 it follows that in the far future the system
settles down into an AdS5 solution again. The near instan-
taneous nature of the solution means that this happens
quickly on the times scale of order RAdS. This agrees
with general expectations. The supergravity modes carry
an energy of order 1=RAdS and should give rise to a
response time of order RAdS.

Also note that in our units, where RAdS ¼ 1, each su-
pergravity mode carries an energy of order unity. The total
energy at intermediate times is of order N2�2, so we see
that an OðN2�2Þ number of quanta are excited by the time

varying boundary dilaton. This can be a big number when
N� � 1. In fact the energy is really carried by the various
dilaton modes. The metric perturbations are S3 symmetric
and thus contain no gravitons (in the sense of genuine
propagating modes). One can think of this energy as being
stored in a spatial region of order RAdS in size located at the
center of AdS space. This is what one would expect, since
the supergravity modes which are produced by the time
varying boundary dilaton have a size of order RAdS and
their gravitational redshift is biggest at the center of AdS
space.12

In summary, the response in the bulk to the time varying
boundary dilaton is characteristic of a nondissipative adia-
batic system which is being driven much more slowly than
its own fast internal time scale of response.

IV. GAUGE THEORY : QUANTUM ADIABATIC
APPROXIMATION

We now turn to analyzing the behavior of the system in
the dual field theory. The motivation behind this is to be
able to extend our understanding to situations in which the
’t Hooft coupling at intermediate time becomes of order
one or smaller, so that the geometry in the bulk becomes of
order the string scale. In such situations the supergravity
calculation presented in the previous section breaks down
and higher derivative corrections become important. The
gauge theory description continues to be valid, however.
Using this description one can then hope to answer how the
system evolves in the region of string scale curvature, and,
in particular, whether by waiting for enough time a smooth
geometry with small curvature emerges again on the grav-
ity side.
We saw in the previous subsection that the bulk response

was characteristic of an adiabatic system which was being
driven slowly compared to the time scale of its own internal
response. This suggests that in the gauge theory, also an
adiabatic perturbation theory should be valid and should
prove useful in understanding the response. A related ob-
servation is the following. The bulk solutions we have
considered correspond to keeping the radius R of the S3

on which the gauge theory lives to be constant and inde-
pendent of time. We will choose conventions in which R ¼
RAdS ¼ 1. The Yang-Mills coupling is related to the
boundary dilaton by

g2YM ¼ e�0ðtÞ: (66)

The dilaton profile Eq. (18) also means that Yang-Mills
coupling in the gauge theory varies slowly compared to the
radius R. Since this is the only other scale in the system,

12AdS is of course a homogeneous space-time, but our bound-
ary conditions pick out a particular notion of time. The center of
AdS, where the energy is concentrated, is the region as men-
tioned above where the redshift in the corresponding energy is
the biggest.
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this also suggests that an adiabatic approximation should
be valid in the boundary theory.

We will discuss two different kinds of adiabatic pertur-
bation theory below. The first, which we call quantum
adiabatic perturbation theory, is studied in this section.
This is the adiabatic perturbation theory one finds dis-
cussed in a standard text book of quantum mechanics;
see [30,31]. Its validity, we will see below, requires the
condition, N� � 1, to be met. We will argue that once this
condition is met the gauge theory analysis allows us to
conclude that, even in situations where the curvature be-
comes of order the string scale at intermediate times, a dual
smooth AdS5 geometry emerges as a good approximation
in the far future.

The supergravity calculations, however, required only
the condition � � 1, which is much less restrictive than the
condition N� � 1. Understanding the supergravity regime
on the gauge theory side leads us to formulate another
perturbation theory, which we call ‘‘large N classical adia-
batic perturbation theory.’’ To explain this we find it useful
to first discuss the example of a driven harmonic oscillator,
as considered in Sec. V. Following this, we discuss
LNCAPT in the gauge theory in Sec. VI. We find that its
validity requires that the conditions of Eq. (6) are met.
Using it we will get agreement with the supergravity
calculations of Secs. II and III, when the ’t Hooft coupling
remains large for all times.

Towards the end of Sec. VI, we discuss what happens in
the gauge theory when the conditions of Eq. (6) are met but
with the ’t Hooft coupling becoming small at intermediate
times. Two qualitatively different behaviors are possible,
and wewill not be able to decide between them here. Either
way, at late times a mostly smooth AdS description be-
comes good on the gravity side, with the possible presence
of a small black hole.

In the discussion below we will consider the following
type of profile for the boundary dilaton: it asymptotes in
the far past and future to constant values such that the
initial and final values of the ’t Hooft coupling, �, are big,
and attains its minimum value near t ¼ 0. If this minimum
value of � � 1, the supergravity approximation will break
down. We will also take the initial state of the system to be
the ground state of the N ¼ 4 theory; on S3 the spectrum
of the gauge theory is gapped and this state is well defined.

A. The quantum adiabatic approximation

1. General features

It is well known that the spectrum of the N ¼ 4 theory
on S3 has a gap between the energy of the lowest state and
the first excited state. This gap is of order 1=R and thus is of
order unity in our conventions. The existence of this gap
follows very generally just from the fact that the spectrum
must provide a unitary representation of the conformal
group [4], and the gap is therefore present for all values
of the Yang-Mills coupling constant. In the supergravity

approximation, the spectrum can be calculated using the
gravity description and is consistent with the gap, the
lowest lying states have an energy E ¼ 2. This is also
true at very weak ’t Hooft coupling.
Now for a slowly varying dilaton, Eq. (18), we see that

the Yang-Mills coupling and therefore the externally im-
posed time dependence varies slowly compared to this gap.
There is a well-known adiabatic approximation which is
known to work in such situations; see, e.g., [30,31] whose
treatment we closely follow. We will refer to this as the
quantum adiabatic approximation below and study the
Yang-Mills theory in this approximation.
The essential idea behind this approximation is that

when a system is subjected to a time dependence which
is slow compared to its internal response time, the system
can adjust itself very quickly and as a result to good
approximation stays in the ground state of the instanta-
neous Hamiltonian.
More precisely, consider a time dependent Hamiltonian

Hð
ðtÞÞ, where 
ðtÞ is the time varying parameter. Now
consider the one parameter family of time independent
Hamiltonians given by Hð
Þ. To make our notation clear,
a different value of 
 corresponds to a different
Hamiltonian in this family, but each Hamiltonian is time
independent. Let j�mð
Þi be a complete set of eigenstates
of the Hamiltonian Hð
Þ satisfying

Hð
Þj�mð
Þi ¼ Emð
Þj�mð
Þi; (67)

in particular let the ground state of Hð
Þ be given by
j�0ð
Þi. We take j�mð
Þi to have the unit norm. Then
the adiabatic theorem states that if 
 ! 
0 in the far past,
and we start with the state j�0iwhich is the ground state of
Hð
0Þ in the far past, the state at any time t is well
approximated by

jc 0ðtÞi ’ j�0ð
Þie�i
R

t

�1 E0ð
Þdt: (68)

Here j�0ð
Þi is the ground state of the time independent
Hamiltonian corresponding to the value 
 ¼ 
ðtÞ.
Similarly, in the phase factor E0ð
Þ is the value of the
ground state energy for 
 ¼ 
ðtÞ.
Corrections can be calculated by expanding the state at

time t in a basis of energy eigenstates at the instantaneous
value of the parameter 
 . The first corrections take the form

jc 1ðtÞi ¼ X
n�0

anðtÞj�nð
Þie�i
R

t

�1 Endt (69)

where the coefficient anðtÞ is

anðtÞ ¼ �
Z t

�1
dt0

h�nð
Þj @H@
 j�0ð
Þi
E0 � En

_
e�i
R

t0
�1ðE0�EnÞdt0 :

(70)

In the formula above on the rhs j�nð
Þi, @H@
 , Enð
Þ are all
functions of time, through the time dependence of 
 .
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2. Conditions for validity

