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I. INTRODUCTION

Extra-dimensional field theories and the string theory
with magnetic fluxes can lead to interesting models [1–9].
A chiral theory can be realized as the four-dimensional
effective field theory, because of the magnetic flux back-
ground. The number of zero modes, that is, the generation
number, is determined by the magnitude of magnetic flux.
Their zero-mode profiles are nontrivially quasilocalized.
Such a behavior of zero-mode wave functions can lead to
suppressed couplings when zero modes are quasilocalized
far away each other. That would be useful to realize, e.g.
suppressed Yukawa couplings for light quarks and leptons.
On the other hand, when their localized points are close to
each other, their couplings would be of Oð1Þ and that
would be useful to explain, e.g. the top Yukawa coupling.
Furthermore, those localizing points on the torus back-
ground have a certain symmetry and it would become an
origin of non-Abelian discrete flavor symmetries [10].1

Furthermore, certain moduli can be stabilized by introduc-
ing magnetic fluxes [14]. Thus, magnetized brane models
have phenomenologically several interesting aspects.

Indeed, magnetized D-brane models are T-duals of in-
tersecting D-brane models [4–6,15–17]. (For a review see
[18] and references therein.) Within the framework of
intersecting D-brane models, many interesting models
have been constructed so far.

From the magnetic backgrounds associated with orbi-
folds [19,20] and Wilson lines, one can also derive several
interesting aspects and some of them have been studied.2

Effects of Wilson lines on the torus with magnetic fluxes
are gauge symmetry breaking and the shift of wave func-
tion profiles. Orbifolding is another way to realize a chiral
theory. For the same magnetic flux, the numbers of chiral

zero modes between the torus compactification and the
orbifold compactification are different from each other
and zero-mode profiles are different [19,20]. Adjoint mat-
ter fields remain massless on the torus with magnetic
fluxes, but those are projected out on the orbifold.3 These
differences lead to phenomenologically interesting aspects
[20]. However, effects due to Wilson lines have not studied
on the orbifold with the magnetic flux background. Our
purpose in this paper is to study more about these back-
grounds such as consistency conditions, zero-mode profiles
and phenomenological aspects of four-dimensional effec-
tive theory.
This paper is organized as follows: In Sec. II, we study

four-dimensional effective theories derived from the torus
compactification with magnetic flux and Wilson line back-
grounds. Most of them are already known results. (See, e.g.
[7].) However, we reconsider phenomenological implica-
tions of Wilson lines on magnetized torus models. In
Sec. III, we study the orbifold background with magnetic
fluxes and Wilson lines. We study zero modes under such a
background and their phenomenological aspects.
Section IV is devoted to a conclusion and discussions.

II. MAGNETIZED TORUS MODELS WITH
WILSON LINES

A. T2 models

Here, let us study a six-dimensional field theory with
magnetic fluxes and Wilson lines. The two extra dimen-
sions are compactified on T2, whose area and complex
structure are denoted by A and �. We use the coordinates
ym (m ¼ 4, 5) for T2, while x� (� ¼ 0; � � � ; 3) denote the
four-dimensional uncompactified space-time, R3;1.
Furthermore, we often use the complex coordinate, z ¼
y4 þ �y5. The boundary conditions on T2 are represented
by z� zþ 1 and z� zþ �.
First, let us study Uð1Þ theory. We consider the fermion

field �ðx; zÞ with the Uð1Þ charge, q, and it satisfies the
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realized in heterotic orbifold models [11–13].
2Other backgrounds with magnetic fluxes were also studied
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3Within the framework of intersecting D-brane models, analo-
gous results have been obtained by considering D6-branes
wrapping rigid 3-cycles [24].
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Dirac equation

�MDM�ðx; zÞ ¼ �Mð@M � iqAMÞ�ðx; zÞ ¼ 0; (1)

with M ¼ 0; � � � ; 5, where �M denote the six-dimensional
gamma matrices and AM denote Uð1Þ gauge vectors. The
fermion field � and the vector fields AM (M ¼ ð�;mÞ) are
decomposed as

�ðx; zÞ ¼ X
n

�nðxÞ � c nðzÞ;

A�ðx; zÞ ¼
X
n

An;�ðxÞ ��n;�ðzÞ;

Amðx; zÞ ¼
X
n

’n;mðxÞ ��n;mðzÞ;
(2)

with m ¼ 4, 5, where An;�ðxÞ and ’n;mðxÞ correspond to

four-dimensional vector fields and scalar fields, respec-
tively. Here, the modes with n ¼ 0 correspond to zero
modes, while the others correspond to massive modes.
Since we concentrate on zero modes, we omit the subscript
corresponding to n ¼ 0 hereafter.

