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In a previous work (arXiv:0902.3750 [hep-th]) we studied the world-sheet conformal invariance for

superstrings in the type IIB R-R plane-wave in semi-light-cone gauge. Here we give further justification to

the results found in that work through alternative arguments using dynamical supersymmetries. We show

that by using the supersymmetry algebra the same quantum definition of the energy-momentum (EM)

tensor can be derived. Furthermore, using certain Jacobi identities we indirectly compute the Virasoro

anomaly terms by calculating the second-order supersymmetry variation of the EM tensor. Certain

integrated forms of all such terms are shown to vanish. In order to deal with various divergences that

appear in such computations we take a point-split definition of the same EM tensor. The final results are

shown not to suffer from the ordering ambiguity as noticed in the previous work provided the coincidence

limit is taken before sending the regularization parameter to zero at the end of the computation.
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I. INTRODUCTION

In a previous work [1] we studied world-sheet conformal
invariance of type IIB superstrings in R-R plane-wave
background [2–4] in semi-light-cone gauge [5]1 of
Green-Schwarz superstrings.2 To do that we used, follow-
ing the work of [11], a phase-space operator method where
one first defines the exact quantum energy-momentum
(EM) tensor on the world-sheet and then explicitly calcu-
lates the Virasoro algebra using the basic equal time com-
mutators and anticommutators.

It was argued in [1,12] that the relevant vacuum of the
theory should behave precisely in the same way as the one
corresponding to the flat background for the operators
inside the universal sector as defined in [13]. It was shown
in [1] that this is indeed true; however, in order to repro-
duce the correct physical spectrum the quantum EM tensor
needs to be defined in the following way: the ‘‘free part’’ is
ordered according to massless normal ordering (MNO),3

but the ‘‘interaction part’’ according to phase-space normal
ordering (PNO).4 Such a definition can be understood to

relate the world-sheet couplings and the space-time fields
in a particular way. To establish conformal invariance the
Virasoro algebra was constructed by directly calculating
the commutators of EM tensor components in local form. It
was shown that the anomaly terms are well defined at a
finite value of the regularization parameter � and develop
an ambiguity in the limit � ! 0. It is precisely when the
terms are ordered according to PNO at a finite � that the
bosonic and fermionic contributions to the anomaly cancel
each other.
For the above computation it was possible to keep

the background metric off-shell in a restricted manner.
The bosonic and fermionic contributions mentioned
above form the metric and the R-R flux part of the super-
gravity equation of motion for this restricted ansatz,
respectively. As mentioned in footnote 4, the EM tensor
itself is independent of the mutual ordering between
the world-sheet fields and the conjugate momenta.
However, organizing the anomaly terms according to
PNO does order such variables in a particular way. It is
not clear to us what this procedure may mean in a more
generic context. It is therefore interesting to ask if there
exists a generalization of this complete procedure for
arbitrary backgrounds.
In this work we will further justify the results of [1]

by an analysis using dynamical supersymmetries. The
relevant ‘‘currents’’ that we work with are related to the
usual ones in light-cone gauge [3,4] by a certain scaling.
We show that the ‘‘transverse part’’ of the EM tensor
components, as defined in [1], naturally emerges from
the anticommutators of such currents. Moreover, we use
this result in a number of Jacobi identities involving su-
persymmetry (SUSY) charges and the EM tensor compo-
nents to relate certain integrated forms of the Virasoro
anomaly terms to second-order SUSY variations of the
EM tensor components. We show that all such total anom-

*parthamu@imsc.res.in
1See [6,7] for earlier work on this gauge.
2See [8,9] for other approaches for studying world-sheet

conformal invariance in this background. World-sheet theories
for more general pp-waves with R-R flux have been discussed in
[10].

3MNO is the right choice to be used in a flat background. The
world-sheet theory in a flat background can be viewed as the
massless limit of that for the plane-wave background in light-
cone gauge. Hence the name. Nomenclature for different types
of normal ordering is taken from [11]. See also [1,12] for further
discussion.

4According to PNO the world-sheet fields and the conjugate
momenta are ordered freely among themselves, but have non-
trivial mutual ordering [1,11]. However, because of the simplic-
ity of the background the EM tensor is independent of this
mutual ordering.
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aly terms5 vanish without directly encountering any opera-
tor ordering ambiguity that is found in the direct method.
However, the second-order SUSY variation of the EM
tensor components generically gives rise to terms where
noncommuting fields appear at the same point. Therefore a
reordering performed in such terms, which we need to do
to write the final result in the desired form, leads to
divergent c-number contributions. In order to deal with
such contributions in a systematic manner and to show
that the divergences cancel we first perform the computa-
tion by point-splitting the EM tensor and then take the
coincidence limit at the end. The process of taking such a
coincidence limit could potentially encounter operator or-
dering ambiguity. However, we show that the desired
results are obtained unambiguously provided the coinci-
dence limit is imposed before sending the regularization
parameter to zero.