For the adiabatic approximation to be good, the first
corrections must be small. To ensure this we impose the
condition ��������h�nj@H@
 j�0i _


��������� ðE1 � E0Þ2 (71)

where (E1 � E0) is the energy gap between the ground
state and the first excited state and j�ni is any excited state.
[This would then imply that the lhs in Eq. (71) is smaller
than ðEn � E0Þ2 for all n.] This condition is imposed for all
time for the adiabatic approximation to be valid.13

In our case the role of the parameter 
 is played by the
dilaton �0 (with the gauge coupling g2YM ¼ e�0). Thus
Eq. (71) takes the form��������h�nj @H@�0

j�0i _�0

��������� ðE1 � E0Þ2: (72)

Now, as we will see below in Subsec. IVC, @H
@�0

is, up to a

sign, exactly the operator Ôl¼0 which is dual to the modes
of the dilaton which are spherically symmetric on the S3.
Therefore Eq. (72) becomes

jh�njÔl¼0j�0i _�0j � ðE1 � E0Þ2: (73)

We have argued above that the rhs is of order unity in our
conventions due to the existence of a robust gap. On the

lhs, _�0 �Oð�Þ, and as we will argue below the matrix

element, jh�njÔl¼0j�0i �OðNÞ. Thus Eq. (73) becomes

N� � 1: (74)

B. Highly curved geometries

Equation (74) is the required condition then for the
applicability of quantum perturbation theory. When this
condition is met, we can continue to trust the quantum
adiabatic approximation in the gauge theory even when the
’t Hooft coupling becomes of order unity or smaller at
intermediate times. All the conditions which are required
for the validity of this approximation continue to be hold in
this case. First, as was discussed above the gap of order
unity continues to exist. Second, the matrix elements which
enter are in fact independent of � since they correspond to
the two-point function of dilaton which is a chiral operator.
Thus the system continues to be well described in the
quantum adiabatic approximation so long as Eq. (74) is
met. It follows then that in the far future the state of the
system to good approximation is the ground state of the

N ¼ 4 theory. This implies that the dual description in the
far future is a smooth AdS5 geometry.
There is one important caveat to the above conclusion. It

is possible that at ��Oð1Þ there are several states in the
spectrum, scaling as a positive power of N, which accu-
mulate near the first excited state. This does not happen for
� � 1 and for � � 1 (where the spectrum of the free
theory is of course known) but it remains a logical possi-
bility. If this is true, the conditions for the adiabatic ap-
proximation will have to be revised so that the dilaton
varies even more slowly as a power ofN. This is a question
which can be settled in principle once the spectrum of the
N ¼ 4 theory is known for all �. Similarly, the possibility
for unexpected surprises at higher orders can also be
examined once enough is known about theN ¼ 4 theory.
The point is simply that in this approximation all matrix
elements and conditions can be phrased as statements in
the time independentN ¼ 4 theory. As our knowledge of
theN ¼ 4 theory grows, we will be able to check for any
such unexpected surprises.
Let us also mention before proceeding that when the

condition Eq. (74) is met and for a dilaton profile where the
’t Hooft coupling stays large for all time, the metric is to
good approximation smooth AdS5 for all time. However
the small corrections to this metric and dilaton cannot be
calculated reliably in the classical approximation used in
Sec. II. This is because in this regime it is very difficult to
even produce one supergravity quantum as an excitation
above the adiabatic vacuum. Therefore quantum effects are
important in calculating these corrections.

C. More comments

We close this section by discussion two points relevant
to the analysis leading up to condition Eq. (74).

First, let us argue why @H
@�0

¼ �Ôl¼0. The argument is

sketched out below, more details can be found in [10]. The
action of the N ¼ 4 theory is given by

S ¼
Z

dtd�3

ffiffiffiffiffiffiffi�g
p �

� 1

4e�0

�
TrF��F

�� þ � � � (75)

where the ellipses indicate extra terms coming from scalars
and fermions. Varying with respect to �0 gives us the
operator dual to the dilaton

Ô ¼ ffiffiffiffiffiffiffi�g
p �

1

4e�0

�
TrF��F

�� þ � � � (76)

where the ellipses denote extra terms which arise from the
terms left out in Eq. (75). Henceforth, to emphasize the key
argument, we neglect the additional terms coming from the
ellipses.
Working in A0 ¼ 0 gauge, the Hamiltonian density H

is given by

H ¼ e�0
�i�

i

2
þ e��0

4
FijF

ij (77)

13The actual condition is that the corrections to jc 0i must be
small. This means that at first order hc 1jc 1i should be small.
When Eq. (71) is met janj is small, but in some cases that might
not be enough and the requirement that the sum

P janj2 is small
imposes extra restrictions. There could also be additional con-
ditions which arise at second order, etc.
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where

�i ¼ e��0@0Ai (78)

is the momentum conjugate to Ai. Varying with respect to
�0 gives

@H
@�0

¼ �i�
i

2
e�0 � e��0

4
FijF

ij: (79)

Substituting from Eq. (78) one sees that this agrees (up to a

sign) with the operator Ô given in Eq. (76). When the
dilaton depends on time alone, we can integrate the above

equations over S3, which leads to the relation @H
@�0

¼
�Ôl¼0, where H now stands for the Hamiltonian (rather
than the Hamiltonian density).

Second, we estimate how the matrix element,

h�njÔl¼0j�0i, which appears in Eq. (73), scales with N.
It is useful to first recall that the N ¼ 4 theory, which is
conformally invariant, has an operator state correspon-
dence. The states j�ni can be thought of as being created
from the vacuum by the insertion of a local operator. This
makes it clear that the only states having a nonzero matrix

element, h�njÔl¼0j�0i, are those which can be created

from the vacuum by inserting Ôl¼0, since the only operator

with which Ôl¼0 has a nonzero two-point function is Ôl¼0

itself.
Now in terms of powers of N the two-point function

scales like

hÔl¼0Ôl¼0i � N2: (80)

The state j�ni, which appears in the matrix element in Eq.
(73), has the unit norm and is therefore created from the
vacuum by the operator

j�ni � 1

N
Ôl¼0j0i: (81)

From Eqs. (80) and (81), we then see that the matrix
element scales like

h�njÔl¼0j�0i � N (82)

as was mentioned above.
Our discussion leading up to the estimate of the matrix

element has been imprecise in some respects. First, strictly
speaking the operator state correspondence we used is a
property of the Euclidean theory on R4, where as we are
interested in the Minkowski theory on S3 � R. However,
this is a technicality which can be taken care of by first
relating the matrix element in the Minkowski theory to that
in Euclidean S3 � R space and then relating the latter to
that on R4 by a conformal transformation.

More importantly, the state created by Ôl¼0 is not an
eigenstate of energy, but is in fact a sum over an infinite
number of states labeled by an integer n with energies
!n ¼ 4þ 2n. This can be understood as follows. The

operator Ô can be expanded into positive and negative

frequency modes, An, A
y
n , respectively, for an infinite set

n, and acting with any of the Ay
n ’s gives a state

j’ni ’ Ay
n j0i: (83)

One must therefore worry about the dependence on the
mode number n in the matrix element and the effects of
summing up the contributions for all of these modes. We
will return to address this issue in more detail in
Subsecs. VI B and VIC, when we describe the operators

An, A
y
n more explicitly and discuss renormalization. For

now, let us state that after more careful treatment we will
find that the condition for the quantum adiabatic approxi-
mation Eq. (74) goes through unchanged. The physical
reason is simply this: we are interested here in the very
low-frequency response of the system and its very high
frequency modes are not relevant for this.