We assume the following form of magnetic flux on T2:

F ¼ �i

Im�
mðdz ^ d�zÞ; (3)

where m is an integer [25]. Such a magnetic flux can be
obtained from the vector potential

AðzÞ ¼ �m

Im�
Imð�zdzÞ: (4)

This form of the vector potential satisfies the following
relations:

Aðzþ 1Þ ¼ AðzÞ þ �m

Im�
ImðdzÞ; (5)

Aðzþ �Þ ¼ AðzÞ þ �m

Im�
Imð ��dzÞ: (6)

Furthermore, these can be represented as the following
gauge transformations:

Aðzþ 1Þ ¼ AðzÞ þ d�1; Aðzþ �Þ ¼ AðzÞ þ d�2;

(7)

where

�1 ¼ �m

Im�
ImðzÞ; �2 ¼ �m

Im�
Imð ��zÞ: (8)

Then, the internal part c ðzÞ of the fermion zero mode with
the charge q must satisfy

c ðzþ 1Þ ¼ eiq�1ðzÞc ðzÞ; c ðzþ �Þ ¼ eiq�2ðzÞc ðzÞ:
(9)

Here and hereafter, we use the Uð1Þ charge normalization
such that all charges of matter fields are integers and the
minimum charge is equal to jqj ¼ 1. The internal part c is
a two-component spinor

c ¼ cþ
c�

� �
; (10)

and we choose the gamma matrix for T2,

~� 1 ¼ 0 1
1 0

� �
; ~�2 ¼ 0 �i

i 0

� �
; (11)

in terms of the real coordinates ym. Then, the Dirac equa-
tions for zero modes become

�
�@þ �qm

2 Imð�Þ z
�
cþðz; �zÞ ¼ 0; (12)

�
@� �qm

2 Imð�Þ �z
�
c�ðz; �zÞ ¼ 0: (13)

When qm> 0, the component cþ has M ¼ qm inde-
pendent zero modes and their wave functions are written as
[7]

�j;MðzÞ ¼ NMe
i�Mz ImðzÞ=Imð�Þ# j=M

0

� �
ðMz;M�Þ; (14)

where NM is a normalization factor, j denotes the flavor
index, i.e. j ¼ 0; � � � ;M� 1 and

#
a

b

" #
ð�;�Þ ¼ X

n

exp½�iðnþ aÞ2�

þ 2�iðnþ aÞð�þ bÞ�; (15)

that is, the Jacobi theta function. Note that �0;MðzÞ ¼
�M;MðzÞ. They satisfy the orthonormal condition

Z
d2z�i;MðzÞð�j;MðzÞÞ� ¼ �ij: (16)

Furthermore, for qm> 0, the other component c� has no
zero modes. As a result, we can realize a chiral spectrum.
On the other hand, when qm< 0, the component c�

has jqmj independent zero modes, but the other component
cþ has no zero modes.
One of the important properties of zero-mode wave

functions is that we can decompose a product of two
zero-mode wave functions as follows: [26,27],

�i;M1ðzÞ�j;M2ðzÞ ¼ NM1
NM2

NM1þM2

X
m2ZM1þM2

�iþjþM1m;M1þM2ðzÞ

� #
M2i�M1jþM1M2m
M1M2ðM1þM2Þ

0

" #

� ð0; �dM1M2ðM1 þM2ÞÞ: (17)

Now, let us introduce Wilson lines. The Dirac equations
of the zero modes are modified by the Wilson line back-
ground, C ¼ C1 þ �C2 as

�
�@þ �q

2 Imð�Þ ðmzþ CÞ
�
cþðz; �zÞ ¼ 0; (18)
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�
@� �q

2 Imð�Þ ðm�zþ �CÞ
�
c�ðz; �zÞ ¼ 0; (19)

where C1 and C2 are real constants. That is, we can
introduce the Wilson line background, C ¼ C1 þ �C2 by
replacing �i in (8) as [7]

�1 ¼ �

Im�
Imðmzþ CÞ; �2 ¼ �

Im�
Imð ��ðmzþ CÞÞ:

(20)

Because of this Wilson line, the number of zero modes
does not change, but their wave functions are replaced as

�j;MðzÞ ! �j;Mðzþ C=mÞ: (21)

In general, Yukawa couplings are computed by the over-
lap integral of three zero-mode profiles, c iðzÞ, c jðzÞ, and
c kðzÞ,

yijk ¼ g
Z

d2zc iðzÞc jðzÞc kðzÞ; (22)

where g denotes the corresponding coupling in the higher
dimensional theory. Concretely, when Wilson lines are
vanishing, the overlap integral of �i;M1ðzÞ�j;M2ðzÞ�
ð�k;M3ðzÞÞ� for M3 ¼ M1 þM2 is given [7,28]4

Z
d2z�i;M1ðzÞ�j;M2ðzÞð�k;M3ðzÞÞ�

¼ NM1
NM2

NM3

X
m2ZM3

�iþjþM1m;k � #
M2i�M1jþM1M2m

M1M2M3

0

" #

� ð0; �M1M2M3Þ; (23)

where the gauge invariance requires the third wave func-
tion must not be�k;M3ðzÞ but ð�k;M3ðzÞÞ� with the magnetic
flux M3 ¼ M1 þM2. Here. we have used the product rule
(17) and the orthogonality (16). When we introduce non-
vanishing Wilson lines, the overlap integral is obtained as

Z
d2z�i;M1ðzþ C=M1Þ�j;M2ðzþ C0=M2Þ

� ð�k;M3ðzþ C00=M3ÞÞ�

¼ NM1
NM2

NM3

X
m2ZM3

�iþjþM1m;k

� ei�ðC ImðC=M1ÞþC0 ImðC0=M2ÞþC00 ImðC00=M3ÞÞ=Im�

� #
M2i�M1jþM1M2m

M1M2M3

0

" #
ððM2C�M1C

0Þ; �M1M2M3Þ;

(24)

where the gauge invariance requires C00 ¼ Cþ C0.
Furthermore, by repeating the above procedure we can
compute higher order couplings [30].