The argument using dynamical SUSY to justify the
definition of the EM tensor has been discussed in
Sec. II A, and the computation of Virasoro anomaly has
been discussed in Sec. II B. The computation using the
point-split EM tensor has been discussed in Sec. III.
Various technical details are given in several appendices.

II. DYNAMICAL SUPERSYMMETRYANALYSIS

Throughout the paper we will follow the same notations
as in [1]. We define the right- and left-moving dynamical
supersymmetry currents as,

q _a ¼ �I
a _a�

ISa ��ð ��I�Þ _aa�XI ~Sa;

~q _a ¼ �I
a _a

~�I ~Sa þ�ð ��I�Þ _aa�XISa;
(2.1)

respectively, where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ~�þp

. Notice that there is no
normal ordering ambiguity in the above definitions. Below
we use the corresponding charges6 Q _a ¼ H d�

2� q _að�Þ and
~Q _a ¼ H d�

2�
~q _að�Þ to justify the definition of the EM tensor

given in [1] (and as summarized in Appendix A) and that
the theory is free from conformal anomaly.

A. Definition of EM tensor

Given the currents in Eqs. (2.1) the algebra of charges
turn out to be:

fQ _a; Q _bg ¼ 2� _a _b

I d�

2�
T ?ð�Þ;

f ~Q _a; ~Q _bg ¼ 2� _a _b

I d�

2�
~T ?ð�Þ;

(2.2)

where the transverse components of the EM tensor, namely

T ? and ~T ?, have been defined in Appendix A. The above
results can be easily derived as follows. Considering the
right-moving sector first, a straightforward computation
shows7:

fq _að�Þ; q _bð�0Þg ¼ fqð0Þ_a ð�Þ; qð0Þ_b ð�0Þg
þ 4�� _a _b�T ð�Þ��ð�Þ; (2.3)

where we have used8: �I
a _a�

I
b _b

þ �I
a _b
�I

b _a ¼ 2�ab� _a _b, �T

has been defined in Appendix A, and qð0Þ_a ð�Þ is the free part
obtained by setting� ¼ 0 in Eq. (2.1). We will not attempt

to compute the local anticommutator fqð0Þ_a ð�Þ; qð0Þ_b ð�0Þg
here, rather we will use the standard result for the corre-
sponding charges [14]:

fQð0Þ
_a ;Qð0Þ

_b
g ¼ 2� _a _b

I d�

2�
T ð0Þ

? ð�Þ; (2.4)

where T ð0Þ
? is the free part of T ? (see Appendix A). The

first equation of (2.2) then directly follows from Eqs. (2.3)
and (2.4). The argument for the left-moving sector is
similar.
The results in (2.2) give an alternative justification that

the interaction term �T in the EM tensor be defined
according to PNO. The argument goes as follows. We
may express the right-hand side of the first equation in
(2.2) in the following way:

fQ _a; Q _bg ¼ 2� _a _b

I d�

2�

�
T MNO

? ð�Þ þ d�2

2
D�ð0Þ�2ð�Þ

�
;

(2.5)

(and similarly for the left-moving sector) where the num-
ber of transverse directions is d ¼ 8. D�ð�Þ is defined
through the following equation:

�

�
X�ð�ÞX�ð�0Þ �

�
¼ :X�ð�ÞX�ð�0Þ:þ ���D�ð�Þ; (2.6)

where �
�

�
� and : : denote PNO and MNO, respectively, and

it evaluates to be [1],

D�ð�Þ ¼ i

4�T

Z
d�ðdðei�; �Þ � dðe�i�; �ÞÞ;

¼ � 1

4�T
lnð�2 þ �2Þ: (2.7)

T MNO
? ð�Þ is same as T ?ð�Þ with the interaction term

defined according to MNO. It turns out that the second
term on the right-hand side of Eq. (2.5) evaluates, inside
the transverse Hilbert space H? (as defined in [1]), to be

positively divergent: dð	0�pþÞ2
4

P
n>0

e�n�

n , where we have

used the first line in Eq. (2.7). Therefore the supersymme-
try algebra in Eqs. (2.2) implies that it is the EM tensor5Notice that using this procedure, which is valid only on-shell,

we can not identify the bosonic and ferminic contributions to the
anomaly separately.

6We use the notation
H
d� to denote the definite integralR

2�
0 d�. An indefinite integral will be denoted

R
d�, as usual.

7Throughout the paper we will use the notation: � ¼ �� �0.
8To get this result simply apply the anticommutator of Sa0 and

Sb0 on the state j _ai.
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defined following the PNO prescription that leads to a
positive definite spectrum.