V. THE SLOWLY DRIVEN HARMONIC
OSCILLATOR

The supergravity calculations required the condition
� � 1. To understand this regime in the dual gauge theory
it is first useful to consider a quantum mechanical har-
monic oscillator with frequency !0 driven by a time de-
pendent source JðtÞ. We will see that in this case a classical
adiabatic perturbation theory becomes valid when14

€J
_J!0

� 1; (84)

_J � !5=2
0 : (85)

Having understood this system we then return to the gauge
theory in the following subsection.
The Hamiltonian is given by

H ¼ 1

2
_X2 þ 1

2
!2

0

�
X þ JðtÞ

!2
0

�
2
: (86)

In the quantum adiabatic approximation one considers the
instantaneous Hamiltonian. At time t0 this is given by

H0 ¼ 1

2
_X2 þ 1

2
!2

0

�
X þ Jðt0Þ

!2
0

�
2

(87)

where Jðt0Þ is also regarded as a time independent constant
in H0.

14Equations (84) and (85) clearly cannot hold when _J vanishes.
The more precise versions of these conditions are as follows.
Equation (84) is really the requirement that J is slowly varying.
By this one means that the Fourier transform of J has support, up
to say exponentially small corrections, only for small frequen-
cies compared to !0. Equation (85) is the requirement that the
coherent state parameter, �ðtÞ given in Eq. (99), is large.
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The ground state of H0 is a coherent state. We define

X ¼ aþ ayffiffiffiffiffiffiffiffiffi
2!0

p ; P ¼ �i
ffiffiffiffiffiffi
!0

p �
a� ayffiffiffi

2
p

�
(88)

to be the conventional creation and destruction operators.
Here,

P ¼ _X (89)

is the conjugate momentum. The ground state is

j�0i ¼ N�e
�ay j0i: (90)

Here N� is a normalization constant, determined by requir-
ing that h�0j�0i ¼ 1. The state j0i is the vacuum annihi-
lated by a, i.e.,

aj0i ¼ 0; (91)

and

� ¼ � Jffiffiffiffiffiffiffiffiffi
2!3

0

q : (92)

The ground state energy is

E0 ¼ 1
2!0; (93)

it is independent of time.
A quick way to derive these results is to work with the

shifted creation and destruction operators,

~a ¼ a� �; ~ay ¼ ay � � (94)

where � is given in Eq. (92). The Hamiltonian takes the
form

H ¼ !0ð~ay~aÞ þ 1
2!0: (95)

It is clear then that the ground state is annihilated by ~a,
leading to Eq. (90) and the ground state energy is Eq. (93).

For the quantum adiabatic theorem to be valid, the
condition in Eq. (71) must hold. For the harmonic oscil-
lator it is easy to see that this gives

_J � !5=2
0 : (96)

In fact the time evolution in this case can be exactly
solved. We consider the case where JðtÞ ! 0, t ! �1.
Starting with the state j0i in the far past, which is the
vacuum of the Hamiltonian in the far past, we then find
that the state at any time t is given by

jc ðtÞi ¼ NðtÞe�ðtÞay j�0i (97)

where j�0i is the adiabatic vacuum given in Eq. (90), NðtÞ
is a normalization constant, and the coherent state parame-
ter is �ðtÞ. Imposing the Schrödinger equation one gets

i _� ¼ i
_Jffiffiffiffiffiffiffiffiffi

2!3
0

q þ!0�: (98)

The solution for �ðtÞ with initial condition �ð�1Þ ¼ 0 is
given by

�ðtÞ ¼ e�i!0tffiffiffiffiffiffiffiffiffi
2!3

0

q Z t

�1
_Jðt0Þei!0t

0
dt0: (99)

Some details leading to Eq. (99) are given in Appendix B.
This state will behave like a classical state when the
coherent state parameter is big in magnitude, i.e., when

j�j � 1: (100)

The integral on the rhs of Eq. (99) can be done by parts
[we set Jð�1Þ ¼ 0],

Z t

�1
dt0 _Jei!0t

0 ¼ _JðtÞ e
i!0t

i!0

�
Z t

�1
dt0 €J

ei!0t
0

i!0

: (101)

Subsequent iterations obtained by further integrations by
parts give rise to a series expansion15 for � in terms of
higher derivatives of J. The higher order terms are small if
J is slowly varying compared to the frequency of the
oscillator !0. Evaluating the second term which arises in
his expansion, for example, and requiring it to be smaller
than the first term in Eq. (101) gives

€J
_J!0

� 1: (102)

We assume now that J is slowly varying and the first term
on the rhs of Eq. (101) is a good approximation to the
integral. This tells us that for Eq. (100) to be true the
condition which must be met is

_J � !5=2
0 : (103)

Note that this condition is opposite to the one needed for
the quantum adiabatic theorem to apply Eq. (97).
The answer for the hXi can be easily obtained by insert-

ing the expression for � obtained in Eq. (99) in the wave
function, Eq. (97). Let us obtain it here in a slightly differ-
ent manner. When Eq. (100) is true the system behaves
classically and its response to the driving force can be
obtained by solving the classical equation of motion for
the forced oscillator. In terms of the Fourier transform of J
this gives

XðtÞ ¼
Z Jð!Þ

!2 �!2
0

e�i!td!: (104)

The correct pole prescription on the rhs is that for a
retarded propagator.
When the source is slowly varying compared to !0, the

denominator !2 �!2
0 in Eq. (104) can be expanded in a

power series in !2

!2
0

and the resulting Fourier transforms can

be expressed as time derivatives of J. The first two terms

15In general one expects this to be an asymptotic rather than
convergent series.
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give

X ¼ � JðtÞ
!2

0

þ €J

!4
0

þ � � � : (105)

The first term on the rhs is the location of the instantaneous
minimum. The second term is the first correction due to the
time dependent source. Subsequent corrections are small if
the source is slowly varying and the condition Eq. (102) is
met. It is useful to express this result as

X þ JðtÞ
!2

0

¼ €J

!4
0

þ � � � : (106)

The left-hand side is the expectation value of X after add-
ing a shift to account for the instantaneous minimum of the
potential. The right-hand side we see now only contains
time derivatives of J. Before proceeding let us note that
expanding the denominator in Eq. (104) in a power series

in !2

!2
0

gives a good approximation only if Jð!Þ has most of

its support for ! � !0. This is how the more precise
condition mentioned in the footnote before Eq. (84) arises.

It is also useful to discuss the energy. From Eq. (105) and
the Hamiltonian we see that the leading contribution comes
from the Kinetic energy term and is given to leading order
by

E ¼ 1

2

_J2

!4
0

(107)

(strictly speaking this is the energy above the ground state
energy).

The external source driving the oscillator changes its
energy. Noether’s argument in the presence of the time
dependent source leads to the conclusion that

@H

@t
¼ _J

�
X þ J

!2
0

�
(108)

[this also directly follow from the Hamiltonian, Eq. (86)].
From Eqs. (106) and (107) we see that this condition is
indeed true. Let us also note that the rate of change in
energy can be expressed in terms of the shifted operators,
Eq. (94), as

@H

@t
¼ _J

�
~aþ ~ayffiffiffiffiffiffiffiffiffi
2!0

p
�
; (109)

this form will be useful in our discussion below.
To summarize, we find that when the conditions of

Eqs. (102) and (103) are met, the driven harmonic oscil-
lator behaves like a classical system. Its response, for
example, hXi, and the energy, E, can be calculated in an
expansion in time derivatives of J, which is controlled
when Eq. (102) is valid and the source is slowly varying.
We will refer to this perturbation expansion as the classical
adiabatic perturbation approximation below. Note that the
condition of Eq. (103) is opposite to the one required for
the quantum adiabatic perturbation theory to hold. In the

next subsection we will discuss how a similar classical
adiabatic approximation arises in the gauge theory.

VI. GAUGE THEORY: LARGE N CLASSICAL
ADIABATIC PERTURBATION THEORY

We now return to the gauge theory and formulate a large
N classical adiabatic approximation based on coherent
states in this theory. This will allow us to obtain results
in the gauge theory which agree with those obtained using
supergravity in Secs. II and III.