In Eqs. (23) and (24), the subscript of the Kronecker
delta is defined modulo M3, and the Kronecker delta leads
to the selection rule for allowed couplings as

iþ j� k ¼ M3‘�M1m; (25)

where ‘, m are integers. When gcdðM1;M2;M3Þ ¼ g, the
above constraint becomes

iþ j ¼ k; ðmodgÞ: (26)

That implies that we can define Zg charge for zero modes,

and the allowed couplings are controlled by such a Zg

symmetry [10,30].5 This Zg transformation can be written

as [10]

Z ¼

1
	

	2

. .
.

	g�1

0
BBBBBB@

1
CCCCCCA
; (27)

where 	 ¼ e2�i=g. Furthermore, four-dimensional effec-
tive theory has a cyclic permutation symmetry

�i;M1 ! �iþmn1;M1 ; �j;M2 ! �jþmn2;M2 ;

�k;M3 ! �kþmn3;M3 ;
(28)

where ni ¼ Mi=g and m is a universal integer, that is,
another Zg symmetry. This Zg transformation can be writ-

ten as [10]

C ¼
0 1 0 0 � � � 0
0 0 1 0 � � � 0

. .
.

1 0 0 0 � � � 0

0
BBB@

1
CCCA: (29)

These two Zg symmetries are noncommutable and lead to

non-Abelian flavor symmetry, ðZg � ZgÞ 2Zg [10]. Its di-

agonal elements are written as ZmðZ0Þn, where

Z0 ¼
	

. .
.

	

0
BB@

1
CCA: (30)

These symmetries are also available for higher order cou-
plings. Furthermore, when we consider vanishing Wilson
lines, the Z2 twist symmetry is enhanced by the symmetry,

�i;M ! �M�i;M; (31)

and such Z2 can be written as

4See also [29].

5See for the same selection rule in intersecting D-brane models
[31,32].
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P ¼

1 � � � � � � � � � 0
0 � � � � � � 0 1
0 � � � 0 1 0
..
. . .

. ..
.

0 1 0 � � � 0

0
BBBBBB@

1
CCCCCCA
: (32)

Then, the permutation symmetry is enhanced from Zg to

Dg, and the total symmetry becomes ðZg � ZgÞ 2Dg. For

example, when g ¼ 3, we can realize ðZ3 � Z3Þ 2Z3 ¼
�ð27Þ and ðZ3 � Z3Þ 2D3 ¼ �ð54Þ.

It would be useful to consider Uð1Þa �Uð1Þb theory
from the phenomenological viewpoint. We consider the
fermion field �ðx; zÞ with Uð1Þa �Uð1Þb charges,
ðqa; qbÞ. We assume the following form of Uð1Þa magnetic
flux on T2:

Fa
z�z ¼

�i

Im�
ma; (33)

where ma is integer, but there is no magnetic flux in Uð1Þb.
On top of that, we introduce Wilson lines Ca and Cb for
Uð1Þa and Uð1Þb, respectively. The zero-mode equations
are written as

�
�@þ �

2 Imð�Þ ðqaðmazþ CaÞ þ qbC
bÞ
�
cþðz; �zÞ ¼ 0;

(34)

�
@� �

2 Imð�Þ ðqaðma �zþ �CaÞ þ qb �C
bÞ
�
c�ðz; �zÞ ¼ 0:

(35)

Then, the number of zero modes is obtained asM ¼ qama

and their wave functions are written as

�j;Mðzþ C=maÞ; (36)

where C ¼ Ca þ Cbqb=qa. Here, we give a few com-
ments. All of modes with qa ¼ 0 become massive and
there do not appear zero modes with qa ¼ 0. For qa � 0,
zero modes with qb ¼ 0 appear and the number of zero
modes is independent of qb. Obviously, when we introduce
Wilson lines Ca and/or Cb without magnetic flux Fa, zero
modes do not appear. The shift of wave functions depends
on 1=ma and the charge qb. Note that although Fb ¼ 0,
Wilson lines Cb and charges qb for Uð1Þb are also
important.6

The above aspects of magnetic fluxes and Wilson lines
are phenomenologically interesting. We consider six-
dimensional super Yang-Mills theory with non-Abelian
gauge group G. We introduce a magnetic flux Fa along a
Cartan direction of G. Then, the gauge group breaks to
G0 �Uð1Þa without reducing the rank. Furthermore, there
appear the massless fermion fields �0, which correspond to

the gaugino fields for the broken gauge group part in the
fundamental representation of G0 with a nonvanishing
Uð1Þa charge. Furthermore, we introduce a Wilson line
along a Cartan direction of G0. Then, the gauge group is
broken to G00 �Uð1Þa �Uð1Þb without reducing the rank.
The gaugino fields corresponding to the broken gauge part
in G0 do not remain as massless modes, but they gain
masses due to the Wilson lineUð1Þb. However, the fermion
fields �0 remain still massless with the same degeneracy.
Let us explain more on this aspect. Suppose that we

introduce magnetic fluxes in a model with a larger groupG
such that they break G to a grand unified theory (GUT)
group like SUð5Þ, and this model includes three families of
matter fields like 10 and �5. Their Yukawa couplings are
computed by the overlap integral of three zero-mode pro-
files as Eq. (22). We obtain the GUT relation among
Yukawa coupling matrices when wave function profiles
of matter fields in 10 (�5) are degenerate like Eq. (23).
Then, we introduce a Wilson line along Uð1ÞY , which
breaks SUð5Þ to SUð3Þ � SUð2Þ �Uð1ÞY . Because of
Wilson lines, SUð5Þ gauge bosons except the SUð3Þ �
SUð2Þ �Uð1ÞY gauge bosons become massive, and the
corresponding gaugino fields become massive. However,
three families of 10 and �5 matter fields remain massless.
Importantly, this Wilson line resolves the degeneracy of
wave function profiles of left-handed quarks, right-handed
up-sector quarks and right-handed charged leptons in 10
and right-handed down-sector quarks and left-handed
charged leptons in �5 as Fig. 1. That is, the GUT relation
among Yukawa coupling matrices is deformed. As an
illustrating model, we study the Pati-Salam model in the
next subsection.
Here, we comment on some effects due to discrete