B. Computation of Virasoro anomaly

Here we would like to compute certain integrated forms
of the Virasoro anomaly terms as defined in [1] indirectly
by using the following Jacobi identities:

f½T ?ð�Þ; Q _a�; Q _bg þ f½T ?ð�Þ; Q _b�; Q _ag
¼ ½T ?ð�Þ; fQ _a; Q _bg�

¼ 2� _a _b

I d�0

2�
½T ?ð�Þ;T ?ð�0Þ�; (2.8)

f½ ~T ?ð�Þ; ~Q _a�; ~Q _bg þ f½ ~T ?ð�Þ; ~Q _b�; ~Q _ag
¼ ½ ~T ?ð�Þ; f ~Q _a; ~Q _bg�

¼ 2� _a _b

I d�0

2�
½ ~T ?ð�Þ; ~T ?ð�0Þ�; (2.9)

f½ ~T ?ð�Þ; Q _a�; Q _bg þ f½ ~T ?ð�Þ; Q _b�; Q _ag
¼ ½ ~T ?ð�Þ; fQ _a; Q _bg�

¼ 2� _a _b

I d�0

2�
½ ~T ?ð�Þ;T ?ð�0Þ�; (2.10)

where in the second line of each of Eqs. (2.8), (2.9), and
(2.10) we have used the SUSY algebra (2.2). We will
compute the two sides of the above equations indepen-
dently. The right-hand sides, which involve the ‘‘transverse
parts’’ of the Virasoro algebra, will contain the anomaly
terms. The relevant expressions are given by (see
Appendix B for derivation):

½T ?ð�Þ;T ?ð�0Þ� ¼ d�i

4
�000ð�Þ � 4�i

�
T ð0Þ

? ð�Þ þ 1

2
�T Fð�Þ

�
�0ð�Þ � 2�i@

�
T ð0Þ

? ð�Þ þ 1

2
�T Fð�Þ

�
�ð�Þ

þARð�;�0Þ; (2.11)

½ ~T ?ð�Þ; ~T ?ð�0Þ� ¼ �d�i

4
�000ð�Þ þ 4�i

�
~T

ð0Þ
? ð�Þ þ 1

2
�T Fð�Þ

�
�0ð�Þ þ 2�i@

�
~T

ð0Þ
? ð�Þ þ 1

2
�T Fð�Þ

�
�ð�Þ

þALð�;�0Þ; (2.12)

½T ?ð�Þ; ~T ?ð�0Þ� ¼ �

2

ffiffiffiffi
�

T

r
½@�ð�ÞðS�~Sð�ÞÞ � �ð�Þ@ðS�~Sð�ÞÞ��ð�Þ � �i�2ð�Þ@Kð ~Xð�ÞÞ�ð�Þ þAð�;�0Þ; (2.13)

where @ is defined in footnote 9, and the anomaly terms
ARð�;�0Þ, ALð�;�0Þ and Að�;�0Þ are as defined in
Appendix B. By integrating the above results and using
them in Eqs. (2.8), (2.9), and (2.10) respectively we arrive
at:

f½T ?ð�Þ; Q _a�; Q _bg þ f½T ?ð�Þ; Q _b�; Q _ag

¼ �2i� _a _b@

�
T ð0Þ

? ð�Þ þ 1

2
�T Fð�Þ

�

þ 2� _a _b

I d�0

2�
ARð�;�0Þ; (2.14)

f½ ~T ?ð�Þ; ~Q _a�; ~Q _bg þ f½ ~T ?ð�Þ; ~Q _b�; ~Q _ag

¼ 2i� _a _b@

�
~T

ð0Þ
? ð�Þ þ 1

2
�T Fð�Þ

�

þ 2� _a _b

I d�0

2�
ALð�;�0Þ; (2.15)

f½ ~T ?ð�Þ; Q _a�; Q _bg þ f½ ~T ?ð�Þ; Q _b�; Q _ag
¼ �

2
ffiffiffiffiffiffiffi
�T

p � _a _b½�ð�Þ@ðS�~Sð�ÞÞ � @�ð�ÞðS�~Sð�ÞÞ�

þ i� _a _b�
2ð�Þ@Kð ~Xð�ÞÞ � 2� _a _b

I d�0

2�
Að�0; �Þ:

(2.16)

The idea is to evaluate the integrated forms of the Virasoro
anomaly terms that appear on the right-hand sides of the
above equations by independently computing the second
order SUSY variations of the EM tensor components that
appear on the left-hand sides. Below we describe how such
second-order variations are obtained and what the results
are.
The first-order SUSY variations of the basic fields and

various parts of T ? and ~T ? have been calculated in
Appendix C. Using these results one finds:

½T ?ð�Þ; Q _a� ¼ � i

2
�I

a _a@ð�Ið�ÞSað�ÞÞ; (2.17)
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½ ~T ?ð�Þ; ~Q _a� ¼ i

2
�I

a _a@ð ~�Ið�Þ~Sað�ÞÞ; (2.18)

½ ~T ?ð�Þ; Q _a� ¼ i�ð ��I�Þ _aa�ð�Þ@XIð�Þ~Sað�Þ
þ i�

2
ð ��I�Þ _aa½�ð�ÞXIð�Þ@~Sað�Þ

� @ð�ð�ÞXIð�ÞÞ~Sað�Þ�: (2.19)