A. Adiabatic approximation in terms of coherent states

The supergravity solution in Sec. II describes classical
solutions rather than states which contain a small number
of bulk particles. The AdS/CFT correspondence implies
that bulk classical solutions correspond to coherent states
in the boundary gauge theory with a large number of

particles in which operators like Ô have nontrivial expec-
tation values. On the other hand, states obtained by the

action of a few factors of Ô on the vacuum are few-particle
states in the bulk. The quantum adiabatic approximation
described in Sec. IV attempts to determine the wave func-
tion in a basis formed out of such single particle states and
does not apply to the supergravity solution in Sec. II.
We, therefore, need to formulate an adiabatic approxi-

mation in terms of coherent states of gauge invariant
operators in the boundary theory to try and understand
the supergravity solutions of Sec. II in a dual description.
As is well known, these coherent states become classical in
a smooth fashion in the N ! 1 limit. (See, e.g., [7]).
Consider a complete (usually overcomplete) set of gauge

invariant operators in the Schrödinger picture, ÔI
. A gen-

eral coherent state is of the form

j�ðtÞi ¼ exp

�
i�ðtÞ þX

I

�IðtÞÔI
ðþÞ

�
j0iA: (110)

Here ÔI
ðþÞ denotes the creation part of the operator and j0iA

denotes the adiabatic vacuum corresponding to some in-
stantaneous value of the dilation �0,

H½�0	j0iA ¼ E�0
j0iA (111)

with the ground state energy E�0
.

The algebra of operators ÔI
, together with the

Schrödinger equation then leads to a differential equation
which determines the time evolution of the coherent state
parameters �IðtÞ in terms of the time dependent source
�0ðtÞ. The idea is then to solve this equation in an expan-
sion in time derivatives of �0ðtÞ. This is the coherent state
adiabatic approximation we are seeking.
In general it is almost impossible to implement this

program practically, since the operators ÔI
have a non-

trivial operator algebra which mixes all of them. The
coherent state (110) is in the coadjoint orbit of this algebra
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[7]. The resulting theory of fields conjugate to these op-
erators would be in fact the full interacting string field
theory in the bulk. In our case, however, the situation
drastically simplifies for large ’t Hooft coupling at the

lowest order of an expansion in _�0. This is because these
various operators decouple and their algebra essentially
reduces to free oscillator algebras.

We have already found this decoupling in our supergrav-
ity calculation. The departure of the solution from AdS5 �
S5 is due to the time dependence of the boundary value of
the dilaton, and are small when the time variations are
small, controlled by the parameter �. To lowest order in
� [which is Oð�2Þ] the deformation of the bulk dilaton in
fact satisfied a linear equation in the AdS5 background in
the presence of a source provided by the boundary value
�0ðtÞ. This equation does not involve the deformation of
the metric. Similarly, the equation for metric deformation
does not involve the dilaton deformation to lowest order.

This allows us to treat each supergravity field and its
dual operator separately. With this understanding we will
now consider the coherent state (110) with only the opera-

tor dual to the dilaton, Ô. Since our source is spherically
symmetric and higher point functions of the operators are
not important in this lowest order calculation, we can
restrict this operator to its spherically symmetric part.

B. Large N classical adiabatic perturbation theory

Let us now elaborate in more detail on the LNCAPT.
The linearized approximation in the gravity theory

means that only the two-point function is nontrivial and
all connected higher point functions vanish. The nonlinear
terms correspond to nontrivial higher order correlations. In
this approximation the gauge theory simplifies a great deal.
Each gauge invariant operator—which is dual to a bulk
mode—gives rise to a tower of harmonic oscillators. The
response of the gauge theory can be understood from the
response of these oscillators.

In fact, in the quadratic approximation, the only oscil-
lators which are excited are those which couple directly to
the dilaton and so we only have to discuss their dynamics.
We have already discussed the operator dual to the dilaton
in Sec. IVC. The dilaton excitations we consider are S3

symmetric and correspondingly the only modes of Ô
which when excited are S3 symmetric. Here we denote

these by Ôl¼0.

In the Heisenberg picture Ôl¼0 can be expanded in terms
of time dependent modes; this is dual to the fact that the S3

symmetric dilaton can be expanded in terms of modes with
different radial and related time dependence in the bulk.
One finds, as is discussed in Appendix C, that only even
integer frequencies appear in the time dependence giving

Ô l¼0 ¼ N
X1
n¼1

Fð2nÞ½A2ne
�i2nt þ Ay

2ne
i2nt	: (112)

Here A2n, A
y
2n are canonically normalized creation and

destruction operators satisfying the relations

½Am; An	 ¼ ½Ay
m; A

y
n 	 ¼ 0 ½Am; A

y
n 	 ¼ 	m;n: (113)

Their commutators with the gauge theory Hamiltonian are

½H;Ay
2n	 ¼ ð2nÞAy

2n ½H;A2n	 ¼ �ð2nÞA2n: (114)

The normalization factor Fð2nÞ may be computed by com-
paring with the standard the two-point function as is de-
tailed in Appendix C. The result is

jFð2nÞj2 ¼ A�4

3
n2ðn2 � 1Þ (115)

for n 
 2. Fð0Þ and Fð2Þ vanish, so this means that the sum
in Eq. (112) receives its first contribution at n ¼ 2. It also
means that the lowest energy state which can be created by

acting with Ôl¼0 on the vacuum has energy equal to 4. This
is what we expect on general grounds, since the energies of
states created by an operator with conformal dimension �
are given by

!ðn; lÞ ¼ �þ 2nþ lðlþ 2Þ n ¼ 0; 1; 2 � � � : (116)

The constant A in Eq. (115) is the normalization of the
two-point function which may be determined, e.g., from a
bulk calculation. Before proceeding let us also note that
Fð2nÞ grows like Fð2nÞ � n2, Eq. (115), for large mode
number n. This enhances the coupling of the higher fre-
quency modes to the dilaton and will be important in our
discussion of renormalization below.
From now onwards we will find it convenient to work in

the Schrödinger representation, in which operators are time

independent. The operator Ôl¼0 in this representation is
given by

Ô l¼0 ¼ N
X
n

Fð2nÞ½A2n þ Ay
2n	: (117)

From Eq. (114) it follows that the Hamiltonian for A2n,

Ay
2n modes can be written as

H ¼ X
n

2nAy
2nA2n: (118)

Note this Hamiltonian measures the energy above that of
the ground state.

The operators, Ay
2n, A2n create and destroy a single

quantum of excitation when acting on the vacuum of the
N ¼ 4 theory with the instantaneous value of g2YM ¼ e�0 .
Thus they are the analogue of the shifted creation and
destruction operators we had defined in the harmonic
oscillator case, ~a, ~ay. The Hamiltonian, Eq. (118), is the
analogue of the Hamiltonian, Eq. (95) in the harmonic
oscillator case.
The time dependence of the Hamiltonian due to the

varying dilaton can be expressed as follows:
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@H

@t
¼ @H

@�
_�0 ¼ �Ôl¼0

_�0 (119)

leading to

@H

@t
¼ �Ôl¼0

_�0 ¼ �N
X
n

Fð2nÞ½A2n þ Ay
2n	 _�0; (120)

where we have used Eq. (117). It is useful to write this as

@H

@t
¼ �N

X
Fð2nÞ ffiffiffiffiffiffi

4n
p

_�0

�
A2n þ Ay

2nffiffiffiffiffiffi
4n

p
�
; (121)

which is analogous to the time dependence in the forced
oscillator system, Eq. (109).