values of continuousWilson lines such asC ¼ k�with k ¼
integer. We find

�j;Mðzþ k�=MÞ ¼ e�ik Imð ��zÞ=Imð�Þ�jþk;MðzÞ: (37)

Thus, the effect of such Wilson lines C ¼ k� is to replace
the j-th zero mode by the (jþ k)-th zero mode up to

e�ik Imð ��zÞ=Imð�Þ. However, when we consider 3-point and
higher order couplings, the gauge invariance requires that
the sum of Wilson lines of matter fields should vanish, that
is,

P
iki ¼ 0 for allowed n-point couplings. Thus, the part

e�ik Imð ��zÞ=Imð�Þ is irrelevant to four-dimensional effective
theory and the resultant four-dimensional effective theory
is the equivalent even when we introduce C ¼ k�.

ue01 Q

FIG. 1 (color online). Wave function splitting by Wilson lines.

6Wilson lines Cb and charges qb for Uð1Þb are in a sense more
important than Wilson lines Ca and charges qa for Uð1Þa,
because the shift of wave functions (36) depends on qb.
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Similarly, introducing the Wilson lines C ¼ k with k ¼
integer leads to the equivalent four-dimensional effective
theory.

B. Pati-Salam model

As an illustrating model, we consider the Pati-Salam
model. We start with ten-dimensional N ¼ 1 Uð8Þ super
Yang-Mills theory with the Lagrangian

L ¼ � 1

4g2
TrðFMNFMNÞ þ i

2g2
Trð ���MDM�Þ; (38)

where M, N ¼ 0; � � � ; 9. We compactify the extra six
dimensions on T2

1 � T2
2 � T2

3 , and we denote the complex

coordinate for the d-th T2
d by zd, where d ¼ 1, 2, 3. Then,

we introduce the following form of magnetic fluxes:

Fzd �zd ¼
�i

Im�d

mðdÞ
1 14

mðdÞ
2 12

mðdÞ
3 12

0
BB@

1
CCA;

d ¼ 1; 2; 3

(39)

in the gauge space, where 1N are the unit matrices of rank

N,mðdÞ
i are integers. We assume that the above background

preserves four-dimensional N ¼ 1 supersymmetry. Here,

we denote MðdÞ
ij ¼ mðdÞ

i �mðdÞ
j and Mij ¼ Mð1Þ

ij M
ð2Þ
ij M

ð3Þ
ij .

This magnetic flux breaks the gauge group Uð8Þ to Uð4Þ �
Uð2ÞL �Uð2ÞR, that is the Pati-Salam gauge group up to
Uð1Þ factors. The gauge sector corresponds to four-
dimensional N ¼ 4 supersymmetry vector multiplet, that
is, there are Uð4Þ �Uð2ÞL �Uð2ÞR N ¼ 1 vector multi-
plet and three adjoint chiral multiplets. In addition, there
appear bifundamental matter fields like �ð4;2;1Þ, �ð�4;1;2Þ and
�ð1;2;2Þ, and their numbers of zero modes are equal to M12,

M31, and M23. When Mij is negative, that implies their

conjugate matter fields appear with the degeneracy jMijj.
The fields �ð4;2;1Þ and �ð�4;1;2Þ correspond to left-handed and
right-handed matter fields, respectively, while �ð1;2;2Þ cor-
responds to up and down Higgs (Higgsino) fields. For

example, we can realize three families by MðdÞ
12 ¼ ð3; 1; 1Þ

and MðdÞ
31 ¼ ð3; 1; 1Þ. That leads to jM23j ¼ 0 or 24. At any

rate, the flavor structure is determined by the first T2
1 in

such a model. Explicitly, the zero-mode wave functions of
both �ð4;2;1Þ and �ð�4;1;2Þ are obtained as

�j;3ðz1Þ�1;1ðz2Þ�1;1ðz3Þ: (40)

Their Yukawa matrices are constrained by the Pati-Salam
gauge symmetry, that is, up-sector quarks, down-sector
quarks, charged leptons and neutrinos have the same
Yukawa matrices with Higgs fields. Even with such a
constraint, one could derive realistic quark/lepton masses
and mixing angles, because this model has many Higgs
fields and their vacuum expectation values generically
break the up-down symmetry.