Given the above expressions the second-order SUSY var-
iations can be computed using the results (C1) and (C2). As
mentioned earlier, there is a subtlety in this derivation
which we will explain toward the end of this section. The
final results are

f½T ?ð�Þ; Q _a�; Q _bg þ f½T ?ð�Þ; Q _b�; Q _ag

¼ �2i� _a _b@

�
T ð0Þ

? ð�Þ þ 1

2
�T Fð�Þ

�
; (2.20)

f½ ~T ?ð�Þ; ~Q _a�; ~Q _bg þ f½ ~T ?ð�Þ; ~Q _b�; ~Q _ag

¼ 2i� _a _b@

�
~T ð0Þ

? ð�Þ þ 1

2
�T Fð�Þ

�
; (2.21)

f½ ~T ?ð�Þ; Q _a�; Q _bg þ f½ ~T ?ð�Þ; Q _b�; Q _ag
¼ �

2
ffiffiffiffiffiffiffi
�T

p � _a _b½�ð�Þ@ðS�~Sð�ÞÞ � @�ð�ÞðS�~Sð�ÞÞ�

þ i� _a _b�
2ð�Þ@Kð ~Xð�ÞÞ: (2.22)

Substituting these results into Eqs. (2.14), (2.15), and (2.16)
we conclude,

I
d�0ARð�;�0Þ ¼

I
d�0ALð�;�0Þ

¼
I

d�0Að�0; �Þ ¼ 0: (2.23)

We will now discuss the subtlety involved in deriving
Eqs. (2.20), (2.21), and (2.22) from Eqs. (2.17), (2.18), and
(2.19) respectively. Given the SUSY variations of the basic
fields in (C1) and (C2), it is clear that a further SUSY
transformation of (2.17) and (2.18) will give rise to terms
where noncommuting local fields appear at the same point.
In order to give the results of the forms of the right-hand
sides of Eqs. (2.20) and (2.21) one needs to reorder such
terms in a particular way. Such a procedure leads to diver-
gent c-number contributions as the fields are coincident. In
order to do the computation more systematically we will
point-split the EM tensor and take the coincidence limit at
the end of the computation. This analysis will be discussed
in the next section where we show that if the coincidence
limit is performed before taking the regularization parame-

ter � to zero, then the results (2.20) and (2.21) follow
unambiguously. Notice that the subtlety discussed above
does not apply to Eq. (2.19). This is because a further
SUSY transformation leads to terms where only commut-
ing fields are coincident. Therefore the derivation of (2.22)
from (2.19) is straightforward. However, as a consistency
check we will show in the next section that the correspond-
ing point-split analysis leads to the same conclusion only
when the coincidence limit is performed the way it has
been described above.

III. COMPUTATION WITH POINT-SPLIT EM
TENSOR

Here we will describe in detail the point-split computa-
tion for the derivation of Eqs. (2.20), (2.21), and (2.22) as
summarized at the end of the previous section. We define
the symmetrized point-split version of the EM tensor as
follows:

T 

?ð�Þ ¼ t
ð�Þ þ s
ð�Þ þ �T 


Bð�Þ þ �T 

Fð�Þ;

~T


?ð�Þ ¼ ~t
ð�Þ þ ~s
ð�Þ þ �T 


Bð�Þ þ �T 

Fð�Þ;

(3.1)

where,

t
ð�Þ ¼ 1

4
½�Ið�þ 
Þ�Ið�Þ þ�Ið�Þ�Ið�þ 
Þ�;

s
ð�Þ ¼ � i

4
½Sað�þ 
Þ@Sað�Þ þ Sað�Þ@Sað�þ 
Þ�;

~t
ð�Þ ¼ 1

4
½ ~�Ið�þ 
Þ ~�Ið�Þ þ ~�Ið�Þ ~�Ið�þ 
Þ�;

~s
ð�Þ ¼ i

4
½~Sað�þ 
Þ@~Sað�Þ þ ~Sað�Þ@~Sað�þ 
Þ�;

�T 

Bð�Þ ¼

�2

2
�2ð�ÞXIð�þ 
ÞXIð�Þ;

�T 

Fð�Þ ¼

i�

4
ffiffiffiffiffiffiffi
�T

p �ð�Þ½ðSð�þ 
Þ�~Sð�ÞÞ

þ ðSð�Þ�~Sð�þ 
ÞÞ�: (3.2)

The actual EM tensor defined in Appendix A is obtained by
taking the coincidence limit:

T ?ð�Þ ¼ lim

!0

T 

?ð�Þ; ~T ?ð�Þ ¼ lim


!0

~T 

?ð�Þ:

(3.3)

Notice that the ordering of operators in �T 

B and �T 


F is
the same as in �T B and �T F, respectively, and therefore
there is no divergent contribution coming from such terms
in the coincidence limit. This, however, is not true for the
free parts t
ð�Þ, s
ð�Þ, ~t
ð�Þ, and ~s
ð�Þ separately. But
the divergences cancel between the bosonic and fermionic
parts, as expected, because of the following relations:
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lim