So we see that the gauge theory, in the quadratic ap-
proximation maps to a tower of oscillators, with frequen-
cies, !n ¼ 2n. Comparing with Eq. (109) we see that the
oscillator with energy 2n couples to a source,

_J n ¼ �NFð2nÞ ffiffiffiffiffiffi
4n

p
_�0: (122)

The analysis of the harmonic oscillator now directly
applies. The resulting state is a coherent state,

jc i ¼ N̂ðtÞe
ðP

n

�nA
y
2n
Þ
j�0i: (123)

Here j�0i is the adiabatic vacuum, which is in the ground

state of theN ¼ 4 theory with coupling g2YM ¼ e�0 . N̂ðtÞ
is a normalization constant and the coherent state parame-
ter �n is given from Eq. (99) by

�n ¼ e�i!ntffiffiffiffiffiffiffiffiffi
2!3

n

p Z t

�1
_Jnðt0Þei!nt

0
dt0: (124)

The condition that the source is varying slowly,
Eq. (102), becomes,��������

€�0

n _�0

��������� 1 8 n: (125)

It is clearly sufficient to satisfy this condition for n ¼ 1,��������
€�0

_�0

���������� � 1: (126)

This condition is met for the dilaton profile we have
under consideration.16 When this condition is true �n can
be evaluated by keeping the first term in Eq. (101). The
condition that the state is classical, is that �n � 1, this
gives17

jNFð2nÞ ffiffiffiffiffiffi
4n

p
_�0j � ð2nÞ5=2: (127)

Noting from Eq. (115) that Fð2nÞ � n2 for large n we
see that the factors of n cancel out on both sides, leading to
the conclusion that when

jN _�0j � N� � 1 (128)

all the oscillators are in a classical state. In this way we
recover the first condition discussed in Eq. (6).
The summary is that when the two conditions,

� � 1; N� � 1 (129)

are both valid, the gauge theory is described to leading
order in � as a system of harmonic oscillators. The oscil-
lators which couple to the dilaton are excited by it and are
in a classical state.
This description can be used to calculate the resulting

expectation value of operators. The calculation for hA2nþAy
2nffiffiffiffi

4n
p i

is analogous to that for hX þ J
!2i in the harmonic oscillator

case [since the A2n, A
y
2n are analogous to the shifted op-

erators, ~a, ~ay Eq. (94)]. From Eqs. (106) and (122) we get
that to leading order in �,

�
A2n þ Ay

2nffiffiffiffiffiffi
4n

p
�
¼ �N

Fð2nÞ ffiffiffiffiffiffi
4n

p
ð2nÞ4

€�0: (130)

Substituting in Eq. (117) next gives

hÔl¼0i ¼ �CN2 €�0 (131)

where C is

C ¼ XFð2nÞ2
4n3

: (132)

The functional dependence on �0 and N in Eq. (130)
agrees with what we found in the supergravity calculation,
Eq. (62). The constant of proportionality C is in fact
quadratically divergent. This follows from noting that for
large n, Fð2nÞ � n2.
A little thought tells us that the divergence should in fact

have been expected. The supergravity calculation also had
a divergence and the finite answer in Eq. (62) was obtained
only after regulating this divergence and renormalizing.
Therefore it is only to be expected that a similar divergence
will also appear in the description in terms of the oscilla-
tors. In the subsection which follows we will discuss the
issue of renormalization in more detail. The bottom line is
that counterterms can be chosen so that the coefficient in
Eq. (62) agrees with that in the supergravity calculation.
It is also important to discuss how the energy behaves.

From Eqs. (107) and (122) we see that the energy above the
ground state is

hEi � Egnd ¼ 1
2CN

2 _�2
0: (133)

We note that the functional dependence on _�0, N match
with those obtained in the supergravity calculations,

16This condition is analogous to Eq. (84) for the driven har-
monic oscillator. As discussed in that context in the footnote
before Eq. (84) there is a more precise version of this condition.
It is the statement that for all modes, n, the Fourier transform of
Jn must have essentially all its support at frequencies much
smaller than the oscillator frequency, 2n.
17The more precise condition is simply that �n � 1;8n. This
gives Eq. (127) provided that the integral in Eq. (124) can be
approximated by the first term of the derivative approximation.
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Eq. (60). The constant of proportionality which is obtained
by summing over the oscillator modes in the case of the
energy is the same as C defined above, Eq. (132). It is also
therefore quadratically divergent.

The fact that the two constants of proportionality in
Eqs. (133) and (131) are the same, follows on general
grounds. Noether’s argument in the presence of the time
dependence means that each oscillator satisfies the rela-
tion, Eq. (108). On summing over all of them we then get
the relation �

dE

dt

�
¼ � _�0hÔl¼0i (134)

leading to the equality of the two constants. Earlier we had
also seen that the supergravity calculation satisfies this
relation, Eq. (63). It follows from these observations that

if after renormalization the answer for hÔl¼0i agrees be-
tween the supergravity theory and the oscillator description
developed here, then the expectation value for E will also
agree in the two cases.

Here we have analyzed the gauge theory to leading order
in �. Going to higher orders introduces anharmonic cou-
plings between the different oscillators. These couplings
arise because of connected three-point and higher point
correlations in the gauge theory. The three-point function,
for example, is suppressed by 1=N, the four-point function
by 1=N2, and so on. For computations in the ground state,
these would therefore be suppressed in the large N limit.
However as we have seen here the time dependence results
in a coherent state which contains OðN�Þ2 quanta being
produced. The three-point function in such a state is sup-
pressed by Oð�Þ and not by Oð1=NÞ. Since � � 1, this is
still enough though to justify our neglect of the cubic terms
to leading order in �. Similarly the effect of four-point
correlators in the coherent state are suppressed by Oð�Þ2,
etc. This is in agreement with the supergravity calculation,
where the cubic terms in the equations of motion are sup-
pressed by Oð�Þ, etc.

To go to higher orders in � using the oscillator descrip-
tion the effect of the anharmonic couplings induced by the
higher order correlations would have to be introduced. In
addition one would have to keep the contributions from the
quadratic approximation to the required order in �. As long
as the ’t Hooft coupling stays big for all times and the
supergravity approximation is valid, there is no reason to
believe that these effects will be significant and the behav-
ior of the system should be well described by the leading
harmonic oscillator description, in agreement with what
we saw in supergravity. When the ’t Hooft coupling begins
to get small though the anharmonic couplings, one could
potentially significantly change the behavior of the system,
as we will discuss in Sec. VID.

C. Renormalization

Let us now return to the constantC Eq. (132). Onewould
like to know if it can be made to agree with the supergrav-

ity answer Eq. (62). Since the mode sum in C diverges, at
first sight it would seem that by suitably removing the
infinities this can always be done. To be explicit, imposing
a cutoff on the mode sum in C one gets from Eq. (132),

C ¼ XFð2nÞ2
4n3

¼ c1n
2
max þ c2 lnðnmaxÞ þ finite term

(135)

(a term linear in nmax can always be removed by shifting
nmax). Removing the infinities would mean removing the
first two terms, but by changing nmax by a finite amount the
finite term left over will clearly change and can be made
equal to any answer we want.
However this seems too superficial of an answer. One

would like to ensure that the freedom to adjust C corre-
sponds to the freedom to add local counterterms in the
theory, and also that once the counterterms are chosen so
that C agrees no other discrepancy appears with
supergravity.
This is in fact true and can be easily seen by relating the

calculation for hÔi in Eq. (131) to the two-point function
for the dilaton. In fact we will only need the two-point
function of the S-wave dilaton which is equal to the two-

point function of hÔl¼0Ôl¼0i in the gauge theory. Since the
S-wave dilaton couples directly to Ôl¼0, we have

hÔl¼0ðtÞi ¼
Z

dt0hÔl¼0ðtÞÔl¼0ðt0Þi�ðt0Þ: (136)

Using Eq. (112) we find that

hÔl¼0ðtÞÔl¼0ðt0Þi ¼ N2
X
n

Fð2nÞ2ð4nÞ
Z d!

2�i

� e�iðt�t0Þ!