We introduce Wilson lines in Uð4Þ and Uð2ÞR such that
Uð4Þ breaks to Uð1Þ �Uð3Þ and Uð2ÞR breaks Uð1Þ �
Uð1Þ. Then, the gauge group becomes the standard gauge
group up to Uð1Þ factors. Furthermore, the profiles of left-
handed quarks and leptons in �ð4;2;1Þ shift differently be-

cause of Wilson lines. Similarly, right-handed up-sector
quarks, down-sector quarks, charged leptons and neutrinos
in �ð�4;1;2Þ shift differently. The flavor structure is deter-

mined by the first T2
1 . Thus, when we introduce Wilson

lines in the second or third torus, the resultant Yukawa
matrices are still constrained by the SUð4Þ � SUð2ÞL �
SUð2ÞR. For example, we introduce Wilson lines on T2

2 .
Then, zero-mode profiles of quarks, ðQ; u; dÞ and leptons
ðL; e; �Þ split as

Q: �j;3ðz1Þ�1;1ðz2 þ CaÞ�1;1ðz3Þ;
L: �j;3ðz1Þ�1;1ðz2 � 3CaÞ�1;1ðz3Þ;
uc: �j;3ðz1Þ�1;1ðz2 � Ca þ CbÞ�1;1ðz3Þ;
dc: �j;3ðz1Þ�1;1ðz2 � Ca � CbÞ�1;1ðz3Þ;
ec: �j;3ðz1Þ�1;1ðz2 þ 3Ca � CbÞ�1;1ðz3Þ;
�c: �j;3ðz1Þ�1;1ðz2 þ 3Ca þ CbÞ�1;1ðz3Þ;

(41)

where Ca and Cb are the Wilson lines to break Uð4Þ !
Uð3Þ �Uð1Þ and Uð2ÞR ! Uð1Þ �Uð1Þ, respectively.
Those Wilson lines just change the overall factors of
Yukawa matrices, but ratios among elements in each
Yukawa matrix do not change. Also we can introduce
Wilson lines along the same Uð1Þ directions as the mag-
netic fluxes (39), but they do not deform the up-down
symmetry of Yukawa matrices, either.
On the other hand, when we introduce Wilson lines on

the first T2
1 , the zero-mode wave functions split as

Q: �j;3ðz1 þ Ca=3Þ�1;1ðz2Þ�1;1ðz3Þ;
L: �j;3ðz1 � CaÞ�1;1ðz2Þ�1;1ðz3Þ;
uc: �j;3ðz1 � Ca=3þ Cb=3Þ�1;1ðz2Þ�1;1ðz3Þ;
dc: �j;3ðz1 � Ca=3� Cb=3Þ�1;1ðz2Þ�1;1ðz3Þ;
ec: �j;3ðz1 þ Ca � Cb=3Þ�1;1ðz2Þ�1;1ðz3Þ;
�c: �j;3ðz1 þ Ca þ Cb=3Þ�1;1ðz2Þ�1;1ðz3Þ:

(42)

In this case, the flavor structure is deviated from the
SUð4Þ � SUð2ÞL � SUð2ÞR relation, that is, mass ratios
and mixing angles can change. Also we can introduce
Wilson lines Ca to T2

2 and Cb to T2
1 . Then we realize
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Q: �j;3ðz1Þ�1;1ðz2 þ CaÞ�1;1ðz3Þ;
L: �j;3ðz1Þ�1;1ðz2 � 3CaÞ�1;1ðz3Þ;
uc: �j;3ðz1 þ Cb=3Þ�1;1ðz2 � CaÞ�1;1ðz3Þ;
dc: �j;3ðz1 � Cb=3Þ�1;1ðz2 � CaÞ�1;1ðz3Þ;
ec: �j;3ðz1 � Cb=3Þ�1;1ðz2 þ 3CaÞ�1;1ðz3Þ;
�c: �j;3ðz1 þ Cb=3Þ�1;1ðz2 þ 3CaÞ�1;1ðz3Þ:

(43)

Indeed, this behavior is well known in the intersecting
D-brane models, which are T-duals of magnetized D-brane
models. In the intersecting D-brane side, the introduction
of Wilson lines corresponds to a split of D-branes. By
splitting D-branes, the gauge group breaks as UðMþ
NÞ ! UðMÞ �UðNÞ, but the number of massless bifunda-
mental modes does not change, although they are decom-
posed because of the gauge symmetry breaking.

III. ORBIFOLD MODELS

Here, we study orbifold models with magnetic fluxes.
The T2=Z2 orbifold is constructed by identifying z��z
on T2. We also embed the Z2 twist into the gauge space as
P. Note that under the Z2 twist, magnetic flux background
is invariant. That is, we have no constraint on magnetic
fluxes due to orbifolding. Furthermore, zero-mode wave
functions satisfy

�j;Mð�zÞ ¼ �M�j;MðzÞ: (44)

Note that �0;MðzÞ ¼ �M;MðzÞ. Hence, the Z2 eigenstates
are written as [19]

�j;M
� ðzÞ ¼ 1ffiffiffi

2
p ð�j;MðzÞ ��M�j;MðzÞÞ (45)

for j � 0,M=2, M. The wave functions �j;MðzÞ for j ¼ 0,
M=2 are the Z2 eigenstates with the Z2 even parity. Either

of �j;M
þ ðzÞ and �j;M� ðzÞ is projected out by the orbifold

projection. Odd wave functions can also correspond to
massless modes in the magnetic flux background, unlike
the orbifold without magnetic flux, where any odd modes
correspond to not massless modes, but massive modes.
Before orbifolding, the number of zero modes is equal to
the magnetic fluxM. For example, we have to chooseM ¼
3 in order to realize the three families. On the other hand,
the number of zero modes on the orbifold also depends on
the boundary conditions under the Z2 twist, i.e. even or odd
functions. For M ¼ even, the number of zero modes with
even (odd) functions are equal toM=2þ 1 ðM=2� 1Þ. For
M ¼ odd, the number of zero modes with even and odd
functions are equal to ðMþ 1Þ=2 and ðM� 1Þ=2, respec-
tively. These results are shown in Table I. For example,
when we choose even (odd) functions, the three families
can be realized for M ¼ 4 and 5 (7 and 8). Thus, we can
obtain various three-family models in magnetized orbifold
models, and those have a richer flavor structure than torus