!0

t
ð�Þ ¼ tð�Þ þ lim

!0

d

4

�
1

ð�þ i
Þ2 þ
1

ð�� i
Þ2
�
;

lim

!0

s
ð�Þ ¼ sð�Þ � lim

!0

d

4

�
1

ð�þ i
Þ2 þ
1

ð�� i
Þ2
�
:

(3.4)

Similar relations also hold for the left-moving sector. This

is easily derived from the short distance behavior of the
basic fields as described in Appendix D. We will compute
the relevant SUSY variations for the point-split quantities
and then finally take the coincidence limit to arrive at
Eqs. (2.20), (2.21), and (2.22). Using the SUSY variations
of the basic fields as given in Eqs. (C1) and (C2) one
derives the following results:

½T 

?ð�Þ; Q _a� ¼ � i

4
�I

a _a@ð�Ið�ÞSað�þ 
Þ þ�Ið�þ 
ÞSað�ÞÞ þ i�

4
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aað�ð�þ 
Þ � �ð�ÞÞ�Ið�Þ~Sað�þ 
Þ

� i�2

4
ffiffiffiffiffiffiffi
�T

p �I
a _að�ð�þ 
Þ � �ð�ÞÞ�ð�ÞXIð�þ 
ÞSað�Þ; (3.5)

½ ~T 

?ð�Þ; ~Q _a� ¼ i

4
�I

a _a@ð ~�Ið�Þ~Sað�þ 
Þ þ ~�Ið�þ 
Þ~Sað�ÞÞ � i�

4
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aað�ð�þ 
Þ � �ð�ÞÞ ~�Ið�ÞSað�þ 
Þ

� i�2

4
ffiffiffiffiffiffiffi
�T

p �I
a _að�ð�þ 
Þ � �ð�ÞÞ�ð�ÞXIð�þ 
Þ~Sað�Þ; (3.6)

½ ~T 

?ð�Þ; Q _a� ¼ i�

4
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa½�ð�Þ ~�Ið�þ 
Þ~Sað�Þ þ �ð�þ 
Þ ~�Ið�Þ~Sað�þ 
Þ � �ð�Þ�Ið�þ 
Þ~Sað�Þ

� �ð�Þ�Ið�Þ~Sað�þ 
Þ� þ i�

4
ð ��I�Þ _aaf�ð�þ 
ÞXIð�þ 
Þ@~Sað�Þ þ �ð�ÞXIð�Þ@~Sað�þ 
Þ

� @ð�ð�ÞXIð�ÞÞ~Sað�þ 
Þ � @ð�ð�þ 
ÞXIð�þ 
ÞÞ~Sað�Þg � i�2

4
ffiffiffiffiffiffiffi
�T

p �I
a _að�ð�þ 
Þ � �ð�ÞÞ

� �ð�ÞXIð�þ 
ÞSað�Þ: (3.7)

Below we will discuss the relevant second-order variation of Eqs. (3.5), (3.6), and (3.7) in the same order and show how, in
the coincidence limit, they reduce to Eqs. (2.20), (2.21), and (2.22) respectively.

We will start the discussion with Eq. (3.5). Computing the SUSY variation of the first term with respect to Q _b and

symmetrizing in _a and _b one obtains

@

�
� i

4
�I

a _af�Ið�ÞSað�þ 
Þ þ�Ið�þ 
ÞSað�Þ; Q _bg þ _a $ _b

�

¼ �2i� _a _b@

�
t
ð�Þ þ s
ð�Þ þ i�

8
ffiffiffiffiffiffiffi
�T

p �ð�ÞðSð�þ 
Þ�~Sð�ÞÞ þ i�

8
ffiffiffiffiffiffiffi
�T

p �ð�þ 
ÞðSð�Þ�~Sð�þ 
ÞÞ
�
;

!
!0 � 2i� _a _b@�

�
T ð0Þ

? þ 1

2
�T Fð�Þ

�
; (3.8)

where in the last line the coincidence limit has been taken
and the resulting contribution gives the right-hand side of
Eq. (2.20). Therefore we need to show that the SUSY
variation of the rest of the terms in Eq. (3.5) with Q _b,
symmetrized between _a and _b, vanishes in the coincidence
limit. Since the factor �
ð�Þ ¼ ð�ð�þ 
Þ � �ð�ÞÞ does
not vary under SUSY, we need to consider the variations
of AIa


 ð�Þ ¼ �Ið�Þ~Sað�þ 
Þ and BIa

 ð�Þ ¼ XIð�þ


ÞSað�Þ only. Any term in such variations which has
coincident commuting fields will go to zero unambigu-
ously in the coincidence limit because of the factor
�
ð�Þ. Terms which have coincident noncommuting fields

can lead to nonvanishing results in the coincidence limit
depending on how they are ordered. From Eqs. (C1) it is
clear that such terms arising from the SUSY variations of
AIa