ð!2 � ð2nÞ2Þ (137)

where we have expressed the answer in terms of a Fourier
transform in frequency space. We are not being explicit
about the pole prescription here, this will determine which
propagator (Feynman, retarded, etc.) one requires. From
Eq. (137) the propagator in frequency space can be read off
to be

Gð!Þ ¼ N2
X
n

Fð2nÞ2ð4nÞ
ð!2 � ð2nÞ2Þ : (138)

Since Fð2nÞ � n2 the sum over modes on the rhs is quarti-
cally divergent.
For purposes of comparing with the adiabatic approxi-

mation we expand this propagator in powers in !2. This
gives
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Gð!Þ
N2

¼ �XFð2nÞ2ð4nÞ
ð2nÞ2 �!2

XFð2nÞ2ð4nÞ
ðð2nÞ2Þ2

�!4
XFð2nÞ2ð4nÞ

ðð2nÞ2Þ3 þ � � � : (139)

The terms within the ellipses contain powers higher than
!4 and are not divergent. The first term on the rhs must be
set to zero after renormalization to preserve conformal
invariance, otherwise the vacuum expectation value for

hÔi in the N ¼ 4 theory with constant coupling would

not vanish. The leading contribution to hÔi in the adiabatic
approximation then arises from the second term which is
quadratically divergent. After Fourier transforming the !2

dependence of this term gives rise to the second derivative
with respect to the time of the dilaton. And the sum over
modes is the same as that in C, Eq. (132).

Now the point is that all divergences in the two-point
function can be removed by local counterterms since they
correspond to contact terms. In fact the gravity calculation
also needed counterterms and from our discussion in
Sec. III A we know that these counterterms are of the
form given in Eq. (55). In particular, the third term in Eq.
(55) proportional to ðr�Þ2 cancels the quadratic diver-
gence while the last term in Eq. (55), að4Þ, contains terms

which cancel the subleading logarithmic divergence. Also
once the counterterms are chosen so that C agrees no other
discrepancy can appear. The point here is that the leading
order in � calculations are only sensitive to the two-point
function. And the finite terms in the two-point function are
well known to agree between the gravity and gauge theory
sides. In fact the finite two-point function is just deter-
mined by conformal invariance and since the anomalous

dimension of Ô does not get renormalized, it can be
calculated in the free field limit itself.

The bottom line then is that using the freedom to adjust
the counterterms, C can be made to agree with the super-
gravity calculations in Sec. III.

Let us end by pointing out that the supergravity value for
C, Eq. (62) is

Csugra ¼ 1
16 (140)

which means that the effect of renormalization is to only
include the contributions of modes with mode number n�
Oð1Þ. This makes good physical sense; we are dealing with
the low-frequency response of the system here, and the
high-frequency modes should not be relevant for this
purpose.

This last comment also has a bearing on our discussion
in Sec. IV of the quantum adiabatic perturbation theory.
The criterion for the validity of this approximation was
stated in Eq. (74). Nowwhat this condition really ensures is

that the amplitude to excite the system to a state j�ni ¼
Ay
n j0i containing any one single oscillator excitation is

small. However there are an infinite number of such single

excitation states, corresponding to the infinite number of
values that n takes, and one might be worried that this
condition is not sufficient. Even though the amplitude to
excite the system into any given state j�ni is small, the sum
of these amplitudes, more correctly the norm of the first
order correction of the wave function hc 1jc 1i, Eq. (69), is
still large and in fact would diverge when summed over all
the modes. This would invalidate the approximation. The
reason this concern does not arise is tied to our discussion
above. After renormalization only a few low-frequency
modes contribute to the response of the system and one
is only interested in how the wave function changes for
these modes. For this purpose, the condition in Eq. (74) is
enough and we see that when it is met the quantum
adiabatic approximation is indeed valid.

D. Highly curved geometry

So far we have considered what happens in the para-
metric regime, Eq. (129), when the ’t Hooft coupling stays
big at all times. In this case, the supergravity description is
always valid. We saw above that the gauge theory can be
described in this regime in terms of approximately de-
coupled classical harmonic oscillators and this reproduces
the supergravity results.
Now let us consider what happens when the dilaton takes

a larger excursion so that the ’t Hooft coupling at inter-
mediate times becomes of order unity or even smaller.
Some of the resulting discussion is already contained in
the Introduction above.
A natural expectation is that the description in terms of

the classical adiabatic system of weakly coupled oscillators
should continue to apply even when the ’t Hooft coupling
becomes small. There are several reasons to believe this.
First, anharmonic terms continue to be of order � and thus
are small. The leading anharmonic terms arise from three-

point correlations, hÔ1Ô2Ô3i. In the vacuum these go like
1=N. In the coherent state produced by the time depen-
dence these go like �. The enhancement by N� arises
because the coherent state contains OððN�Þ2Þ quanta, so
that the probability goes as ðN�Þ2=N2 � �2.18 Four-point
functions give rise to terms going like Oð�2Þ and so on,
these are even smaller. In the absence of anharmonic terms
the theory should reduce to a system of oscillators. Second,
the existence of a gap of order 1=R means that for each
oscillator the time dependence is slow compared to its
frequency. Therefore the system continues to be very far
from resonance and should evolve adiabatically. Finally, in
the parametric regime, Eq. (129), the analysis of the pre-
vious subsections should then apply leading to the con-

18The probability j<�jÔ Ô Ô j�> j2 is proportional to 1
N2 �

ðN2�2Þ3, with each factor of N2�2 as an estimate of the con-
tribution for each of the operators Ô. The contribution of the 2-
point function j<�jÔ Ô j�> j2 is just proportional to ðN2�2Þ2,
resulting in a relative suppression of Oð�2Þ.
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clusion that an OðN�Þ � 1 quanta is produced making the
coherent state a good classical state.

If this expectation is borne out, the system should settle
back into the ground state of the finalN ¼ 4 theory in the
far future and should have a good description in terms of
smooth AdS space then.

However, as discussed in the Introduction, there are
reasons to worry that this expectation is not borne out.
New features could enter the dynamics when the ’t Hooft
coupling becomes small at intermediate times, and these
could change the qualitative behavior of the system. These
new features have to do with the fact that string modes can
start getting excited in the bulk when the curvature be-
comes of order the string scale. These modes correspond to
nonchiral operators in the gauge theory and the corre-
sponding oscillators have a time dependent frequency.
When the ’t Hooft coupling is big these frequencies are
much bigger than those of the supergravity modes and as a
result the string mode oscillators are not excited. But when
the ’t Hooft coupling becomes of order unity some of the
frequencies of these string modes become of order the
supergravity modes and hence these oscillators can begin
to get excited.19 In fact the string modes are many more in
number than the supergravity modes, since there is an order
unity worth of chiral operators in the gauge theory and an
OðN2Þ worth of nonchiral ones.

The worry then is that if a significant fraction of these
string oscillators gets excited the correct picture which
could describe the ensuing dynamics is one of thermaliza-
tion rather than classical adiabatic evolution. In this case
the energy pumped into the system initially would get
equipartitioned among all the different degrees of freedom.
Subsequent evolution would then be dissipative, and the
energy would increase in a monotonic manner, as it does
for a large black hole, Eq. (65).