models with magnetic fluxes. Yukawa couplings among

�i;M1� ðzÞ�j;M2� ðzÞð�k;M3� ðzÞÞ� are computed by use of
Eq. (23).
Now, let us study the models with nontrivial orbifold

twists and Wilson lines. We consider Uð1Þa � SUð2Þ the-
ory as the simplest example. Then we introduce magnetic
flux in Uð1Þa like Eq. (33). In addition, we embed the Z2

twist P into the SUð2Þ gauge space. For example, we
consider the SUð2Þ doublet

�1=2

��1=2

� �
; (46)

with the Uð1Þa charge qa. We embed the Z2 twist P in the
gauge space as

P ¼ 0 1
1 0

� �
(47)

for the doublet. Obviously, we can diagonalize P as P0 ¼
diagð1;�1Þ, if there is no Wilson line along another SUð2Þ
directions. However, later we will introduce a Wilson line
along the Cartan direction of SUð2Þ in the P basis. Thus,
we use the above basis for P. For the SUð2Þ gauge sector,
there is no effect due to the magnetic flux. Then, in this
sector the situation is the same as one on the orbifold
without magnetic flux. The SUð2Þ gauge group is broken
completely by nontrivial orbifold twists and Wilson lines,
that is, all of SUð2Þ vector multiplets become massive.
Before orbifolding, the SUð2Þ is not broken and both

�1=2 and ��1=2 have M ¼ qama independent zero modes,

which we denote by �j;M
1=2ðzÞ and �j;M

�1=2ðzÞ, respectively.
Here, we have put the indices, 1=2 and �1=2 in order to
make it clear that they correspond to �1=2 and ��1=2,

respectively, although the forms of wave functions are

the same, i.e. �j;M
1=2ðzÞ ¼ �j;M

�1=2ðzÞ. When we impose the

orbifold boundary conditions with the above P in (47), the
zero modes on the orbifold withoutWilson lines are written
as

1ffiffiffi
2

p ð�j;M
1=2ðzÞ þ�M�j;M

�1=2 ðzÞÞ (48)

for j ¼ 0; � � � ;M� 1. Note that there are M independent
zero modes.7

TABLE I. The numbers of zero modes for even and odd wave
functions.

M ¼ even M ¼ odd

Even zero modes M=2þ 1 ðMþ 1Þ=2
Odd zero modes M=2� 1 ðM� 1Þ=2

7It may be useful to explain remaining zero modes in the basis
for P0. Before orbifolding, both �0

1=2 and �0
�1=2 have M ¼ qama

independent zero modes in the basis for P0. Then by orbifolding
with P0, even modes �0j;M

þ ðzÞ corresponding to (45) remain for
�0
1=2, while �0

�1=2 has only odd modes �0j;M� ðzÞ. Their total
number is equal to M.
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Then, we introduce the Wilson lines [33] along the
Cartan direction

1 0
0 �1

� �
(49)

in the P basis. The corresponding zero-mode wave func-
tions are shifted as

1ffiffiffi
2

p ð�j;M
1=2ðzþ Cb=2MÞ þ�M�j;M

�1=2 ðz� Cb=2MÞÞ (50)

for j ¼ 0; � � � ;M� 1, whereCb is a continuous parameter.
Note that �1=2 and ��1=2 have opposite charges under the

SUð2Þ Cartan element. Then, their wave functions are
shifted to opposite directions by the same Wilson lines

Cb as �j;M
1=2ðzþ Cb=2MÞ and �j;M

�1=2ðz� Cb=2MÞ without
changing the number of zero modes. We can also consider
another Z2 twist P in the doublet such that the following
wave function

1ffiffiffi
2

p ð�j;M
1=2ðzþ Cb=2MÞ ��M�j;M

�1=2 ðz� Cb=2MÞÞ (51)

remains.
The above aspect would be important to applications for

particle phenomenology. We compute Yukawa couplings
among two SUð2Þ doublet fields and a singlet field, i.e.
ð�1

1=2; �
1
�1=2ÞT , ð�2

1=2; �
2
�1=2ÞT and �3

0. We assume that two

SUð2Þ doublet fields have Uð1Þa charges q1a and q2a, while
the singlet field has the Uð1Þa charge q3a. We introduce the
magnetic fluxma inUð1Þa and the same SUð2ÞWilson line
as the above. Then, the zero-mode wave functions of two
SUð2Þ doublets and the singlet can be obtained on the
orbifold as

1ffiffiffi
2

p ð�i;M1

1=2 ðzþ Cb=2M1Þ þ�M1�i;M1

�1=2 ðz� Cb=2M1ÞÞ

from
�1
1=2

�1
�1=2

0
@

1
A;

1ffiffiffi
2

p ð�j;M2

1=2 ðzþ Cb=2M2Þ þ�M2�j;M2

�1=2 ðz� Cb=2M2ÞÞ

from
�2
1=2

�2
�1=2

0
@

1
A;

1ffiffiffi
2

p ð�k;M3

0 ðzÞ þ�M3�k;M3

0 ðzÞÞ� from �3
0; (52)

where Mi ¼ qiama. Note that the Wilson line Cb has no
effect on the wave functions of the SUð2Þ singlet field �3