 ð�Þ and BIa


 ð�Þ are of the forms ~Sð�Þ~Sð�þ 
Þ, Sð�þ

ÞSð�Þ,�ð�ÞXð�þ 
Þ, and Xð�þ 
Þ�ð�Þ (we dropped
space-time indices to show the forms of the terms sche-
matically). Any such term, after being ordered according to
MNO or PNO, will always lead to a short distance behavior
of the form 


��i
 , where the factor of 
 in the numerator
comes from the factor of �
ð�Þ. Therefore if we perform
the coincidence limit before sending the regularization
parameter � to 0 we always get a vanishing result.
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The argument goes in a similar way for the left-moving
sector, i.e. Eq. (3.6). Let us now consider Eq. (3.7). As
mentioned at the beginning of this section the derivation of
(2.22) from (2.19) is straightforward and does not require
one to consider the point-split EM tensor. However, wewill
now argue that in order to arrive at the result (2.22) we need
to take the coincidence limit before sending � to zero. To
do that let us first notice that the terms inside the square
brackets in the first two lines of Eq. (3.7) can be written in
the following form:

2
ffiffiffiffiffiffiffi
�T

p
�ð�Þ½@XIð�þ 
Þ~Sað�Þ þ @XIð�Þ~Sað�þ 
Þ�

þ 
@�ð�Þ ~�Ið�Þ~Sað�þ 
Þ þOð
2Þ; (3.9)

where we have used: ~�I ��I ¼ 2
ffiffiffiffiffiffiffi
�T

p
@XI. SUSY varia-

tion of the terms inside the square brackets in the above
expression and those inside the curly brackets in Eq. (3.7)
gives rise to the product of commuting operators.
Therefore the coincidence limit can be taken before per-
forming the SUSY variation. All these terms together
constitute the right-hand side of (2.19). SUSY variation
of the Oð
Þ term in the above expression and the last term
in Eq. (3.7) does produce noncommuting operators. But
because of the factor of 
 in the first case and the factor of
�
ð�Þ in the second the contributions will vanish if we
take the coincidence limit first as mentioned earlier. This
shows that the second-order SUSY variation of Eq. (3.7)
will lead to (2.22) if the coincidence limit is taken the way
we have described here.

IV. CONCLUSION

In this paper we have given alternative arguments using
dynamical supersymmetries to arrive at the same results as
found in [1]. In particular we have shown that the anti-
commutator of the supercharges naturally leads to the way
the quantum EM tensor was defined in [1]. Using the
SUSY algebra it can be argued that the EM tensor defined
this way leads to a positive definite spectrum. We have also
evaluated certain integrated forms of the Virasoro anomaly
terms defined in [1] indirectly using a number Jacobi
identities where one computes second-order SUSY varia-
tions of the EM tensor components. These computations
have been done carefully by point-splitting the EM tensor,
and all the anomaly terms mentioned above have been
shown to vanish. In this method one does not directly
encounter the operator ordering ambiguity as found in [1]
where a direct method of calculating the Virasoro anomaly
terms was adopted.
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APPENDIX A: DEFINITION OF EM TENSOR

Here we summarize the definition of the EM tensor as
given in [1]. This will also serve the purpose of introducing
certain new definitions that we will use later in this paper.
The right- and left-moving parts are given by,

T ¼ lþT ? þ 1; ~T ¼ ~lþ ~T ? þ 1; (A1)

where the longitudinal parts are given by,

l ¼ W þ �w; ~l ¼ ~W þ � ~w; (A2)

with � ¼ � 1
2 , and

9

W ¼ :�þ��:; ~W ¼ : ~�þ ~��:;

w ¼ @2 ln�þ; ~w ¼ @2 ln ~�þ:
(A3)

The transverse parts, on the other hand, are given by,

T ? ¼ T ð0Þ
? þ �T ; ~T ? ¼ ~T ð0Þ

? þ �T : (A4)

The transverse components in flat background are given by,

T ð0Þ
? ¼ tþ s; ~T

ð0Þ
? ¼ ~tþ ~s; (A5)

where

t ¼ 1

2
:�I�I:; s ¼ � i

2
:S@S:;

~t ¼ 1

2
: ~�I ~�I:; ~s ¼ i

2
:~S@~S::

(A6)

All these operators are defined with MNO. The ‘‘interac-
tion part,’’ on the other hand, is defined with PNO:

�T ¼ �T B þ �T F; �T B ¼ � 1

2
�2Kð ~XÞ;

�T F ¼ i�

2
ffiffiffiffiffiffiffi
�T

p �ðS�~SÞ;
(A7)

where,

Kð ~xÞ ¼ ��2 ~x2; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ~�þ

p
; (A8)

and � ¼ �1234 is the product of SOð8Þ Dirac matrices
along the directions I ¼ 1, 2, 3, 4.