Because of the dissipative behavior the energy which is
initially pumped in would not be recovered in the future.
Rather one would expect that when the ’t Hooft coupling
becomes large again, the energy, which is of order N2�2

remains in the system. The gravity description of the
resulting thermalized state depends on the value of �
relative to � � g2YMN and N. In this late time regime of

the large ’t Hooft coupling, the various possibilities can be
figured out from entropic considerations in supergravity
(see, e.g., Sec. 3.4 of [6]). The result in our case is the

following. For � � ðg2YMNÞ5=4=N a gas of supergravity

modes is favored. For ðg2YMNÞ5=4=N < � � ðg2YMNÞ�7=8

one would have a gas of massive string modes. For

ðg2YMNÞ�7=8 < � � 1 one gets a small black hole, i.e., a

black hole whose size is much smaller than RAdS. A big
black hole requires OðN2Þ energy which is parametrically
much larger. Thus, the strongest departure from AdS

space-time in the far future would be the presence of small
black holes. Such black holes would eventually evaporate
by emitting Hawking radiation. However this takes an
OðN2RAdSÞ amount of time which is much longer than
the time scale OðRAdS=�Þ on which the ’t Hooft coupling
evolves. As a result for a long time after the ’t Hooft
coupling has become big again the gravity description
would be that of a small black hole in AdS space.
An important complication in deciding between these

two possibilities is that the rate of time variation is � which
is also the strength of the anharmonic couplings between
the supergravity oscillators and string oscillators. If the rate
of time variation could have been made much smaller,
thermodynamics would become a good guide for how the
system evolves. In the microcanonical ensemble, which is
the correct one to use for our purpose, with energy N2�2

the entropically dominant configurations are as discussed
in the previous paragraph, and this would suggest that
dissipation would indeed set in. However, as emphasized
above, this conclusion is far from obvious here since the
time variation is parametrically identical to the strength of
the anharmonic couplings.
In fact we know that the guidance from thermodynamics

is misleading in the supergravity regime, where the
’t Hooft coupling stays large for all times. In this case we
have explicitly found the solution in Sec. II. It does not
contain a black hole. Moreover, it does not suffer from any
tachyonic instability—since it is a small correction from
AdS space which does not have any tachyonic instability.20

The only way a black hole could form is due to a tunneling
process, but this would be highly suppressed in the super-
gravity regime.
One reason for this suppression is that the energy in the

supergravity solution discussed in Sec. II is carried by
supergravity quanta which have a size of order RAdS.
This energy would have to be concentrated in a much
smaller region of order the small black hole’s horizon to
form the black hole and this is difficult to do. In contrast,
away from the supergravity regime this could happen more
easily. When the ’t Hooft coupling becomes small at
intermediate times, strings become large and floppy, of
order RAdS, at intermediate times. If a significant fraction
of the energy gets transferred to these strings at intermedi-
ate times, it could find itself concentrated within a small
black hole horizon once the ’t Hooft coupling becomes
large again.
In summary, we do not have a clean conclusion for the

future fate of the system in the parametric regime,
Eq. (129). Note however that in both possibilities discussed
above most of space-time in the far future is smooth AdS
space, with the possible presence of a small black hole.
Hopefully, the framework developed here will be useful to
think about this issue further.

19The primary reason for them getting excited are the anhar-
monic terms which couple them to the modes dual to the dilaton. 20Note that we are working on S3 here.
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VII. CONCLUSIONS

In this paper, we examined the behavior of the AdS5 �
S5 solution of IIB supergravity when it is subjected to a
time dependent boundary dilaton. This is dual to the be-
havior of theN ¼ 4 super Yang-Mills theory subjected to
a time dependent gauge coupling. The AdS5 solution was
studied in global coordinates and the dual field theory lives
on an S3 of fixed radius R. We worked in units where
RAdS ¼ R ¼ 1. Three parameters are relevant for describ-
ing the resulting dynamics:

(1) N—which is the number of units of flux and is dual
to the rank of the gauge group. This was held fixed
during the evolution.

(2) � ¼ e�ðtÞN—which determines the value of RAdS in
string units is the ’t Hooft coupling in the gauge
theory. Especially relevant is its minimum value
�min during the time evolution. When �min � 1
supergravity is a good approximation for all times.
When �min � Oð1Þ supergravity breaks down at
intermediate times.

�� _�—which determines the rate of change of the
boundary dilaton in units of RAdS. Throughout the analysis
we worked in the slowly varying regime where � � 1.

(i) Our results are as follows:
When N� � 1 the dynamics can be described by a
quantum adiabatic approximation. The gauge theory
stays in the ground state of the instantaneous
Hamiltonian to good approximation. At late times
the system is well described by smooth AdS5 space-
time. This is true even when �min � 1 as discussed in
Sec. IV.

(ii) When N� � 1 and �min � 1, the system is well
described by a supergravity solution, which consists
of AdS5 space-time with corrections which are sup-
pressed in �. The gauge theory provides an alternate
description in terms of weakly coupled harmonic
oscillators which are modes of gauge invariant op-
erators dual to supergravity modes. These oscillators
are subjected to a driving force that is slowly varying
compared to their frequency. A classical adiabatic
perturbation theory, the LNCAPT, describes the dy-
namics of the system. This dual description repro-
duces the supergravity answers for the energy and

hÔi, as discussed in Secs. VIA and VIB.
(iii) When N� � 1, and �min � Oð1Þ, supergravity

breaks down. In this case we do not have a clean
conclusion for the final state of the system.
Additional oscillators which correspond to string
modes can now get activated. There are two possi-
bilities: either the description in terms of classical
adiabatic dynamics for the oscillators continues to
apply, or a qualitative new feature of thermalization
sets in. In the former case, space-time in the far
future is well approximated by smooth AdS space.
In the latter case, the gravity description depends on

the value of � and may consist of a string gas or small
black holes. This is discussed in Sec. VI C.

(iv) We have not addressed here what happens when the
dilaton begins to vary more rapidly and � becomes
�Oð1Þ. It is natural to speculate that a black hole
forms eventually in this case. The oscillators in the
gauge theory now become strongly coupled with
Oð1Þ anharmonic couplings.
If �min � 1 this parametric regime can be studied in
supergravity itself. When � � 1 the calculations in
Sec. II showed that no black hole forms. As �
increases the natural expectation is that eventually
a black hole should begin to form at some critical
value. The size of this black hole should then grow
with �, leading to a big black hole with a radius
bigger than the AdS scale. Very preliminary indica-
tions for this come from the calculations in Sec. II
where we see that as � increases the value of jgttj
becomes smaller at the center of AdS Eq. (51),
suggesting that a horizon would eventually form at
��Oð1Þ. Better evidence comes from studying a
region of parameter space where � � 1 but where
the total amplitude of the dilaton variation is small.
In this case21 one finds that a boundary variation of
the dilaton, which is sufficiently fast compared to its
amplitude, always produces a black hole.
When �min � Oð1Þ, and � becomes �Oð1Þ, super-
gravity breaks down at intermediate times. If ther-
malization has already set in the parametric regime,
N� � 1, � � 1, as discussed above, then one ex-
pects that the small black hole which has formed for
� � 1 would grow and become of order the AdS
scale or bigger when � 
 Oð1Þ. If thermalization
does not set in when � � 1, then at some critical
value ��Oð1Þ one would expect that this does
happen leading to the formation of a black hole
whose mass then grows as � further increases.
It will be interesting to try and analyze this regime
further in subsequent work.

(v) Finally, one can consider a regime where � ! 1 at
time t ! 0. This regime was considered in [10]
where the dilaton was taken to vanish like e� �
ðtÞp as t ! 0, leading to a diverging value for _�. In
a toy quantum mechanics model, it was argued that
the response of the system in this case is singular,
suggesting that this singularity is a genuine pathol-
ogy which is not smoothened out. However the con-
clusions for the toy model do not directly apply to
the field theory. Important questions regarding the
renormalization of this time dependent field theory
remain and could invalidate this conclusion.

One is hesitant to try and draw general conclusions
about the possibility of emergence of a smooth space-

21The results reported in [20] are for the case of AdSdþ1 space-
times with d odd.

SLOWLY VARYING DILATON COSMOLOGIES AND . . . PHYSICAL REVIEW D 80, 126011 (2009)

126011-21



time from string scale curved regions on the basis of the
very limited analysis presented here. One lesson which has
emerged is that, at least for the kind of time dependence
studied in this paper, AdS space has a tendency to form a
black hole.22 This fate can be avoided (as in the case when
N� � 1) but it requires slow time variation or perhaps
more generally rather finally tuned conditions. To under-
stand in greater detail when this fate of black hole forma-
tion can be avoided requires a deeper understanding of the
process of thermalization in the dual field theory.