0

because �3
0 has no SUð2Þ charges. Here, we have taken the

same orbifold projection P as Eq. (47), but we can study
other orbifold projections. Then, their Yukawa couplings
are obtained by the following overlap integral:

1

2
ffiffiffi
2

p
Z

d2zf�i;M1

1=2 ðzþ Cb=2M1Þ�M2�j;M2

�1=2 ðz� Cb=2M2Þ

� ð�k;M3

0 ðzÞ þ�M3�k;M3

0 ðzÞÞ�
þ�M1�i;M1

�1=2 ðz� Cb=2M1Þ�j;M2

1=2 ðzþ Cb=2M2Þ
� ð�k;M3

0 ðzÞ þ�M3�k;M3

0 ðzÞÞ�g: (53)

Note that the six-dimensional bulk Lagrangian includes
only the terms corresponding to �1

1=2�
2
�1=2�

3
0 and

�1
�1=2�

2
1=2�

3
0. This integral is computed as

X
m2ZM3

ð�i�jþM1m;k þ �i�jþM1m;�kÞ#
M2iþM1jþM1M2m

M1M2M3

0

" #

� ðCbðM1 þM2Þ=2; �M1M2M3Þ
� ðei�Cb ImCbð1=M1�1=M2Þ=ð4 Im�Þ

þ ei�C
b ImCbð1=M2�1=M1Þ=ð4 Im�ÞÞ (54)

up to the normalization factor N1N2=ð2
ffiffiffi
2

p
N3Þ, where the

Kronecker delta �i�jþM1m;k in the first term means i� jþ
M1m ¼ k modulo M3 and others are defined similarly.
Obviously, the result depends nontrivially on the Wilson
line Cb. Thus, the Wilson lines have important effects on
the Yukawa couplings.
For comparison, we study another dimensional repre-

sentation, e.g. a triplet

�1

�0

��1

0
@

1
A; (55)

with the Uð1Þa charge qa. Suppose that we embed the Z2

twist P in the three dimensional gauge space as

P ¼
0 0 1
0 1 0
1 0 0

0
@

1
A (56)

for the triplet. Then, zero modes on the orbifold are written
as

�j;M
1 ðzÞ þ�M�j;M

�1 ðzÞ; �j;M
0 ðzÞ þ�M�j;M

0 ðzÞ; (57)

up to the normalization factor 1=
ffiffiffi
2

p
. The former corre-

sponds to �1 and ��1 and there are M zero modes. The
latter corresponds to �0 and there are ðM=2þ 1Þ zero
modes and ðMþ 1Þ=2 zero modes when M is even and
odd, respectively. When we introduce the continuous
Wilson lines along the Cartan direction, the wave functions
of these zero modes shift as

�j;M
1 ðzþ Cb=MÞ þ�M�j;M

�1 ðz� Cb=MÞ;
�j;M

0 ðzÞ þ�M�j;M
0 ðzÞ;

(58)

up to the normalization factor 1=
ffiffiffi
2

p
.
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Similarly to the above, here let us compute the Yukawa
couplings among the triplet ð�3

1; �
3
0; �

3
�1ÞT and the two

SUð2Þ doublets, whose zero modes are obtained in Eq.
(52). In particular, we compute the couplings including
�3
1 and �

3
�1, whose zero-mode wave functions are obtained

by

1ffiffiffi
2

p ð�k;M3

1 ðzþ Cb=M3Þ þ�M3�k;M3

�1 ðz� Cb=M3ÞÞ�;
(59)

with M3 ¼ q3ama after orbifolding. Their Yukawa cou-
plings are obtained by the following overlap integral:

1

2
ffiffiffi
2

p
Z

d2zf�i;M1

1=2 ðzþ Cb=2M1Þ�j;M2

1=2 ðzþ Cb=2M2Þ

� ð�M3�k;M3

�1 ðz� Cb=M3ÞÞ�
þ�M1�i;M1

�1=2 ðz� Cb=2M1Þ�M2�j;M2

�1=2 ðz� Cb=2M2Þ
� ð�k;M3

1 ðzþ Cb=M3ÞÞ�g: (60)

This integral is computed as

X
m2ZM3

�iþjþM1m;k#
M2i�M1jþM1M2m

M1M2M3

0

" #

� ðCbðM2 �M1Þ=2; �M1M2M3Þ
� ðei�Cb ImCbð1=M1þ1=M2�4=M3Þ=ð4 Im�Þ

þ ei�C
b ImCbð4=M3�1=M1�1=M2Þ=ð4 Im�ÞÞ; (61)

up to the normalization factor N1N2=ð2
ffiffiffi
2

p
N3Þ. This result

is different from Eq. (54), in particular, from the viewpoint
of Wilson line dependence. Thus, the Wilson lines have
phenomenologically important effects, depending on the
directions of Wilson lines and the representations of matter
fields.