9Throughout the paper we will use the notation @ to indicate
derivative with respect to �.
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APPENDIX B: TRANSVERSE PARTS OF
VIRASORO ALGEBRA

T ð�Þ and ~T ð�Þ are expected to satisfy right- and left-
moving Virasoro algebra with central charge c ¼ 26. The
anomaly terms ARð�;�0Þ, ALð�;�0Þ and Að�;�0Þ are
defined by

½T ð�Þ;T ð�0Þ� ¼ �i

�
c

6
�000ð�Þ �

�
4T ð�Þ � c

6

�
�0ð�Þ

� 2@Tð�Þ�ð�Þ
�
þARð�;�0Þ;

½ ~T ð�Þ; ~T ð�0Þ� ¼ ��i

�
c

6
�000ð�Þ �

�
4 ~T ð�Þ � c

6

�
�0ð�Þ

� 2@ ~T ð�Þ�ð�Þ
�
þALð�;�0Þ;

½T ð�Þ; ~T ð�0Þ� ¼ Að�;�0Þ; (B1)

where

c ¼ 3d

2
þ 2� 24� ¼ 26: (B2)

The longitudinal parts l and ~l (see Eqs. (A1) and (A2))
satisfy Virasoro algebra with central charge 2� 24� ¼ 14:

½lð�Þ; lð�0Þ� ¼ �i

�
2� 24�

6
�000ð�Þ �

�
4lð�Þ � 2

6

�
�0ð�Þ

� 2@lð�Þ�ð�Þ
�
;

½~lð�Þ; ~lð�0Þ� ¼ ��i

�
2� 24�

6
�000ð�Þ �

�
4~lð�Þ � 2

6

�
�0ð�Þ

� 2@~lð�Þ�ð�Þ
�
;

½lð�Þ; ~lð�0Þ� ¼ 0: (B3)

These results can be obtained by first noticing that W and
~W must satisfy the following right- and left-moving
Virasoro algebra, respectively, with central charge 2,

½Wð�Þ; Wð�0Þ� ¼ �i

�
2

6
�000ð�Þ �

�
4Wð�Þ � 2

6

�
�0ð�Þ

� 2@Wð�Þ�ð�Þ
�
;

½ ~Wð�Þ; ~Wð�0Þ� ¼ ��i

�
2

6
�000ð�Þ �

�
4 ~Wð�Þ � 2

6

�
�0ð�Þ

� 2@ ~Wð�Þ�ð�Þ
�
; (B4)

and using the following commutators:

½Wð�Þ; wð�0Þ� ¼ 2�i½��000ð�Þ þ @ ln�þð�Þ�00ð�Þ�;
½ ~Wð�Þ; ~wð�0Þ� ¼ �2�i½��000ð�Þ þ @ ln ~�þð�Þ�00ð�Þ�:

(B5)

Commutators for the transverse parts T ? and ~T ? (see
Eqs. (A4) and (A5)) can be obtained by using the results
(B3) and the following ones [1]:

½lð�Þ; �T ð�0Þ� ¼ �i�þð�Þ ~�þð�0ÞKð ~Xð�0ÞÞ�0ð�Þ þ�

2

�
ffiffiffiffi
�

T

r
�þð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�þð�0Þ
�þð�0Þ

s
ðS�~Sð�0ÞÞ�0ð�Þ;

½~lð�Þ; �T ð�0Þ� ¼ ��i�þð�0Þ ~�þð�ÞKð ~Xð�0ÞÞ�0ð�Þ ��

2

�
ffiffiffiffi
�

T

r
~�þð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þð�0Þ
~�þð�0Þ

s
ðS�~Sð�0ÞÞ�0ð�Þ;

(B6)

into Eqs. (B1). The final results are given by Eqs. (2.11),
(2.12), and (2.13).

APPENDIX C: FIRST-ORDER SUSY VARIATIONS

Here we give the results for the first-order SUSY
transformations.
Here we will prove the results in Eqs. (2.20), (2.21), and

(2.22). The right- and left-moving SUSY variations of the
basic fields are given by

½�Ið�Þ; Q _a� ¼ �i�I
a _a@S

að�Þ þ i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ~Sað�Þ;

½ ~�Ið�Þ; Q _a� ¼ i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ~Sað�Þ;

½XIð�Þ; Q _a� ¼ i

2
ffiffiffiffiffiffiffi
�T

p �I
a _aS

að�Þ;

fSað�Þ; Q _ag ¼ �I
a _a�

Ið�Þ;
f~Sað�Þ; Q _ag ¼ ��ð ��I�Þ _aa�ð�ÞXIð�Þ; (C1)

and

½�Ið�Þ; ~Q _a� ¼ � i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ~Sað�Þ;

½ ~�Ið�Þ; ~Q _a� ¼ i�I
a _a@~S

að�Þ � i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�ÞSað�Þ;

½XIð�Þ; ~Q _a� ¼ i

2
ffiffiffiffiffiffiffi
�T

p �I
a _a
~Sað�Þ;

fSað�Þ; ~Q _ag ¼ �ð ��I�Þ _aa�ð�ÞXIð�Þ;
f~Sað�Þ; ~Q _ag ¼ �I

a _a
~�Ið�Þ: (C2)

Using these results we compute the following SUSY var-

iations of various components of T ? and ~T ?:
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½tð�Þ;Q _a� ¼�i�I
a _a�

Ið�Þ@Sað�Þ
þ i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ�Ið�Þ~Sað�Þ;

½sð�Þ;Q _a� ¼ i

2
�I

a _a�
Ið�Þ@Sað�Þ� i

2
�I

a _a@�
Ið�ÞSað�Þ;

½~tð�Þ;Q _a� ¼ i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ ~�Ið�Þ~Sað�Þ;

½~sð�Þ;Q _a� ¼ i�

2
ð ��I�Þ _aa½�ð�ÞXIð�Þ@~Sað�Þ

�@ð�ð�ÞXIð�ÞÞ~Sað�Þ�;
½~tð�Þ; ~Q _a� ¼ i�I

a _a
~�Ið�Þ@~Sað�Þ

� i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ ~�Ið�ÞSað�Þ;

½~sð�Þ; ~Q _a� ¼ i

2
�I

a _a@
~�Ið�Þ~Sað�Þ� i

2
�I

a _a
~�Ið�Þ@~Sað�Þ;

½�T Bð�Þ;Q _a� ¼ i�2

2
ffiffiffiffiffiffiffi
�T

p �I
a _a�

2ð�ÞXIð�ÞSað�Þ;

½�T Fð�Þ;Q _a� ¼� i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ�Ið�Þ~Sað�Þ

� i�2

2
ffiffiffiffiffiffiffi
�T

p �I
a _a�

2ð�ÞXIð�ÞSað�Þ;

½�T Bð�Þ; ~Q _a� ¼ i�2

2
ffiffiffiffiffiffiffi
�T

p �I
a _a�

2ð�ÞXIð�Þ~Sað�Þ;

½�T Fð�Þ; ~Q _a� ¼ i�

2
ffiffiffiffiffiffiffi
�T

p ð ��I�Þ _aa�ð�Þ ~�Ið�ÞSað�Þ

� i�2

2
ffiffiffiffiffiffiffi
�T

p �I
a _a�

2ð�ÞXIð�Þ~Sað�Þ: (C3)

APPENDIX D: SHORT DISTANCE BEHAVIOR
CORRESPONDING TO MNO AND PNO

Given the definitions of MNO and PNO in [1] one can
compute the short distance behavior of the products of the
basic fields. We first take the product of two local fields at
� and �0 and then reorder them according to MNO and
PNO. The difference can be written in terms of the func-
tions dðe�i�; �Þ, where � ¼ �� �0 and their derivatives.
Finally, we use the following short distance behavior,

dðei�; �Þ ¼ 1

2
þ 1

�� i�
þOð�� i�Þ; (D1)

to find the leading terms. The nontrivial results are given

below (j � � � j means either MNO or PNO):

�Ið�Þ�Jð�0Þ ¼ j�Ið�Þ�Jð�0Þj þ �IJ 1

ð�� i�Þ2 ; (D2)

�Ið�ÞXJð�0Þ ¼ j�Ið�ÞXJð�0Þj � i

2
ffiffiffiffiffiffiffi
�T

p �IJ

�
1

2
þ 1

�� i�

�
;

(D3)

XIð�Þ�Jð�0Þ ¼ jXIð�Þ�Jð�0Þj
þ i

2
ffiffiffiffiffiffiffi
�T

p �IJ

�
� 1

2
þ 1

�� i�

�
; (D4)

~� Ið�Þ ~�Jð�0Þ ¼ : ~�Ið�Þ ~�Jð�0Þ:þ �IJ 1

ð�þ i�Þ2 ;

¼ �

�
~�Ið�Þ ~�Jð�0Þ �

�
� �IJ 1

ð�� i�Þ2 ;
(D5)

~�Ið�ÞXJð�0Þ ¼ : ~�Ið�ÞXJð�0Þ:� i

2
ffiffiffiffiffiffiffi
�T

p �IJ

�
1

2
þ 1

�þ i�

�
;

¼ �

�
~�Ið�ÞXJð�0Þ �

�
� i

2
ffiffiffiffiffiffiffi
�T

p �IJ

�
1

2
þ 1

�� i�

�
;

(D6)

XIð�Þ ~�Jð�0Þ ¼ :XIð�Þ ~�Jð�0Þ:
þ i

2
ffiffiffiffiffiffiffi
�T

p �IJ

�
� 1

2
þ 1

�þ i�

�
;

¼ �

�
XIð�Þ ~�Jð�0Þ �

�

þ i

2
ffiffiffiffiffiffiffi
�T

p �IJ

�
� 1

2
þ 1

�� i�

�
; (D7)

Sað�ÞSbð�0Þ ¼ jSað�ÞSbð�0Þj þ �ab

�
� 1

2
þ 1

�� i�

�
;

(D8)

~S að�Þ~Sbð�0Þ ¼ :~Sað�Þ~Sbð�0Þ:þ �ab

�
� 1

2
þ 1

�þ i�

�
;

¼ �

�
~Sað�Þ~Sbð�0Þ �

�
þ �ab

�
� 1

2
þ 1

�� i�

�
:

(D9)
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