In this paper we analyzed the effects of a time dependent
dilaton. It will be interesting to extend this to other super-
gravity modes as well by making their boundary values
time dependent—e.g., making the radius of the S3 on
which the gauge theory lives time dependent or introducing
time dependence along the other exactly flat directions in
the N ¼ 4 theory besides the dilaton. Also, we have kept
the parameter N fixed in this work. As was discussed in the
Introduction, N measures the strength of quantum correc-
tions and is also the value of RAdS in Planck units, Eq. (3). It
would be interesting to consider cases where N changes
and becomes smaller thereby increasing the strength of
quantum effects and making the curvature of order lPl.
One way to do this might be by introducing time depen-
dence that moves the system onto the Coulomb branch.
This could reduce the effective value of N in the interior.
For recent interesting work, see [32], also the related ear-
lier work, [33,34]. Finally, a length scale was introduced in
the gauge theory by working on S3 here. Instead one could
consider a confining gauge theory like the Klebanov-
Strassler kind23 [35], which has a mass gap on R3. In this
case one could consider the response of the system to time
dependence slow compared to the confining scale and hope
to use an adiabatic approximation to understand this
response.
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APPENDIX A: COMMENTS ON METRIC TO Oð�2Þ
We are interested in calculating the backreaction on the

metric to Oð�2Þ that arises due to the dilaton �0. Without
loss of generality we can assume that the metric is S3

symmetric and therefore of form

ds2 ¼ �gttdt
2 þ grrdr

2 þ 2gtrdtdrþ R2d�2 (A1)

where the metric coefficients are functions of r, t. The
zeroth order metric is that of AdS5, Eq. (7). We argued
above that the backreaction to the dilaton source arises at
order �2. Thus gtr in Eq. (A1) is of order �2.
We now show that by doing a suitable coordinate trans-

formation, the mixed component gtr can be set to vanish up
to order �2. The coordinate transformation is, from ðt; rÞ to
ðt; ~rÞ, where

r ¼ ~r� gtr
grr

t; (A2)

which leads to

dr ¼ d~r�
�
gtr
grr

�0
td~r� gtr

grr
dtþOð�3Þ: (A3)

The prime above indicates derivatives with respect to r. We
can drop the �3 terms for our purpose; these originate from
additional time derivatives on the metric components.
Substituting in Eq. (A1), we see that in the new coordinates
the gt~r components of the metric vanish up to Oð�3Þ
corrections which we are neglecting anyways. To avoid
clutter we will henceforth drop the tilde on the r coordinate
and write the metric as

ds2 ¼ �gttdt
2 þ grrdr

2 þ R2d�2: (A4)

Next we show that up to Oð�2Þ we can set R equal to the
coordinate r without reintroducing the mixed components.
First we define,

�r ¼ R (A5)

leading to

d�r ¼ R0drþ _Rdt (A6)

where the dot indicates a time derivative. Now any time
dependence in R arises only due to the dilaton and there-
fore is of order �2. This means that _R is Oð�3Þ and can be

22AdS space is of course homogeneous so the reader might be
puzzled about where the black hole forms. The point is that the
time dependence imposed on the boundary picks out a particular
notion of time and the black hole forms where the redshift factor
for this time is smallest; this is the ‘‘center of AdS space’’ in
global coordinates.
23We thank M. Mulligan for a related discussion.
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neglected. So up to Oð�2Þ no mixed components arise in
the metric due to this coordinate transformation. We now
drop the bar on the radial coordinate and write the final
metric as

ds2 ¼ �gttdt
2 þ grrdr

2 þ r2d�2: (A7)

APPENDIX B: MORE ON THE DRIVEN
HARMONIC OSCILLATOR

In this appendix we provide the steps leading to (98) and
(99). The time derivative of the state vector jc ðtÞi in (97) is

i
@

@t
jc ðtÞi ¼ ið _�þ _�Þayjc ðtÞi þ i

� _N

N
þ _N�

N�

�
jc ðtÞi

(B1)

where we have used the expression for j�0i in (90). The
action of the Hamiltonian H on the state is easily obtained
by noting that

½H; e�a
y	 ¼

�
!0�a

y þ J�ffiffiffiffiffiffiffiffiffi
2!0

p
�
e�a

y
: (B2)

This leads to

Hjc ðtÞi ¼
�
!0�a

y þ J�ffiffiffiffiffiffiffiffiffi
2!0

p
�
jc ðtÞi þ!0

2
jc ðtÞi: (B3)

It may easily be checked that the states jc ðtÞi and ayjc ðtÞi
are linearly independent. Equating the coefficients of
ayjc ðtÞi in Eqs. (B1) and (B3) and using Eq. (92) then
leads to Eq. (98). Equating the coefficients of jc ðtÞi in
Eqs. (B1) and (B3) gives an equation that determines NðtÞ.
Note that jNðtÞj is determined directly from the require-
ment that hc jc i ¼ 1.

APPENDIX C: THE NORMALIZATION FACTOR
Fð2nÞ

In computing the normalization Fð2nÞ in (115) it is best
to first continue to Euclidean signature and then perform a
conformal transformation from R� S3 to R4. The radial
coordinate on the R4 is given by r ¼ e�, where � is the
Euclidean time in R� S3. Then the Heisenberg picture
operator on R4 is given by

Ô l¼0 ¼
X1

m¼�1

Om

rmþ4
: (C1)

The factor of rmþ4 in the denominator reflects the fact that

the operator Ôl¼0 has dimension 4. The conformally in-
variant vacuum satisfies

O mj0i ¼ 0 m
�3 h0jOm ¼ 0 m� 3: (C2)

Then the radial time ordered two-point function is given by

hÔl¼0ðrÞÔl¼0ðr0Þi ¼
X1
m¼4

X�4

n¼�1

h0jOmOnj0i
rmþ4ðr0Þnþ4

: (C3)

The two-point function only involves the central term in
the operator algebra. This means we can write

O m ¼ NFðmÞAm ðm> 0Þ
O�m ¼ NF?ðmÞAy

m ðm> 0Þ
(C4)

where the operators Am, A
y satisfy an operator algebra and

FðmÞ is a normalization

½Am; An	 ¼ ½Ay
m; A

y
n 	 ¼ 0 ½Am; A

y
n 	 ¼ 	mn: (C5)

Note that because of (C3) only terms for n 
 4 contribute
to the sum. This leads to the result

hÔl¼0ðrÞÔl¼0ðr0Þi ¼ N2

r8
X1
m¼4

jFðmÞj2
�
r0

r

�
m�4

: (C6)

On the other hand since the dimension of the operator

Ô�ðr;�3Þ is 4 we know the two-point function on R4.
This is given by

hÔðr;�3ÞÔðr0;�0
3Þi ¼

AN2

j~r� ~r0j8 (C7)

where A is a order one numerical constant. Here ~r ¼
ðr;�Þ, etc. is the location of the operator on R4.
Integrating over �3, �

0
3 we getZ

d�3

Z
d�0

3hÔðr;�3ÞÔðr0;�0
3Þi

¼ AN2ð8�3Þ
Z �

0

sin2�d�

ðr2 þ ðr0Þ2 � 2rr0 cos�Þ4 : (C8)

The integral can be performed. The result is for r > r0
Z

d�3

Z
d�0

3hÔðr;�3ÞÔðr0;�0
3Þi

¼ N2 4A�
4

r8
ðr0r Þ2 þ 1

ð1� ðr0r Þ2Þ5
: (C9)

Using the power series expansion

1þ x

ð1� xÞ5 ¼ X1
m¼0

1

12
ðmþ 1Þðmþ 2Þ2ðmþ 3Þxm (C10)

we finally get

Z
d�3

Z
d�0

3hÔðr;�3ÞÔðr0;�0
3Þi

¼ N2 A�
4

3

1

r8
X1
m¼0

ðmþ 1Þðmþ 2Þ2ðmþ 3Þ
�
r0

r

�
2m
:

(C11)

The result clearly shows that only operators with even
mode numbers are present in the expansion (C1).
Comparing (C11) and (C6) we get

Fð2mþ 1Þ ¼ 0 jFð2mÞj2 ¼ A�4

3
m2ðm2 � 1Þ (C12)

which is the result in Eq. (115).
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