We can extend the above analysis to larger gauge groups.
Here, we show a rather simple example. We consider
Uð1Þa � SUð3Þ theory with the magnetic flux in Uð1Þa
like Eq. (33). Then, we consider the SUð3Þ triplet

�0

�1=2

��1=2

0
B@

1
CA; (62)

with the Uð1Þa charge qa, where the subscripts
ð0; 1=2;�1=2Þ denote the Uð1Þb charge along one of
SUð3Þ Cartan directions. Now, we embed the Z2 twist P
in the gauge space as

P ¼
1 0 0
0 0 1
0 1 0

0
@

1
A (63)

for the triplet. In addition, we introduce the Wilson line Cb

along the Uð1Þb direction. The gauge group is broken as
SUð3Þ ! Uð1Þ.8 There are M zero modes for linear com-
binations of �1=2 and ��1=2 with the wave functions

�j;M
1=2ðzþ Cb=2MÞ þ�M�j;M

�1=2 ðz� Cb=2MÞ; (64)

up to the normalization factor. Also, the zero modes for �0

are written as

�j;M
0 ðzÞ þ�M�j;M

0 ðzÞ; (65)

up to the normalization factor. The number of zero modes
is equal to ðM=2þ 1Þ and ðMþ 1Þ=2 when M is even and
odd, respectively. Thus, the situation is almost the same as
the above SUð2Þ case with the triplet. Although the above
example is rather simple, we can consider various types of
breaking for larger groups. For example, when the gauge
group includes two or more SUð2Þ subgroups, we could
embed the Z2 twist in two of SUð2Þ’s and introduce inde-
pendent Wilson lines along their Cartan directions.
Similarly, we can investigate such models and other types
of various embedding of P and Wilson lines.
In Sec. II B, we have considered ten-dimensional theory

on T6. Also, we can consider the T6=Z2 orbifold, where the
Z2 twist acts as

Z2: z1 ! �z1; z2 ! �z2; z3 ! z3: (66)

For T2
1 and T2

2 , we can introduce the type of Wilson lines,
which we have considered in this section, while for T2

3 we

can introduce the type of Wilson lines, which are consid-
ered in the previous section. Then, we have a richer struc-
ture of models on the T6=Z2 orbifold. Furthermore, we
could consider another independent Z0

2 twist as

Z0
2: z1 ! �z1; z2 ! z2; z3 ! �z3 (67)

on the T6=ðZ2 � Z0
2Þ orbifold. In this case, we can consider

another independent embedding P0 of Z0
2 twist on the

gauge space. Using these two Z2 twist embedding and
Wilson lines, we could construct various types of models.
For example, when the gauge group includes two or more
SUð2Þ subgroups, we could embed P on one of SUð2Þ and
P0 on the other SUð2Þ and introduce independent Wilson
lines along their Cartan directions. Other various types of
model building would be possible. Thus, it would be
interesting to study such model building elsewhere.
Finally, we comment on the flavor symmetry. Yukawa

couplings as well as higher order couplings can be com-
puted by use of Eq. (24). The orbifolding without Wilson
lines is a procedure to choose eigenstates for P (32). Thus,
there remains the flavor symmetry, which commutes with
P . The Z0

g symmetry (30) is commutable. The Zg symme-

try (27) is not commutable for g ¼ odd. However, when

g ¼ even, the Z2 symmetry, which is generated by Zg=2 is

8This remaining Uð1Þ symmetry might be anomalous. If so,
the remaining Uð1Þ would also be broken by the Green-Schwarz
mechanism.
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commutable with P and another Z2 symmetry, which is

generated by Cg=2, is also commutable with P . For ex-
ample, when g ¼ 4, the generators, Z0, Z2 and C2 are
written as

Z0 ¼
i

. .
.

i

0
BB@

1
CCA; Z2 ¼

1

�1

1

�1

0
BBBBB@

1
CCCCCA
;

C2 ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBBBB@

1
CCCCCA
: (68)

Here, the Z2 and C2 generators also commute with each
other. Similarly, when g=2 ¼ even, the unbroken flavor
symmetry would be obtained as Zg � Z2 � Z2 � Z2.

9 On

the other hand, when g=2 ¼ 3, the generators, Z0, Z3 and
C3 are written as

Z0 ¼
	

. .
.

	

0
BB@

1
CCA;

Z3 ¼

1
�1

1
�1

1
�1

0
BBBBBBBB@

1
CCCCCCCCA
;

C3 ¼

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

(69)

where 	 ¼ e�i=3. Here, the Z3 and C3 generators do not
commute with each other. Thus, unbroken flavor symme-
tries are non-Abelian. Similarly, when g=2 ¼ odd, non-
Abelian discrete flavor symmetries would remain.

When we introduce Wilson lines like (49), the SUð2Þ
gauge symmetry is broken at the same time as the Zg

symmetry breaking for (27). Thus, we may expect that
some nontrivial linear combinations of broken Zg and

SUð2Þ would remain. However, only the Z2 symmetry,
which is already included above, seems to remain, e.g. in
the states (48). When we consider more complicated mod-
els, a new type of flavor symmetries, which are linear
combinations of broken flavor symmetries and gauge sym-
metries, may remain. Hence, it would be interesting to
investigate such models.

IV. CONCLUSION AND DISCUSSION

We have studied torus/orbifold models with magnetic
fluxes and Wilson lines. These backgrounds lead to various
different aspects for a particle phenomenology like the
number of zero modes, their profiles, breaking patterns of
flavor symmetries, etc. It would be quite interesting to
construct concrete models by use of these backgrounds.
We would study them elsewhere.
In addition to continuous Wilson lines studied in this

paper, we can introduce discrete Wilson lines on the orbi-
fold without magnetic fluxes, which break the gauge group
without reducing its rank. It is quite important to study the
possibility for introducing such discrete Wilson lines in the
magnetic background and study their phenomenological
implications. Furthermore, it is also important to analyze
(systematically) which types of backgrounds and boundary
conditions are possible in generic case.
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